1
|
He H, Song S, Zhai L, Li Z, Wang S, Zuo P, Zhu Y, Li H. Supramolecular Modifying Nafion with Fluoroalkyl‐Functionalized Polyoxometalate Nanoclusters for High‐Selective Proton Conduction. Angew Chem Int Ed Engl 2024:e202409006. [PMID: 38896505 DOI: 10.1002/anie.202409006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
Fluoroalkyl-grafted polyoxometalate nanoclusters are used as supramolecular additives to precisely modify the ionic domains of Nafion, which can increase the proton conductivity and selectivity simultaneously. The resulting hybrid membranes show significantly enhanced power density in fuel cells and improved energy efficiency in vanadium flow batteries.
Collapse
Affiliation(s)
- Haibo He
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, China
| | - Shihao Song
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, China
| | - Liang Zhai
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, China
| | - Zexu Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, China
| | - Sihan Wang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, China
| | - Peng Zuo
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, China
| | - Youliang Zhu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, China
| | - Haolong Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, China
| |
Collapse
|
2
|
Zhang HJ, Shang XB, Wang XR, Zhang CX, Wang QL. Anchoring of Fe-MIL-101-NH 2 to the Polymer Membrane Matrix through the Hinsberg Reaction to Promote Conductivity of SPEEK Membranes. J Phys Chem B 2024; 128:3499-3507. [PMID: 38546038 DOI: 10.1021/acs.jpcb.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
SCPEEK@MOF proton exchange membranes, where SCPEEK is sulfinyl chloride polyether ether ketone and MOF is a metal-organic framework, were prepared by doping Fe-MIL-101-NH2 into polymers. The amino group in the MOF and the -SOCl2 group in thionyl chloride polyether ether ketone cross-link to form a covalent bond through the Hinsberg reaction, and the prepared composite membrane has stronger stability than other electrostatic interactions and simple physical doping composite membranes. The formation of covalent bonds improves the water absorption of the composite membrane, which makes it easy for water molecules to form hydrogen bonds. Moreover, SPEEK as a proton conductive polymer and the synergy of MOFs improve the proton conductivity of composite membranes. The composite membranes were characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, and atomic force microscopy. The swelling rate, water absorption, mechanical stability, ion exchange capacity, and proton conductivity of the pure sulfonated polyether ether ketone (SPEEK) membrane were compared with those of the mechanically doped SPEEK/MOF membrane and the composite membrane SCPEEK@MOF doped with different ratios of Fe-MIL-101-NH2, and all of the SCPEEK@MOF showed superior performance. When the Fe-MIL-101-NH2 loading rate of the composite membrane is 2%, the proton conductivity of the composite membrane can reach 0.202 S cm-1 at 363 K and a 98% relative humidity, which is much higher than that of the SPEEK/MOF membrane obtained by simple physical doping under the same conditions.
Collapse
Affiliation(s)
- Hong-Jie Zhang
- Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xue-Bin Shang
- Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xu-Ran Wang
- Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Chen-Xi Zhang
- Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Qing-Lun Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
3
|
Song J, Zhao W, Zhou L, Meng H, Wang H, Guan P, Li M, Zou Y, Feng W, Zhang M, Zhu L, He P, Liu F, Zhang Y. Rational Materials and Structure Design for Improving the Performance and Durability of High Temperature Proton Exchange Membranes (HT-PEMs). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303969. [PMID: 37653601 PMCID: PMC10602569 DOI: 10.1002/advs.202303969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Indexed: 09/02/2023]
Abstract
Hydrogen energy as the next-generation clean energy carrier has attracted the attention of both academic and industrial fields. A key limit in the current stage is the operation temperature of hydrogen fuel cells, which lies in the slow development of high-temperature and high-efficiency proton exchange membranes. Currently, much research effort has been devoted to this field, and very innovative material systems have been developed. The authors think it is the right time to make a short summary of the high-temperature proton exchange membranes (HT-PEMs), the fundamentals, and developments, which can help the researchers to clearly and efficiently gain the key information. In this paper, the development of key materials and optimization strategies, the degradation mechanism and possible solutions, and the most common morphology characterization techniques as well as correlations between morphology and overall properties have been systematically summarized.
Collapse
Affiliation(s)
- Jingnan Song
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Wutong Zhao
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Libo Zhou
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Hongjie Meng
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Haibo Wang
- Shanghai Maxim Fuel Cell Technology CompanyShanghai201401P. R. China
| | - Panpan Guan
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Min Li
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Yecheng Zou
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials CompanyZiboShandong256401P. R. China
| | - Wei Feng
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials CompanyZiboShandong256401P. R. China
| | - Ming Zhang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Lei Zhu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Ping He
- Shanghai Maxim Fuel Cell Technology CompanyShanghai201401P. R. China
| | - Feng Liu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Yongming Zhang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| |
Collapse
|
4
|
Safronova EY, Lysova AA, Voropaeva DY, Yaroslavtsev AB. Approaches to the Modification of Perfluorosulfonic Acid Membranes. MEMBRANES 2023; 13:721. [PMID: 37623782 PMCID: PMC10456953 DOI: 10.3390/membranes13080721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023]
Abstract
Polymer ion-exchange membranes are featured in a variety of modern technologies including separation, concentration and purification of gases and liquids, chemical and electrochemical synthesis, and hydrogen power generation. In addition to transport properties, the strength, elasticity, and chemical stability of such materials are important characteristics for practical applications. Perfluorosulfonic acid (PFSA) membranes are characterized by an optimal combination of these properties. Today, one of the most well-known practical applications of PFSA membranes is the development of fuel cells. Some disadvantages of PFSA membranes, such as low conductivity at low humidity and high temperature limit their application. The approaches to optimization of properties are modification of commercial PFSA membranes and polymers by incorporation of different additive or pretreatment. This review summarizes the approaches to their modification, which will allow the creation of materials with a different set of functional properties, differing in ion transport (first of all proton conductivity) and selectivity, based on commercially available samples. These approaches include the use of different treatment techniques as well as the creation of hybrid materials containing dopant nanoparticles. Modification of the intrapore space of the membrane was shown to be a way of targeting the key functional properties of the membranes.
Collapse
Affiliation(s)
- Ekaterina Yu. Safronova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Avenue, 31, 119991 Moscow, Russia; (A.A.L.); (D.Y.V.); (A.B.Y.)
| | | | | | | |
Collapse
|
5
|
Javed A, Palafox Gonzalez P, Thangadurai V. A Critical Review of Electrolytes for Advanced Low- and High-Temperature Polymer Electrolyte Membrane Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37326582 DOI: 10.1021/acsami.3c02635] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the 21st century, proton exchange membrane fuel cells (PEMFCs) represent a promising source of power generation due to their high efficiency compared with coal combustion engines and eco-friendly design. Proton exchange membranes (PEMs), being the critical component of PEMFCs, determine their overall performance. Perfluorosulfonic acid (PFSA) based Nafion and nonfluorinated-based polybenzimidazole (PBI) membranes are commonly used for low- and high-temperature PEMFCs, respectively. However, these membranes have some drawbacks such as high cost, fuel crossover, and reduction in proton conductivity at high temperatures for commercialization. Here, we report the requirements of functional properties of PEMs for PEMFCs, the proton conduction mechanism, and the challenges which hinder their commercial adaptation. Recent research efforts have been focused on the modifications of PEMs by composite materials to overcome their drawbacks such as stability and proton conductivity. We discuss some current developments in membranes for PEMFCs with special emphasis on hybrid membranes based on Nafion, PBI, and other nonfluorinated proton conducting membranes prepared through the incorporation of different inorganic, organic, and hybrid fillers.
Collapse
Affiliation(s)
- Aroosa Javed
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | |
Collapse
|
6
|
Wen HY, Wang GH, Chang MY, Huang WY, Hsieh TL. Efficiency Analysis of Fuel Cell Components with Ionic Poly-Arylether Composite Membrane. MEMBRANES 2022; 12:membranes12121238. [PMID: 36557145 PMCID: PMC9781248 DOI: 10.3390/membranes12121238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 06/01/2023]
Abstract
We use polyethylene glycol as an additive to explore how the hydrogen bonding of this additive changes the properties of SA8 blended sulfonated polyetheretherketone (SPEEK) composite films. We mixed a 5%wt polyethylene glycol solution into a 12.5%wt SA8 solution, and then prepared a film with a total weight of 40 g at a ratio of 1:99. The SA8 (PEG) solution was prepared and then mixed with 5%wt SPEEK solution, and a film-forming solution with a total weight of 8g in different mixing ratios was created. Polyethylene glycol (PEG) was mixed into the sulfonated polyarylether polymer SA8 to form physical cross-linking. Therefore, the sulfonated polyether ether ketone SPEEK was mixed in, and it exhibited good thermal stability and dimensional stability. However, there was some decrease in proton conductivity as the proportion of SPEEK increased. Although SPEEK mixed with sulfonated polymer reduces the proton conductivity, the physical cross-linking of PEG can improve the proton conductivity of the composite membrane, and adding SPEEK can not only solve the problem of the high sulfonation film swelling phenomenon, it can also improve the dimensional stability of the film through the hydrogen bonding force of PEG and obtain a composite film with excellent properties.
Collapse
Affiliation(s)
- Hsin-Yi Wen
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Guang-Hsiang Wang
- Department of Photonics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Mei-Ying Chang
- Department of Photonics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Wen-Yao Huang
- Department of Photonics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Tung-Li Hsieh
- Department of Electronics Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| |
Collapse
|
7
|
He H, Zhu Y, Li T, Song S, Zhai L, Li X, Wu L, Li H. Supramolecular Anchoring of Polyoxometalate Amphiphiles into Nafion Nanophases for Enhanced Proton Conduction. ACS NANO 2022; 16:19240-19252. [PMID: 36315623 DOI: 10.1021/acsnano.2c08614] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Advanced proton exchange membranes (PEMs) are highly desirable in emerging sustainable energy technology. However, the further improvement of commercial perfluorosulfonic acid PEMs represented by Nafion is hindered by the lack of precise modification strategy due to their chemical inertness and low compatibility. Here, we report the robust assembly of polyethylene glycol grafted polyoxometalate amphiphile (GSiW11) into the ionic nanophases of Nafion, which largely enhances the comprehensive performance of Nafion. GSiW11 can coassemble with Nafion through multiple supramolecular interactions and realize a stable immobilization. The incorporation of GSiW11 can increase the whole proton content in the system and induce the hydrated ionic nanophase to form a wide channel for proton transport; meanwhile, GSiW11 can reinforce the Nafion ionic nanophase by noncovalent cross-linking. Based on these synergistic effects, the hybrid PEMs show multiple enhancements in proton conductivity, tensile strength, and fuel cell power density, which are all superior to the pristine Nafion. This work demonstrates the intriguing advantage of molecular nanoclusters as supramolecular enhancers to develop high-performance electrolyte materials.
Collapse
Affiliation(s)
- Haibo He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun130012, China
| | - Youliang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun130012, China
| | - Tingting Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun130012, China
| | - Shihao Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun130012, China
| | - Liang Zhai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun130012, China
| | - Xiang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun130012, China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun130012, China
| | - Haolong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun130012, China
| |
Collapse
|
8
|
Polymer Electrolyte Membranes Containing Functionalized Organic/Inorganic Composite for Polymer Electrolyte Membrane Fuel Cell Applications. Int J Mol Sci 2022; 23:ijms232214252. [PMID: 36430726 PMCID: PMC9694323 DOI: 10.3390/ijms232214252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
To mitigate the dependence on fossil fuels and the associated global warming issues, numerous studies have focused on the development of eco-friendly energy conversion devices such as polymer electrolyte membrane fuel cells (PEMFCs) that directly convert chemical energy into electrical energy. As one of the key components in PEMFCs, polymer electrolyte membranes (PEMs) should have high proton conductivity and outstanding physicochemical stability during operation. Although the perfluorinated sulfonic acid (PFSA)-based PEMs and some of the hydrocarbon-based PEMs composed of rationally designed polymer structures are found to meet these criteria, there is an ongoing and pressing need to improve and fine-tune these further, to be useful in practical PEMFC operation. Incorporation of organic/inorganic fillers into the polymer matrix is one of the methods shown to be effective for controlling target PEM properties including thermal stability, mechanical properties, and physical stability, as well as proton conductivity. Functionalization of organic/inorganic fillers is critical to optimize the filler efficiency and dispersion, thus resulting in significant improvements to PEM properties. This review focused on the structural engineering of functionalized carbon and silica-based fillers and comparisons of the resulting PEM properties. Newly constructed composite membranes were compared to composite membrane containing non-functionalized fillers or pure polymer matrix membrane without fillers.
Collapse
|
9
|
Kim D, Jang Y, Choi E, Chae JE, Jang S. Reinforced Nafion Membrane with Ultrathin MWCNTs/Ceria Layers for Durable Proton-Exchange Membrane Fuel Cells. MEMBRANES 2022; 12:1073. [PMID: 36363628 PMCID: PMC9698217 DOI: 10.3390/membranes12111073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
For further commercializing proton-exchange membrane fuel cells, it is crucial to attain long-term durability while achieving high performance. In this study, a strategy for modifying commercial Nafion membranes by introducing ultrathin multiwalled carbon nanotubes (MWCNTs)/CeO2 layers on both sides of the membrane was developed to construct a mechanically and chemically reinforced membrane electrode assembly. The dispersion properties of the MWCNTs were greatly improved through chemical modification with acid treatment, and the mixed solution of MWCNTs/CeO2 was uniformly prepared through a high-energy ball-milling process. By employing a spray-coating technique, the ultrathin MWCNTs/CeO2 layers were introduced onto the membrane surfaces without any agglomeration problem because the solvent rapidly evaporated during the layer-by-layer stacking process. These ultrathin and highly dispersed MWCNTs/CeO2 layers effectively reinforced the mechanical properties and chemical durability of the membrane while minimizing the performance drop despite their non-ion-conducting properties. The characteristics of the MWCNTs/CeO2 layers and the reinforced Nafion membrane were investigated using various in situ and ex situ measurement techniques; in addition, electrochemical measurements for fuel cells were conducted.
Collapse
Affiliation(s)
- Dongsu Kim
- School of Mechanical Engineering, Kookmin University, Seoul 02707, Korea
| | - Yeonghwan Jang
- School of Mechanical Engineering, Kookmin University, Seoul 02707, Korea
| | - Eunho Choi
- School of Mechanical Engineering, Kookmin University, Seoul 02707, Korea
| | - Ji Eon Chae
- Department of Mobility Power Research, Korea Institute of Machinery & Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Korea
| | - Segeun Jang
- School of Mechanical Engineering, Kookmin University, Seoul 02707, Korea
| |
Collapse
|
10
|
Hsieh TL, Guo WH, Chang MY, Huang WY, Wen HY. Electric Field-Assisted Filling of Sulfonated Polymers in ePTFE Backing Material for Fuel Cell. MEMBRANES 2022; 12:membranes12100974. [PMID: 36295733 PMCID: PMC9611903 DOI: 10.3390/membranes12100974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 06/01/2023]
Abstract
This study fabricated a composite ePTFE-backed proton-exchange membrane by filling the pores on the ePTFE backing with sulfonated polyarylene ethers through an externally supplied electric field. The morphology changes were observed under an SEM. The results suggested that the application of an electric field had led to the effective filling of pores by polymers. In addition, the composite membrane featured good dimensional stability and swelling ratio, and its water uptake, proton conductivity and component efficiency increased with voltage. It is found in this study that the external application of an electric field resulted in the effective filling of pores in the ePTFE by sulfonated polyarylene ether polymers and, thus, an improved composite membrane performance.
Collapse
Affiliation(s)
- Tung-Li Hsieh
- Department of Electronics Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Wen-Hui Guo
- Department of Photonics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Mei-Ying Chang
- Department of Photonics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Wen-Yao Huang
- Department of Photonics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Hsin-Yi Wen
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| |
Collapse
|
11
|
Ahmad Z, Kim WB, Kumar S, Yoon TH, Shim JJ, Lee JS. Redox-active supercapacitor electrode from two-monomer-connected precursor (Pyrrole: Anthraquinonedisulfonic acid: Pyrrole) and sulfonated multi-walled carbon nanotube. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Structurally modulated and functionalized carbon nanotubes as potential filler for Nafion matrix toward improved power output and durability in proton exchange membrane fuel cells operating at reduced relative humidity. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Proton Conductivity Enhancement at High Temperature on Polybenzimidazole Membrane Electrolyte with Acid-Functionalized Graphene Oxide Fillers. MEMBRANES 2022; 12:membranes12030344. [PMID: 35323819 PMCID: PMC8951258 DOI: 10.3390/membranes12030344] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023]
Abstract
Graphene oxide (GO) and its acid-functionalized form are known to be effective in enhancing the proton transport properties of phosphoric-acid doped polybenzimidazole (PA-doped PBI) membranes utilized in high-temperature proton exchange membrane fuel cells (HTPEMFC) owing to the presence of proton-conducting functional groups. This work aims to provide a comparison between the different effects of GO with the sulfonated GO (SGO) and phosphonated GO (PGO) on the properties of PA-doped PBI, with emphasis given on proton conductivity to understand which functional groups are suitable for proton transfer under high temperature and anhydrous conditions. Each filler was synthesized following existing methods and introduced into PBI at loadings of 0.25, 0.5, and 1 wt.%. Characterizations were carried out on the overall thermal stability, acid doping level (ADL), dimensional swelling, and proton conductivity. SGO and PGO-containing PBI exhibit better conductivity than those with GO at 180 °C under anhydrous conditions, despite a slight reduction in ADL. PBI with 0.5 wt.% SGO exhibits the highest conductivity at 23.8 mS/cm, followed by PBI with 0.5 wt.% PGO at 19.6 mS/cm. However, the membrane with PGO required a smaller activation energy for proton conduction, thus less energy was needed to initiate fast proton transfer. Additionally, the PGO-containing membrane also displayed an advantage in its thermal stability aspect. Therefore, considering these properties, it is shown that PGO is a potential filler for improving PBI properties for HTPEMFC applications.
Collapse
|
14
|
Esmaeilzadeh Z, Karimi M, Mousavi Shoushtari A, Javanbakht M. The effect of polydopamine coated multi‐walled carbon nanotube on the wettability of sulfonated poly(ether ether ketone) nanocomposite as a proton exchange membrane. J Appl Polym Sci 2022. [DOI: 10.1002/app.52142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zahra Esmaeilzadeh
- School of Materials and Advanced Process Engineering, Department of Textile Engineering Amirkabir University of Technology Tehran Iran
| | - Mohammad Karimi
- School of Materials and Advanced Process Engineering, Department of Textile Engineering Amirkabir University of Technology Tehran Iran
| | - Ahmad Mousavi Shoushtari
- School of Materials and Advanced Process Engineering, Department of Textile Engineering Amirkabir University of Technology Tehran Iran
| | - Mehran Javanbakht
- Department of Chemistry Amirkabir University of Technology Tehran Iran
| |
Collapse
|
15
|
Yang X, Kim JH, Kim YJ. Enhanced proton conductivity of poly(ether sulfone) multi-block copolymers grafted with densely pendant sulfoalkoxyl side chains for proton exchange membranes. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Pham TA, Koo S, Park H, Luong QT, Kwon OJ, Jang S, Kim SM, Kim K. Investigation on the Microscopic/Macroscopic Mechanical Properties of a Thermally Annealed Nafion ® Membrane. Polymers (Basel) 2021; 13:4018. [PMID: 34833318 PMCID: PMC8620802 DOI: 10.3390/polym13224018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
The Nafion® electrolyte membrane, which provides a proton pathway, is an essential element in fuel cell systems. Thermal treatment without additional additives is widely used to modify the mechanical properties of the membrane, to construct reliable and durable electrolyte membranes in the fuel cell. We measured the microscopic mechanical properties of thermally annealed membranes using atomic force microscopy with the two-point method. Furthermore, the macroscopic property was investigated through tensile tests. The microscopic modulus exceeded the macroscopic modulus over all annealing temperature ranges. Additionally, the measured microscopic modulus increased rapidly near 150 °C and was saturated over that temperature, whereas the macroscopic modulus continuously increased until 250 °C. This mismatched micro/macroscopic reinforcement trend indicates that the internal reinforcement of the clusters is induced first until 150 °C. In contrast, the reinforcement among the clusters, which requires more thermal energy, probably progresses even at a temperature of 250 °C. The results showed that the annealing process is effective for the surface smoothing and leveling of the Nafion® membrane until 200 °C.
Collapse
Affiliation(s)
- Tuyet Anh Pham
- Department of Mechanical Engineering, Incheon National University, Incheon 22012, Korea; (T.A.P.); (S.K.); (H.P.)
| | - Seunghoe Koo
- Department of Mechanical Engineering, Incheon National University, Incheon 22012, Korea; (T.A.P.); (S.K.); (H.P.)
| | - Hyunseok Park
- Department of Mechanical Engineering, Incheon National University, Incheon 22012, Korea; (T.A.P.); (S.K.); (H.P.)
| | - Quang Thien Luong
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Korea; (Q.T.L.); (O.J.K.)
| | - Oh Joong Kwon
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Korea; (Q.T.L.); (O.J.K.)
| | - Segeun Jang
- School of Mechanical Engineering, Kookmin University, Seoul 02707, Korea;
| | - Sang Moon Kim
- Department of Mechanical Engineering, Incheon National University, Incheon 22012, Korea; (T.A.P.); (S.K.); (H.P.)
| | - Kyeongtae Kim
- Department of Mechanical Engineering, Incheon National University, Incheon 22012, Korea; (T.A.P.); (S.K.); (H.P.)
| |
Collapse
|
17
|
Current progress in membranes for fuel cells and reverse electrodialysis. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
18
|
Foglia F, Lyonnard S, Sakai VG, Berrod Q, Zanotti JM, Gebel G, Clancy AJ, McMillan PF. Progress in neutron techniques: towards improved polymer electrolyte membranes for energy devices. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:264005. [PMID: 33906172 DOI: 10.1088/1361-648x/abfc10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Design and implementation of advanced membrane formulations for selective transport of ions and molecular species are critical for creating the next generations of fuel cells and separation devices. It is necessary to understand the detailed transport mechanisms over time- and length-scales relevant to the device operation, both in laboratory models and in working systems under realistic operational conditions. Neutron scattering techniques including quasi-elastic neutron scattering, reflectivity and imaging are implemented at beamline stations at reactor and spallation source facilities worldwide. With the advent of new and improved instrument design, detector methodology, source characteristics and data analysis protocols, these neutron scattering techniques are emerging as a primary tool for research to design, evaluate and implement advanced membrane technologies for fuel cell and separation devices. Here we describe these techniques and their development and implementation at the ILL reactor source (Institut Laue-Langevin, Grenoble, France) and ISIS Neutron and Muon Spallation source (Harwell Science and Technology Campus, UK) as examples. We also mention similar developments under way at other facilities worldwide, and describe approaches such as combining optical with neutron Raman scattering and x-ray absorption with neutron imaging and tomography, and carrying out such experiments in specialised fuel cells designed to mimic as closely possible actualoperandoconditions. These experiments and research projects will play a key role in enabling and testing new membrane formulations for efficient and sustainable energy production/conversion and separations technologies.
Collapse
Affiliation(s)
- Fabrizia Foglia
- Department of Chemistry, Christopher Ingold Laboratory, University College London, 20 Gordon St., London WC1H 0AJ, United Kingdom
| | - Sandrine Lyonnard
- University Grenoble Alpes, CNRS, CEA, IRIG-SyMMES, 38000 Grenoble, France
| | - Victoria García Sakai
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Chilton OX11 0QX, United Kingdom
| | - Quentin Berrod
- University Grenoble Alpes, CNRS, CEA, IRIG-SyMMES, 38000 Grenoble, France
| | - Jean-Marc Zanotti
- Laboratoire Léon Brillouin (CEA-CNRS), Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Gérard Gebel
- University Grenoble Alpes, CEA LITEN, 38000 Grenoble, France
| | - Adam J Clancy
- Department of Chemistry, Christopher Ingold Laboratory, University College London, 20 Gordon St., London WC1H 0AJ, United Kingdom
| | - Paul F McMillan
- Department of Chemistry, Christopher Ingold Laboratory, University College London, 20 Gordon St., London WC1H 0AJ, United Kingdom
| |
Collapse
|
19
|
Vinothkannan M, Kim AR, Yoo DJ. Potential carbon nanomaterials as additives for state-of-the-art Nafion electrolyte in proton-exchange membrane fuel cells: a concise review. RSC Adv 2021; 11:18351-18370. [PMID: 35480954 PMCID: PMC9033471 DOI: 10.1039/d1ra00685a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/05/2021] [Indexed: 01/21/2023] Open
Abstract
Proton-exchange membrane fuel cells (PEMFCs) have received great attention as a potential alternative energy device for internal combustion engines due to their high conversion efficiency compared to other fuel cells. The main hindrance for the wide commercial adoption of PEMFCs is the high cost, low proton conductivity, and high fuel permeability of the state-of-the-art Nafion membrane. Typically, to improve the Nafion membrane, a wide range of strategies have been developed, in which efforts on the incorporation of carbon nanomaterial (CN)-based fillers are highly imperative. Even though many research endeavors have been achieved in relation to CN-based fillers applicable for Nafion, still their collective summary has rarely been reported. This review aims to outline the mechanisms involved in proton conduction in proton-exchange membranes (PEMs) and the significant requirements of PEMs for PEMFCs. This review also emphasizes the improvements achieved in the proton conductivity, fuel barrier properties, and PEMFC performance of Nafion membranes by incorporating carbon nanotubes, graphene oxide, and fullerene as additives.
Collapse
Affiliation(s)
- Mohanraj Vinothkannan
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University Jeonju Jeollabuk-do 54896 Republic of Korea
| | - Ae Rhan Kim
- Department of Life Science, Graduate School of Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Jeonbuk National University Jeonju Jeollabuk-do 54896 Republic of Korea
| | - Dong Jin Yoo
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University Jeonju Jeollabuk-do 54896 Republic of Korea
- Department of Life Science, Graduate School of Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Jeonbuk National University Jeonju Jeollabuk-do 54896 Republic of Korea
| |
Collapse
|
20
|
Wang H, Zhao Y, Shao Z, Xu W, Wu Q, Ding X, Hou H. Proton Conduction of Nafion Hybrid Membranes Promoted by NH 3-Modified Zn-MOF with Host-Guest Collaborative Hydrogen Bonds for H 2/O 2 Fuel Cell Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7485-7497. [PMID: 33543925 DOI: 10.1021/acsami.0c21840] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It is of great significance to develop creative proton exchange membrane materials for proton exchange membrane fuel cells (PEMFCs). The strategy of doping metal-organic frameworks (MOFs) with guest molecules into the Nafion matrix is adopted to improve the electrochemical performance of Nafion hybrid membranes. Various and abundant hydrogen bonds can make a tremendous contribution to the proton conduction of hybrid membranes. In this work, we used high proton-conducting Zn-MOFs with the characteristics of host-guest collaborative hydrogen bonds as the filler to prepare Zn-MOF/Nafion hybrid membranes. Alternating current (AC) impedance tests show that when the doping amount of Zn-MOF is 5%, the proton conductivity reaches 7.29 × 10-3 S·cm-1, being 1.87 times that of the pure Nafion membrane at 58% relative humidity (RH) and 80 °C. In an attempt to prove the promotion effect of guest NH3 on proton conductivity of Nafion hybrid membranes, Zn-MOF-NH3 was filled into the Nafion matrix. Under the same conditions, its proton conductivity reaches the maximum value of 2.13 × 10-2 S·cm-1, which is 5.47 times that of the pure Nafion membrane. Zn-MOF-NH3/Nafion-5 was used to fabricate a proton exchange membrane for application in H2/O2 fuel cells. The maximum power density of 212 mW cm-2 and a current density of 630 mA cm-2 reveal a respectable single cell performance. This study provides a promising method for optimizing the structure of MOF proton conductors and inspires the preparation of high-performance Nafion hybrid membranes.
Collapse
Affiliation(s)
- Hongfei Wang
- The College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yujie Zhao
- The College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Zhichao Shao
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, Henan 450007, P. R. China
| | - Wenjuan Xu
- The College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Qiong Wu
- The College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xiaolin Ding
- The College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Hongwei Hou
- The College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
21
|
Zhu J, Zhou S, Li M, Xue A, Zhao Y, Peng W, Xing W. PVDF mixed matrix ultrafiltration membrane incorporated with deformed rebar-like Fe3O4–palygorskite nanocomposites to enhance strength and antifouling properties. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118467] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Parthiban V, Sahu AK. Performance enhancement of direct methanol fuel cells using a methanol barrier boron nitride–Nafion hybrid membrane. NEW J CHEM 2020. [DOI: 10.1039/d0nj00433b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Sulfonated hexagonal boron nitride is explored as a potential filler to prepare Nafion hybrid membranes for direct methanol fuel cell (DMFC) applications.
Collapse
Affiliation(s)
- V. Parthiban
- CSIR-Central Electrochemical Research Institute-Madras Unit
- CSIR Madras Complex
- Taramani
- Chennai 600113
- India
| | - A. K. Sahu
- CSIR-Central Electrochemical Research Institute-Madras Unit
- CSIR Madras Complex
- Taramani
- Chennai 600113
- India
| |
Collapse
|
23
|
Parshina AV, Titova TS, Evdokimova DD, Bobreshova OV, Safronova EY, Prikhno IA, Yaroslavtsev AB. Hybrid Materials Based on MF-4SC Membranes and Carbon Nanotubes: Transport Properties and Characteristics of DP-sensors in Hydrophobic Amino Acid Solutions. MEMBRANES AND MEMBRANE TECHNOLOGIES 2019. [DOI: 10.1134/s2517751619040073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
24
|
Oh K, Kwon O, Son B, Lee DH, Shanmugam S. Nafion-sulfonated silica composite membrane for proton exchange membrane fuel cells under operating low humidity condition. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.031] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|