1
|
Pan Y, Zhu Z, Cheng C, Wang M, Jiao R, Sun H, Li A. Superhydrophobic Photothermal Halloysite-Based Sponge for Oil-Water Separation and Fast Recovery of High-Viscosity Crude Oil Spill. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40403224 DOI: 10.1021/acs.langmuir.5c01448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Frequent oil spills and oily water pose a severe threat to ecosystems. Besides, efficient cleanup and recovery of high-viscosity marine crude oil remain a global challenge. Herein, a superhydrophobic halloysite-based oil-adsorption sponge (k-HNTs@MS2) with a photothermal conversion property was fabricated via a one-step calcination technique and a dip-coating method. Briefly, melamine sponges (MS) were calcined in argon and then dip-coated with halloysite nanotubes (HNTs) modified with 3-aminopropyltriethoxysilane (KH-550) in a PDMS/n-hexane solution. Due to the three-dimensional porous skeleton structure of the sponge and the low surface energy coating on the surface, the as-prepared k-HNTs@MS2-1 exhibited outstanding superhydrophobicity (WCA > 155°), high oil absorption capacity (18.4-37.0 g g-1), and excellent separation efficiency (>99.2%) for various oil-water mixtures. Notably, the modified sponge can use the photothermal effect to rapidly heat up and reduce the viscosity of crude oil. This enabled k-HNTs@MS2-1 to absorb more than 8 times its own weight (8.9 g g-1) of crude oil under simulated sunlight illumination of 1.0 sun (1.0 kW m-2). This work might offer a multifunctional solution for oil-water separation and cleaning up large-area viscous crude oil spills, leveraging the unique combination of superhydrophobicity, high oil absorption capacity, and photothermal conversion properties.
Collapse
Affiliation(s)
- Yue Pan
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Zhaoqi Zhu
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Chenchen Cheng
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Mingxing Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Rui Jiao
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Hanxue Sun
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - An Li
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| |
Collapse
|
2
|
Cheng X, Bae J. Recent Advancements in Fabrication, Separation, and Purification of Hierarchically Porous Polymer Membranes and Their Applications in Next-Generation Electrochemical Energy Storage Devices. Polymers (Basel) 2024; 16:3269. [PMID: 39684015 DOI: 10.3390/polym16233269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
In recent years, hierarchically porous polymer membranes (HPPMs) have emerged as promising materials for a wide range of applications, including filtration, separation, and energy storage. These membranes are distinguished by their multiscale porous structures, comprising macro-, meso-, and micropores. The multiscale structure enables optimizing the fluid dynamics and maximizing the surface areas, thereby improving the membrane performance. Advances in fabrication techniques such as electrospinning, phase separation, and templating have contributed to achieving precise control over pore size and distribution, enabling the creation of membranes with properties tailored to specific uses. In filtration systems, these membranes offer high selectivity and permeability, making them highly effective for the removal of contaminants in environmental and industrial processes. In electrochemical energy storage systems, the porous membrane architecture enhances ion transport and charge storage capabilities, leading to improved performance in batteries and supercapacitors. This review highlights the recent advances in the preparation methods for hierarchically porous structures and their progress in electrochemical energy storage applications. It offers valuable insights and references for future research in this field.
Collapse
Affiliation(s)
- Xiong Cheng
- Department of Physics, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Joonho Bae
- Department of Physics, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Souare M, Dong C, Xing T, Zhang J, Hu X. Efficient Separation of Oil/Water by a Biodegradable and Superhydrophobic Composite Based on Loofah and Rice Straw. MEMBRANES 2024; 14:243. [PMID: 39590629 PMCID: PMC11596540 DOI: 10.3390/membranes14110243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024]
Abstract
Membrane filtration is one of the preferred choices for petroleum wastewater disposal due to its simplicity and low energy consumption. In this paper, a biodegradable superhydrophobic membrane based on loofah and rice straw (LF-RS) was prepared and modified with dodecyltriethoxysilane to improve its stability, morphology, and performance. The membrane showed an efficiency of 99.06% for oil/water separation with an average water flux of 2057.37 Lm-2h-1 and a tensile strength of 11.19 MPa. The tensile strength of the LF-RS membrane was 322.47% higher than that of the PVDF membrane and 126.58% higher than that of the commercially available nitrocellulose membrane. Through molecular simulations, we showed a 96.3% reduction in interaction energy between water and membrane post-modification, which is beneficial for increasing the contact angle and separation performance. This study provides an option for the large-scale, cost-effective fabrication of eco-friendly membranes for pollutant removal.
Collapse
Affiliation(s)
- Mamadou Souare
- National Engineering Laboratory for Biomass Power Generation Equipment, School of New Energy, North China Electric Power University, Beijing 102206, China; (M.S.); (T.X.); (X.H.)
| | - Changqing Dong
- National Engineering Laboratory for Biomass Power Generation Equipment, School of New Energy, North China Electric Power University, Beijing 102206, China; (M.S.); (T.X.); (X.H.)
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
| | - Tong Xing
- National Engineering Laboratory for Biomass Power Generation Equipment, School of New Energy, North China Electric Power University, Beijing 102206, China; (M.S.); (T.X.); (X.H.)
- Datang Environment Industry Group Co., Ltd., Beijing 100080, China
| | - Junjiao Zhang
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China;
| | - Xiaoying Hu
- National Engineering Laboratory for Biomass Power Generation Equipment, School of New Energy, North China Electric Power University, Beijing 102206, China; (M.S.); (T.X.); (X.H.)
| |
Collapse
|
4
|
Guo X, Tang X, Zhang M, Ma X, Wang J, Liang H. New progress in the deep understanding of the biocake layer property: Combined effect of neglected protein secondary structure, morphology, and mechanism. WATER RESEARCH 2024; 250:121038. [PMID: 38157600 DOI: 10.1016/j.watres.2023.121038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
The application of magnetic fields (MFs) and magnetic particles (MPs) in water treatment has attracted widespread attention due to their stability, strong biological compatibility, and less chemical consumption. This study introduced MPs and MFs to GDM and probed their effects on filtration performance. Predeposited large MPs (P-large) and batch-added little MPs (B-little) intervened biocake layer development, forming more open and porous structures, they also reduced biomass secretion, resulting in flux increases of 13 % in P-large and 40 % in B-little than P-little, respectively. Besides, MFs controlled MPs distribution on the biocake layer, resulting in forming of more rough and open structures. A relatively lower magnetic field of 20 mT facilitated biomass secretion, while a higher magnetic field of 50 mT decreased biomass. Furthermore, applying magnetic fields decreased the ratios of α-helix and β-sheet, and increased random coil percentage. Thus, applying magnetic field mediation would contribute to the flux improvements in I-20 and I-50 by 29 % and 32 % relative to I-0. Economic analysis suggested introducing MPs and MFs to GDM was economically feasible, synergy of MPs and MFs had more economic advantages on the community scale and MPs-assisted GDM had significant economic advantages on both community and household scales. Future works should focus on developing new technologies for the recycling of MPs and membranes. This study provided new insight into the protein secondary structures associated with GDM performance and would encourage new sustainable MFs and MPs-assisted GDM technological developments.
Collapse
Affiliation(s)
- Xishou Guo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Xiaobin Tang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| | - Meng Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Xiaobin Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Jinlong Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| |
Collapse
|
5
|
Zhang L, Chai W, Zhang J, Chen Z, Yue Z, Wang J, Yu J. Switchable surface and loading/release of target molecules in hierarchically porous PLA nonwovens based on shape memory effect. RSC Adv 2024; 14:6199-6204. [PMID: 38375019 PMCID: PMC10875605 DOI: 10.1039/d3ra08411f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/09/2024] [Indexed: 02/21/2024] Open
Abstract
In this work, hierarchically porous PLA (polylactic acid) shape memory nonwovens were prepared by electrospinning its blend solution with PEO (polyethylene oxide) and subsequent water etching. Based on shape memory effect resulting from tiny crystals and the amorphous matrix of PLA, the switch between compact and porous surfaces has been achieved via cyclical hot-pressing and recovery in a hot water bath. After hot-pressing, the disappearance of hierarchical pores contributes to compact surface, enabling embedding of the target molecule in PLA nonwoven (i.e., CLOSE state). Upon exposure to heat, PLA nonwoven recovers to its permanent shape and exhibits a porous surface, providing a penetrative diffusion pathway for small molecules (i.e., OPEN state). The hierarchically porous structure and shape memory effect endow PLA nonwoven with the capability of rapid release. Our results provide a good candidate for some potential applications, such as temperature-controlled quick-release of catalysts and drugs.
Collapse
Affiliation(s)
- Lishuo Zhang
- College of Safety Science and Engineering, Liaoning Technical University Huludao 125105 China
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University Hangzhou 311121 China
| | - Wenqiang Chai
- Tongxiang Jianmin Filter Material Product Co. LTD. 314511 Jiaxing China
| | - Jiaru Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University Hangzhou 311121 China
| | - Zhouli Chen
- Zhejiang Institute of Mechanical & Electrical Engineering Hangzhou 311203 China
| | - Ziyang Yue
- College of Science, Liaoning Technical University Fuxin 123000 China
| | - Jiayao Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University Hangzhou 311121 China
| | - Jiankang Yu
- College of Safety Science and Engineering, Liaoning Technical University Huludao 125105 China
| |
Collapse
|
6
|
Li X, Jin X, Wu Y, Zhang D, Sun F, Ma H, Pugazhendhi A, Xia C. A comprehensive review of lignocellulosic biomass derived materials for water/oil separation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162549. [PMID: 36871707 DOI: 10.1016/j.scitotenv.2023.162549] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/23/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
With rapid socioeconomic development, oil is widely used in all aspects of modern society. However, the extraction, transport, and processing of oil inevitably lead to the production of large quantities of oily wastewater. Traditional oil/water separation strategies are often inefficient, costly, and cumbersome to operate. Therefore, new green, low-cost, and high-efficiency materials must be developed for oil/water separation. As widely sourced and renewable natural biocomposites, wood-based materials have become a hot field recently. This review will focus on the application of several wood-based materials in oil/water separation. The state of research on wood sponges, cotton fibers, cellulose aerogels, cellulose membranes, and some other wood-based materials for oil/water separation over the last few years and provide an outlook on their future development are summarized and investigated. It is expected to provide some direction for future research on the use of wood-based materials in oil/water separation.
Collapse
Affiliation(s)
- Xueyi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xin Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Daihui Zhang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hongzhi Ma
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, India.
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
7
|
Tang Y, Yin L, Gao S, Long X, Du Z, Zhou Y, Zhao S, Cao Y, Pan S. A small-diameter vascular graft immobilized peptides for capturing endothelial colony-forming cells. Front Bioeng Biotechnol 2023; 11:1154986. [PMID: 37101749 PMCID: PMC10123284 DOI: 10.3389/fbioe.2023.1154986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/23/2023] [Indexed: 04/28/2023] Open
Abstract
Combining synthetic polymers and biomacromolecules prevents the occurrence of thrombogenicity and intimal hyperplasia in small-diameter vascular grafts (SDVGs). In the present study, an electrospinning poly (L)-lactic acid (PLLA) bilayered scaffold is developed to prevent thrombosis after implantation by promoting the capture and differentiation of endothelial colony-forming cells (ECFCs). The scaffold consists of an outer PLLA scaffold and an inner porous PLLA biomimetic membrane combined with heparin (Hep), peptide Gly-Gly-Gly-Arg-Glu-Asp-Val (GGG-REDV), and vascular endothelial growth factor (VEGF). Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and contact angle goniometry were performed to determine successful synthesis. The tensile strength of the outer layer was obtained using the recorded stress/strain curves, and hemocompatibility was evaluated using the blood clotting test. The proliferation, function, and differentiation properties of ECFCs were measured on various surfaces. Scanning electronic microscopy (SEM) was used to observe the morphology of ECFCs on the surface. The outer layer of scaffolds exhibited a similar strain and stress performance as the human saphenous vein via the tensile experiment. The contact angle decreased continuously until it reached 56° after REDV/VEGF modification, and SEM images of platelet adhesion showed a better hemocompatibility surface after modification. The ECFCs were captured using the REDV + VEGF + surface successfully under flow conditions. The expression of mature ECs was constantly increased with the culture of ECFCs on REDV + VEGF + surfaces. SEM images showed that the ECFCs captured by the REDV + VEGF + surface formed capillary-like structures after 4 weeks of culture. The SDVGs modified by REDV combined with VEGF promoted ECFC capture and rapid differentiation into ECs, forming capillary-like structures in vitro. The bilayered SDVGs could be used as vascular devices that achieved a high patency rate and rapid re-endothelialization.
Collapse
Affiliation(s)
- Yaqi Tang
- Heart Center, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Lu Yin
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Shuai Gao
- Heart Center, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Xiaojing Long
- State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, China
| | - Zhanhui Du
- Heart Center, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Yingchao Zhou
- Heart Center, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Shuiyan Zhao
- Heart Center, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Yue Cao
- Heart Center, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Silin Pan
- Heart Center, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Luthfianti H, Waresindo WX, Edikresnha D, Chahyadi A, Suciati T, Noor FA, Khairurrijal K. Physicochemical Characteristics and Antibacterial Activities of Freeze-Thawed Polyvinyl Alcohol/Andrographolide Hydrogels. ACS OMEGA 2023; 8:2915-2930. [PMID: 36713706 PMCID: PMC9878633 DOI: 10.1021/acsomega.2c05110] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/23/2022] [Indexed: 06/18/2023]
Abstract
Andrographolide (AG) is one of the compounds in Andrographis paniculata, which has a high antibacterial activity. This paper reports the freeze-thaw method's use to synthesize polyvinyl alcohol (PVA) hydrogels loaded with AG and its characterization. From the morphological examination, the porosity of the PVA/AG hydrogel was found to increase with the increasing AG concentration. The swelling degree test revealed that the hydrogels' maximum swelling degrees were generally greater than 100%. The composite hydrogel with the highest fraction of andrographolide (PAG-4) showed greater weight loss than the hydrogel without AG (PAG-0). The molecular interaction between PVA and AG resulted in the narrowing of the band attributed to the O-H and C=O stretching bonds and the emergence of an amorphous domain in the composite hydrogels. The loading of AG disrupted the formation of hydroxyl groups in PVA and interrupted the cross-linking between PVA chains, which lead to the decrease of the compression strength and the crystallinity increased with increasing AG. The antibacterial activity of the composite hydrogel increased with increasing AG. The PAG-4 hydrogel had the highest antibacterial activity of 37.9 ± 4.6b %. Therefore, the PVA/AG hydrogel has the potential to be used as an antibacterial device.
Collapse
Affiliation(s)
- Halida
Rahmi Luthfianti
- Doctoral
Program of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha, 10, Bandung 40132, Jawa Barat, Indonesia
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha, 10, Bandung 40132, Jawa Barat, Indonesia
| | - William Xaveriano Waresindo
- Doctoral
Program of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha, 10, Bandung 40132, Jawa Barat, Indonesia
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha, 10, Bandung 40132, Jawa Barat, Indonesia
| | - Dhewa Edikresnha
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha, 10, Bandung 40132, Jawa Barat, Indonesia
- Bioscience
and Biotechnology Research Center, University
Center of Excellence for Nutraceuticals, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung, Jawa Barat 40132, Indonesia
| | - Agus Chahyadi
- Bioscience
and Biotechnology Research Center, University
Center of Excellence for Nutraceuticals, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung, Jawa Barat 40132, Indonesia
| | - Tri Suciati
- Department
of Pharmaceutics, School of Pharmacy, Institut
Teknologi Bandung, Jalan Ganesha 10, Bandung, Jawa Barat 40132, Indonesia
| | - Fatimah Arofiati Noor
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha, 10, Bandung 40132, Jawa Barat, Indonesia
| | - Khairurrijal Khairurrijal
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha, 10, Bandung 40132, Jawa Barat, Indonesia
- Bioscience
and Biotechnology Research Center, University
Center of Excellence for Nutraceuticals, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung, Jawa Barat 40132, Indonesia
- Department
of Physics, Faculty of Science, Institut
Teknologi Sumatera, Jalan
Terusan Ryacudu, Lampung Selatan 35365, Indonesia
| |
Collapse
|
9
|
Wu J, Cui Z, Yu Y, Han H, Tian D, Hu J, Qu J, Cai Y, Luo J, Li J. A 3D smart wood membrane with high flux and efficiency for separation of stabilized oil/water emulsions. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129900. [PMID: 36096060 DOI: 10.1016/j.jhazmat.2022.129900] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/08/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Oily sewage discharged from indiscriminate industrial and frequent oil spills have become a serious global problem. There is an urgent need to separate stable oil/water emulsions by efficient and environmentally friendly methods. Membrane separation technology has the advantages of low energy consumption and low cost, thus is an effective solution to the problems of oily wastewater. However, the manufacture of multifunctional membranes with high efficiency, high flux and self-cleaning using renewable materials remains a challenge. Herein, three-dimensional (3D) smart membranes with switchable superhydrophobic-hydrophilic surfaces were prepared by grafting photo-responsive poly-spiropyran (PSP) on wood-based substrates via surface atom transfer radical polymerization. This novel membrane can efficiently separate stabilized water-in-oil and oil-in-water emulsions due to reversible hydrophilic-hydrophobic transition by switching UV and visible light irradiation. Remarkably, after immobilization, the PSP grafted on the wood substrate exhibited a faster photo response effect than the free spiropyran (SP). More importantly, the prepared 3D smart membranes showed exceptional high flux (4392 L•m-2•h-1) and efficiency (above 99.99 %), good cycle stability (99.99 % after 12 times) and durability (available for at least 60 days) for the separation of surfactant-stabilized water-in-oil emulsions. This work opens a new avenue for the design of functional biomass-derived membranes for efficient and sustainable oily wastewater treatment with high flux, easy scale-up, and green regeneration.
Collapse
Affiliation(s)
- Jianfei Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, PR China
| | - Ziwei Cui
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, PR China
| | - Yang Yu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, PR China
| | - He Han
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, PR China
| | - Dan Tian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, PR China
| | - Jundie Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Jiafu Qu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yahui Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, PR China.
| | - Jianlin Luo
- Guizhou Provincial Engineering Research Center for Biological Resources Protection and Effificient Utilization of the Mountainous Region, Guiyang University, Guiyang 550005, PR China.
| | - Jianzhang Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, PR China; Key Laboratory of Wood-Based Materials Science and Utilization, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, PR China.
| |
Collapse
|
10
|
Synergism effect between internal and surface cubic-large-pores in the enhancement of separation performance in hierarchically porous membranes. POLYMER 2023. [DOI: 10.1016/j.polymer.2022.125601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Fabrication of firm, superhydrophobic and antimicrobial PVDF@ZnO@TA@DT electrospun nanofibrous membranes for emulsion separation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Shi J, Zhou J, Fan D, Lin T, Wang J, Zhao J, Ronen A, Li M, You J. Enhanced Separation Performance of Hierarchically Porous Membranes Fabricated via the Combination of Crystallization Template and Foaming. Polymers (Basel) 2022; 14:5160. [PMID: 36501557 PMCID: PMC9736639 DOI: 10.3390/polym14235160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022] Open
Abstract
In this work, poly (vinylidene fluoride) (PVDF) hierarchically porous membranes (HPMs) with isolated large pores and continuous narrow nano-pores have been fabricated from its blend with poly (methyl methacrylate) (PMMA) based on the combination of crystallization template with chemical or supercritical CO2 foaming. On the one hand, the decomposition of azodicarbonamide (ADC, chemical foaming agent) or the release of CO2 can produce isolated large pores. On the other hand, PMMA is expelled during the isothermal crystallization of PVDF in their miscible blend, yielding narrow nano-pores upon etching with a selective solvent. In the case of supercritical CO2, the attained PVDF HPMs fail to improve separation performance because of the compact wall of isolated-large-pore and consequent poor connectivity of hierarchical pores. In the case of ADC, the optimal HPM exhibits much higher flux (up to 20 times) without any loss of selectivity compared with the reference only with nano-pores. The enhanced permeability can be attributed to the shorter diffusion length and lower diffusion barrier from isolated large pores, while the comparable selectivity is determined by narrow nano-pores in THE matrix.
Collapse
Affiliation(s)
- Jiahui Shi
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiahai Zhou
- Zhejiang Chuanhua Chemical Group Co., Ltd., Hangzhou 311215, China
| | - Donglei Fan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Taotao Lin
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiayao Wang
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiaqi Zhao
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Avner Ronen
- Jacob Blaustein Inst Desert Res, Zuckerberg Inst Water Res, Sede Boqer Campus, Ben Gurion Univ Negev, Beer Sheva IL-84990, Israel
| | - Minggang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jichun You
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
13
|
Zheng G, Cui Y, Jiang Z, Zhou M, Yu Y, Wang P, Wang Q. Fiber-based photothermal, UV-resistant, and self-cleaning coatings fabricated by silicon grafted copolymers of chitosan derivatives and gallic acid. Int J Biol Macromol 2022; 222:1560-1577. [PMID: 36195235 DOI: 10.1016/j.ijbiomac.2022.09.230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/25/2022]
Abstract
Superhydrophobic and hydrophobic properties are generally created by adopting low surface free energy materials. Therefore, most studies have focused on creating surface hydrophobicity by using hydrophobic or fluorinated materials. However, few studies are reported on realizing surface hydrophobicity by directly introducing hydrophilic molecules, which is also a challenge. Herein, with platinum nanozyme as the catalyst, the novel hydrophobic coatings have been rapidly gained via anchoring the polymer of hydrophilic gallic acid and chitosan or chitosan quaternary ammonium salt onto cotton fabric surface. Notably, the novel hydrophobic coatings exhibit significant advances compared with conventional hydrophobic ones created by utilizing fluorinated or hydrophobic materials, which breaks the limitation of employing low surface energy materials for gaining surface hydrophobicity. Subsequently, the sodium methyl silicate was grafted on the polymer's coatings to strengthen surface hydrophobicity and the abrasion resistance of hydrophobicity. Interestingly, the heating could induce the hydrophilicity of cotton fabric to recover to hydrophobicity. Moreover, the hydrophobic coatings also possess good photothermal conversion, UV resistance, and anti-oxidation activity for self-cleaning application and oil water separation. Briefly, the present work may open a new direction for preparing novel hydrophobic coatings by combining gallic acid and chitosan-based macromolecular carbohydrates.
Collapse
Affiliation(s)
- Guolin Zheng
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Yifan Cui
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Zhe Jiang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Man Zhou
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Yuanyuan Yu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Ping Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Qiang Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
14
|
Electrospun Porous Nanofibers: Pore−Forming Mechanisms and Applications for Photocatalytic Degradation of Organic Pollutants in Wastewater. Polymers (Basel) 2022; 14:polym14193990. [PMID: 36235934 PMCID: PMC9570808 DOI: 10.3390/polym14193990] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Electrospun porous nanofibers have large specific surface areas and abundant active centers, which can effectively improve the properties of nanofibers. In the field of photocatalysis, electrospun porous nanofibers can increase the contact area of loaded photocatalytic particles with light, shorten the electron transfer path, and improve photocatalytic activity. In this paper, the main pore−forming mechanisms of electrospun porous nanofiber are summarized as breath figures, phase separation (vapor−induced phase separation, non−solvent−induced phase separation, and thermally induced phase separation) and post−processing (selective removal). Then, the application of electrospun porous nanofiber loading photocatalytic particles in the degradation of pollutants (such as organic, inorganic, and bacteria) in water is introduced, and its future development prospected. Although porous structures are beneficial in improving the photocatalytic performance of nanofibers, they reduce their mechanical properties. Therefore, strategies for improving the mechanical properties of electrospun porous nanofibers are also briefly discussed.
Collapse
|
15
|
Liu B, Chen B, Ling J, Matchinski EJ, Dong G, Ye X, Wu F, Shen W, Liu L, Lee K, Isaacman L, Potter S, Hynes B, Zhang B. Development of advanced oil/water separation technologies to enhance the effectiveness of mechanical oil recovery operations at sea: Potential and challenges. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129340. [PMID: 35728323 DOI: 10.1016/j.jhazmat.2022.129340] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Mechanical oil recovery (i.e., booming and skimming) is the most common tool for oil spill response. The recovered fluid generated from skimming processes may contain a considerable proportion of water (10 % ~ 70 %). As a result of regulatory prohibition on the discharge of contaminated waters at sea, vessels and/or storage barges must make frequent trips to shore for oil-water waste disposal. This practice can be time- consuming thus reduces the overall efficiency and capacity of oil recovery. One potential solution is on-site oil-water separation and disposal of water fraction at sea. However, currently available decanting processes may have limited oil/water separation capabilities, especially in the presence of oil-water emulsion, which is inevitable in mechanical oil recovery. The decanted water may not meet the discharge standards and cause severe ecotoxicological impacts. This paper therefore comprehensively reviews the principles and progress in oil/water separation, demulsification, and on-site treatment technologies, investigates their applicability on decanting at sea, and discusses the ecotoxicity of decanted water in the marine environment. The outputs provide the fundamental and practical knowledge on decanting and help enhance response effectiveness and consequently reducing the environmental impacts of oil spills.
Collapse
Affiliation(s)
- Bo Liu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada.
| | - Jingjing Ling
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Ethan James Matchinski
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Guihua Dong
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Xudong Ye
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Fei Wu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Wanhua Shen
- Environmental Engineering Program, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
| | - Lei Liu
- Department of Civil and Resource Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, ON K1A 0E6, Canada
| | - Lisa Isaacman
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, ON K1A 0E6, Canada
| | - Stephen Potter
- SL Ross Environmental Research Ltd., Ottawa, ON K2H 8S9, Canada
| | - Brianna Hynes
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| |
Collapse
|
16
|
Malakhov SN, Malyshkina AV, Chvalun SN. Polylactide-Based Nonwoven Materials for Sorption of Oils of Different Viscosity. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s1070427222090129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
17
|
Liu Z, Zheng W, Li Z, Dai Y, Jiang X, Zhang X, Ruan X, Wu X, He G. Constructing a CO 2-Philic and Highly Permeative Transmission Pathway in Electrospun Fiber Composite Membranes by Introduction of Ether-Oxygen Groups. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhen Liu
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Wenji Zheng
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
- Panjin Institute of Industrial Technology, Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Dalian University of Technology, Panjin 124221, China
| | - Ziheng Li
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
| | - Yan Dai
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
- Panjin Institute of Industrial Technology, Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Dalian University of Technology, Panjin 124221, China
| | - Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
| | - Xiujuan Zhang
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Xuehua Ruan
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Xuemei Wu
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
- Panjin Institute of Industrial Technology, Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
18
|
Inclusion/Exclusion Behaviors of Small Molecules during Crystallization of Polymers in Miscible PLLA/TAIC Blend. Polymers (Basel) 2022; 14:polym14132737. [PMID: 35808781 PMCID: PMC9269167 DOI: 10.3390/polym14132737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/15/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
In this work, PLLA/TAIC has been taken as a model system to investigate the inclusion and exclusion of small molecules during the crystallization of polymers in their miscible blend. Our results indicate that it is the growth rate and diameter of PLLA spherulites that dominate the localization of TAIC. On the one hand, crystallization temperature plays an important role. Crystallization at higher temperature corresponds to higher growth rates and a greater diameter of PLLA spherulites. The former improves the ability of PLLA crystals to trap TAIC while the latter leads to a lower volume fraction of space among neighboring PLLA spherulites. The combination of the two contributes to the enhanced inclusion behaviors. On the other hand, when compared to melt crystallization, cold crystallization results in much smaller spherulites (from higher nucleation density) and sufficient space among spherulites, which accounts for the enrichment of TAIC in interspherulitic regions and for its enhanced exclusion. In the adopted polymer–small molecule blend, TAIC can enrich in interspherulitic regions even in its miscible blend with PLLA, which can be attributed to its stronger diffusion ability.
Collapse
|
19
|
Yadav D, Karunanithi A, Saxena S, Shukla S. Modified PVA membrane for separation of micro-emulsion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153610. [PMID: 35114229 DOI: 10.1016/j.scitotenv.2022.153610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Release of liquefied hydrocarbons in domestic and industrial effluents, along with oil spills cause significant adverse effects on the soil, water, aquatic ecosystem, and humans. Thus, selective and cost-effective technology to address this challenge is highly desirable. Here, we report the fabrication of electrospun polyvinyl alcohol (PVA) membrane, modified with glutaraldehyde (GA) and a device thereof, for treatment of oil emulsions and recovery of precious fossil fuel. The modified PVA membranes are super-oleophobic with a high static underwater oil contact angle of 163 ± 3° for motor oil. Investigation of wetting properties suggests that the membrane can efficiently separate different oils such as sesame oil, motor oil, mustard oil, and sunflower oil from their emulsions. The motor oil emulsion with separation efficiency of >99% at an excellent permeate flux of 5128 L/m2·h·bar has been achieved. Thus, the prepared modified PVA membrane construes an easy solution for not only effective treatment of oily wastewater but also for oil recovery with high flux.
Collapse
Affiliation(s)
- Dharmveer Yadav
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, MH 400076, India.
| | - Arthi Karunanithi
- Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH 400076, India
| | - Sumit Saxena
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, MH 400076, India; Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH 400076, India; Water Innovation Center: Technology Research & Education, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH 400076, India
| | - Shobha Shukla
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, MH 400076, India; Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH 400076, India; Water Innovation Center: Technology Research & Education, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH 400076, India.
| |
Collapse
|
20
|
Hierarchically porous membranes with multiple channels: Fabrications in PVDF/PMMA/PLLA blend and enhanced separation performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Wan H, Mills R, Wang Y, Wang K, Xu S, Bhattacharyya D, Xu Z. Gravity-driven electrospun membranes for effective removal of perfluoro-organics from synthetic groundwater. J Memb Sci 2022; 644:120180. [PMID: 35911189 PMCID: PMC9337624 DOI: 10.1016/j.memsci.2021.120180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are emerging contaminants in water and soil. Electrospun membranes with open structure could treat PFAS in a gravity-driven mode with ultralow pressure needs. The electrospun ultrathin fibers (67 ± 27 nm) was prepared for the enhanced specific surface area; where polyvinylidene fluoride (PVDF) backbones and the grafted quaternary ammonium moieties (QA; PVDF-g-QA membranes) provided both hydrophobicity and anion-exchange ability (electrostatic interaction). High affinity towards the perfluorooctanoic acid (PFOA)/perfluorooctanesulfonic acid (PFOS) molecules (denoted as PFOX collectively) was observed, and >95% PFOX was removed from synthetic groundwater with a flux of 32.3 Lm-2h-1 at ΔPo = 313 Pa. With a higher octanol/water partitioning coefficient (Log Kow = 6.3) and close dispersion interaction parameter to the membrane backbones (16.6% difference in δd), the effective PFOS removal remained under alkaline and high conductivity conditions due to the intensive hydrophobic interaction compared to that of PFOA. Long-term studies exhibited >90% PFOX removal in an 8 h test with a capacity of 258 L/m2. Under mild regeneration conditions, PFOA and PFOS were concentrated by 35-fold and 39-fold, respectively. Overall, the gravity-driven electrospun PVDF-g-QA membranes, with adsorptive effectiveness and ease of regeneration, showed great potential in PFAS remediation.
Collapse
Affiliation(s)
- Hongyi Wan
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Rollie Mills
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506, USA
| | - Yixing Wang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Keyu Wang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Sunjie Xu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506, USA
| | - Zhi Xu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
22
|
Jiang H, Wang P, Zhao Q, Wang Z, Sun X, Chen M, Han B, Ma J. Enhanced water permeance and antifouling performance of gravity-driven ultrafiltration membrane with in-situ formed rigid pore structure. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Zhang J, Huang X, Xiong Y, Zheng W, Liu W, He M, Li L, Liu J, Lu L, Peng K. Spider silk bioinspired superhydrophilic nanofibrous membrane for efficient oil/water separation of nanoemulsions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Fluorine-free and hydrophobic/oleophilic PMMA/PDMS electrospun nanofibrous membranes for gravity-driven removal of water from oil-rich emulsions. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
25
|
Development of advanced floating poly(lactic acid)-based materials for colored wastewater treatment. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Liao XL, Sun DX, Cao S, Zhang N, Huang T, Lei YZ, Wang Y. Freely switchable super-hydrophobicity and super-hydrophilicity of sponge-like poly(vinylidene fluoride) porous fibers for highly efficient oil/water separation. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125926. [PMID: 34492858 DOI: 10.1016/j.jhazmat.2021.125926] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/22/2021] [Accepted: 04/16/2021] [Indexed: 06/13/2023]
Abstract
Highly efficient oil/water separation ability is a prerequisite for the actual application of the membranes in oily sewage treatment, which is closely related to the surface feature and the porous structure of the membranes. In this work, the electrospun poly(vinylidene fluoride) (PVDF) porous fibers were firstly fabricated through blend-electrospinning with poly(vinyl pyrrolidone) (PVP) and then treating in distilled water. The results showed that the fibers exhibited the sponge-like porous structure, and a few PVP was reserved in the fibers due to the relatively good interaction between PVDF and PVP. The fibrous membrane exhibited high porosity, super-wettability with freely switchable super-lipophilicity and super-hydrophilicity. The oil adsorption capacities as well as the oil and water fluxes were measured, and the oil adsorption capacities were varied in the range of 22.7-76.0 g/g, and oil and water fluxes were 54,737.3 and 56,869.9 L/(m2h), respectively. Specifically, the PVDF porous fibrous membranes showed excellent separation abilities and they could highly efficiently separate oil from oil-in-water emulsions or separate water from water-in-oil emulsions, accompanied with the extremely high water or oil flux. This work confirms that the PVDF membranes composed of the porous fibers can be used in wastewater treatment.
Collapse
Affiliation(s)
- Xiao-Lei Liao
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - De-Xiang Sun
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Sheng Cao
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Nan Zhang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China.
| | - Ting Huang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Yan-Zhou Lei
- Analytical and Testing Center, Southwest Jiaotong University, Chengdu 610031, China
| | - Yong Wang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
27
|
He L, Lei W, Liu D. One-step facile fabrication of mechanical strong porous boron nitride nanosheets–polymer electrospun nanofibrous membranes for repeatable emulsified oil/water separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
28
|
Wang B, Chen C, Li Z, Wu J, Liu X, Wang J. One-step fabrication superhydrophobic sand filter for capillary-driven separation of water-in-oil emulsions. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
El-Samak AA, Ponnamma D, Hassan MK, Adham S, Karim A, Ammar A, Alser M, Shurbaji S, Eltai NO, Al-Maadeed MAA. Multifunctional Oil Absorption with Macroporous Polystyrene Fibers Incorporating Silver-Doped ZnO. ACS OMEGA 2021; 6:8081-8093. [PMID: 33817467 PMCID: PMC8014922 DOI: 10.1021/acsomega.0c05683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Hydrophobic microporous polystyrene (PS) fibers are fabricated by a solvent-induced phase-separation-assisted electrospinning method. Zinc oxide (ZnO) and silver-doped zinc oxide (Ag-ZnO) nanomaterials with variable morphologies are added to the PS fibers, to investigate the influence of multifunctional nanofiller addition on the porosity and consequent oil-adsorbing properties for different oil types. The doping of silver as well as the uniformity in particle distribution are confirmed by scanning electron microscopy and the energy-dispersive spectral analyses. The porosity of the fibers and their crystallinity effect depend on the hydrophobicity and surface properties of these microporous nanofilled fibers. Ag-ZnO, specifically in 2 wt %, enhanced the pore size and distribution in PS porous fibers, thereby enhancing the oil-adsorbing property and its hydrophobicity. In-depth analysis of the oil adsorption mechanism is done for the fibers, both qualitatively and quantitatively, to demonstrate its correlation with the structural integrity of the fibers. The PS/2Ag-ZnO composite also exhibits the highest antibacterial performance against Staphylococcus aureus, a general indication of antibiological fouling properties of these oil-separating films. The antifouling/antibacterial activity of the nanoparticles and high oil sorption capacity of the highly porous PS composites show great potential for use in water-treatment-related applications.
Collapse
Affiliation(s)
- Ali A. El-Samak
- Center
for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | | | - Mohammad K. Hassan
- Center
for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Samer Adham
- ConocoPhilips
Global Water Sustainability Center, Qatar
Science and Technology Park, P.O. Box
24750, Doha, Qatar
| | - Alamgir Karim
- Department
of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Ali Ammar
- Department
of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Maha Alser
- Biomedical
Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Samar Shurbaji
- Biomedical
Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Nahla O. Eltai
- Biomedical
Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | | |
Collapse
|
30
|
Arunagiri V, Prasannan A, Udomsin J, Lai JY, Wang CF, Hong PD, Tsai HC. Facile fabrication of eco-friendly polycaprolactone (PCL)/Poly-D, L-Lactic acid (PDLLA) modified melamine sorbent for oil-spill cleaning and water/oil (W/O) emulsion separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Maggay IV, Chang Y, Venault A, Dizon GV, Wu CJ. Functionalized porous filtration media for gravity-driven filtration: Reviewing a new emerging approach for oil and water emulsions separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117983] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Constructing tunable bimodal porous structure in ultrahigh molecular weight polyethylene membranes with enhanced water permeance and retained rejection performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Su R, Li S, Wu W, Song C, Liu G, Yu Y. Recent progress in electrospun nanofibrous membranes for oil/water separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117790] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
One-step facile fabrication of PVDF/graphene composite nanofibrous membrane with enhanced oil affinity for highly efficient gravity-driven emulsified oil/water separation and selective oil absorption. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117576] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Sun N, Zhu Z, Zeng G. Bioinspired superwetting fibrous skin with hierarchical roughness for efficient oily water separation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140822. [PMID: 32758995 DOI: 10.1016/j.scitotenv.2020.140822] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Developing superwetting membranes with interconnected pore and multi-scale roughness for efficient oily water separation is significant but challenging owing to the limitations of low water flux and membrane fouling. Herein, we report a scalable method to develop superwetting membranes with superhydrophilicity and underwater superoleophobicity for oily water separation. This novel approach, composed of electrospinning/electrospraying of polyacrylonitrile (PAN), was to fabricate rough sphere membrane substrate, followed by in-situ polymerization of dopamine/polyethyleneimine (DA/PEI) to positively charge the fiber skin and then subsequent immersed into the negatively charged Ludox solution to construct rough membrane surface via electrostatic attraction. Benefiting from the rough sphere surface of the fibrous skin layer, the resultant membrane displayed micro/nanostructured surfaces with intriguing in-air superhydrophilicity of 0° and underwater superoleophobicity of 166° as well as robust oil-proof pressure of 83.55 kPa. As a proof-of-concept, the resultant membrane achieved high water flux and oil rejection efficiency as well as fantastic durability and antifouling performance toward the separation of highly emulsified oily water. The integration of electrospinning/electrospraying with bioinspired method is also expected to fabricate superwetting sphere surface membrane with interconnected pores for other selective separation applications.
Collapse
Affiliation(s)
- Nan Sun
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Zhigao Zhu
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Gaofeng Zeng
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
36
|
Qin Y, Shen H, Han L, Zhu Z, Pan F, Yang S, Yin X. Mechanically Robust Janus Poly(lactic acid) Hybrid Fibrous Membranes toward Highly Efficient Switchable Separation of Surfactant-Stabilized Oil/Water Emulsions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50879-50888. [PMID: 33125210 DOI: 10.1021/acsami.0c15310] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An ideal oil/water separation membrane should possess the characteristics of high flux and separation efficiency, recyclability, as well as good mechanical stability. Herein, a facile method is applied to fabricate a Janus polylactic acid (PLA) fibrous membrane for efficiently separating surfactant-stabilized oil/water mixtures. The Janus PLA fibrous membrane architecture was prepared by electrospinning a PLA/carbon nanotubes (CNTs) fibrous membrane and the subsequent electrospinning of a PLA/SiO2 nanofluids (nfs) membrane onto one side of the PLA/CNTs fibrous membrane. Due to the strong electrostatic interaction between SiO2 nfs and CNTs, synchronous enhancement and plasticization of PLA fibrous membranes were achieved, which was far superior to that reported in the literature. The introduction of CNTs had caused an upshift of the hydrophobicity of the PLA/CNTs fibrous membrane (water contact angle (WCA) > 140°). In contrast, SiO2 nfs bearing long-chain organic anions and cations located onto the surface of the fibers during electrospinning to achieve superhydrophilicity (WCA ≈ 0°). Benefiting from completely opposite wettability on both sides of the Janus membrane, the obtained asymmetric Janus membranes exhibited a high flux (1142-1485 L m-2 L-1) and excellent oil/water separation efficiency (>99%), which were superior to those reported for other Janus membranes. Furthermore, the Janus membranes showed desirable flux recovery without any treatment (>80% for water-in-oil emulsions and >90% for oil-in-water emulsions, respectively, after 11 cycles), showcasing promising applications for water treatment in the future.
Collapse
Affiliation(s)
| | | | - Lu Han
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zongmin Zhu
- High-tech Organic Fibers Key Laboratory of Sichuan Province, Chengdu, Sichuan 610072, China
| | | | | | | |
Collapse
|
37
|
Yu Q, Qin Y, Han M, Pan F, Han L, Yin X, Chen Z, Wang L, Wang H. Preparation and characterization of solvent-free fluids reinforced and plasticized polylactic acid fibrous membrane. Int J Biol Macromol 2020; 161:122-131. [DOI: 10.1016/j.ijbiomac.2020.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022]
|
38
|
Synthesis, Phase-Transition Behaviour, and Oil Adsorption Performance of Porous Poly( oligo(ethylene glycol) Alkyl Ether Acrylate) Gels. Polymers (Basel) 2020; 12:polym12061405. [PMID: 32585809 PMCID: PMC7361678 DOI: 10.3390/polym12061405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/11/2020] [Accepted: 06/19/2020] [Indexed: 11/17/2022] Open
Abstract
To probe the effects of pendant side-chain structures on the properties of porous thermoresponsive polymer gels, oligo(ethylene glycol) alkyl ether acrylates were polymerised in an aqueous medium under radical-mediated phase-separation conditions. The monomer structures varied according to the lengths and termini of their ethylene glycol side chains. The porous poly(oligo(ethylene glycol) alkyl ether acrylate) (POEGA) gels exhibited variable lower critical solution temperatures (LCSTs) but similar and rapid swelling–deswelling behaviours. Although the LCST of the poly(tri(ethylene glycol) monomethyl ether acrylate) (PTEGA) gel decreased with increasing aqueous NaCl or CaCl2 concentration, PTEGA showed excellent thermosensitivity in highly concentrated salt solutions, recommending its application in saline environments. Examination of PTEGA adsorption performance in an oil–water emulsion showed that n-tridecane adsorption increased with temperature. Although n-tridecane was effectively adsorbed at 70 °C, its release from the fully adsorbed PTEGA gel was difficult despite a temperature reduction from 70 to 20 °C.
Collapse
|
39
|
Wang J, Ding M, Cheng X, Ye C, Li F, Li Y, You J. Hierarchically porous membranes with isolated-round-pores connected by narrow-nanopores: A novel solution for trade-off effect in separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Ye C, Cao X, Wang H, Wang J, Wang T, Wang Z, Li Y, You J. Inter‐spherulitic/inner‐spherulitic localization of
PBSU
during crystallization of
PVDF
in
PVDF
/
PBSU
blend. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Cuicui Ye
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou People's Republic of China
| | - Xiaojun Cao
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou People's Republic of China
| | - Hengti Wang
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou People's Republic of China
| | - Jiayao Wang
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou People's Republic of China
| | - Tao Wang
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou People's Republic of China
| | - Zongbao Wang
- School of Material Science and Chemical EngineeringNingbo University Ningbo People's Republic of China
| | - Yongjin Li
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou People's Republic of China
| | - Jichun You
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou People's Republic of China
| |
Collapse
|
41
|
Chen C, Chen L, Chen S, Yu Y, Weng D, Mahmood A, Wang G, Wang J. Preparation of underwater superoleophobic membranes via TiO2 electrostatic self-assembly for separation of stratified oil/water mixtures and emulsions. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117976] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Li M, Xu X, Zhang L. Fabricated superhydrophobic three-dimensional rambutan-like-β-NiOOH @sponge skeletons for multitasking oil–water separation. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Zhang G, Zhan Y, He S, Zhang L, Zeng G, Chiao Y. Construction of superhydrophilic/underwater superoleophobic polydopamine‐modified h‐BN/poly(arylene ether nitrile) composite membrane for stable oil‐water emulsions separation. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4835] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Guiyuan Zhang
- College of Chemistry and Chemical EngineeringSouthwest Petroleum University Chengdu China
| | - Yingqing Zhan
- College of Chemistry and Chemical EngineeringSouthwest Petroleum University Chengdu China
- State Key Lab of Oil and Gas Reservoir Geology and ExploitationSouthwest Petroleum University Chengdu China
- Research Institute of Industrial Hazardous Waste Disposal and Resource UtilizationSouthwest Petroleum University Chengdu P R of China
| | - Shuangjiang He
- College of Chemistry and Chemical EngineeringSouthwest Petroleum University Chengdu China
| | - Lianhong Zhang
- College of Chemistry and Chemical EngineeringSouthwest Petroleum University Chengdu China
| | - Guangyong Zeng
- College of Materials and Chemistry & Chemical EngineeringChengdu University of Technology Chengdu China
| | - Yu‐Hsuan Chiao
- R&D Center for Membrane Technology and Department of Chemical EngineeringChung Yuan University Chung Li Taiwan
| |
Collapse
|
44
|
Faraji M, Nabavi SR, Salimi-Kenari H. Fabrication of a PAN–PA6/PANI membrane using dual spinneret electrospinning followed by in situ polymerization for separation of oil-in-water emulsions. NEW J CHEM 2020. [DOI: 10.1039/d0nj03231j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A polyacrylonitrile–polyamide 6/polyaniline (PAN–PA6/PANI) doped membrane was prepared using dual spinneret simultaneous electrospinning of PAN and PA6 and in situ polymerization of aniline at low temperature.
Collapse
Affiliation(s)
- Mehdi Faraji
- Department of Applied Chemistry
- Faculty of Chemistry
- University of Mazandaran
- Babolsar
- Iran
| | - Seyed Reza Nabavi
- Department of Applied Chemistry
- Faculty of Chemistry
- University of Mazandaran
- Babolsar
- Iran
| | - Hamed Salimi-Kenari
- Department of Chemical Engineering
- Faculty of Engineering
- University of Mazandaran
- Babolsar
- Iran
| |
Collapse
|
45
|
Zhang ZM, Gan ZQ, Bao RY, Ke K, Liu ZY, Yang MB, Yang W. Green and robust superhydrophilic electrospun stereocomplex polylactide membranes: Multifunctional oil/water separation and self-cleaning. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117420] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
46
|
Shao S, Liu Y, Shi D, Qing W, Fu W, Li J, Fang Z, Chen Y. Control of organic and surfactant fouling using dynamic membranes in the separation of oil-in-water emulsions. J Colloid Interface Sci 2019; 560:787-794. [PMID: 31711667 DOI: 10.1016/j.jcis.2019.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/02/2019] [Accepted: 11/02/2019] [Indexed: 01/13/2023]
Abstract
HYPOTHESIS A superhydrophilic membrane with rough and hierarchical structures is possibly fouled by surfactant-stabilized oil and organic foulants, because these foulants could not be hindered by the water layer formed on superhydrophilic membrane surface. A dynamic membrane was possibly an effective method to address this fouling problem. EXPERIMENTS A microfiltration membrane, a nanofiber membrane, and a dynamic membrane were used for the separation of surfactant-free emulsions, surfactant-stabilized emulsions, and the surfactant-stabilized emulsions containing typical organic foulants. The oil rejection and membrane fouling were compared. FINDINGS The microfiltration membrane, nanofiber membrane, and dynamic membrane had high resistances to the fouling by surfactant-free emulsions because these membranes were underwater superoleophobic. However, these membranes showed low resistances to the fouling by surfactant-stabilized oil droplets and organic foulants. For the dynamic membrane, the oil droplets and organic foulants trapped in the separation layer could be readily removed in the detachment-washing-recoating steps; therefore, almost no physically irreversible fouling was observed in the multi-cycle filtration. With the size distributions of oil droplets in the emulsions and the particle of the dynamic membrane, the rejection of oil by the dynamic membrane could be calculated by simply assuming that the particle was spherical, uniform, and tightly packed.
Collapse
Affiliation(s)
- Senlin Shao
- School of Civil Engineering, Wuhan University, PR China.
| | - Yang Liu
- School of Civil Engineering, Wuhan University, PR China.
| | - Danting Shi
- School of Civil Engineering, Wuhan University, PR China
| | - Weihua Qing
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, USA
| | - Wenwen Fu
- School of Civil Engineering, Wuhan University, PR China
| | - Jiangyun Li
- School of Civil Engineering, Wuhan University, PR China
| | - Zheng Fang
- School of Civil Engineering, Wuhan University, PR China
| | - Yiqun Chen
- School of Civil Engineering, Wuhan University, PR China.
| |
Collapse
|
47
|
Jiang H, Zhao Q, Wang P, Ma J, Zhai X. Improved separation and antifouling properties of PVDF gravity-driven membranes by blending with amphiphilic multi-arms polymer PPG-Si-PEG. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
48
|
Superhydrophobic and compressible carbon aerogels derived from platanus orientalis for oil absorption and emulsion separation. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
49
|
Characterization and antibacterial activity evaluation of curcumin loaded konjac glucomannan and zein nanofibril films. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108293] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Zhang Z, Yang Y, Li C, Liu R. Porous nanofibrous superhydrophobic membrane with embedded Au nanoparticles for the integration of oil/water separation and catalytic degradation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|