1
|
Le-Thi AD, Yang E, Nguyen-Thi KS, Kim SW, Choi H, Kim IS. Regeneration of dialysis solution by dual-layer hollow fiber mixed matrix membrane (DLHF-MMM) incorporated with amine-functionalized mesoporous silica nanoparticles. WATER RESEARCH 2025; 280:123469. [PMID: 40090147 DOI: 10.1016/j.watres.2025.123469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 03/18/2025]
Abstract
A large amount of purified water is used in conventional hemodialysis (HD) for treating end-stage kidney disease (ESKD). To minimize the water demand and waste generation, the regeneration of dialysis solution is considered the most efficient control strategy. In this study, an innovative dual-layer hollow fiber (DLHF) mixed matrix membrane (MMM) incorporated with amine-functionalized mesoporous silica nanoparticles (MPS-NPs) was developed to regenerate spent dialysis solution. The fabricated DLHF-MMM configuration enabled the continuous removal of small, medium, and large weight uremic toxins (UTs) through dual mechanisms. The inner layer composed of polyethersulfone (PES) and polyethylene glycol (PEG) rejected medium-large weight UTs (i.e., MW > 500 Da) via the molecular sieving. Meanwhile, the outer layer containing amine-functionalized MPS-NPs effectively removed small weight UTs, such as urea and creatinine. The DLHF-MMM with 6 wt% of amine-functionalized MPS-NPs demonstrated the most favorable characteristics, i.e., high water permeability (298.6 ± 3.2 mL/m2.h.mmHg) and adsorption capacity of urea (523.5 mg/g) and creatinine (28.1 mg/g). Notably, the optimal membrane (DLHF-4) also achieved favorable removal rates from the spent dialysis solution of actual patient, i.e., urea (74.4 %), creatinine (56 %), hippuric acid (16.1 %), and lysozyme (58.7 %, additionally spiked as a mimicking for β-2 microglobulin). These results indicate that the fabricated DLHF-MMM in this study can effectively overcome the challenges posed by the complex matrix components. Overall, the results of this study demonstrate that the DLHF-MMM incorporated with amine-functionalized MPS-NPs is a promising and potential tool for the regeneration of dialysis solution. Furthermore, this approach can contribute to water conservation and reduce the burden on wastewater treatment processes associated with wastewater generated from conventional HD.
Collapse
Affiliation(s)
- Anh-Dao Le-Thi
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Eunmok Yang
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Kim-Sinh Nguyen-Thi
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Hospital and Chonnam National University Medical School, 42 Jebongro, Gwangju, 61469, South Korea
| | - Heechul Choi
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - In S Kim
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea.
| |
Collapse
|
2
|
Sánchez-Arévalo CM, García-Suarez L, Camilleri-Rumbau MS, Vogel J, Álvarez-Blanco S, Cuartas-Uribe B, Vincent-Vela MC. Treatment of industrial textile wastewater by means of forward osmosis aiming to recover dyes and clean water. Heliyon 2024; 10:e40742. [PMID: 39687120 PMCID: PMC11648163 DOI: 10.1016/j.heliyon.2024.e40742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
The textile industry is one of the largest water consumers, and, as a result of its activity, it generates tons of wastewater. In this research, forward osmosis has been employed to tackle the critical need of treating textile wastewater. The HFFO2 membrane (Aquaporin) was used to process large volumes of real cotton dyeing wastewater, wool dyeing wastewater, and several types of textile end-of-pipe wastewater. In all cases, the permeate flux was between 6 and 8 L·h- 1 m- 2 during the major part of the process. The recovery of clean water from each wastewater surpassed 90 %, whereas the membrane rejected more than 87 % of total dissolved solids. As a result, textile dyes were concentrated on the feed side of the membrane, which enables their recovery and potential reutilization in a subsequent dying process, along with the reclaimed water. The HFFO2 membrane was efficiently cleaned by a backwash process, restoring the initial water flux. These results indicate the suitability of forward osmosis to reuse dyes and water from textile wastewater, reducing the environmental impact of this industry and favoring its sustainability.
Collapse
Affiliation(s)
- Carmen M. Sánchez-Arévalo
- Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Camino de Vera, s/n, 46022, Valencia, Spain
| | - Laura García-Suarez
- Jeanologia S.L., Ronda de Guglielmo Marconi, 12, 46980, Paterna, Valencia, Spain
| | | | - Jorg Vogel
- Aquaporin, Nymøllevej 78, 2800 Kongens Lyngby, Denmark
| | - Silvia Álvarez-Blanco
- Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Camino de Vera, s/n, 46022, Valencia, Spain
- Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Beatriz Cuartas-Uribe
- Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Camino de Vera, s/n, 46022, Valencia, Spain
- Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - M. Cinta Vincent-Vela
- Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Camino de Vera, s/n, 46022, Valencia, Spain
- Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| |
Collapse
|
3
|
Devaere N, Papangelakis V. Forward Osmosis for Metal Processing Effluents under Similar Osmotic Pressure Gradients. MEMBRANES 2023; 13:membranes13050501. [PMID: 37233562 DOI: 10.3390/membranes13050501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Water recovery from aqueous effluents in the mining and metals processing industry poses a unique challenge due to the high concentration of dissolved salts typically requiring energy intensive methods of treatment. Forward osmosis (FO) is a lower energy technology which employs a draw solution to osmotically extract water through a semi-permeable membrane further concentrating any feed. Successful FO operation relies on using a draw solution of higher osmotic pressure than the feed to extract water while minimizing concentration polarization to maximize the water flux. Previous studies employing FO on industrial feed samples commonly used concentration instead of osmotic pressures for feed and draw characterization; this led to misleading conclusions on the impact of design variables on water flux performance. By employing a factorial design of experiments methodology, this study examined the independent and interactive effects on water flux by: osmotic pressure gradient, crossflow velocity, draw salt type, and membrane orientation. With a commercial FO membrane, this work tested a solvent extraction raffinate and a mine water effluent sample to demonstrate application significance. By optimizing with osmotic gradient independent variables, water flux can be improved by over 30% without increasing energy costs or compromising the 95-99% salt rejection of the membrane.
Collapse
Affiliation(s)
- Noel Devaere
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | - Vladimiros Papangelakis
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| |
Collapse
|
4
|
Tong T, Liu X, Li T, Park S, Anger B. A Tale of Two Foulants: The Coupling of Organic Fouling and Mineral Scaling in Membrane Desalination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7129-7149. [PMID: 37104038 DOI: 10.1021/acs.est.3c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Membrane desalination that enables the harvesting of purified water from unconventional sources such as seawater, brackish groundwater, and wastewater has become indispensable to ensure sustainable freshwater supply in the context of a changing climate. However, the efficiency of membrane desalination is greatly constrained by organic fouling and mineral scaling. Although extensive studies have focused on understanding membrane fouling or scaling separately, organic foulants commonly coexist with inorganic scalants in the feedwaters of membrane desalination. Compared to individual fouling or scaling, combined fouling and scaling often exhibits different behaviors and is governed by foulant-scalant interactions, resembling more complex but practical scenarios than using feedwaters containing only organic foulants or inorganic scalants. In this critical review, we first summarize the performance of membrane desalination under combined fouling and scaling, involving mineral scales formed via both crystallization and polymerization. We then provide the state-of-the-art knowledge and characterization techniques pertaining to the molecular interactions between organic foulants and inorganic scalants, which alter the kinetics and thermodynamics of mineral nucleation as well as the deposition of mineral scales onto membrane surfaces. We further review the current efforts of mitigating combined fouling and scaling via membrane materials development and pretreatment. Finally, we provide prospects for future research needs that guide the design of more effective control strategies for combined fouling and scaling to improve the efficiency and resilience of membrane desalination for the treatment of feedwaters with complex compositions.
Collapse
Affiliation(s)
- Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Xitong Liu
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Tianshu Li
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Shinyun Park
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Bridget Anger
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| |
Collapse
|
5
|
Salamanca M, Palacio L, Hernandez A, Peña M, Prádanos P. Evaluation of Forward Osmosis and Low-Pressure Reverse Osmosis with a Tubular Membrane for the Concentration of Municipal Wastewater and the Production of Biogas. MEMBRANES 2023; 13:266. [PMID: 36984653 PMCID: PMC10051251 DOI: 10.3390/membranes13030266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Currently, freshwater scarcity is one of the main issues that the world population has to face. To address this issue, new wastewater treatment technologies have been developed such as membrane processes. Among them, due to the energy disadvantages of pressure-driven membrane processes, Forward Osmosis (FO) and Low-Pressure Reverse Osmosis (LPRO) have been introduced as promising alternatives. In this study, the behavior of a 2.3 m2 tubular membrane TFO-D90 when working with municipal wastewater has been studied. Its performances have been evaluated and compared in two operating modes such as FO and LPRO. Parameters such as fouling, flow rates, water flux, draw solution concentration, organic matter concentration, as well as its recovery have been studied. In addition, the biogas production capacity has been evaluated with the concentrated municipal wastewater obtained from each process. The results of this study indicate that the membrane can work in both processes (FO and LPRO) but, from the energy and productivity point of view, FO is considered more appropriate mainly due to its lower fouling level. This research may offer a new point of view on low-energy and energy recovery wastewater treatment and the applicability of FO and LPRO for wastewater concentration.
Collapse
Affiliation(s)
- Mónica Salamanca
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain
| | - Laura Palacio
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| | - Antonio Hernandez
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| | - Mar Peña
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain
| | - Pedro Prádanos
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| |
Collapse
|
6
|
Chiao YH, Lin HT, Ang MBMY, Teow YH, Wickramasinghe SR, Chang Y. Surface Zwitterionization via Grafting of Epoxylated Sulfobetaine Copolymers onto PVDF Membranes for Improved Permeability and Biofouling Mitigation. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Yu-Hsuan Chiao
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li32023, Taiwan
- Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas72701, United States
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Rokkodaicho 1-1, Nada, Kobe657-8501, Japan
| | - Hao-Tung Lin
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li32023, Taiwan
| | - Micah Belle Marie Yap Ang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li32023, Taiwan
| | - Yeit Hann Teow
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600Selangor Darul Ehsan, Malaysia
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600Selangor Darul Ehsan, Malaysia
| | - S. Ranil Wickramasinghe
- Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas72701, United States
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600Selangor Darul Ehsan, Malaysia
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600Selangor Darul Ehsan, Malaysia
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li32023, Taiwan
| |
Collapse
|
7
|
Golgoli M, Khiadani M, Sen TK, Razmjou A, Johns ML, Zargar M. Synergistic effects of microplastics and organic foulants on the performance of forward osmosis membranes. CHEMOSPHERE 2023; 311:136906. [PMID: 36270521 DOI: 10.1016/j.chemosphere.2022.136906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) are emerging contaminants that are abundantly present in the influent and effluent of wastewater treatment plants (WWTPs). Forward osmosis (FO) is an advanced treatment technology with potential applications in WWTPs. The presence of MPs in WWTP effluents can contribute to FO fouling and performance deterioration. This study focuses on FO membrane fouling by MPs of different sizes, and the interactional impacts of MPs and Humic acid (HA) (as the most common organic foulant in WWTPs) on FO membrane performance. The synergistic effect of combined MPs and HA fouling is shown to cause higher flux decline for FO membranes than that of HA or MPs alone. Reverse salt flux increased in the presence of MPs, and decreased when HA was present. Further, full flux recovery was obtained for all fouled membranes after hydraulic cleaning. This indicates the efficiency of FO systems for treating wastewater with high fouling potential. This study highlights the necessity of considering MPs in studying fouling behaviour, and for mitigation strategies of membranes used in WWT. The fundamentals created here can be further extended to other membrane-assisted separation processes.
Collapse
Affiliation(s)
- Mitra Golgoli
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Tushar Kanti Sen
- Chemical Engineering Department, King Faisal University, P.O. Box: 380, Al-Ahsa, 31982, Saudi Arabia
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA 6027, Australia
| | - Michael L Johns
- Fluid Science & Resources Division, Department of Chemical Engineering, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA 6027, Australia.
| |
Collapse
|
8
|
Thermoresponsive Ionic Liquid with Different Cation-Anion Pairs as Draw Solutes in Forward Osmosis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248869. [PMID: 36558001 PMCID: PMC9781059 DOI: 10.3390/molecules27248869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
We synthesized various phosphonium- and ammonium-based ionic liquids (ILs), using benzenesulfonate (BS) and 4-methylbenzenesulfonate (MBS) to establish the criteria for designing an ideal draw solute in a forward osmosis (FO) system. Additionally, the effects of monocationic, dicationic, and anionic species on FO performance were studied. Monocationic compounds ([P4444][BS], [P4444][MBS], [N4444][BS], and [N4444][MBS]) were obtained in one step via anion exchange. Dicationic compounds ([(P4444)2][BS], [(P4444)2][MBS], [(N4444)2][BS], and [(N4444)2][MBS]) were prepared in two steps via a Menshutkin SN2 reaction and anion exchange. We also investigated the suitability of ILs as draw solutes for FO systems. The aqueous [P4444][BS], [N4444][BS], [N4444][MBS], and [(N4444)2][BS] solutions did not exhibit thermoresponsive behavior. However, 20 wt% [P4444][MBS], [(P4444)2][BS], [(P4444)2][MBS], and [(N4444)2][MBS] had critical temperatures of approximately 43, 33, 22, and 60 °C, respectively, enabling their recovery using temperature. An increase in IL hydrophobicity and bulkiness reduces its miscibility with water, demonstrating that it can be used to tune its thermoresponsive properties. Moreover, the FO performance of 20 wt% aqueous [(P4444)2][MBS] solution was tested for water flux and found to be approximately 10.58 LMH with the active layer facing the draw solution mode and 9.40 LMH with the active layer facing the feed solution.
Collapse
|
9
|
Chiao YH, Nakagawa K, Matsuba M, Okamoto M, Shintani T, Sasaki Y, Yoshioka T, Kamio E, Wickramasinghe SR, Matsuyama H. Comparison of Fouling Behavior in Cellulose Triacetate Membranes Applied in Forward and Reverse Osmosis. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Yu-Hsuan Chiao
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe657-8501, Japan
| | - Keizo Nakagawa
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe657-8501, Japan
| | - Mayu Matsuba
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe657-8501, Japan
| | - Masanao Okamoto
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe657-8501, Japan
| | - Takuji Shintani
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe657-8501, Japan
| | - Yuji Sasaki
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe657-8501, Japan
| | - Tomohisa Yoshioka
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe657-8501, Japan
| | - Eiji Kamio
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe657-8501, Japan
| | - S. Ranil Wickramasinghe
- Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas72701, United States
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe657-8501, Japan
| |
Collapse
|
10
|
Zhao Y, Ab Hamid NH, Reddy N, Zheng M, Yuan Z, Duan H, Ye L. Wastewater Primary Treatment Using Forward Osmosis Introduces Inhibition to Achieve Stable Mainstream Partial Nitrification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8663-8672. [PMID: 35617100 DOI: 10.1021/acs.est.1c05672] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Achieving stable long-term mainstream nitrite oxidizing bacteria (NOB) suppression is the bottleneck for the novel partial nitrification (PN) process toward energy- and carbon-efficient wastewater treatment. However, long-term PN stability remains a challenge due to NOB adaptation. This study proposed and demonstrated a novel strategy for achieving NOB suppression by the primary treatment of mainstream wastewater with a forward osmosis (FO) membrane process, which facilitated two external NOB inhibition factors (salinity and free nitrous acid, FNA). To evaluate the proposed strategy, a lab-scale sequencing batch reactor was operated for 200 days. A stable PN operation was achieved with a nitrite accumulation ratio of 97.7 ± 2.8%. NOB were suppressed under the combined inhibition effect of NaCl (7.9 ± 0.2 g/L, as introduced by the FO direct filtration) and FNA (0.11 ± 0.02 mg of HNO2-N/L, formed as a result of the increased NH4+-N concentration after the FO process). The two inhibition factors worked in synergy to achieve a more stable PN operation. The microbial analysis showed that the elevated salinity and accumulation of FNA reshaped the microbial community and selectively eliminated NOB. Finally, an economic and feasibility analysis was conducted, which suggests that the integration of an FO unit into PN/A is a feasible and economically viable wastewater treatment process.
Collapse
Affiliation(s)
- Yingfen Zhao
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Nur Hafizah Ab Hamid
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia
| | - Nichelle Reddy
- Faculty of Engineering, National University of Singapore, 117575 Singapore
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology (ACWEB), The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology (ACWEB), The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Haoran Duan
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
- Australian Centre for Water and Environmental Biotechnology (ACWEB), The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
11
|
Cao S, Deshmukh A, Wang L, Han Q, Shu Y, Ng HY, Wang Z, Lienhard JH. Enhancing the Permselectivity of Thin-Film Composite Membranes Interlayered with MoS 2 Nanosheets via Precise Thickness Control. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8807-8818. [PMID: 35583029 DOI: 10.1021/acs.est.2c00551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The demand for highly permeable and selective thin-film composite (TFC) nanofiltration membranes, which are essential for seawater and brackish water softening and resource recovery, is growing rapidly. However, improving and tuning membrane permeability and selectivity simultaneously remain highly challenging owing to the lack of thickness control in polyamide films. In this study, we fabricated a high-performance interlayered TFC membrane through classical interfacial polymerization on a MoS2-coated polyethersulfone substrate. Due to the enhanced confinement effect on the interface degassing and the improved adsorption of the amine monomer by the MoS2 interlayer, the MoS2-interlayered TFC membrane exhibited enhanced roughness and crosslinking. Compared to the control TFC membrane, MoS2-interlayered TFC membranes have a thinner polyamide layer, with thickness ranging from 60 to 85 nm, which can be tuned by altering the MoS2 interlayer thickness. A multilayer permeation model was developed to delineate and analyze the transport resistance and permeability of the MoS2 interlayer and polyamide film through the regression of experimental data. The optimized MoS2-interlayered TFC membrane (0.3-inter) had a 96.8% Na2SO4 rejection combined with an excellent permeability of 15.9 L m-2 h-1 bar-1 (LMH/bar), approximately 2.4 times that of the control membrane (6.6 LMH/bar). This research provides a feasible strategy for the rational design of tunable, high-performance NF membranes for environmental applications.
Collapse
Affiliation(s)
- Siyu Cao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Akshay Deshmukh
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, Untied States
| | - Li Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Qi Han
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yufei Shu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - How Yong Ng
- Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Zhongying Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - John H Lienhard
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, Untied States
| |
Collapse
|
12
|
Peters CD, Li D, Mo Z, Hankins NP, She Q. Exploring the Limitations of Osmotically Assisted Reverse Osmosis: Membrane Fouling and the Limiting Flux. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6678-6688. [PMID: 35475365 DOI: 10.1021/acs.est.2c00839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Osmotically assisted reverse osmosis (OARO) has shown great potential for low-cost and energy-efficient brine management. However, its performance can be significantly limited by membrane fouling. Here, we performed for the first time a comprehensive study on OARO membrane fouling, explored the associated fouling mechanisms, and evaluated fouling reversibility via simple physical cleaning strategies. First, internal membrane fouling at the draw (permeate) side was shown to be insignificant. Flux behavior in short-term operation was correlated to both the evolution of fouling and the change of internal concentration polarization. In long-term operation, membrane fouling constrained the OARO water flux to a singular, common upper limit, in terms of limiting flux, which was demonstrated to be independent of operating pressures and membrane properties. Generally, once the limiting flux was exceeded, the OARO process performance could not be improved by higher-pressure operation or by utilizing more permeable and selective membranes. Instead, different cyclic cleaning strategies were shown to be more promising alternatives for improving performance. While both surface flushing and osmotic backwashing (OB) were found to be highly effective when using pure water, a full flux recovery could not be achieved when a nonpure solution was used during OB due to severe internal clogging during OB. All in all, the presented findings provided significant implications for OARO operation and fouling control.
Collapse
Affiliation(s)
- Christian D Peters
- Department of Engineering Science, The University of Oxford, Parks Road, OX3 1PJ Oxford, U.K
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Dan Li
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Zijing Mo
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Interdisciplinary Graduate Programme, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Nicholas P Hankins
- Department of Engineering Science, The University of Oxford, Parks Road, OX3 1PJ Oxford, U.K
| | - Qianhong She
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
13
|
Teng J, Zhang H, Lin H, Lu M, Xu X, Gao T, You X. Molecular level insights into the dynamic evolution of forward osmosis fouling via thermodynamic modeling and quantum chemistry calculation: Effect of protein/polysaccharide ratios. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Ab Hamid NH, Wang DK, Smart S, Ye L. A green, hybrid cleaning strategy for the mitigation of biofouling deposition in the elevated salinity forward osmosis membrane bioreactor (FOMBR) operation. CHEMOSPHERE 2022; 288:132612. [PMID: 34678348 DOI: 10.1016/j.chemosphere.2021.132612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Forward osmosis membrane bioreactors (FOMBRs) are currently gaining attention from the wastewater treatment industry, for their potential to produce high effluent quality and a relatively better flux stability against fouling. However, only using physical cleaning methods is not sufficient to recover the water flux performance satisfactorily under a long-term operation. This study comprehensively investigated the efficiency of a hybrid, environmentally-friendly cleaning strategy involving a combination of physical and free nitrous acid (FNA) cleanings under a long-term FOMBR operation. During 92 days of FOMBR operation, physical cleaning recovered the water flux by 85%, whilst FNA cleaning contributed to an additional 5% of the recovery. In addition, FNA cleaning also offered a retardation of fouling deposition by maintaining the water flux 18-30% more than that obtained by only the physical cleaning. A possible mechanism for FNA's role as the cleaning reagent was proposed for the first time in this study based on the water flux performance and membrane autopsy analysis. The results showed FNA cleaning broke down the residual fouling layer, preferencing protein-based substances. A lower ratio of protein to polysaccharides of the residual fouling layer contributed to a more negatively charged membrane surface (- 42.34 ± 0.30 mV) compared to the virgin one (- 17.54 ± 0.81 mV). This resulted in a stronger electrostatic repulsion between the foulants and the membrane surface, and thus slowed down the biofouling deposition process. This study suggested FNA solution has the great potential not only to recover the membrane performance, also as a strategy to slow down fouling deposition.
Collapse
Affiliation(s)
- Nur Hafizah Ab Hamid
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - David K Wang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Simon Smart
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
15
|
Xiao F, Ge H, Wang Y, Bian S, Tong Y, Gao C, Zhu G. Novel thin-film composite membrane with polydopamine-modified polyethylene support and tannic acid-Fe3+ interlayer for forward osmosis applications. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119976] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Goon GS, Labban O, Foo ZH, Zhao X, Lienhard JH. Reply from the authors: Deformation-induced cleaning of organically fouled membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Zarebska-Mølgaard A, Li K, Niedzielska A, Schneider C, Yangali-Quintanilla V, Tsapekos P, Angelidaki I, Wang J, Helix-Nielsen C. Techno-economic assessment of a hybrid forward osmosis and membrane distillation system for agricultural water recovery. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Sanahuja-Embuena V, Frauholz J, Oruc T, Trzaskus K, Hélix-Nielsen C. Transport mechanisms behind enhanced solute rejection in forward osmosis compared to reverse osmosis mode. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Giagnorio M, Casasso A, Tiraferri A. Environmental sustainability of forward osmosis: The role of draw solute and its management. ENVIRONMENT INTERNATIONAL 2021; 152:106498. [PMID: 33730633 DOI: 10.1016/j.envint.2021.106498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Forward osmosis (FO) is a promising technology for the treatment of complex water and wastewater streams. Studies around FO are focusing on identifying potential applications and on overcoming its technological limitations. Another important aspect to be addressed is the environmental sustainability of FO. With the aim to partially fill this gap, this study presents a life cycle analysis (LCA) of a potential full-scale FO system. From a purely environmental standpoint, results suggest that significantly higher impacts would be associated with the deployment of thermolytic, organic, and fertilizer-based draw solutes, compared to more accessible inorganic compounds. The influent draw osmotic pressure in FO influences the design of the real-scale filtration system and in turn its environmental sustainability. In systems combining FO with a pressure-driven membrane process to recover the draw solute (reverse osmosis or nanofiltration), the environmental sustainability is governed by a trade-off between the energy required by the regeneration step and the draw solution management. With the deployment of environmentally sustainable draw solutes (e.g., NaCl, Na2SO4), the impacts of the FO-based coupled system are almost completely associated to the energy required to run the downstream recovery step. On the contrary, the management of the draw solution, i.e., its replacement and the required additions due to potential losses during the filtration cycles, plays a dominant role in the environmental burdens associated with FO-based systems exploiting less sustainable draw solute, such as MgCl2.
Collapse
Affiliation(s)
- Mattia Giagnorio
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy.
| | - Alessandro Casasso
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Alberto Tiraferri
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; CleanWaterCenter@PoliTo, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
20
|
Song H, Liu J. Forward osmosis membrane bioreactor using Bacillus and membrane distillation hybrid system for treating dairy wastewater. ENVIRONMENTAL TECHNOLOGY 2021; 42:1943-1954. [PMID: 31647375 DOI: 10.1080/09593330.2019.1684568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Wastewater recycling is one of the best ways to alleviate water scarcity and water/wastewater pollution. The dairy industry is the largest industrial food wastewater source in many countries. In this study, we used a forward osmosis membrane bioreactor (FOMBR) and membrane distillation (MD) hybrid system to recycle dairy wastewater. And we developed a new Bacillus-FOMBR inoculated with salt-tolerant Bacillus sludge to protect against the negative effects of accumulated salt on sludge characteristics, microbial community and treatment effectiveness, and to alleviate membrane biofouling. A laboratory-scale FOMBR-MD experiment was operated for 40 days and water flux, salinity change, sludge characteristics, microbial community, nutrient removal efficiency, and FO membrane fouling were investigated. The Bacillus-FOMBR showed a small decrease in biomass concentration, and the hybrid system removed almost 100% of the contaminants. High-throughput sequencing analysis indicated that Pirellula and Hyphomicrobium species dominated the Bacillus-FOMBR, which are obliged to perform heterotrophic nitrification and aerobic denitrification. These nitrogen-removing bacteria ensured high nitrogen removal efficiency of the bioreactor. The total nitrogen (TN) concentration in the bioreactor increased and then decreased, which did not continuously increase as occurred in conventional FOMBRs. The TN removal efficiency of the bioreactor was mostly above 40% and the highest reached 79%. Besides, the Bacillus-FOMBR suffered little membrane biofouling because of the quorum quenching effect of the Bacillus species. We speculate that the Bacillus-FOMBR has potential to treat high-salt wastewater and high strength ammonia-nitrogen wastewater.
Collapse
Affiliation(s)
- Hongwei Song
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, People's Republic of China
| | - Jinrong Liu
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, People's Republic of China
| |
Collapse
|
21
|
Application of Zwitterions in Forward Osmosis: A Short Review. Polymers (Basel) 2021; 13:polym13040583. [PMID: 33672026 PMCID: PMC7919480 DOI: 10.3390/polym13040583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 11/30/2022] Open
Abstract
Forward osmosis (FO) is an important desalination method to produce potable water. It was also used to treat different wastewater streams, including industrial as well as municipal wastewater. Though FO is environmentally benign, energy intensive, and highly efficient; it still suffers from four types of fouling namely: organic fouling, inorganic scaling, biofouling and colloidal fouling or a combination of these types of fouling. Membrane fouling may require simple shear force and physical cleaning for sufficient recovery of membrane performance. Severe fouling may need chemical cleaning, especially when a slimy biofilm or severe microbial colony is formed. Modification of FO membrane through introducing zwitterionic moieties on the membrane surface has been proven to enhance antifouling property. In addition, it could also significantly improve the separation efficiency and longevity of the membrane. Zwitterion moieties can also incorporate in draw solution as electrolytes in FO process. It could be in a form of a monomer or a polymer. Hence, this review comprehensively discussed several methods of inclusion of zwitterionic moieties in FO membrane. These methods include atom transfer radical polymerization (ATRP); second interfacial polymerization (SIP); coating and in situ formation. Furthermore, an attempt was made to understand the mechanism of improvement in FO performance by zwitterionic moieties. Finally, the future prospective of the application of zwitterions in FO has been discussed.
Collapse
|
22
|
Wang D, Li J, Gao B, Chen Y, Wang Z. Triple-layered thin film nanocomposite membrane toward enhanced forward osmosis performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
23
|
Organic fouling in forward osmosis: Governing factors and a direct comparison with membrane filtration driven by hydraulic pressure. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118759] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Nguyen TT, Adha RS, Field RW, Kim IS. Extended performance study of forward osmosis during wastewater reclamation: Quantification of fouling-based concentration polarization effects on the flux decline. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
Kim C, Lee C, Kim SW, Kim CS, Kim IS. Performance Evaluation and Fouling Propensity of Forward Osmosis (FO) Membrane for Reuse of Spent Dialysate. MEMBRANES 2020; 10:membranes10120438. [PMID: 33352895 PMCID: PMC7765897 DOI: 10.3390/membranes10120438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
The number of chronic renal disease patients has shown a significant increase in recent decades over the globe. Hemodialysis is the most commonly used treatment for renal replacement therapy (RRT) and dominates the global dialysis market. As one of the most water-consuming treatments in medical procedures, hemodialysis has room for improvement in reducing wastewater effluent. In this study, we investigated the technological feasibility of introducing the forward osmosis (FO) process for spent dialysate reuse. A 30 LMH of average water flux has been achieved using a commercial TFC membrane with high water permeability and salt removal. The water flux increased up to 23% with increasing flowrate from 100 mL/min to 500 mL/min. During 1 h spent dialysate treatment, the active layer facing feed solution (AL-FS) mode showed relatively higher flux stability with a 4–6 LMH of water flux reduction while the water flux decreased significantly at the active layer facing draw solution (AL-DS) mode with a 10–12 LMH reduction. In the pressure-assisted forward osmosis (PAFO) condition, high reverse salt flux was observed due to membrane deformation. During the membrane filtration process, scaling occurred due to the influence of polyvalent ions remaining on the membrane surface. Membrane fouling exacerbated the flux and was mainly caused by organic substances such as urea and creatinine. The results of this experiment provide an important basis for future research as a preliminary experiment for the introduction of the FO technique to hemodialysis.
Collapse
Affiliation(s)
- Chaeyeon Kim
- Global Desalination Research Center, School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (C.K.); (C.L.)
| | - Chulmin Lee
- Global Desalination Research Center, School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (C.K.); (C.L.)
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Korea; (S.W.K.); (C.S.K.)
| | - Chang Seong Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Korea; (S.W.K.); (C.S.K.)
| | - In S. Kim
- Global Desalination Research Center, School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (C.K.); (C.L.)
- Correspondence: ; Tel.: +82-62-715-2436; Fax: +82-62-715-2584
| |
Collapse
|
26
|
Ab Hamid NH, Wang DK, Smart S, Ye L. Achieving stable operation and shortcut nitrogen removal in a long-term operated aerobic forward osmosis membrane bioreactor (FOMBR) for treating municipal wastewater. CHEMOSPHERE 2020; 260:127581. [PMID: 32758787 DOI: 10.1016/j.chemosphere.2020.127581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/12/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Forward osmosis membrane bioreactor (FOMBR) is an integrated physical-biological treatment process that has received increased awareness in treating municipal wastewater for its potential to produce high effluent quality coupled with its low propensity for fouling formation. However, reverse salt diffusion (RSD) is a major issue and so far limited studies have reported long-term FOMBR operation under the elevated salinity conditions induced by RSD. This study investigated the performance of a FOMBR in treating municipal wastewater under a controlled saline environment (6-8 g L-1 NaCl) using two separate sodium chloride draw solution (NaCl DS) concentrations (35 and 70 g L-1) over 243 days. At 35 g L-1 NaCl DS, the water flux performance dropped from 6.75 L m-2 h-1 (LMH) to 2.07 LMH after 72 days of operation in the first experimental stage, when no cleaning procedure was implemented. In the subsequent stage, the DS concentration was increased to 70 g L-1 and a weekly physical cleaning regime introduced. Under stable operation, the water flux performance recovery was 67% after 21 cycles of physical cleaning. For the first time in FOMBR studies, a shortcut nitrogen removal via the nitrite pathway was also achieved under the elevated salinity conditions. At the end of operation (day 243), the ammonia-oxidising bacteria (Nitrosomonas sp.) was the only nitrifier species in the system and no nitrite oxidising bacteria was detected. The above study proves that a FOMBR system is a feasible process for treating municipal wastewater.
Collapse
Affiliation(s)
- Nur Hafizah Ab Hamid
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - David K Wang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Simon Smart
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
27
|
Urine Treatment on the International Space Station: Current Practice and Novel Approaches. MEMBRANES 2020; 10:membranes10110327. [PMID: 33147844 PMCID: PMC7693831 DOI: 10.3390/membranes10110327] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/17/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022]
Abstract
A reliable, robust, and resilient water recovery system is of paramount importance on board the International Space Station (ISS). Such a system must be able to treat all sources of water, thereby reducing resupply costs and allowing for longer-term space missions. As such, technologies able to dewater urine in microgravity have been investigated by different space agencies. However, despite over 50 years of research and advancements on water extraction from human urine, the Urine Processing Assembly (UPA) and the Water Processor Assembly (WPA) now operating on the ISS still achieve suboptimal water recovery rates and require periodic consumables resupply. Additionally, urine brine from the treatment is collected for disposal and not yet reused. These factors, combined with the need for a life support system capable of tolerating even dormant periods of up to one year, make the research in this field ever more critical. As such, in the last decade, extensive research was conducted on the adaptation of existing or emerging technologies for the ISS context. In virtue of having a strong chemical resistance, small footprint, tuneable selectivity and versatility, novel membrane-based processes have been in focus for treating human urine. Their hybridisation with thermal and biological processes as well as the combination with new nanomaterials have been particularly investigated. This article critically reviews the UPA and WPA processes currently in operation on the ISS, summarising the research directions and needs, highlighted by major space agencies, necessary for allowing life support for missions outside the Low Earth Orbit (LEO). Additionally, it reviews the technologies recently proposed to improve the performance of the system as well as new concepts to allow for the valorisation of the nutrients in urine or the brine after urine dewatering.
Collapse
|
28
|
Lee C, Nguyen TT, Adha RS, Shon HK, Kim IS. Influence of hydrodynamic operating conditions on organic fouling of spiral-wound forward osmosis membranes: Fouling-induced performance deterioration in FO-RO hybrid system. WATER RESEARCH 2020; 185:116154. [PMID: 32823194 DOI: 10.1016/j.watres.2020.116154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/27/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
The forward osmosis-reverse osmosis (FO-RO) hybrid process has been extensively researched as part of attempts to reduce the high energy consumption of conventional seawater reverse osmosis in recent years. FO operating conditions play a substantial role in the hybrid process, dictating not only the performance of the entire system but also the propensity for fouling, which deteriorates performance in long-term field operations. Therefore, determining the optimal FO operating conditions with regard to membrane fouling may promote sustainable operation through efficient fouling control. This study thus evaluated the influence of each hydrodynamic operating condition (feed flowrate, draw flowrate, and hydraulic pressure difference) and their synergistic effects on fouling propensity in a pilot-scale FO operation under seawater and municipal wastewater conditions. Fouling-induced variation in water flux, channel pressure drop, diluted concentration, and the resulting specific energy consumption (SEC) were comparatively analyzed and utilized to project performance variation in a full-scale FO-RO system. Fouling-induced performance reduction significantly varied depending on hydrodynamic operating conditions and the resultant fouling propensity during 15 days of continuous operation. A high feed flowrate demonstrated a clear ability to mitigate fouling-induced performance deterioration in all conditions. A high draw flowrate turned out to be detrimental for fouling propensity since its high reverse solute flux accelerated fouling growth. Applying additional hydraulic pressure during FO operation caused a faster reduction of water flux, and thus feed recovery and water production; however, these drawbacks could be compensated for by a 10% reduction in the required FO membrane area and an additional reduction in RO SEC.
Collapse
Affiliation(s)
- Chulmin Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea
| | - Thanh-Tin Nguyen
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea
| | - Rusnang Syamsul Adha
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea
| | - Ho Kyong Shon
- School of Civil and Environmental Engineering, University of Technology Sydney, Post Box 129, Broadway, NSW2007, Australia
| | - In S Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea; Global Desalination Research Center, Gwangju Institute of Science and Technology (GIST), 123 Cheomdanwagi-ro, Buk-gu, Gwangju, 61005, South Korea.
| |
Collapse
|
29
|
Blandin G, Ferrari F, Lesage G, Le-Clech P, Héran M, Martinez-Lladó X. Forward Osmosis as Concentration Process: Review of Opportunities and Challenges. MEMBRANES 2020; 10:membranes10100284. [PMID: 33066490 PMCID: PMC7602145 DOI: 10.3390/membranes10100284] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 12/25/2022]
Abstract
In the past few years, osmotic membrane systems, such as forward osmosis (FO), have gained popularity as "soft" concentration processes. FO has unique properties by combining high rejection rate and low fouling propensity and can be operated without significant pressure or temperature gradient, and therefore can be considered as a potential candidate for a broad range of concentration applications where current technologies still suffer from critical limitations. This review extensively compiles and critically assesses recent considerations of FO as a concentration process for applications, including food and beverages, organics value added compounds, water reuse and nutrients recovery, treatment of waste streams and brine management. Specific requirements for the concentration process regarding the evaluation of concentration factor, modules and design and process operation, draw selection and fouling aspects are also described. Encouraging potential is demonstrated to concentrate streams more than 20-fold with high rejection rate of most compounds and preservation of added value products. For applications dealing with highly concentrated or complex streams, FO still features lower propensity to fouling compared to other membranes technologies along with good versatility and robustness. However, further assessments on lab and pilot scales are expected to better define the achievable concentration factor, rejection and effective concentration of valuable compounds and to clearly demonstrate process limitations (such as fouling or clogging) when reaching high concentration rate. Another important consideration is the draw solution selection and its recovery that should be in line with application needs (i.e., food compatible draw for food and beverage applications, high osmotic pressure for brine management, etc.) and be economically competitive.
Collapse
Affiliation(s)
- Gaetan Blandin
- Eurecat, Centre Tecnològic de Catalunya, Water, Air and Soil Unit, 08242 Manresa, Spain;
- Institut Européen des Membranes, IEM, Université de Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (G.L.); (M.H.)
- Correspondence:
| | - Federico Ferrari
- Catalan Institute for Water Research (ICRA), 17003 Girona, Spain;
| | - Geoffroy Lesage
- Institut Européen des Membranes, IEM, Université de Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (G.L.); (M.H.)
| | - Pierre Le-Clech
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia;
| | - Marc Héran
- Institut Européen des Membranes, IEM, Université de Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (G.L.); (M.H.)
| | - Xavier Martinez-Lladó
- Eurecat, Centre Tecnològic de Catalunya, Water, Air and Soil Unit, 08242 Manresa, Spain;
| |
Collapse
|
30
|
Artemi A, Chen GQ, Kentish SE, Lee J. The relevance of critical flux concept in the concentration of skim milk using forward osmosis and reverse osmosis. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Arabi S, Pellegrin ML, Aguinaldo J, Sadler ME, McCandless R, Sadreddini S, Wong J, Burbano MS, Koduri S, Abella K, Moskal J, Alimoradi S, Azimi Y, Dow A, Tootchi L, Kinser K, Kaushik V, Saldanha V. Membrane processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1447-1498. [PMID: 32602987 DOI: 10.1002/wer.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
This literature review provides a review for publications in 2018 and 2019 and includes information membrane processes findings for municipal and industrial applications. This review is a subsection of the annual Water Environment Federation literature review for Treatment Systems section. The following topics are covered in this literature review: industrial wastewater and membrane. Bioreactor (MBR) configuration, membrane fouling, design, reuse, nutrient removal, operation, anaerobic membrane systems, microconstituents removal, membrane technology advances, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include the following: Biological Fixed-Film Systems, Activated Sludge, and Other Aerobic Suspended Culture Processes, Anaerobic Processes, and Water Reclamation and Reuse. This publication might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Wong
- Brown and Caldwell, Walnut Creek, California, USA
| | | | | | | | - Jeff Moskal
- Suez Water Technologies & Solutions, Oakville, ON, Canada
| | | | | | - Andrew Dow
- Donohue and Associates, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
32
|
Preparation, characterization and scaling propensity study of a dopamine incorporated RO/FO TFC membrane for pesticide removal. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118458] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Khraisheh M, Gulied M, AlMomani F. Effect of Membrane Fouling on Fertilizer-Drawn Forward Osmosis Desalination Performance. MEMBRANES 2020; 10:membranes10090243. [PMID: 32962071 PMCID: PMC7558361 DOI: 10.3390/membranes10090243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022]
Abstract
Fertilizer-drawn forward osmosis (FDFO) has garnered immense attention for its application in the agricultural field and its potential to reuse wastewater sustainably. Membrane fouling, however, remains to be a challenge for the process. This study aims to investigate the influence of membrane fouling on the performance of the FDFO process. Synthetic wastewater (SWW) and multi-component fertilizer (MCF) were used as feed solution (FS) and draw solution (DS) with cellulose triacetate (CTA) forward osmosis (FO) membrane orientation. The performance was evaluated through water flux (WF), percentage recovery and percentage of salt reject. The WF declined from 10.32 LMH (L/m2·h) to 3.30 LMH when ultra-pure water as FS was switched with concentration FS indicating the dependence of the performance on the type of FS used. Accelerated fouling experiments conducted to verify the fouling behavior showed a decline in the water flux from 8.6 LMH to 3.09 LMH with SWW and 13.1 LMH to 3.42 LMH when deionized water was used as FS. The effects of osmotic backwashing and in situ flushing as physical cleaning methods of the foul membrane were studied through water flux and salt recovery percentage. Both cleaning methods yielded a WF close to the baseline. Osmotic backwashing yielded better results by eliminating foulant–foulant and foulant–membrane adhesion. The cleaning methods were able to recover 75% of phosphate and 60% of nitrate salts. Scanning electron microscopy (SEM), atomic force microscopy (AFM) and Fourier transform infrared (FTIR) results validated the effectiveness of the methods for the physical cleaning of foul membranes. This study underlines the importance of the FS used in FDFO and the effectiveness of osmotic backwashing as a cleaning method of FO membranes.
Collapse
|
34
|
Insight into organic fouling behavior in polyamide thin-film composite forward osmosis membrane: Critical flux and its impact on the economics of water reclamation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118118] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
|
36
|
Influences of Combined Organic Fouling and Inorganic Scaling on Flux and Fouling Behaviors in Forward Osmosis. MEMBRANES 2020; 10:membranes10060115. [PMID: 32498395 PMCID: PMC7345687 DOI: 10.3390/membranes10060115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 11/17/2022]
Abstract
This study investigated the influence of combined organic fouling and inorganic scaling on the flux and fouling behaviors of thin-film composite (TFC) forward osmosis (FO) membranes. Two organic macromolecules, namely, bovine serum albumin (BSA) and sodium alginate (SA), and gypsum (GS), as an inorganic scaling agent, were selected as model foulants. It was found that GS scaling alone caused the most severe flux decline. When a mixture of organic and inorganic foulants was employed, the flux decline was retarded, compared with when the filtration was performed with only the inorganic scaling agent (GS). The early onset of the conditioning layer formation, which was due to the organics, was probably the underlying mechanism for this inhibitory phenomenon, which had suppressed the deposition and growth of the GS crystals. Although the combined fouling resulted in less flux decline, compared with GS scaling alone, the concoction of SA and GS resulted in more fouling and flux decline, compared with the mixture of BSA and GS. This was because of the carboxyl acidity of the alginate, which attracted calcium ions and formed an intermolecular bridge.
Collapse
|
37
|
Nikbakht Fini M, Madsen HT, Sørensen JL, Muff J. Moving from lab to pilot scale in forward osmosis for pesticides rejection using aquaporin membranes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Relating forward water and reverse salt fluxes to membrane porosity and tortuosity in forward osmosis: CFD modelling. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116727] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Li J, Wang Q, Deng L, Kou X, Tang Q, Hu Y. Fabrication and characterization of carbon nanotubes-based porous composite forward osmosis membrane: Flux performance, separation mechanism, and potential application. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Sauchelli Toran M, D'Haese A, Rodríguez-Roda I, Gernjak W. Fouling propensity of novel TFC membranes with different osmotic and hydraulic pressure driving forces. WATER RESEARCH 2020; 175:115657. [PMID: 32151816 DOI: 10.1016/j.watres.2020.115657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
The feasibility of Forward Osmosis (FO) as an alternative treatment technology to current membrane processes is believed to hinge on its reported lower fouling propensity. In this study, the impacts of constant osmotic pressure and hydraulic pressure driving forces on membrane fouling were investigated using a novel approach. In each case the cake layer was modelled accounting for all concentration polarisation effects and effective driving force. Compared to the widely employed method of using a non-constant osmotic pressure difference during bench-scale fouling experiments, maintaining a constant osmotic pressure led to 50% more alginate deposited on the same membrane surface (from 13.7 to 21.7 g/m2). This was attributed to a stronger osmotic driving force at the active layer interface and enhanced fouling due to a greater reverse flux of Na+ ions. An applied hydraulic pressure of 1 bar already changed fouling cake deposition and the cake structural parameter shrunk by 224 and 83 μm for the two thin-film composite membranes tested. A detailed analysis of the model however demonstrated that it needs further development, incorporating pore size, porosity and tortuosity of the foulant cake to enable drawing reliable conclusions on the causality of cake layer compaction.
Collapse
Affiliation(s)
- Marc Sauchelli Toran
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003, Girona, Spain; Universitat de Girona, Girona, Spain
| | - Arnout D'Haese
- Department of Applied Analytical and Physical Chemistry, University of Ghent, Coupure links 653, B-9000, Ghent, Belgium
| | - Ignasi Rodríguez-Roda
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003, Girona, Spain; Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, E17071, Girona, Spain
| | - Wolfgang Gernjak
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003, Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
41
|
Characterization of colloidal fouling in forward osmosis via ultrasonic time- (UTDR) and frequency-domain reflectometry (UFDR). J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Abstract
The use of forward osmosis (FO) for water purification purposes has gained extensive attention in recent years. In this review, we first discuss the advantages, challenges and various applications of FO, as well as the challenges in selecting the proper draw solution for FO, after which we focus on transport limitations in FO processes. Despite recent advances in membrane development for FO, there is still room for improvement of its selective layer and support. For many applications spiral wound membrane will not suffice. Furthermore, a defect-free selective layer is a prerequisite for FO membranes to ensure low solute passage, while a support with low internal concentration polarization is necessary for a high water flux. Due to challenges affiliated to interfacial polymerization (IP) on non-planar geometries, we discuss alternative approaches to IP to form the selective layer. We also explain that, when provided with a defect-free selective layer with good rejection, the membrane support has a dominant influence on the performance of an FO membrane, which can be estimated by the structural parameter (S). We emphasize the necessity of finding a new method to determine S, but also that predominantly the thickness of the support is the major parameter that needs to be optimized.
Collapse
|
43
|
Scalable fabrication of robust superhydrophobic membranes by one-step spray-coating for gravitational water-in-oil emulsion separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115898] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Ding C, Zhang X, Xiong S, Shen L, Yi M, Liu B, Wang Y. Organophosphonate draw solution for produced water treatment with effectively mitigated membrane fouling via forward osmosis. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117429] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
45
|
Dou P, Zhao S, Xu S, Li XM, He T. Feasibility of osmotic dilution for recycling spent dialysate: Process performance, scaling, and economic evaluation. WATER RESEARCH 2020; 168:115157. [PMID: 31614235 DOI: 10.1016/j.watres.2019.115157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/25/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Hemodialysis is one of the therapies for patients with kidney failure. Hemodialysis requires large amounts of pure water, and is one of the most water-hungry medical procedures, and thus represents a clear opportunity where improvements should be made concerning the consumption and wastage of water. In this paper, we explored the potential of forward osmosis (FO) membrane for recycling the spent dialysate using the dialysis concentrate as the draw solution. Partially diluted dialysis concentrate could be further diluted with pure water to form dialysate for further dialysis process. Using commercial cellulose triacetate (CTA) FO membranes, the water recovery of approximately 64% was achieved and the final volume of the partially diluted dialysis concentrate was about four times the initial volume. Flux decline of the FO process was observed, mainly due to concentration of synthetic spent dialysate and dilution of dialysis concentrate, while membrane scaling had little impact on the flux decline. The urea rejection was found to be relatively low owing to the small size and electroneutral nature of the urea molecule. Obvious membrane scaling was observed after three FO cycles. The energy dispersive spectroscopy analysis of the scaling layer indicated that the scalants were phosphates and carbonates. The scaling was removed via osmotic backwash and almost completely recovery of FO flux was obtained. Economic analysis showed that the centralized treatment of spent dialysate in a dialysis center using the proposed osmotic dilution process could greatly save water resources and cost. Improving the urea rejection of FO membrane was identified as an important research focus for future research on the potential application of FO technology for recycling the spent dialysate in hemodialysis.
Collapse
Affiliation(s)
- Pengjia Dou
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shuwei Zhao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shanshan Xu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue-Mei Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Tao He
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
46
|
Jalab R, Awad AM, Nasser MS, Minier-Matar J, Adham S, Judd SJ. An empirical determination of the whole-life cost of FO-based open-loop wastewater reclamation technologies. WATER RESEARCH 2019; 163:114879. [PMID: 31336205 DOI: 10.1016/j.watres.2019.114879] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/19/2019] [Accepted: 07/16/2019] [Indexed: 05/26/2023]
Abstract
Over the past 5-10 years it has become apparent that the significant energy benefit provided by forward osmosis (FO) for desalination arises only when direct recovery of the permeate product from the solution used to transfer the water through the membrane (the draw solution) is obviated. These circumstances occur specifically when wastewater purification is combined with saline water desalination. It has been suggested that, for such an "open loop" system, the FO technology offers a lower-cost water reclamation option than the conventional process based on reverse osmosis (RO). An analysis is presented of the costs incurred by this combined treatment objective. Three process schemes are considered combining the FO or RO technologies with membrane bioreactors (MBRs): MBR-RO, MBR-FO-RO and osmotic MBR (OMBR)-RO. Calculation of the normalised net present value (NPV/permeate flow) proceeded through developing a series of empirical equations based on available individual capital and operating cost data. Cost curves (cost vs. flow capacity) were generated for each option using literature MBR and RO data, making appropriate assumptions regarding the design and operation of the novel FO and OMBR technologies. Calculations revealed the MBR-FO-RO and OMBR-RO schemes to respectively offer a ∼20% and ∼30% NPV benefit over the classical MBR-RO scheme at a permeate flow of 10,000 m3 d-1, provided the respective schemes are applied to high and low salinity wastewaters. Outcomes are highly sensitive to the FO or OMBR flux sustained: the relative NPV benefit (compared to the classical system) of the OMBR-RO scheme declined from 30% to ∼4% on halving the OMBR flux from a value of 6 L m-2. h-1.
Collapse
Affiliation(s)
- Rem Jalab
- Gas Processing Centre, College of Engineering, Qatar University, Doha, Qatar
| | - Abdelrahman M Awad
- Gas Processing Centre, College of Engineering, Qatar University, Doha, Qatar
| | - Mustafa S Nasser
- Gas Processing Centre, College of Engineering, Qatar University, Doha, Qatar.
| | - Joel Minier-Matar
- ConocoPhillips Global Water Sustainability Centre, Qatar Science & Technology Park, Doha, Qatar
| | - Samer Adham
- ConocoPhillips Global Water Sustainability Centre, Qatar Science & Technology Park, Doha, Qatar
| | - Simon J Judd
- Cranfield Water Science Institute, Cranfield University, Beds, UK.
| |
Collapse
|
47
|
Recent Progresses of Forward Osmosis Membranes Formulation and Design for Wastewater Treatment. WATER 2019. [DOI: 10.3390/w11102043] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Production of potable water or reclaimed water with higher quality are in demand to address water scarcity issues as well as to meet the expectation of stringent water quality standards. Forward osmosis (FO) provides a highly promising platform for energy-efficient membrane-based separation technology. This emerging technology has been recognized as a potential and cost-competitive alternative for many conventional wastewater treatment technologies. Motivated by its advantages over existing wastewater treatment technologies, the interest of applying FO technology for wastewater treatment has increased significantly in recent years. This article focuses on the recent developments and innovations in FO for wastewater treatment. An overview of the potential of FO in various wastewater treatment application will be first presented. The contemporary strategies used in membrane designs and fabrications as well as the efforts made to address membrane fouling are comprehensively reviewed. Finally, the challenges and future outlook of FO for wastewater treatment are highlighted.
Collapse
|
48
|
Lu P, Li W, Yang S, Wei Y, Zhang Z, Li Y. Layered double hydroxides (LDHs) as novel macropore-templates: The importance of porous structures for forward osmosis desalination. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Aftab B, Ok YS, Cho J, Hur J. Targeted removal of organic foulants in landfill leachate in forward osmosis system integrated with biochar/activated carbon treatment. WATER RESEARCH 2019; 160:217-227. [PMID: 31152947 DOI: 10.1016/j.watres.2019.05.076] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
Forward osmosis (FO) has been adopted to treat complex wastewater such as landfill leachate due to its high rejection of organics. In this study, the in-line adsorptive process using biochar (BC) or powdered activated carbon (PAC) was applied to a cross flow FO system to enhance the mitigation of the FO membrane fouling from landfill leachate. The changes in the leachate composition along the treatments were tracked by excitation emission matrix-parallel factor analysis (EEM-PARAFAC) to identify tryptophan-like (C1), fulvic-like (C2), and humic-like (C3) components. After a single operation of FO, the C1 was found to be the main constituent responsible for membrane fouling irrespective of varying operation conditions regarding draw solute concentrations and flow rates. Both sorbents (i.e., BC and PAC) exhibited the preferential removal behavior towards C1 > C2 > C3, which was well supported by their individual adsorption isotherm model parameters. The addition of in-line adsorption treatment to FO resulted in substantial improvements in the filtered volume (>57%) and the flux recovery (>80%) compared to the single FO operation. Without chemical cleaning of membrane, the flux was fully recovered at a dose of 10 g/L BC or 0.3 g/L of PAC. A significant and negative correlation was found between the flux recovery and the C1 of the feed leachate or the corresponding spectral peak intensity (p < 0.05) for the integrated FO system, suggesting the potential of using on-line fluorescence monitoring for the performance of the integrated system in terms of fouling mitigation. This study provided a new insight into the effectiveness of BC or PAC adsorption as the in-line integration with an FO system for the targeted removal of FO membrane foulants in landfill leachate.
Collapse
Affiliation(s)
- Bilal Aftab
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea
| | - Yong Sik Ok
- Korea Biochar Research Center, Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea.
| |
Collapse
|
50
|
Ferrari F, Pijuan M, Rodriguez-Roda I, Blandin G. Exploring Submerged Forward Osmosis for Water Recovery and Pre-Concentration of Wastewater Before Anaerobic Digestion: A Pilot Scale Study. MEMBRANES 2019; 9:E97. [PMID: 31387333 PMCID: PMC6722522 DOI: 10.3390/membranes9080097] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 11/16/2022]
Abstract
Applying forward osmosis directly on raw municipal wastewater is of high interest for the simultaneous production of a high quality permeate for water reuse and pre-concentrating wastewater for anaerobic digestion. This pilot scale study investigates, for the first time, the feasibility of concentrating real raw municipal wastewater using a submerged plate and frame forward osmosis module (0.34 m2) to reach 70% water recovery. Membrane performance, fouling behavior, and effective concentration of wastewater compounds were examined. Two different draw solutions (NaCl and MgCl2), operating either with constant draw concentration or in batch with draw dilution over time, were evaluated. Impact of gas sparging on fouling and external concentration polarization was also assessed. Water fluxes up to 15 L m-2 h-1 were obtained with clean water and 35 g NaCl/L as feed and draw solution, respectively. When using real wastewater, submerged forward osmosis proved to be resilient to clogging, demonstrating its suitability for application on municipal or other complex wastewater; operating with 11.7 g NaCl/L constant draw solution, water and reverse salt fluxes up to 5.1 ± 1.0 L m-2 h-1 and 4.8 ± 2.6 g m-2 h-1 were observed, respectively. Positively, total and soluble chemical oxygen demand concentration factors of 2.47 ± 0.15 and 1.86 ± 0.08, respectively, were achieved, making wastewater more suitable for anaerobic treatment.
Collapse
Affiliation(s)
- Federico Ferrari
- Catalan Institute for Water Research (ICRA), Emili Grahit Street, 101, 17003 Girona, Spain
- University of Girona, 17003 Girona, Spain
| | - Maite Pijuan
- Catalan Institute for Water Research (ICRA), Emili Grahit Street, 101, 17003 Girona, Spain
- University of Girona, 17003 Girona, Spain
| | - Ignasi Rodriguez-Roda
- Catalan Institute for Water Research (ICRA), Emili Grahit Street, 101, 17003 Girona, Spain
- LEQUiA, Laboratory of Chemical and Environmental Engineering, University of Girona, Campus Montilivi, 17071 Girona, Spain
| | - Gaetan Blandin
- LEQUiA, Laboratory of Chemical and Environmental Engineering, University of Girona, Campus Montilivi, 17071 Girona, Spain.
- Eurecat, Centre Tecnològic de Catalunya. Plaça de la Ciència, 2. 08242 Manresa, Spain.
| |
Collapse
|