1
|
Gao Z, Chen F, Zheng J, Peng Q, Chen D, Zhang Y, Zhou L, Liu K, Yang Y, Yuan Q. Potassium-Selective Covalent Organic Framework Membranes Enable Dynamic Monitoring of Microbial K + Metabolism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502541. [PMID: 40434270 DOI: 10.1002/smll.202502541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 05/20/2025] [Indexed: 05/29/2025]
Abstract
Ultraselective and rapid transport of potassium ion (K+) is crucial for maintaining life activities such as osmotic pressure equilibrium, protein synthesis regulation, microbial growth, and communication. However, it is challenging to achieve high efficiency and precise K+ transport due to the existence of competitive cations with similar size and valence. Here, a biomimetic K+ nanochannel based on sulfonated covalent organic frameworks (COF) is reported with high K+ screening selectivity to achieve dynamic microbial K+ metabolism monitoring. Similar to the structure and function of biological KcsA channels, sulfonated COF feature ordered nanochannels and abundant surface charges, facilitating effective sieving of K+ and sodium ions (Na+) through size screening and electrostatic interactions, achieving a K+/Na+ selectivity ratio of 17.3. Molecular dynamic simulations indicate that the K+/Na+ selectivity of the COF nanochannels arises from the interaction of K+ with the sulfonate functional groups on the nanochannels, resulting in a decreased energy barrier for K+. Given the excellent K+ screening selectivity and efficiency, the designed COF nanochannels enable real-time monitoring of K+ in complex microbial systems and provide guidance for the synthesis of high value-added products. These findings suggest approaches for developing efficient and selective nanochannels for ion separation, nanofluidic, and complex microbial metabolism systems.
Collapse
Affiliation(s)
- Zhipeng Gao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, MOE Key Laboratory of Hydrodynamic Transients, School of Power and Mechanical Engineering, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, P. R. China
| | - Fangfang Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, MOE Key Laboratory of Hydrodynamic Transients, School of Power and Mechanical Engineering, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, P. R. China
| | - Jingang Zheng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, MOE Key Laboratory of Hydrodynamic Transients, School of Power and Mechanical Engineering, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, P. R. China
| | - Qiumin Peng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, MOE Key Laboratory of Hydrodynamic Transients, School of Power and Mechanical Engineering, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, P. R. China
| | - Duo Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, MOE Key Laboratory of Hydrodynamic Transients, School of Power and Mechanical Engineering, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, P. R. China
| | - Yun Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, MOE Key Laboratory of Hydrodynamic Transients, School of Power and Mechanical Engineering, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, P. R. China
| | - Liping Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, MOE Key Laboratory of Hydrodynamic Transients, School of Power and Mechanical Engineering, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, P. R. China
| | - Kang Liu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, MOE Key Laboratory of Hydrodynamic Transients, School of Power and Mechanical Engineering, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, P. R. China
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, MOE Key Laboratory of Hydrodynamic Transients, School of Power and Mechanical Engineering, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, P. R. China
| | - Quan Yuan
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, MOE Key Laboratory of Hydrodynamic Transients, School of Power and Mechanical Engineering, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, P. R. China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
2
|
Jin Y, Li M, Yang Y. Covalent Organic Frameworks for Membrane Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412600. [PMID: 39661725 PMCID: PMC11791980 DOI: 10.1002/advs.202412600] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/17/2024] [Indexed: 12/13/2024]
Abstract
Membranes with switchable wettability, solvent resistance, and toughness have emerged as promising materials for separation applications. However, challenges like limited mechanical strength, poor chemical stability, and structural defects during membrane fabrication hinder their widespread adoption. Covalent organic frameworks (COFs), crystalline materials constructed from organic molecules connected by covalent bonds, offer a promising solution due to their high porosity, stability, and customizable properties. The ordered structures and customizable functionality provide COFs with a lightweight framework, large surface area, and tunable pore sizes, which have attracted increasing attention for their applications in membrane separations. Recent research has extensively explored the preparation strategies of COF membranes and their applications in various separation processes. This review uniquely delves into the influence of various COF membrane fabrication techniques, including interfacial polymerization, layer-by-layer assembly, and in situ growth, on membrane thickness and performance. It comprehensively explores the design strategies and potential applications of these methods, with a particular focus on gas separation, oil/water separation, and organic solvent nanofiltration. Furthermore, future opportunities, challenges within this field, and potential directions for future development are proposed.
Collapse
Affiliation(s)
- Yuan‐Hang Jin
- College of ChemistryJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - Meng‐Hao Li
- College of ChemistryJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - Ying‐Wei Yang
- College of ChemistryJilin University2699 Qianjin StreetChangchun130012P. R. China
| |
Collapse
|
3
|
Wu S, Peng LE, Yang Z, Sarkar P, Barboiu M, Tang CY, Fane AG. Next-Generation Desalination Membranes Empowered by Novel Materials: Where Are We Now? NANO-MICRO LETTERS 2024; 17:91. [PMID: 39702561 DOI: 10.1007/s40820-024-01606-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/23/2024] [Indexed: 12/21/2024]
Abstract
Membrane desalination is an economical and energy-efficient method to meet the current worldwide water scarcity. However, state-of-the-art reverse osmosis membranes are gradually being replaced by novel membrane materials as a result of ongoing technological advancements. These novel materials possess intrinsic pore structures or can be assembled to form lamellar membrane channels for selective transport of water or solutes (e.g., NaCl). Still, in real applications, the results fall below the theoretical predictions, and a few properties, including large-scale fabrication, mechanical strength, and chemical stability, also have an impact on the overall effectiveness of those materials. In view of this, we develop a new evaluation framework in the form of radar charts with five dimensions (i.e., water permeance, water/NaCl selectivity, membrane cost, scale of development, and stability) to assess the advantages, disadvantages, and potential of state-of-the-art and newly developed desalination membranes. In this framework, the reported thin film nanocomposite membranes and membranes developed from novel materials were compared with the state-of-the-art thin film composite membranes. This review will demonstrate the current advancements in novel membrane materials and bridge the gap between different desalination membranes. In this review, we also point out the prospects and challenges of next-generation membranes for desalination applications. We believe that this comprehensive framework may be used as a future reference for designing next-generation desalination membranes and will encourage further research and development in the field of membrane technology, leading to new insights and advancements.
Collapse
Affiliation(s)
- Siqi Wu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Lu Elfa Peng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Pulak Sarkar
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Mihail Barboiu
- Institut Européen des Membrane, University of Montpellier, ENSCM, CNRS UMR5635, Place Eugène Bataillon, CC 047, 34095, Montpellier, France
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China.
| | - Anthony G Fane
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| |
Collapse
|
4
|
Li SL, Yan ZY, Qian HL, Xu ST, Yan XP. Aptamer-Conjugated Covalent-Organic Framework Nanochannels for Selective and Sensitive Detection of Aflatoxin B1. Anal Chem 2024; 96:17370-17376. [PMID: 39420777 DOI: 10.1021/acs.analchem.4c04098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Sensitive and selective detection of trace aflatoxin B1 (AFB1) in foods is of great importance to guarantee food safety and quality but still challenging because of its trace amount and the interference from the complex food matrix. Here, we report the integration of aptamer (Apt) and an ordered 2D covalent organic framework (COF) to solid-state anodic aluminum oxide (AAO) nanochannels (Apt/COF/AAO) for selective and sensitive detection of trace AFB1. The high specificity of Apt for AFB1 led to a selective change in the surface charge of Apt/COF/AAO and in turn the current change of the nanochannel, permitting the selective and sensitive determination of trace AFB1 in complex food samples. The developed nanofluidic sensor gave a wide linear range (1-500 pg mL-1), low detection limit (0.11 pg mL-1), and good precision (relative standard deviation of 1.5% for 11 replicate determinations of 100 pg mL-1). In addition, the developed sensor was successfully used for the detection of AFB1 in food samples with the recovery of 86.9%-102.5%. The coupling of Apt-conjugated 2D COF with an AAO nanochannel provides a promising way for sensitive and selective determination of food contaminants in complex samples.
Collapse
Affiliation(s)
- Shi-Lun Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhu-Ying Yan
- Analysis and Testing Center, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shu-Ting Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Wang P, Tao W, Zhou T, Wang J, Zhao C, Zhou G, Yamauchi Y. Nanoarchitectonics in Advanced Membranes for Enhanced Osmotic Energy Harvesting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404418. [PMID: 38973652 DOI: 10.1002/adma.202404418] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Indexed: 07/09/2024]
Abstract
Osmotic energy, often referred to as "blue energy", is the energy generated from the mixing of solutions with different salt concentrations, offering a vast, renewable, and environmentally friendly energy resource. The efficacy of osmotic power production considerably relies on the performance of the transmembrane process, which depends on ionic conductivity and the capability to differentiate between positive and negative ions. Recent advancements have led to the development of membrane materials featuring precisely tailored ion transport nanochannels, enabling high-efficiency osmotic energy harvesting. In this review, ion diffusion in confined nanochannels and the rational design and optimization of membrane architecture are explored. Furthermore, structural optimization of the membrane to mitigate transport resistance and the concentration polarization effect for enhancing osmotic energy harvesting is highlighted. Finally, an outlook on the challenges that lie ahead is provided, and the potential applications of osmotic energy conversion are outlined. This review offers a comprehensive viewpoint on the evolving prospects of osmotic energy conversion.
Collapse
Affiliation(s)
- Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Weixiang Tao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Tianhong Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jie Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chenrui Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Gang Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, 464-8603, Japan
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, South Korea
| |
Collapse
|
6
|
Ku CA, Hung CW, Chung CK. A Rapid, Efficient Method for Anodic Aluminum Oxide Membrane Room-Temperature Multi-Detachment from Commercial 1050 Aluminum Alloy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1216. [PMID: 39057892 PMCID: PMC11279919 DOI: 10.3390/nano14141216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
For commercial processes, through-hole AAO membranes are fabricated from high-purity aluminum by chemical etching. However, this method has the disadvantages of using heavy-metal solutions, creating large amounts of material waste, and leading to an irregular pore structure. Through-hole porous alumina membrane fabrication has been widely investigated due to applications in filters, nanomaterial synthesis, and surface-enhanced Raman scattering. There are several means to obtain freestanding through-hole AAO membranes, but a fast, low-cost, and repetitive process to create complete, high-quality membranes has not yet been established. Here, we propose a rapid and efficient method for the multi-detachment of an AAO membrane at room temperature by integrating the one-time potentiostatic (OTP) method and two-step electrochemical polishing. Economical commercial AA1050 was used instead of traditional high-cost high-purity aluminum for AAO membrane fabrication at 25 °C. The OTP method, which is a single-step process, was applied to achieve a high-quality membrane with unimodal pore distribution and diameters between 35 and 40 nm, maintaining a high consistency over five repetitions. To repeatedly detach the AAO membrane, two-step electrochemical polishing was developed to minimize damage on the AA1050 substrate caused by membrane separation. The mechanism for creating AAO membranes using the OTP method can be divided into three major components, including the Joule heating effect, the dissolution of the barrier layer, and stress effects. The stress is attributed to two factors: bubble formation and the difference in the coefficient of thermal expansion between the AAO membrane and the Al substrate. This highly efficient AAO membrane detachment method will facilitate the rapid production and applications of AAO films.
Collapse
Affiliation(s)
| | | | - Chen-Kuei Chung
- Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
7
|
Rozenblium I, Yuferov Y, Borodianskiy K. A Comprehensive Study of Aluminum Anodization in Transition Modes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3438. [PMID: 39063730 PMCID: PMC11278022 DOI: 10.3390/ma17143438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Anodization is a method to fabricate a tunable nanoporosity and thickness of alumina coating. This research is devoted to large-area hard anodization (HA), ultrahard anodization (UHA), and transitional modes. The phenomenon and challenges of UHA and the transition from HA are studied on large-area samples using linear-sweep voltammetry. The findings indicate that a uniform large-area thick coating can be achieved by utilizing pre-UHA modes. The study's results indicate that UHA leads only to coatings with non-uniform thickness in large-area anodization. The peculiarities of pre-UHA are studied using different temperatures (0, 5, 10, and 15 °C) and processing times (1, 2, 4, 6, and 12 h) in a 0.3 M oxalic acid electrolyte. The current study shows the possibility for the fast growth of thick nanoporous alumina up to 235 ± 4 µm for only 12 h.
Collapse
Affiliation(s)
| | - Yuliy Yuferov
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel;
| | | |
Collapse
|
8
|
Liu X, Wang J, Shang Y, Yavuz CT, Khashab NM. Ionic Covalent Organic Framework-Based Membranes for Selective and Highly Permeable Molecular Sieving. J Am Chem Soc 2024; 146:2313-2318. [PMID: 38232075 PMCID: PMC10835733 DOI: 10.1021/jacs.3c11542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Two-dimensional covalent organic frameworks (COFs) with uniform pores and large surface areas are ideal candidates for constructing advanced molecular sieving membranes. However, a fabrication strategy to synthesize a free-standing COF membrane with a high permselectivity has not been fully explored yet. Herein, we prepared a free-standing TpPa-SO3H COF membrane with vertically aligned one-dimensional nanochannels. The introduction of the sulfonic acid groups on the COF membrane provides abundant negative charge sites in its pore wall, which achieve a high water flux and an excellent sieving performance toward water-soluble drugs and dyes with different charges and sizes. Furthermore, the COF membrane exhibited long-term stability, fouling resistance, and recyclability in rejection performance. We envisage that this work provides new insights into the effect of ionic ligands on the design of a broad range of COF membranes for advanced separation applications.
Collapse
Affiliation(s)
- Xin Liu
- Smart
Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous
Materials Center, Department of Chemistry, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jinrong Wang
- Smart
Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous
Materials Center, Department of Chemistry, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yuxuan Shang
- Oxide
& Organic Nanomaterials for Energy & Environment Laboratory,
Advanced Membranes and Porous Materials Center, Department of Chemistry, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Kingdom
of Saudi Arabia
| | - Cafer T. Yavuz
- Oxide
& Organic Nanomaterials for Energy & Environment Laboratory,
Advanced Membranes and Porous Materials Center, Department of Chemistry, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Kingdom
of Saudi Arabia
| | - Niveen M. Khashab
- Smart
Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous
Materials Center, Department of Chemistry, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Kazi OA, Chen W, Eatman JG, Gao F, Liu Y, Wang Y, Xia Z, Darling SB. Material Design Strategies for Recovery of Critical Resources from Water. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300913. [PMID: 37000538 DOI: 10.1002/adma.202300913] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Population growth, urbanization, and decarbonization efforts are collectively straining the supply of limited resources that are necessary to produce batteries, electronics, chemicals, fertilizers, and other important products. Securing the supply chains of these critical resources via the development of separation technologies for their recovery represents a major global challenge to ensure stability and security. Surface water, groundwater, and wastewater are emerging as potential new sources to bolster these supply chains. Recently, a variety of material-based technologies have been developed and employed for separations and resource recovery in water. Judicious selection and design of these materials to tune their properties for targeting specific solutes is central to realizing the potential of water as a source for critical resources. Here, the materials that are developed for membranes, sorbents, catalysts, electrodes, and interfacial solar steam generators that demonstrate promise for applications in critical resource recovery are reviewed. In addition, a critical perspective is offered on the grand challenges and key research directions that need to be addressed to improve their practical viability.
Collapse
Affiliation(s)
- Omar A Kazi
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Wen Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Jamila G Eatman
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Feng Gao
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Yining Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Yuqin Wang
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Zijing Xia
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Seth B Darling
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
10
|
Ly QV, Cui L, Asif MB, Khan W, Nghiem LD, Hwang Y, Zhang Z. Membrane-based nanoconfined heterogeneous catalysis for water purification: A critical review ✰. WATER RESEARCH 2023; 230:119577. [PMID: 36638735 DOI: 10.1016/j.watres.2023.119577] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Progress in heterogeneous advanced oxidation processes (AOPs) is hampered by several issues including mass transfer limitation, limited diffusion of short-lived reactive oxygen species (ROS), aggregation of nanocatalysts, and loss of nanocatalysts to treated water. These issues have been addressed in recent studies by executing the heterogeneous AOPs in confinement, especially in the nanopores of catalytic membranes. Under nanoconfinement (preferably at the length of less than 25 nm), the oxidant-nanocatalyst interaction, ROS-micropollutant interaction and diffusion of ROS have been observed to significantly improve, which results in enhanced ROS yield and mass transfer, improved reaction kinetics and reduced matrix effect as compared to conventional heterogenous AOP configuration. Given the significance of nanoconfinement effect, this study presents a critical review of the current status of membrane-based nanoconfined heterogeneous catalysis system for the first time. A succinct overview of the nanoconfinement concept in the context of membrane-based nanofluidic platforms is provided to elucidate the theoretical and experimental findings related to reaction kinetics, reaction mechanisms and molecule transport in membrane-based nanoconfined AOPs vs. conventional AOPs. In addition, strategies to construct membrane-based nanoconfined catalytic systems are explained along with conflicting arguments/opinions, which provides critical information on the viability of these strategies and future research directions. To show the desirability and applicability of membrane-based nanoconfined catalysis systems, performance governing factors including operating conditions and water matrix effect are particularly focused. Finally, this review presents a systematic account of the opportunities and technological constraints in the development of membrane-based nanoconfined catalytic platform to realize effective micropollutant elimination in water treatment.
Collapse
Affiliation(s)
- Quang Viet Ly
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China; Department of Environmental Engineering, Seoul National University of Science and Technology, 01811 Seoul, Republic of Korea
| | - Lele Cui
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Muhammad Bilal Asif
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Waris Khan
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Yuhoon Hwang
- Department of Environmental Engineering, Seoul National University of Science and Technology, 01811 Seoul, Republic of Korea
| | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
11
|
Huang W, Liu Q, Zhang X, Chen Z, Zheng B, Wu D. Amphiphilically Modified Porous Polymeric Nanosandwich-Based Membranes for Rapid and Efficient Water Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205714. [PMID: 36509641 DOI: 10.1002/smll.202205714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Low removal efficiency, long treatment time, and high energy consumption hinder advanced and eco-friendly use of traditional adsorbents and separation membranes. Here, a class of amphiphilically modified 2D porous polymeric nanosandwich is designed and is subsequently assembled into adsorptive membranes. The 2D nanosandwich is gifted with high porosity and excellent pore accessibility, demonstrating rapid adsorption kinetics. The as-assembled membrane integrates unimpeded interlayer channels and well-developed, amphiphilic, and highly accessible intralayer nanopores, leading to ultrafast water permeation (1.2 × 104 L m-2 h-1 bar-1 ), high removal efficiency, and easy regeneration. The family of the membrane can be expanded by changing amphiphilic functional groups, further providing treatment of a wide-spectrum of pollutants, including aromatic compounds, pesticide, and pharmaceuticals. It is believed that the novel amphiphilically modified adsorptive membrane offers a distinct water treatment strategy with ultrahigh water permeation and efficient pollutants removal performances, and provides a multiple-in-one solution to the detection and elimination of pollutants.
Collapse
Affiliation(s)
- Wen Huang
- PCFM Lab and GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Qiantong Liu
- PCFM Lab and GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Xingcai Zhang
- PCFM Lab and GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Zirun Chen
- PCFM Lab and GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Bingna Zheng
- Center of Accurate Diagnosis, Treatment and Transformation of Bone and Joint Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Dingcai Wu
- PCFM Lab and GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- Center of Accurate Diagnosis, Treatment and Transformation of Bone and Joint Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| |
Collapse
|
12
|
Li B, Nan P, Gao Z, Tang B, Qiu S, Fang Q. Room-Temperature Preparation of Covalent Organic Framework Membrane for Nanofiltration. Macromol Rapid Commun 2022:e2200774. [PMID: 36520529 DOI: 10.1002/marc.202200774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/06/2022] [Indexed: 12/23/2022]
Abstract
The uniquely tunable nature of covalent organic frameworks (COFs), whose pore size and stability can be controlled by choosing diverse organic building blocks and linkage types, makes COFs potential candidates for the membrane separation. Therefore, the preparation of membranes with effective separation efficiency based on COFs has aroused great interest among researchers. Although solvothermal approach has been the most popular method for the preparation of COF membranes, fabricating COF membranes at room temperature (RT) will provide a simple and captivating strategy for separation membranes. Herein, a P-COF membrane on porous alumina substrate at RT, showing 99.7% rejection of rhodamine B and excellent water permeance up to 52 L m-2 h-1 bar-1 , which can effectively purify wastewater is successfully obtained. P-COF is directly grown on alumina to form the composite membrane, which enhances the mechanical strength of COF membrane and avoids the risk of damaging the membrane structure during the transfer process of self-standing membrane. Moreover, P-COF membrane is grown at RT, which is more energy efficient than the conventional solvothermal method. Thus, it is of great significance to obtain COF membranes with excellent nanofiltration performance in a simple and mild condition to alleviate environmental and energy concerns.
Collapse
Affiliation(s)
- Baoju Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Pihan Nan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zhuangzhuang Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Bin Tang
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, 3216, Australia
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
13
|
Ali S, Shah IA, Ihsanullah I, Feng X. Nanocomposite membranes for organic solvent nanofiltration: Recent advances, challenges, and prospects. CHEMOSPHERE 2022; 308:136329. [PMID: 36087722 DOI: 10.1016/j.chemosphere.2022.136329] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Organic solvent nanofiltration (OSN) is an emerging technology for the separation of organic solvents that are relevant to the petrochemical, pharmaceutical, food and fine chemical industries. The separation performance of OSN membranes has continued to push the boundary up through advanced membrane fabrication techniques and novel materials for fabricating the membranes. Despite the many advantages, OSN membranes still face such challenges as low solvent permeability and durability in harsh organic solvent conditions. To overcome these limitations, attempts have been made to incorporate nanomaterial fillers into OSN membranes to improve their overall performance. This review analyzes the potential and use of nanomaterials for OSN membranes, including covalent organic frameworks (COFs), metal-organic frameworks (MOFs), metal oxides (MOs) and carbon-based materials (CBMs). Recent advances in the state-of-the-art nano-based OSN membranes, in the form of thin-film nanocomposite (TFN) membranes and mixed matrix membranes (MMMs), are reviewed. Moreover, the separation mechanisms of OSN with nano-based membranes are discussed. The challenges faced by these OSN membranes are also elaborated, and recommendations for further research in this field are provided.
Collapse
Affiliation(s)
- Sharafat Ali
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Izaz Ali Shah
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Ihsanullah Ihsanullah
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Xianshe Feng
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
14
|
Wu Y, Wang Y, Xu F, Qu K, Dai L, Cao H, Xia Y, Lei L, Huang K, Xu Z. Solvent-induced interfacial polymerization enables highly crystalline covalent organic framework membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Shi X, Zhang Z, Yin C, Zhang X, Long J, Zhang Z, Wang Y. Design of Three‐Dimensional Covalent Organic Framework Membranes for Fast and Robust Organic Solvent Nanofiltration. Angew Chem Int Ed Engl 2022; 61:e202207559. [DOI: 10.1002/anie.202207559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 02/02/2023]
Affiliation(s)
- Xiansong Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816, Jiangsu P. R. China
| | - Zhipeng Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816, Jiangsu P. R. China
| | - Congcong Yin
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816, Jiangsu P. R. China
| | - Xin Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816, Jiangsu P. R. China
| | - Jianghai Long
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816, Jiangsu P. R. China
| | | | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816, Jiangsu P. R. China
| |
Collapse
|
16
|
Dual-layered covalent organic framework/MXene membranes with short paths for fast water treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Gao ZF, Liu J, Chung T. Rapid in-situ growth of covalent organic frameworks on hollow fiber substrates with Janus-like characteristics for efficient organic solvent nanofiltration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Shi X, Zhang Z, Yin C, Zhang X, Long J, Zhang Z, Wang Y. Design of Three‐Dimensional Covalent Organic Framework Membranes for Fast and Robust Organic Solvent Nanofiltration. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiansong Shi
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Zhipeng Zhang
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Congcong Yin
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Xin Zhang
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Jianghai Long
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Zhe Zhang
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Yong Wang
- Nanjing Tech University College of Chemical Engineering State Key Laboratory of Materials-Oriented Chemical Engineering 30, Puzhu South 211816 Nanjing CHINA
| |
Collapse
|
19
|
In-situ fabricated covalent organic frameworks-polyamide hybrid membrane for highly efficient molecular separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Interfacial polymerization of a covalent organic framework layer on titanium dioxide@graphene oxide/polyacrylonitrile mixed-matrix membranes for high-performance dye separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Liu D, Tian C, Shan M, Zhu J, Zhang Y. Interface synthesis of flexible benzimidazole-linked polymer molecular-sieving membranes with superior antimicrobial activity. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Li G, Liu Y, Chen J, Xu S, Lu N, Lin H, Liu F. A cosubstantial [0D+2D] CTF membrane with enhanced perm-selectivity and solar cleaning for multiscale molecular separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Wong KC, Goh PS, Ismail AF, Kang HS, Guo Q, Jiang X, Ma J. The State-of-the-Art Functionalized Nanomaterials for Carbon Dioxide Separation Membrane. MEMBRANES 2022; 12:186. [PMID: 35207107 PMCID: PMC8879035 DOI: 10.3390/membranes12020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023]
Abstract
Nanocomposite membrane (NCM) is deemed as a practical and green separation solution which has found application in various fields, due to its potential to delivery excellent separation performance economically. NCM is enabled by nanofiller, which comes in a wide range of geometries and chemical features. Despite numerous advantages offered by nanofiller incorporation, fabrication of NCM often met processing issues arising from incompatibility between inorganic nanofiller and polymeric membrane. Contemporary, functionalization of nanofiller which modify the surface properties of inorganic material using chemical agents is a viable approach and vigorously pursued to refine NCM processing and improve the odds of obtaining a defect-free high-performance membrane. This review highlights the recent progress on nanofiller functionalization employed in the fabrication of gas-separative NCMs. Apart from the different approaches used to obtain functionalized nanofiller (FN) with good dispersion in solvent and polymer matrix, this review discusses the implication of functionalization in altering the structure and chemical properties of nanofiller which favor interaction with specific gas species. These changes eventually led to the enhancement in the gas separation efficiency of NCMs. The most frequently used chemical agents are identified for each type of gas. Finally, the future perspective of gas-separative NCMs are highlighted.
Collapse
Affiliation(s)
- Kar Chun Wong
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - Hooi Siang Kang
- Marine Technology Centre, Institute for Vehicle System & Engineering, School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - Qingjie Guo
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China; (Q.G.); (X.J.); (J.M.)
| | - Xiaoxia Jiang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China; (Q.G.); (X.J.); (J.M.)
- School of Mechanical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jingjing Ma
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China; (Q.G.); (X.J.); (J.M.)
| |
Collapse
|
24
|
Wu M, Jiang X, Meng Y, Niu Y, Yuan Z, Du S, Li X, Ruan X, Xiao W, Yan X, He G. A Covalent Organic Framework Membrane with Homo Hierarchical Pores for Confined Reactive Crystallization. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4739-4749. [PMID: 35015497 DOI: 10.1021/acsami.1c21385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gas-liquid (G-L) reactive crystallization is a major technology for advanced materials construction, which requires a short diffusion path on the interface to ensure the reactant supply and stable crystal nucleation under ultrahigh supersaturation. Herein, a covalent organic framework (COF) membrane with homo hierarchical pore structures was proposed as an effective interfacial material for the regulation of confined reactive crystallization. By combining the ordered nanopores of COFs and micropores of anodic aluminum oxide (AAO), the COF membrane simultaneously provided an excellent nanoscale diffusion-reaction regulation network as the molecular-level confined G-L reactive interface and adjustable submicrometer gas mass transfer channels. The highly selective construction of CaCO3 superstructures was then achieved. When the submicrometer primary pore size rp of the constructed COF membrane ranged from 120 to 1.6 nm, the diffusion mechanism of CO2 varied from viscous flow diffusion to Knudsen diffusion. The growth orientation of CaCO3 crystals was well confined to obtain spindle-shaped crystals with high selectivity. Meanwhile, the crystal selectivity factor (cube/sphere) increased from 0 to 3.53 under the low interfacial nuclear barrier. Thus, the COF membrane with coupled micro-nanostructures successfully screened the directional preparation conditions for diverse CaCO3 superstructures, which also paved a meaningful path for the functional application of COFs in accurate mass transfer control and confined chemical reactions.
Collapse
Affiliation(s)
- Mengyuan Wu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yingshuang Meng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yuchao Niu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Zhijie Yuan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Shaofu Du
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiangcun Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xuehua Ruan
- School of Chemical Engineering at Panjin, Dalian University of Technology, Panjin 124221, China
| | - Wu Xiao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiaoming Yan
- School of Chemical Engineering at Panjin, Dalian University of Technology, Panjin 124221, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
- School of Chemical Engineering at Panjin, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
25
|
Zhang Z, Yin C, Shi X, Yang G, Wang Y. Masking covalent organic frameworks (COFs) with loose polyamide networks for precise nanofiltration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Shi GM, Feng Y, Li B, Tham HM, Lai JY, Chung TS. Recent progress of organic solvent nanofiltration membranes. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101470] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
|
28
|
|
29
|
Shi X, Zhang Z, Fang S, Wang J, Zhang Y, Wang Y. Flexible and Robust Three-Dimensional Covalent Organic Framework Membranes for Precise Separations under Extreme Conditions. NANO LETTERS 2021; 21:8355-8362. [PMID: 34596413 DOI: 10.1021/acs.nanolett.1c02919] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Membranes based on covalent organic frameworks (COFs) have demonstrated huge potential to resolve the long-standing bottlenecks in separation fields due to their structural and functional attributes. Herein, a three-dimensional COF featuring interpenetrated apertures, 3D-OH-COF, is rationally synthesized on polyimide supports to generate flexible, robust membranes. The resultant 3D-OH-COF presents excellent crystallinity, prominent porosity, and exceptional solvent resistance, enabling the produced membrane a sharp and durable selectivity to small molecules in water and organic solvents. Impressively, the membrane also exhibits excellent flexibility and robustness as verified by the well-maintained performances after serious bending and solvent soaking under elevated temperatures. We further chemically convert 3D-OH-COF into the carboxyl-decorated 3D-COOH-COF by a postsynthetic strategy. The 3D-COOH-COF retains high crystallinity, and the converted membrane receives a remarkable capture ability for targeted multivalent ions over other competing ions. This study exploits a viable avenue to produce practical 3D COF membranes toward ultimate separations under extreme conditions.
Collapse
Affiliation(s)
- Xiansong Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu P.R. China
| | - Zhe Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu P.R. China
| | - Siyu Fang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu P.R. China
| | - Jingtao Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan P.R. China
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan P.R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu P.R. China
| |
Collapse
|
30
|
Wang P, Peng Y, Zhu C, Yao R, Song H, Kun L, Yang W. Single‐Phase Covalent Organic Framework Staggered Stacking Nanosheet Membrane for CO
2
‐Selective Separation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pengyuan Wang
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yuan Peng
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- Dalian National Laboratory for Clean Energy Dalian 116023 China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| | - Chenyu Zhu
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| | - Rui Yao
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| | - Hongling Song
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| | - Lun Kun
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Weishen Yang
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| |
Collapse
|
31
|
Xiong S, Liu J, Wang Y, Wang X, Chu J, Zhang R, Gong M, Wu B. Solvothermal
synthesis of triphenylamine‐based covalent organic framework nanofibers with excellent cycle stability for supercapacitor electrodes. J Appl Polym Sci 2021. [DOI: 10.1002/app.51510] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Shanxin Xiong
- College of Chemistry and Chemical Engineering Xi'an University of Science and Technology Xi'an China
| | - Jian Liu
- College of Chemistry and Chemical Engineering Xi'an University of Science and Technology Xi'an China
| | - Yuancheng Wang
- College of Chemistry and Chemical Engineering Xi'an University of Science and Technology Xi'an China
| | - Xiaoqin Wang
- College of Chemistry and Chemical Engineering Xi'an University of Science and Technology Xi'an China
| | - Jia Chu
- College of Chemistry and Chemical Engineering Xi'an University of Science and Technology Xi'an China
| | - Runlan Zhang
- College of Chemistry and Chemical Engineering Xi'an University of Science and Technology Xi'an China
| | - Ming Gong
- College of Chemistry and Chemical Engineering Xi'an University of Science and Technology Xi'an China
| | - Bohua Wu
- College of Chemistry and Chemical Engineering Xi'an University of Science and Technology Xi'an China
| |
Collapse
|
32
|
Wang P, Peng Y, Zhu C, Yao R, Song H, Kun L, Yang W. Single-Phase Covalent Organic Framework Staggered Stacking Nanosheet Membrane for CO 2 -Selective Separation. Angew Chem Int Ed Engl 2021; 60:19047-19052. [PMID: 34288296 DOI: 10.1002/anie.202106346] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Two-dimensional covalent organic frameworks (2D COFs) are considered as potential candidates for gas separation membranes, benefiting from permanent porosity, light-weight skeletons, excellent stability and facilely-tailored functionalities. However, their pore sizes are generally larger than the kinetic diameters of common gas molecules. One great challenge is the fabrication of single-phase COF membranes to realize precise gas separations. Herein, three kinds of high-quality β-ketoenamine-type COF nanosheets with different pore sizes were developed and aggregated to ultrathin nanosheet membranes with distinctive staggered stacking patterns. The narrowed pore sizes derived from the micro-structures and selective adsorption capacities synergistically endowed the COF membranes with intriguing CO2 -philic separation performances, among which TpPa-2 with medium pore size exhibited an optimal CO2 /H2 separation factor of 22 and a CO2 permeance of 328 gas permeation units at 298 K. This membrane performance reached the target with commercial feasibility for syngas separations.
Collapse
Affiliation(s)
- Pengyuan Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yuan Peng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,Dalian National Laboratory for Clean Energy, Dalian, 116023, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Chenyu Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Rui Yao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Hongling Song
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Lun Kun
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Weishen Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
33
|
Bakshi A, Bustamante H, Sui X, Joshi R. Structure Dependent Water Transport in Membranes Based on Two-Dimensional Materials. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aastha Bakshi
- Department of Metallurgical and Materials Engineering, Punjab Engineering College (Deemed to Be University), Chandigarh 160012, India
- SMaRT Centre, School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | - Xiao Sui
- SMaRT Centre, School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Rakesh Joshi
- SMaRT Centre, School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
34
|
Gu Z, Li P, Gao X, Qin Y, Pan Y, Zhu Y, Yu S, Xia Q, Liu Y, Zhao D, Liu G. Surface-crumpled thin-film nanocomposite membranes with elevated nanofiltration performance enabled by facilely synthesized covalent organic frameworks. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119144] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Bagheri AR, Aramesh N, Sher F, Bilal M. Covalent organic frameworks as robust materials for mitigation of environmental pollutants. CHEMOSPHERE 2021; 270:129523. [PMID: 33422996 DOI: 10.1016/j.chemosphere.2020.129523] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/19/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Today, one of the main leading global problems is the presence of different pollutants in the environment. These pollutants not only affect human health but also overshadow the life of other creatures. Thus, pollutant treatment has become a challenging issue among the researchers and the scientific community. Different adsorbents and catalysts have been applied to the removal of pollutants. However, the associated limitations like poor chemical and physical stability, low surface area and low binding capacity revived researchers' attention to exploring alternative materials. Covalent organic frameworks (COFs) are versatile materials created based on the strong covalent interactions between blocked monomers. Unique features, including high specific surface area, high chemical-physical stability and crystallinity render COFs an intriguing sorbent and catalyst in treating pollutants. This review spotlights the applications of COFs as distinguished adsorbents to remove hazardous pollutants from the environment. At first, COFs and their properties as alternative materials were introduced. Then, different synthesis approaches of COFs and their advantages and disadvantages were discussed. Furthermore, the applications of COFs outlined to remove a wide variety of pollutants based on adsorption and degradation. Finally, the prospects of COFs for the treatment of pollutants were evaluated.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Chemistry Department, Yasouj University, Yasouj, 75918-74831, Iran
| | - Farooq Sher
- School of Mechanical, Aerospace and Automotive Engineering, Faculty of Engineering, Environmental and Computing, Coventry University, Coventry, CV1 5FB, UK
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
36
|
Xiao A, Shi X, Zhang Z, Yin C, Xiong S, Wang Y. Secondary growth of bi-layered covalent organic framework nanofilms with offset channels for desalination. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119122] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Bai B, Wang D, Wan LJ. Synthesis of Covalent Organic Framework Films at Interfaces. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200391] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Bin Bai
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dong Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Jun Wan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
38
|
Lee S, Kang T, Lee JY, Park J, Choi SH, Yu JY, Ok S, Park SH. Thin-Film Composite Nanofiltration Membranes for Non-Polar Solvents. MEMBRANES 2021; 11:184. [PMID: 33803122 PMCID: PMC8001804 DOI: 10.3390/membranes11030184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022]
Abstract
Organic solvent nanofiltration (OSN) has been recognized as an eco-friendly separation system owing to its excellent cost and energy saving efficiency, easy scale-up in the narrow area and mild operation conditions. Membrane properties are the key part in terms of determining the separation efficiency in the OSN system. In this review paper, the recently reported OSN thin-film composite (TFC) membranes were investigated to understand insight of membrane materials and performance. Especially, we highlighted the representative study concepts and materials of the selective layer of OSN TFC membranes for non-polar solvents. The proper choice of monomers and additives for the selective layer forms much more interconnected voids and the enhanced microporosity, which can improve membrane performance of the OSN TFC membrane with reducing the transport resistance. Therefore, this review paper could be an important bridge to connect with the next-generation OSN TFC membranes for non-polar solvents.
Collapse
Affiliation(s)
- Seungmin Lee
- Energy Materials and Components R&D Group, Korea Institute of Industrial Technology, Busan 46938, Korea;
| | - Taewon Kang
- Department of Chemical Engineering, Changwon National University (CNU), Changwon 51140, Korea; (T.K.); (J.Y.L.); (J.P.); (S.H.C.); (J.-Y.Y.); (S.O.)
| | - Jong Young Lee
- Department of Chemical Engineering, Changwon National University (CNU), Changwon 51140, Korea; (T.K.); (J.Y.L.); (J.P.); (S.H.C.); (J.-Y.Y.); (S.O.)
| | - Jiyu Park
- Department of Chemical Engineering, Changwon National University (CNU), Changwon 51140, Korea; (T.K.); (J.Y.L.); (J.P.); (S.H.C.); (J.-Y.Y.); (S.O.)
| | - Seoung Ho Choi
- Department of Chemical Engineering, Changwon National University (CNU), Changwon 51140, Korea; (T.K.); (J.Y.L.); (J.P.); (S.H.C.); (J.-Y.Y.); (S.O.)
| | - Jin-Yeong Yu
- Department of Chemical Engineering, Changwon National University (CNU), Changwon 51140, Korea; (T.K.); (J.Y.L.); (J.P.); (S.H.C.); (J.-Y.Y.); (S.O.)
| | - Serin Ok
- Department of Chemical Engineering, Changwon National University (CNU), Changwon 51140, Korea; (T.K.); (J.Y.L.); (J.P.); (S.H.C.); (J.-Y.Y.); (S.O.)
| | - Sang-Hee Park
- Department of Chemical Engineering, Changwon National University (CNU), Changwon 51140, Korea; (T.K.); (J.Y.L.); (J.P.); (S.H.C.); (J.-Y.Y.); (S.O.)
| |
Collapse
|
39
|
Zeng M, Chen M, Huang D, Lei S, Zhang X, Wang L, Cheng Z. Engineered two-dimensional nanomaterials: an emerging paradigm for water purification and monitoring. MATERIALS HORIZONS 2021; 8:758-802. [PMID: 34821315 DOI: 10.1039/d0mh01358g] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Water scarcity has become an increasingly complex challenge with the growth of the global population, economic expansion, and climate change, highlighting the demand for advanced water treatment technologies that can provide clean water in a scalable, reliable, affordable, and sustainable manner. Recent advancements on 2D nanomaterials (2DM) open a new pathway for addressing the grand challenge of water treatment owing to their unique structures and superior properties. Emerging 2D nanostructures such as graphene, MoS2, MXene, h-BN, g-C3N4, and black phosphorus have demonstrated an unprecedented surface-to-volume ratio, which promises ultralow material use, ultrafast processing time, and ultrahigh treatment efficiency for water cleaning/monitoring. In this review, we provide a state-of-the-art account on engineered 2D nanomaterials and their applications in emerging water technologies, involving separation, adsorption, photocatalysis, and pollutant detection. The fundamental design strategies of 2DM are discussed with emphasis on their physicochemical properties, underlying mechanism and targeted applications in different scenarios. This review concludes with a perspective on the pressing challenges and emerging opportunities in 2DM-enabled wastewater treatment and water-quality monitoring. This review can help to elaborate the structure-processing-property relationship of 2DM, and aims to guide the design of next-generation 2DM systems for the development of selective, multifunctional, programmable, and even intelligent water technologies. The global significance of clean water for future generations sheds new light and much inspiration in this rising field to enhance the efficiency and affordability of water treatment and secure a global water supply in a growing portion of the world.
Collapse
Affiliation(s)
- Minxiang Zeng
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Domagalski JT, Xifre-Perez E, Marsal LF. Recent Advances in Nanoporous Anodic Alumina: Principles, Engineering, and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:430. [PMID: 33567787 PMCID: PMC7914664 DOI: 10.3390/nano11020430] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
The development of aluminum anodization technology features many stages. With the story stretching for almost a century, rather straightforward-from current perspective-technology, raised into an iconic nanofabrication technique. The intrinsic properties of alumina porous structures constitute the vast utility in distinct fields. Nanoporous anodic alumina can be a starting point for: Templates, photonic structures, membranes, drug delivery platforms or nanoparticles, and more. Current state of the art would not be possible without decades of consecutive findings, during which, step by step, the technique was more understood. This review aims at providing an update regarding recent discoveries-improvements in the fabrication technology, a deeper understanding of the process, and a practical application of the material-providing a narrative supported with a proper background.
Collapse
Affiliation(s)
| | | | - Lluis F. Marsal
- Departament d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Avinguda dels Països Catalans, 26, 43007 Tarragona, Spain; (J.T.D.); (E.X.-P.)
| |
Collapse
|
41
|
Structure adjustment for enhancing the water permeability and separation selectivity of the thin film composite nanofiltration membrane based on a dendritic hyperbranched polymer. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118455] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
42
|
Facile fabrication of COF-LZU1/PES composite membrane via interfacial polymerization on microfiltration substrate for dye/salt separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118706] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
43
|
Chen S, Yuan B, Liu G, Zhang D. Electrochemical Sensors Based on Covalent Organic Frameworks: A Critical Review. Front Chem 2020; 8:601044. [PMID: 33330394 PMCID: PMC7732640 DOI: 10.3389/fchem.2020.601044] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022] Open
Abstract
The metal-free cousins of metal-organic frameworks, covalent organic frameworks (COFs), are a class of pre-designable crystalline polymers composed of light elements and connected by strong covalent bonds. COFs are being given more and more attention in the electrochemical sensor field due to their fascinating properties, such as highly tunable porosity, intrinsic chemical and thermal stability, structural diversity, large specific surface area, and unique adsorption characteristics. However, there are still some key issues regarding COFs that need to be urgently resolved before they can be effectively applied in electrochemical sensing. In this review, we summarized recent achievements in developing novel electrochemical sensors based on COFs, and discussed the key fundamental and challenging issues that need to be addressed, including the mechanisms underlying charge transport, methods to improve electrical conductivity, immobilization methods on different substrates, synthesis strategies for nanoscale COFs, and the application of COFs in different fields. Finally, the challenges and outlooks in this promising field are tentatively proposed.
Collapse
Affiliation(s)
- Sidi Chen
- School of Chemistry and Materials Science, Ludong University, Yantai, China
| | - Baiqing Yuan
- School of Chemistry and Materials Science, Ludong University, Yantai, China
| | - Gang Liu
- School of Chemistry and Materials Science, Ludong University, Yantai, China
| | - Daojun Zhang
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, China
| |
Collapse
|
44
|
Manoranjan N, Zhang F, Wang Z, Dong Y, Fang W, Zhang Y, Zhu Y, Jin J. A Single-Walled Carbon Nanotube/Covalent Organic Framework Nanocomposite Ultrathin Membrane with High Organic Solvent Resistance for Molecule Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53096-53103. [PMID: 33169985 DOI: 10.1021/acsami.0c14825] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Covalent organic framework (COF)-based membranes are burgeoning candidates for separation technologies owing to their well-ordered channel structures. The exponential interest in the stability of the COF membrane on exposure to harsh organic solvents is directed to develop a composite membrane for dye separations in polar aprotic solvents. Here, we reported a nanocomposite membrane composing of a single-walled carbon nanotube (SWCNT)/COF (an imine-based COF) hybrid on a commercial polytetrafluoroethylene (PTFE) substrate, with a thickness of ∼58 nm prepared in a diffusion cell. This membrane displayed high permeability and stability toward nonpolar and aprotic solvents. It exhibited high permeability for lower viscous organic solvents such as hexane (66 L m-2 h-1 bar-1), acetone (60 L m-2 h-1 bar-1), and acetonitrile (59 L m-2 h-1 bar-1) with a desirable dye rejection (92.8% for Brilliant blue in acetone). The long-time operation demonstrated the excellent stability of the nanocomposite membrane. We herein reported a facile and mild method to prepare an ultrathin COF-based nanocomposite membrane with a porous, robust structure coupled with solvent durability capable of efficient dye separation.
Collapse
Affiliation(s)
- Narmadha Manoranjan
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P.R. China
| | - Feng Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Zhenyi Wang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P.R. China
| | - Yanping Dong
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P.R. China
| | - Wangxi Fang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P.R. China
| | - Yatao Zhang
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China
| | - Yuzhang Zhu
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P.R. China
| | - Jian Jin
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P.R. China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
45
|
Zhu J, Yuan S, Wang J, Zhang Y, Tian M, Van der Bruggen B. Microporous organic polymer-based membranes for ultrafast molecular separations. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101308] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
46
|
Wang R, Wei M, Wang Y. Secondary growth of covalent organic frameworks (COFs) on porous substrates for fast desalination. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118090] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
47
|
Fang M, Montoro C, Semsarilar M. Metal and Covalent Organic Frameworks for Membrane Applications. MEMBRANES 2020; 10:E107. [PMID: 32455983 PMCID: PMC7281687 DOI: 10.3390/membranes10050107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022]
Abstract
Better and more efficient membranes are needed to face imminent and future scientific, technological and societal challenges. New materials endowed with enhanced properties are required for the preparation of such membranes. Metal and Covalent Organic Frameworks (MOFs and COFs) are a new class of crystalline porous materials with large surface area, tuneable pore size, structure, and functionality, making them a perfect candidate for membrane applications. In recent years an enormous number of articles have been published on the use of MOFs and COFs in preparation of membranes for various applications. This review gathers the work reported on the synthesis and preparation of membranes containing MOFs and COFs in the last 10 years. Here we give an overview on membranes and their use in separation technology, discussing the essential factors in their synthesis as well as their limitations. A full detailed summary of the preparation and characterization methods used for MOF and COF membranes is given. Finally, applications of these membranes in gas and liquid separation as well as fuel cells are discussed. This review is aimed at both experts in the field and newcomers, including students at both undergraduate and postgraduate levels, who would like to learn about preparation of membranes from crystalline porous materials.
Collapse
Affiliation(s)
| | | | - Mona Semsarilar
- Institut Européen des Membranes—IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France;
| |
Collapse
|
48
|
Hou J, Zhang H, Simon GP, Wang H. Polycrystalline Advanced Microporous Framework Membranes for Efficient Separation of Small Molecules and Ions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902009. [PMID: 31273835 DOI: 10.1002/adma.201902009] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Advanced porous framework membranes with excellent selectivity and high permeability of small molecules and ions are highly desirable for many important industrial separation applications. There has been significant progress in the fabrication of polycrystalline microporous framework membranes (PMFMs) in recent years, such as metal-organic framework and covalent organic framework membranes. These membranes possess small pore sizes, which are comparable to the kinetic diameter of small molecules and ions on the angstrom scale, very low thickness, down to tens to hundreds of nanometers, highly oriented crystalline structures, hybrid membrane structures, and specific functional groups for enhancing membrane selectivity and permeability. Recent advances in the fabrication methods of advanced PMFMs are summarized. Following this, four emerging separation applications of these advanced microporous framework membranes, including gas separation, water desalination, ion separation, and chiral separation, are highlighted and discussed in detail. Finally, a summary and some perspectives of future developments and challenges in this exciting research field are presented.
Collapse
Affiliation(s)
- Jue Hou
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Huacheng Zhang
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - George P Simon
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
49
|
Wei M, Zhou W, Xu F, Wang Y. Nanofluidic Behaviors of Water and Ions in Covalent Triazine Framework (CTF) Multilayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903879. [PMID: 31599122 DOI: 10.1002/smll.201903879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Covalent triazine frameworks (CTFs) hosting arrays of highly ordered sub-2-nm pores are expected to exhibit unusual nanofluidic behaviors, which may enable important applications such as desalination. Herein, nonequilibrium molecular dynamics simulations are applied to investigate transport of water and ions inside two typical CTFs-CTF-1, and CTF-2-having intrinsic pores of 1.2 and 1.5 nm, respectively. Their monolayers exhibit extremely high water permeance but weak ion rejection. CTF multilayers are then investigated. Transport resistances composed of interior and interfacial contribution are correlated with stacking numbers of CTF monolayers to develop equations of predicting water permeance. It is revealed that both the stacking fashion and the number of CTF monolayers forming multilayers significantly influence permeation and ion rejection. Staggered multilayers exhibit much higher ion rejection than eclipsed ones. Staggered CTF-2 multilayers completely reject ions because the interlayer paths between two adjacent staggered monolayers allow only water molecules to pass through. Importantly, it is predicted from the equations that few-layered staggered CTF-2 multilayers, which can be relatively easily produced by experimental methods, exhibit 100% NaCl rejection and up to 100 times higher permeance than commercial reverse osmosis membranes, implying their great potential as building blocks to prepare next-generation desalination membranes.
Collapse
Affiliation(s)
- Mingjie Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, and College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, P. R. China
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, and College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, P. R. China
| | - Fang Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, and College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, P. R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, and College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, P. R. China
| |
Collapse
|
50
|
Shi X, Ma D, Xu F, Zhang Z, Wang Y. Table-salt enabled interface-confined synthesis of covalent organic framework (COF) nanosheets. Chem Sci 2019; 11:989-996. [PMID: 34084353 PMCID: PMC8146026 DOI: 10.1039/c9sc05082e] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two-dimensional covalent organic frameworks (COFs) are gaining tremendous interest for their potential applications in a diversity of fields. However, synthesis of COF nanosheets (CONs) usually suffers from tedious exfoliation processes and low yields. Herein, we present an exfoliation-free and scalable strategy to prepare few-layered CONs based on interface-confined synthesis, in which cheap and recyclable table salt (NaCl) is used as the sacrificial substrate. Salt particles are introduced into the reaction system, creating billions of solid-liquid interfaces. Oligomers formed upon the reaction between monomers are immediately adsorbed on salt surfaces, and the following polymerization leading to crystalline CONs is exclusively confined to salt surfaces. Salts can be easily removed by water washing, producing CONs with the thickness down to a few nanometers and lateral sizes up to hundreds of micrometers depending on the size of salt particles and the concentration of monomers. Four different kinds of CONs, both imine-linked and boron-containing, are synthesized from this generic method. As a demonstration, we prepare highly permeable and selective membranes using resultant CONs as building blocks. Thanks to the defect-free stacking of CONs with thin thicknesses and large lateral sizes on porous substrates, the membranes precisely separate similarly sized dyes while allowing ultrafast water permeation. This interface-confined strategy opens a new platform for the controllable and scalable synthesis of COF nanosheets and is essential for the burgeoning real-world applications of COFs in various fields.
Collapse
Affiliation(s)
- Xiansong Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Dongwei Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Fang Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Zhe Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| |
Collapse
|