1
|
Lee S, Laris OA, Hjelvik EA, Hoek EMV, Straub AP. High Pressure Resistance in Omniphobic Distillation Membranes with Re-entrant Nanostructures. NANO LETTERS 2025; 25:7170-7177. [PMID: 40251708 DOI: 10.1021/acs.nanolett.5c01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
We developed pressure-resistant omniphobic membranes that enable stable distillation of low-surface-tension liquids at applied pressures exceeding 15 bar. Membranes were synthesized by grafting re-entrant nanostructures onto porous alumina membranes, followed by hydrophobic modification. The membranes exhibited a high liquid entry pressure of 36.2 bar with water and withstood an applied pressure up to 15.5 bar with a low-surface-tension 15 wt % ethanol-water mixture. Simulations revealed that the enhanced wetting resistance is due to the presence of re-entrant structures, which facilitated a 220% increase in wetting pressure for the low-surface-tension liquid compared to a control membrane with cylindrical pores. We further demonstrated stable pressure-driven distillation of low-surface-tension liquids, achieving higher than 97% salt rejection. This work is the first demonstration of distillation membranes operating with low-surface-tension liquids under high applied pressures and provides critical validation of wettability theory under extreme pressures.
Collapse
Affiliation(s)
- Sangsuk Lee
- Department of Civil, Environmental & Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Omar A Laris
- Materials Science & Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Elizabeth A Hjelvik
- Materials Science & Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Eric M V Hoek
- Department of Civil & Environmental Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
- Energy Storage & Distributed Resources Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | - Anthony P Straub
- Department of Civil, Environmental & Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science & Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
2
|
Kazaryan PS, Stamer KS, Kondratenko MS. Pinning Forces on the Omniphobic Dry, Liquid-Infused, and Liquid-Attached Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17190-17211. [PMID: 39119801 DOI: 10.1021/acs.langmuir.4c01159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Omniphobic coatings effectively repelling water, oils, and other liquids are of great interest and have a broad number of applications including self-cleaning, anti-icing surfaces, biofouling protection, selective filtration, etc. To create such coatings, one should minimize the pinning force that resists droplet motion and causes contact angle hysteresis. The minimization of the free surface energy by means of the chemical modification of the solid surface is not enough to obtain a nonsticky slippery omniphobic surface. One should minimize the contact between the solid and the droplet. Besides coating the surface with flat polymer films, among the major approaches to create omniphobic coatings, one can reveal "lotus effect" textured coatings, slippery liquid-infused porous surfaces (SLIPS), and slippery omniphobic covalently attached liquid (SOCAL) coatings. It is possible to turn one surface type into other by texturizing, impregnating with liquids, or grafting flexible liquid-like polymer chains. There are a number of models describing the pinning force on surfaces, but the transitions between states with different wetting regimes remain poorly understood. At the same time, such studies can significantly broaden existing ideas about the physics of wetting, help to design coatings, and also contribute to the development of generalized models of the pinning force. Here we review the existing pinning force (contact angle hysteresis) models on various omniphobic substrates. Also, we discuss the current studies of the pinning force in the transitions between different wetting regimes.
Collapse
Affiliation(s)
- Polina S Kazaryan
- M. V. Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1-2, Moscow 119992, Russian Federation
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991, Russian Federation
| | - Katerina S Stamer
- M. V. Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1-2, Moscow 119992, Russian Federation
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991, Russian Federation
| | - Mikhail S Kondratenko
- M. V. Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1-2, Moscow 119992, Russian Federation
| |
Collapse
|
3
|
Li B, Liu X, He X, Liu J, Mao S, Tao W, Li Z. Amidation-Reaction Strategy Constructs Versatile Mixed Matrix Composite Membranes towards Efficient Volatile Organic Compounds Adsorption and CO 2 Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310644. [PMID: 38386306 DOI: 10.1002/smll.202310644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/06/2024] [Indexed: 02/23/2024]
Abstract
Mixed matrix composite membranes (MMCMs) have shown advantages in reducing VOCs and CO2 emissions. Suitable composite layer, substrate, and good compatibility between the filler and the matrix in the composite layer are critical issues in designing MMCMs. This work develops a high-performance UiO-66-NA@PDMS/MCE for VOCs adsorption and CO2 permea-selectivity, based on a simple and facile fabrication of composite layer using amidation-reaction approach on the substrate. The composite layer shows a continuous morphological appearance without interface voids. This outstanding compatibility interaction between UiO-66-NH2 and PDMS is confirmed by molecular simulations. The Si─O functional group and UiO-66-NH2 in the layer leads to improved VOCs adsorption via active sites, skeleton interaction, electrostatic interaction, and van der Waals force. The layer and ─CONH─ also facilitate CO2 transport. The MMCMs show strong four VOCs adsorption and high CO2 permeance of 276.5 GPU with a selectivity of 36.2. The existence of VOCs in UiO-66-NA@PDMS/MCE increases the polarity and fine-tunes the pore size of UiO-66-NH2, improving the affinity towards CO2 and thus promoting the permea-selectivity for CO2, which is further verified by GCMC and EMD methods. This work is expected to offer a facile composite layer manufacturing method for MMCMs with high VOC adsorption and CO2 permea-selectivity.
Collapse
Affiliation(s)
- Boyu Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Xiaohui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xuanting He
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jiaxiang Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Shun Mao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Wenquan Tao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zhuo Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
4
|
Wang X, Liu T, Liang R, Qin W. Maintenance-free antifouling polymeric membrane potentiometric sensors based on self-polishing coatings. Analyst 2024; 149:2855-2863. [PMID: 38602369 DOI: 10.1039/d4an00351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Polymeric membrane ion-selective electrodes (ISEs) have been widely used in environmental monitoring. However, in complicated marine environments, marine biofouling usually becomes a sticky problem for these electrodes. Herein, for the first time, a novel maintenance-free antifouling potentiometric marine sensor based on a self-polishing coating (SPC) is proposed. The SPC is synthesized by using the seeded emulsion polymerization method based on the triisopropylsilyl methacrylate monomer as the regulator of the self-renewal rate. This coating can be simply modified onto the electrode surface by drop-casting. The silyl acrylate side groups of the obtained SPC on the sensor surface can be hydrolyzed in the marine alkaline medium. The shear movement of seawater driven by sea waves, wind, gravity, or vibration removes the leftover (fouled) brittle polymer backbone and thus the fouling marine microorganisms. As a proof-of-concept experiment, a polymeric membrane Ca2+-ISE is chosen as a model. Compared to the unmodified electrode, the SPC-coated Ca2+-ISE exhibits remarkable improved antifouling properties in terms of superior anti-adhesive abilities towards marine microorganisms, such as bacterial cells and algae and excellent long-term stability even in the presence of high levels of marine microorganisms. Since no additional manual maintenance is required for maintaining the antifouling abilities of the sensor, the proposed self-polishing sensor may lay an important foundation for construction of unattended long-term potentiometric monitoring systems in real marine environments.
Collapse
Affiliation(s)
- Xinyao Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tonghao Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P. R. China.
| | - Rongning Liang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P. R. China.
| | - Wei Qin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P. R. China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, P. R. China
| |
Collapse
|
5
|
Farid MU, Kharraz JA, Sun J, Boey MW, Riaz MA, Wong PW, Jia M, Zhang X, Deka BJ, Khanzada NK, Guo J, An AK. Advancements in Nanoenabled Membrane Distillation for a Sustainable Water-Energy-Environment Nexus. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307950. [PMID: 37772325 DOI: 10.1002/adma.202307950] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/10/2023] [Indexed: 09/30/2023]
Abstract
The emergence of nano innovations in membrane distillation (MD) has garnered increasing scientific interest. This enables the exploration of state-of-the-art nano-enabled MD membranes with desirable properties, which significantly improve the efficiency and reliability of the MD process and open up opportunities for achieving a sustainable water-energy-environment (WEE) nexus. This comprehensive review provides broad coverage and in-depth analysis of recent innovations in nano-enabled MD membranes, focusing on their role in achieving desirable properties, such as strong liquid-repellence, high resistance to scaling, fouling, and wetting, as well as efficient self-heating and self-cleaning functionalities. The recent developments in nano-enhanced photothermal-catalytic applications for water-energy co-generation within a single MD system are also discussed. Furthermore, the bottlenecks are identified that impede the scale-up of nanoenhanced MD membranes and a future roadmap is proposed for their sustainable commercialiation. This holistic overview is expected to inspire future research and development efforts to fully harness the potential of nano-enabled MD membranes to achieve sustainable integration of water, energy, and the environment.
Collapse
Affiliation(s)
- Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Jehad A Kharraz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Jiawei Sun
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Min-Wei Boey
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Muhammad Adil Riaz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Pak Wai Wong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Mingyi Jia
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Xinning Zhang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Bhaskar Jyoti Deka
- Department of Hydrology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Noman Khalid Khanzada
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| | - Jiaxin Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| |
Collapse
|
6
|
Jia H, Ren J, Kong Y, Ji Z, Guo S, Li J. Recent Advances in Dopamine-Based Membrane Surface Modification and Its Membrane Distillation Applications. MEMBRANES 2024; 14:81. [PMID: 38668109 PMCID: PMC11052433 DOI: 10.3390/membranes14040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 04/28/2024]
Abstract
Surface modification of membranes is essential for improving flux and resistance to contamination for membranes. This is of great significance for membrane distillation, which relies on the vapor pressure difference across the membrane as the driving force. In recent years, biomimetic mussel-inspired substances have become the research hotspots. Among them, dopamine serves as surface modifiers that would achieve highly desirable and effective membrane applications owing to their unique physicochemical properties, such as universal adhesion, enhanced hydrophilicity, tunable reducibility, and excellent thermal conductivity. The incorporation of a hydrophilic layer, along with the utilization of photothermal properties and post-functionalization capabilities in modified membranes, effectively addresses challenges such as low flux, contamination susceptibility, and temperature polarization during membrane distillation. However, to the best of our knowledge, there is still a lack of comprehensive and in-depth discussions. Therefore, this paper systematically compiles the modification method of dopamine on the membrane surface and summarizes its application and mechanism in membrane distillation for the first time. It is believed that this paper would provide a reference for dopamine-assisted membrane separation during production, and further promote its practical application.
Collapse
Affiliation(s)
| | - Jing Ren
- Shanxi Laboratory for Yellow River, Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China; (H.J.); (Y.K.); (Z.J.); (S.G.)
| | | | | | | | - Jianfeng Li
- Shanxi Laboratory for Yellow River, Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China; (H.J.); (Y.K.); (Z.J.); (S.G.)
| |
Collapse
|
7
|
Manouchehri M. A comprehensive review on state-of-the-art antifouling super(wetting and anti-wetting) membranes for oily wastewater treatment. Adv Colloid Interface Sci 2024; 323:103073. [PMID: 38160525 DOI: 10.1016/j.cis.2023.103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
One of the most dangerous types of pollution to the environment is oily wastewater, which is produced from a number of industrial sources and can cause damage to the environment, people, and creatures. To overcome this issue, membrane technology as an advanced method has been considered for treating oily wastewater due to its stability, high removal efficiency, and simplicity in scaling up. Membrane fouling, or the accumulation of oil droplets at or within the membrane pores, compromises the efficiency of membrane separation and water flux. In the last decade, the fabrication of membranes with specific wettability to reduce fouling has received much consideration. The purpose of this article is to offer a literature overview of all fabricated anti-fouling super(wetting and anti-wetting) membranes for applicable membrane processes for the separation of immiscible and emulsified oil/water mixtures. In this review, we first explain membrane fouling and discuss methods for preventing it. Afterwards, in all membrane separation processes, including pressure-driven, gravity-driven, and thermal-driven, membranes based on the form and density of oil are categorized as oil-removing or water-removing with special wettability, and then their wettability modification with different materials is particularly discussed. Finally, the prospect of anti-fouling membrane fabrication in the future is presented.
Collapse
Affiliation(s)
- Massoumeh Manouchehri
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
8
|
Zhao Y, Li L, Shan Y, Zhou D, Chen X, Cui W, Wang H. In Situ Construction Channels of Lithium-Ion Fast Transport and Uniform Deposition to Ensure Safe High-Performance Solid Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301572. [PMID: 37236175 DOI: 10.1002/smll.202301572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/19/2023] [Indexed: 05/28/2023]
Abstract
Solid-state lithium-ion batteries (SLIBs) are the promising development direction for future power sources because of their high energy density and reliable safety. To optimize the ionic conductivity at room temperature (RT) and charge/discharge performance to obtain reusable polymer electrolytes (PEs), polyvinylidene fluoride (PVDF), and poly(vinylidene fluoride-hexafluoro propylene) (P(VDF-HFP)) copolymer combined with polymerized methyl methacrylate (MMA) monomers are used as substrates to prepare PE (LiTFSI/OMMT/PVDF/P(VDF-HFP)/PMMA [LOPPM]). LOPPM has interconnected lithium-ion 3D network channels. The organic-modified montmorillonite (OMMT) is rich in the Lewis acid centers, which promoted lithium salt dissociation. LOPPM PE possessed high ionic conductivity of 1.1 × 10-3 S cm-1 and a lithium-ion transference number of 0.54. The capacity retention of the battery remained 100% after 100 cycles at RT and 0.5 C. The initial capacity of one with the second-recycled LOPPM PE is 123.9 mAh g-1 . This work offered a feasible pathway for developing high-performance and reusable LIBs.
Collapse
Affiliation(s)
- Yangmingyue Zhao
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Libo Li
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Yuhang Shan
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Da Zhou
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Xiaochuan Chen
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Wenjun Cui
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Heng Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| |
Collapse
|
9
|
Zhang H, Zhao X. Enhanced Anti-Wetting Methods of Hydrophobic Membrane for Membrane Distillation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300598. [PMID: 37219004 PMCID: PMC10427381 DOI: 10.1002/advs.202300598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/24/2023] [Indexed: 05/24/2023]
Abstract
Increasing issues of hydrophobic membrane wetting occur in the membrane distillation (MD) process, stimulating the research on enhanced anti-wetting methods for membrane materials. In recent years, surface structural construction (i.e., constructing reentrant-like structures), surface chemical modification (i.e., coating organofluorides), and their combination have significantly improved the anti-wetting properties of the hydrophobic membranes. Besides, these methods change the MD performance (i.e., increased/decreased vapor flux and increased salt rejection). This review first introduces the characterization parameters of wettability and the fundamental principles of membrane surface wetting. Then it summarizes the enhanced anti-wetting methods, the related principles, and most importantly, the anti-wetting properties of the resultant membranes. Next, the MD performance of hydrophobic membranes prepared by different enhanced anti-wetting methods is discussed in desalinating different feeds. Finally, facile and reproducible strategies are aspired for the robust MD membrane in the future.
Collapse
Affiliation(s)
- Honglong Zhang
- Lab of Environmental Science & TechnologyINETTsinghua UniversityBeijing100084P. R. China
| | - Xuan Zhao
- Lab of Environmental Science & TechnologyINETTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
10
|
Cho D, Oh JK. Silica Nanoparticle-Infused Omniphobic Polyurethane Foam with Bacterial Anti-Adhesion and Antifouling Properties for Hygiene Purposes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2035. [PMID: 37513046 PMCID: PMC10385342 DOI: 10.3390/nano13142035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
In this study, a method for preventing cross-infection through the surface coating treatment of polyurethane (PU) foam using functionalized silica nanoparticles was developed. Experimental results confirmed that the fabricated PU foam exhibited omniphobic characteristics, demonstrating strong resistance to both polar and nonpolar contaminants. Additionally, quantitative analysis using the pour plate method and direct counting with a scanning electron microscope determined that the treated material exhibited anti-adhesion properties against bacteria. The fabricated PU foam also demonstrated a high level of resistance to the absorption of liquids commonly found in medical facilities, including blood, 0.9% sodium chloride solution, and 50% glycerol. Mechanical durability and stability were verified through repeated compression tests and chemical leaching tests, respectively. The proposed coated PU foam is highly effective at preventing fouling from polar and nonpolar fluids as well as bacteria, making it well-suited for use in a range of fields requiring strict hygiene standards, including the medical, food, and environmental industries.
Collapse
Affiliation(s)
- Dongik Cho
- Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Gyeonggi-do, Republic of Korea
| | - Jun Kyun Oh
- Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Gyeonggi-do, Republic of Korea
| |
Collapse
|
11
|
Silanization enabled superhydrophobic PTFE membrane with antiwetting and antifouling properties for robust membrane distillation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
12
|
Li M, Cao Y, Zhang X. Hierarchically Structured Nanoparticle-Free Omniphobic Membrane for High-Performance Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5841-5851. [PMID: 36989064 DOI: 10.1021/acs.est.2c07880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The functional loss of membranes caused by pore wetting, mineral scaling, or structural instability is a critical challenge in membrane distillation (MD), which primarily hinders its practical applications. Herein, we propose a novel and facile strategy to fabricate omniphobic membranes with exceptionally robust MD performance. Specifically, a substrate with a hierarchical re-entrant architecture was constructed via spray-water-assisted non-solvent-induced phase separation (SWNIPS), followed by a direct fluorinated surface decoration via "thiol-ene" click chemistry. Deionized (DI) water contact angle measurements revealed an ultrahigh surface water contact angle (166.8 ± 1.8°) and an ultralow sliding angle (3.6 ± 1.1°) of the resultant membrane. Destructive abrasion cycle and ultrasonication tests confirmed its structural robustness. Moreover, the membrane possessed excellent wetting resistance, as evidenced by the prevention of membrane pore penetration by all low-surface-tension testing liquids, allowing stable long-term MD operation to treat brine wastewater with a surfactant content of 0.6 mM. In a desalination experiment using shale gas wastewater, the omniphobic membrane exhibited robust MD performance, achieving a high water recovery ratio of ∼60% without apparent changes in water flux and permeate conductivity over the entire membrane process. Overall, our study paves the way for a nanoparticle-free methodology for the scalable fabrication of high-performance MD membranes with surface omniphobicity and structural robustness in hypersaline wastewater treatment.
Collapse
Affiliation(s)
- Meng Li
- Laboratory of New Membrane Materials, Ministry of Industry and Information Technology; School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Yang Cao
- Customs Targeting Bureau, Nanjing Customs District, Nanjing 210001, China
| | - Xuan Zhang
- Laboratory of New Membrane Materials, Ministry of Industry and Information Technology; School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|
13
|
Prasanna NS, Choudhary N, Singh N, Raghavarao KSMS. Omniphobic membranes in membrane distillation for desalination applications: A mini-review. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
|
14
|
Afsari M, Park MJ, Kaleekkal NJ, Motsa MM, Shon HK, Tijing L. Janus Distillation Membrane via Mussel-Inspired Inkjet Printing Modification for Anti-Oil Fouling Membrane Distillation. MEMBRANES 2023; 13:membranes13020191. [PMID: 36837695 PMCID: PMC9961188 DOI: 10.3390/membranes13020191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 05/31/2023]
Abstract
In this work, inkjet printing technology was used to print a thin layer of a hydrophilic solution containing polydopamine as a binder and polyethyleneimine as a strong hydrophilic agent on a commercial hydrophobic membrane to produce a Janus membrane for membrane distillation. The pristine and modified membranes were tested in a direct-contact membrane distillation system with mineral oil-containing feedwater. The results revealed that an integrated and homogenous hydrophilic layer was printed on the membrane with small intrusions in the pores. The membrane, which contained three layers of inkjet-printed hydrophilic layers, showed a high underwater oil contact angle and a low in-air water contact angle. One-layer inkjet printing was not robust enough, but the triple-layer coated modified membrane maintained its anti-oil fouling performance even for a feed solution containing 70 g/L NaCl and 0.01 v/v% mineral oil concentration with a flux of around 20 L/m2h. This study implies the high potential of the inkjet printing technique as a facile surface modification strategy to improve membrane performance.
Collapse
Affiliation(s)
- Morteza Afsari
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, P.O. Box 123, Ultimo, NSW 2007, Australia
- ARC Research Hub for Nutrients in a Circular Economy (NiCE), School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, P.O. Box 123, Ultimo, NSW 2007, Australia
| | - Myoung Jun Park
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, P.O. Box 123, Ultimo, NSW 2007, Australia
| | - Noel Jacob Kaleekkal
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut (NITC), Kozhikode 673601, India
| | - Mxolisi M. Motsa
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, P.O. Box 123, Ultimo, NSW 2007, Australia
- ARC Research Hub for Nutrients in a Circular Economy (NiCE), School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, P.O. Box 123, Ultimo, NSW 2007, Australia
| | - Leonard Tijing
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, P.O. Box 123, Ultimo, NSW 2007, Australia
- ARC Research Hub for Nutrients in a Circular Economy (NiCE), School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, P.O. Box 123, Ultimo, NSW 2007, Australia
| |
Collapse
|
15
|
Engineering omniphobic corrugated membranes for scaling mitigation in membrane distillation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Jankowski W, Li G, Kujawski W, Kujawa J. Recent development of membranes modified with natural compounds: Preparation methods and applications in water treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Plasma-assisted facile fabrication of omniphobic graphene oxide membrane with anti-wetting property for membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Jia X, Cheng Q, Tang T, Xia M, Zhou F, Wu Y, Cheng P, Xu J, Liu K, Wang D. Facile plasma grafting of zwitterions onto nanofibrous membrane surface for improved antifouling properties and filtration performance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Ma Y, Zohaib Aslam M, Wu M, Nitin N, Sun G. Strategies and perspectives of developing anti-biofilm materials for improved food safety. Food Res Int 2022; 159:111543. [DOI: 10.1016/j.foodres.2022.111543] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/04/2022] [Accepted: 06/18/2022] [Indexed: 11/04/2022]
|
20
|
Liu D, Cao J, Qiu M, Zhang G, Hong Y. Enhanced properties of PVDF nanofibrous membrane with liquid-like coating for membrane distillation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Feng D, Li X, Wang Z. Comparison of omniphobic membranes and Janus membranes with a dense hydrophilic surface layer for robust membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Kim J, Yun ET, Tijing L, Shon HK, Hong S. Mitigation of fouling and wetting in membrane distillation by electrical repulsion using a multi-layered single-wall carbon nanotube/polyvinylidene fluoride membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
The Fabrication of Oleophobic Coating and Its Application in Particulates Filtration. COATINGS 2022. [DOI: 10.3390/coatings12070905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The stir-frying process in Chinese cooking has produced serious emissions of oily particles, which are an important source of urban air pollution. In particular, the complex composition of fine particulate may pose a threat to human respiratory and immune systems. However, current filtration methods for oily particulate fumes have low filtration efficiency, high resistance, and high equipment costs. In polypropylene (PP) electret filters, efficiency rapidly decreases and pressure drop (wind resistance) sharply increases after the adsorption of oily particles, due to the oleophilic properties of the PP fibre. We addressed this issue of filter performance degradation by fabricating a sodium perfluorooctanoate (SPFO) oleophobic coating on polyvinylidene fluoride (PVDF) fibre membranes for oily particle filtration. The SPFO coating showed a promising oleophobic effect even at low concentrations, which suggests it has oleophobic properties for different oil types and can be modified for different substrates. This fabricated oleophobic coating is thermostable and the oleophobic effect is unaffected by temperatures from 0 to 100 °C. By modifying the SPFO coating on the PVDF membrane, a high filtration efficiency (89.43%) and low wind resistance (69 Pa) was achieved without oil adhesion, so the proposed coating can be applied in the filtration and purification of oily fine particles and offers a potential strategy for preventing atmospheric oil pollution.
Collapse
|
24
|
Preparation and Modification of PVDF Membrane and Study on Its Anti-Fouling and Anti-Wetting Properties. WATER 2022. [DOI: 10.3390/w14111704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Membrane distillation (MD) has unique advantages in the treatment of high-salt wastewater because it can make full use of low-grade heat sources. The high salinity mine water in western mining areas of China is rich in Ca2+, Mg2+, SO42− and HCO3−. In the MD process, the inorganic substances in the feed will cause membrane fouling. At the same time, low surface tension organic substances which could be introduced in the mining process will cause irreversible membrane wetting. To improve the anti-fouling and anti-wetting properties of the membrane, the PVDF omniphobic membrane in this paper was prepared by electrospinning. The water contact angle (WCA) can reach 153°. Direct contact membrane distillation (DCMD) was then used for treating high-salinity mine water. The results show that, compared with the unmodified membranes, the flux reduction rate of the omniphobic membrane was reduced by 34% in 20 h, showing good anti-fouling property. More importantly, the omniphobic membrane cannot be wetted easily by the feed containing 0.3 mmol/L SDS. The extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) theory was used to analyze the free energy of the interface interaction between the membrane and pollutants, aiming to show that the omniphobic membrane was more difficult to pollute. The result was consistent with the flux variation in the DCMD process, providing an effective basis for explaining the mechanism of membrane fouling and membrane wetting.
Collapse
|
25
|
Du X, Alipanahrostami M, Wang W, Tong T. Long-Chain PFASs-Free Omniphobic Membranes for Sustained Membrane Distillation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23808-23816. [PMID: 35536240 DOI: 10.1021/acsami.2c01499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Omniphobic membranes possessing high wetting resistance have been created for the treatment of challenging hypersaline feedwaters with low surface tension through membrane distillation (MD). However, virtually all such membranes are fabricated with long-chain per- and polyfluoroalkyl substances (PFASs, ≥8 fluorinated carbons). The environmental risks and high bioaccumulation potential of long-chain PFASs have raised increasing concerns. Developing highly wetting-resistant MD membranes while avoiding the use of long-chain PFASs is essential to improve the viability of MD for resilient and sustainable water purification. We demonstrate that MD membranes with exceptional wetting resistance can be designed through the combination of hierarchically structured membranes consisting of re-entrant texture at different length scales and (ultra)short-chain fluorocarbons, which have lower acute toxicity and bioaccumulation potentials than long-chain PFASs. Our hierarchically structured membrane with three-tier micro/nanostructure fabricated with short-chain fluorocarbon possesses superior wetting resistance, which is comparable to or higher than the long-chain PFASs-based omniphobic membranes reported in the literature. Furthermore, the hierarchically structured membranes fabricated with ultrashort-chain fluorocarbons display improved wetting resistance against feedwaters with low surface tension. Our findings indicate that long-chain PFASs are not required when designing wetting-resistant membranes and that the balance between sustainability and wetting resistance should be tailored to the wetting potential of the feedwater.
Collapse
Affiliation(s)
- Xuewei Du
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Mohammad Alipanahrostami
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Wei Wang
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
26
|
Abd Aziz MH, Pauzan MAB, Mohd Hisam NAS, Othman MHD, Adam MR, Iwamoto Y, Hafiz Puteh M, Rahman MA, Jaafar J, Fauzi Ismail A, Agustiono Kurniawan T, Abu Bakar S. Superhydrophobic ball clay based ceramic hollow fibre membrane via universal spray coating method for membrane distillation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
|
28
|
Li H, Feng H, Li M, Zhang X. Engineering a covalently constructed superomniphobic membrane for robust membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Yadav P, Farnood R, Kumar V. Superhydrophobic modification of electrospun nanofibrous Si@PVDF membranes for desalination application in vacuum membrane distillation. CHEMOSPHERE 2022; 287:132092. [PMID: 34826888 DOI: 10.1016/j.chemosphere.2021.132092] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/16/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Superhydrophobic nanofibers have received prominent attention owing to their exceptional properties and researchers are focused on developing high-performing MD membranes. Herein, we fabricate superhydrophobic electrospun nanofibrous membranes using polyvinylidene fluoride (PVDF) solutions with silica nanoparticles (0 wt% to 6 wt%) to create multiscale (or hierarchical) surface roughness. For superhydrophobicity, the composite membranes (Si@PVDF) were subjected to a two-step modification that included acid pre-treatment and silanization with fluoroalkylsilane (FAS) compound of low surface energy. The acid pre-treatment enhances the hydroxyl group of SiO2 nanoparticles and create active sites in abundance for silanization. The modified membranes (FAS-Si@PVDF-A) having 6 wt% SiO2 showed excellent wetting resistance with water contact angle (WCA) up to 154.6 ± 2.2°, smaller average pore size of 0.27 ± 0.3 μm, and high liquid entry pressure (LEP) of 143 ± 4 kPa. It was observed, increasing silica content decreased the fiber diameter and average pore size and increased WCA and LEP of modified membranes. The modified superhydrophobic membranes gave stable permeate flux, exhibited strong wetting resistance and excellent salt rejection in vacuum membrane distillation (VMD) test. The optimal FAS-Si@PVDF-A membrane (6 wt% SiO2) of thickness 98 ± 5 μm produced a stable permeate flux of more than 11.5 kg m-2 h-1 and salt rejection as high as 99.9% after 22 h of continuous operation using NaCl solution (3.5 wt%) as feed. Therefore, this modification provided superhydrophobic membranes possessing robust anti-wetting properties with significant permeability and has encouraging application in membrane distillation for desalination.
Collapse
Affiliation(s)
- Pooja Yadav
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Ramin Farnood
- Department of Applied Chemistry and Chemical Engineering, University of Toronto, Ontario, M5S 3E5, Canada
| | - Vivek Kumar
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
30
|
Liao X, Goh K, Liao Y, Wang R, Razaqpur AG. Bio-inspired super liquid-repellent membranes for membrane distillation: Mechanisms, fabrications and applications. Adv Colloid Interface Sci 2021; 297:102547. [PMID: 34687984 DOI: 10.1016/j.cis.2021.102547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 01/22/2023]
Abstract
With the aggravation of the global water crisis, membrane distillation (MD) for seawater desalination and hypersaline wastewater treatment is highlighted due to its low operating temperature, low hydrostatic pressure, and theoretically 100% rejection. However, some issues still impede the large-scale applications of MD technology, such as membrane fouling, scaling and unsatisfactory wetting resistance. Bio-inspired super liquid-repellent membranes have progressed rapidly in the past decades and been considered as one of the most promising approaches to overcome the above problems. This review for the first time systematically summarizes and analyzes the mechanisms of different super liquid-repellent surfaces, their preparation and modification methods, and anti-wetting/fouling/scaling performances in the MD process. Firstly, the topology theories of in-air superhydrophobic, in-air omniphobic and underwater superoleophobic surfaces are illustrated using different models. Secondly, the fabrication methods of various super liquid-repellent membranes are classified. The merits and demerits of each method are illustrated. Thirdly, the anti-wetting/fouling/scaling mechanisms of super liquid-repellent membranes are summarized. Finally, the conclusions and perspectives of the bio-inspired super liquid-repellent membranes are elaborated. It is anticipated that the systematic review herein can provide readers with foundational knowledge and current progress of super liquid-repellent membranes, and inspire researchers to overcome the challenges up ahead.
Collapse
Affiliation(s)
- Xiangjun Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Res. Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yuan Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Res. Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Abdul Ghani Razaqpur
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| |
Collapse
|
31
|
Liu J, Guo H, Sun Z, Li B. Preparation of photothermal membrane for vacuum membrane distillation with excellent anti-fouling ability through surface spraying. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Liao X, Wang Y, Liao Y, You X, Yao L, Razaqpur AG. Effects of different surfactant properties on anti-wetting behaviours of an omniphobic membrane in membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119433] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Teng D, Zhao T, Xu Y, Zhang X, Zeng Y. The zein-based fiber membrane with switchable superwettability for on-demand oil/water separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Characterization of PVDF/Graphene Nanocomposite Membranes for Water Desalination with Enhanced Antifungal Activity. WATER 2021. [DOI: 10.3390/w13091279] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Seawater desalination is a worldwide concern for the sustainable production of drinking water. In this regard, membrane distillation (MD) has shown the potential for effective brine treatment. However, the lack of appropriate MD membranes limits its industrial expansion since they experience fouling and wetting issues. Therefore, hydrophobic membranes are promising candidates to successfully deal with such phenomena that are typical for commercially available membranes. Here, several graphene/polyvinylidene (PVDF_G) membranes with different graphene loading (0–10 wt%) were prepared through a phase inversion method. After full characterization of the resulting membranes, the surface revealed that the well-dispersed graphene in the polymer matrix (0.33 and 0.5 wt% graphene loading) led to excellent water repellence together with a rough structure, and a large effective surface area. Importantly, antifungal activity tests of films indicated an increase in the inhibition percentage for PVDF_G membranes against the Curvularia sp. fungal strain. However, the antifungal surface properties were found to be the synergistic result of graphene toxicity and surface topography.
Collapse
|
35
|
Zhang W, Hu B, Wang Z, Li B. Fabrication of omniphobic PVDF composite membrane with dual-scale hierarchical structure via chemical bonding for robust membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119038] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
36
|
Chang H, Liu B, Zhang Z, Pawar R, Yan Z, Crittenden JC, Vidic RD. A Critical Review of Membrane Wettability in Membrane Distillation from the Perspective of Interfacial Interactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1395-1418. [PMID: 33314911 DOI: 10.1021/acs.est.0c05454] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrophobic membranes used in membrane distillation (MD) systems are often subject to wetting during long-term operation. Thus, it is of great importance to fully understand factors that influence the wettability of hydrophobic membranes and their impact on the overall separation efficiency that can be achieved in MD systems. This Critical Review summarizes both fundamental and applied aspects of membrane wetting with particular emphasis on interfacial interaction between the membrane and solutes in the feed solution. First, the theoretical background of surface wetting, including the relationship between wettability and interfacial interaction, definition and measurement of contact angle, surface tension, surface free energy, adhesion force, and liquid entry pressure, is described. Second, the nature of wettability, membrane wetting mechanisms, influence of membrane properties, feed characteristics and operating conditions on membrane wetting, and evolution of membrane wetting are reviewed in the context of an MD process. Third, specific membrane features that increase resistance to wetting (e.g., superhydrophobic, omniphobic, and Janus membranes) are discussed briefly followed by the comparison of various cleaning approaches to restore membrane hydrophobicity. Finally, challenges with the prevention of membrane wetting are summarized, and future work is proposed to improve the use of MD technology in a variety of applications.
Collapse
Affiliation(s)
- Haiqing Chang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610207, China
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Baicang Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Zhewei Zhang
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Ritesh Pawar
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fujian, 350116, China
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Radisav D Vidic
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
37
|
Effects of different secondary nano-scaled roughness on the properties of omniphobic membranes for brine treatment using membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118918] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
38
|
Xing J, Zhang G, Jia X, Liu D, Wyman I. Preparation of Multipurpose Polyvinylidene Fluoride Membranes via a Spray-Coating Strategy Using Waterborne Polymers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4485-4498. [PMID: 33443998 DOI: 10.1021/acsami.0c18788] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As reported herein, the waterborne polymers poly(glycidyl methacrylate-co-poly(ethylene glycol) methyl ether methacrylate) P(GMA-co-mPEGMA) and polyethyleneimine (PEI) were used to prepare multipurpose polyvinylidene fluoride (PVDF) membranes via a direct spray-coating method. P(GMA-co-mPEGMA) and PEI were alternately sprayed onto the PVDF membrane to yield stable cross-linked copolymer coatings. The successful coating of polymers onto the membrane surface was verified by scanning electron microscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy characterization. The coated membrane exhibited oil rejection rates that exceeded 99.0% for oil water mixture separation and 98.0% for oil/water emulsion separation. The flux recovery ratio reached 96.7% after bovine serum albumin filtration and washing with water. The removal efficiencies of the coated membrane M3 for Congo red, methyl orange, methylene blue, and crystal violet, Pb(II), Cu(II), and Cd(II) were 82.4, 83.9, 6.3, 26.8, 90.6, 91.3, and 86.2%, respectively. Thus, it can be used for the removal of dyes and heavy metal ions from wastewater. The antibacterial activities of the coated membranes were also confirmed by the inhibition zone tests and confocal laser scanning microscopy analysis. In addition, the cross-linking strategy provides the coated membranes with excellent durability and repeatability. More importantly, the use of water as the solvent can ensure that the application of these membrane coatings proceeds via a very safe and environmentally friendly coating process.
Collapse
Affiliation(s)
- Jiale Xing
- Jiangsu Province Engineering Research Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| | - Ganwei Zhang
- Jiangsu Province Engineering Research Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| | - Xinying Jia
- Jiangsu Province Engineering Research Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| | - Dapeng Liu
- Jiangsu Province Engineering Research Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| | - Ian Wyman
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston K7L 3N6, Canada
| |
Collapse
|
39
|
Khan AA, Siyal MI, Kim JO. Fluorinated silica-modified anti-oil-fouling omniphobic F-SiO 2@PES robust membrane for multiple foulants feed in membrane distillation. CHEMOSPHERE 2021; 263:128140. [PMID: 33297128 DOI: 10.1016/j.chemosphere.2020.128140] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 06/12/2023]
Abstract
Direct-contact membrane distillation (DCMD) can be eminent solution for oily wastewater treatment if the membrane provided is slippery and tolerant to low surface tension complex solutions. This study describes preparation of an anti-oil-fouling omniphobic polyethersulfone membrane using fluorinated silica nanoparticles (F-SiO2@PES) combined with perfluorodecyl triethoxysilane and polydimethylsiloxane for application against oil-In-water (o/w) emulsions. Feed solutions consist of different concentrations of oil (hexadecane), different charge surfactants (anionic sodium dodecyl benzenesulfonate, non-ionic Tween 20, and cationic hexadecyltrimethylammonium bromide, and salt (NaCl). The hierarchical re-entrant micro structured surface of the omniphobic F-SiO2@PES membrane and functional groups are confirmed by atomic force microscopy, scanning electron microscopy, and Fourier-transform infrared spectroscopy. The anti-oil-fouling and anti-wetting performance of omniphobic F-SiO2@PES membranes are investigated using contact-angle, sliding angles, DCMD tests with multiple foulants of surfactants. Omniphobic F-SiO2@PES membrane exhibited effective anti-oil-fouling and anti-wetting performance against emulsions as no severe fouling and a conductivity rises were evident regardless of surfactant charge and the concentration of components. Flux reduction and rejection rates for the omniphobic F-SiO2@PES membranes are in a range of 5-15% (only) and >99%, respectively, for various combinations of feed solution components.
Collapse
Affiliation(s)
- Aftab Ahmad Khan
- Department of Civil and Environmental Engineering, Hanyang University 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - Muhammad Irfan Siyal
- Department of Materials and Testing, National Textile University, Faisalabad, Pakistan
| | - Jong-Oh Kim
- Department of Civil and Environmental Engineering, Hanyang University 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
40
|
Mixed matrix membranes for rubidium-dependent recognition and separation: A synergistic recombination design based on electrostatic interactions. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117727] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Qing W, Wu Y, Li X, Shi X, Shao S, Mei Y, Zhang W, Tang CY. Omniphobic PVDF nanofibrous membrane for superior anti-wetting performance in direct contact membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118226] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Wu XQ, Wu X, Wang TY, Zhao L, Truong YB, Ng D, Zheng YM, Xie Z. Omniphobic surface modification of electrospun nanofiber membrane via vapor deposition for enhanced anti-wetting property in membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118075] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Wang Y, Han M, Liu L, Yao J, Han L. Beneficial CNT Intermediate Layer for Membrane Fluorination toward Robust Superhydrophobicity and Wetting Resistance in Membrane Distillation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20942-20954. [PMID: 32275384 DOI: 10.1021/acsami.0c03577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Robust membrane hydrophobicity is crucial in membrane distillation (MD) to produce clean water, yet challenged by wetting phenomenon. We herein proposed a robust superhydrophobization process, by making use of a carbon nanotube (CNT) intermediate layer over commercial hydrophobic membrane, indirectly grafting the low-surface-energy material 1H,1H,2H,2H-perfluorodecyltriethoxysilane (FAS), with the achieved membrane denoted as PVDF-CNT-FAS, in systematic comparison with direct grafting FAS on alkalinized PVDF denoted as PVDF-OH-FAS. Superhydrophobicity with water contact angle of 180° was easily achieved from initial hydrophilic interface for both two resultant membranes. Interestingly, the existence of a CNT intermediate layer significantly maintained the stable hydrophobicity in various harsh conditions and improved mechanical properties, at an expense of ca. 20% smaller pore size and extended membrane thickness than PVDF-OH-FAS. In the MD experiment, the PVDF-CNT-FAS exhibited no vapor flux sacrifice, giving constant flux with the control and doubled that for PVDF-OH-FAS. A mass-heat transfer modeling suggested no significant heat loss but facilitated vapor flux with the CNT layer, unlike the impeded transfer for the counterpart membrane. A superior wetting resistance against 0.4 mM SDS further confirmed the benefit of constructing the CNT intermediate layer, presumably because of its excellent slippery property. This study demonstrates the important role of the CNT intermediate layer toward robust superhydrophobic membrane, suggesting the interest of applying the functional nanomaterial for controllable interface design.
Collapse
Affiliation(s)
- Yuting Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, School of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Minyuan Han
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, School of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Lang Liu
- Key Laboratory of low-grade Energy Utilization Technologies and Systems, Ministry of Education, School of Energy and Power Engineering, Chongqing University, Chongqing 400045, PR China
| | - Jingmei Yao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, School of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Le Han
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, School of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
44
|
Li M, Lu KJ, Wang L, Zhang X, Chung TS. Janus membranes with asymmetric wettability via a layer-by-layer coating strategy for robust membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118031] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
45
|
Characterization and Assessment of a Novel Plate and Frame MD Module for Single Pass Wastewater Concentration-FEED Gap Air Gap Membrane Distillation. MEMBRANES 2019; 9:membranes9090118. [PMID: 31500144 PMCID: PMC6780515 DOI: 10.3390/membranes9090118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 11/19/2022]
Abstract
Membrane distillation (MD) is an up and coming technology for concentration and separation on the verge of reaching commercialization. One of the remaining boundaries is the lack of available full-scale MD modules and systems suitable to meet the requirements of potential industrial applications. In this work a new type of feed gap air gap MD (FGAGMD) plate and frame module is introduced, designed and characterized with tap water and NaCl–H2O solution. The main feature of the new channel configuration is the separation of the heating and cooling channel from the feed channel, enabling a very high recovery ratio in a single pass. Key performance indicators (KPIs) such as flux, gained output ratio (GOR), recovery ratio and thermal efficiency are used to analyze the performance of the novel module concept within this work. A recovery rate of 93% was reached with tap water and between 32–53% with salt solutions ranging between 117 and 214 g NaCl/kg solution with this particular prototype module. Other than recovery ratio, the KPIs of the FGAGMD are similar to those of an air gap membrane distillation (AGMD) channel configuration. From the experimental results, furthermore, a new MD KPI was defined as the ratio of heating and cooling flow to feed flow. This RF ratio can be used for optimization of the module design and efficiency.
Collapse
|