1
|
Geng S, Chen D, Guo Z, Li Q, Wen M, Wang J, Guo K, Wang J, Wang Y, Yu L, Li X, Li X. Halloysite-Nanotube-Mediated High-Flux γ-Al 2O 3 Ultrafiltration Membranes for Semiconductor Wastewater Treatment. MEMBRANES 2025; 15:130. [PMID: 40422741 DOI: 10.3390/membranes15050130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/21/2025] [Accepted: 04/25/2025] [Indexed: 05/28/2025]
Abstract
The wastewater from Chemical Mechanical Polishing (CMP) generated in the semiconductor industry contains a significant concentration of suspended particles and necessitates rigorous treatment to meet environmental standards. Ceramic ultrafiltration membranes offer significant advantages in treating such high-solid wastewater, including a high separation efficiency, environmental friendliness, and straightforward cleaning and maintenance. However, the preparation of high-precision ceramic ultrafiltration membranes with a smaller pore size (usually <20 nm) is very complicated, requiring the repeated construction of transition layers, which not only increases the time and economic costs of manufacturing but also leads to an elevated transport resistance. In this work, halloysite nanotubes (HNTs), characterized by their high aspect ratio and lumen structure, were utilized to create a high-porosity transition layer using a spray-coating technique, onto which a γ-Al2O3 ultrafiltration selective layer was subsequently coated. Compared to the conventional α-Al2O3 transition multilayers, the HNTs-derived transition layer not only had an improved porosity but also had a reduced pore size. As such, this strategy tended to simplify the preparation process for the ceramic membranes while reducing the transport resistance. The resulting high-flux γ-Al2O3 ultrafiltration membranes were used for the high-efficiency treatment of CMP wastewater, and the fouling behaviors were investigated. As expected, the HNTs-mediated γ-Al2O3 ultrafiltration membranes exhibited excellent water flux (126 LMH) and high rejection (99.4%) of inorganic particles in different solvent systems. In addition, such membranes demonstrated good operation stability and regeneration performance, showing promise for their application in the high-efficiency treatment of CMP wastewater in the semiconductor industry.
Collapse
Affiliation(s)
- Shining Geng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology Chongqing Innovation Center, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Dazhi Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology Chongqing Innovation Center, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhenghua Guo
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology Chongqing Innovation Center, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qian Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology Chongqing Innovation Center, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Manyu Wen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology Chongqing Innovation Center, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiahui Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology Chongqing Innovation Center, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Kaidi Guo
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology Chongqing Innovation Center, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
| | - Jing Wang
- Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
| | - Yu Wang
- Chongqing Advanced Materials Institute (CAMI), Chongqing 408000, China
| | - Liang Yu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology Chongqing Innovation Center, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
- Beijing Institute of Technology, Zhuhai 519088, China
| | - Xinglong Li
- Guangdong Guoyu Equipment Co., Ltd., Foshan 528222, China
| | - Xiaohu Li
- School of Materials Science & Engineering, Beihang University, Beijing 102206, China
| |
Collapse
|
2
|
Moon SJ, Kim YJ, Kang DR, Lee SY, Kim JH. Fluorine-Containing, Self-Assembled Graft Copolymer for Tuning the Hydrophilicity and Antifouling Properties of PVDF Ultrafiltration Membranes. Polymers (Basel) 2023; 15:3623. [PMID: 37688249 PMCID: PMC10490059 DOI: 10.3390/polym15173623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Neat poly(vinylidene fluoride) (PVDF) ultrafiltration (UF) membranes exhibit poor water permeance and surface hydrophobicity, resulting in poor antifouling properties. Herein, we report the synthesis of a fluorine-containing amphiphilic graft copolymer, poly(2,2,2-trifluoroethyl methacrylate)-g-poly(ethylene glycol) behenyl ether methacrylate (PTFEMA-g-PEGBEM), hereafter referred to as PTF, and its effect on the structure, morphology, and properties of PVDF membranes. The PTF graft copolymer formed a self-assembled nanostructure with a size of 7-8 nm, benefiting from its amphiphilic nature and microphase separation ability. During the nonsolvent-induced phase separation (NIPS) process, the hydrophilic PEGBEM chains were preferentially oriented towards the membrane surface, whereas the superhydrophobic PTFEMA chains were confined in the hydrophobic PVDF matrix. The PTF graft copolymer not only increased the pore size and porosity but also significantly improved the surface hydrophilicity, flux recovery ratio (FRR), and antifouling properties of the membrane. The membrane performance was optimal at 5 wt.% PTF loading, with a water permeance of 45 L m-2 h-1 bar-1, a BSA rejection of 98.6%, and an FRR of 83.0%, which were much greater than those of the neat PVDF membrane. Notably, the tensile strength of the membrane reached 6.34 MPa, which indicated much better mechanical properties than those reported in the literature. These results highlight the effectiveness of surface modification via the rational design of polymer additives and the precise adjustment of the components for preparing membranes with high performance and excellent mechanical properties.
Collapse
Affiliation(s)
| | | | | | | | - Jong Hak Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Qi T, Yang D, Chen X, Ke W, Qiu M, Fan Y. Sulfonated ceramic membranes with antifouling performance for the filtration of BSA-containing systems. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Mecha AC, Chollom MN, Babatunde BF, Tetteh EK, Rathilal S. Versatile Silver-Nanoparticle-Impregnated Membranes for Water Treatment: A Review. MEMBRANES 2023; 13:432. [PMID: 37103859 PMCID: PMC10143275 DOI: 10.3390/membranes13040432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Increased affordability, smaller footprint, and high permeability quality that meets stringent water quality standards have accelerated the uptake of membranes in water treatment. Moreover, low pressure, gravity-based microfiltration (MF) and ultrafiltration (UF) membranes eliminate the use of electricity and pumps. However, MF and UF processes remove contaminants by size exclusion, based on membrane pore size. This limits their application in the removal of smaller matter or even harmful microorganisms. There is a need to enhance the membrane properties to meet needs such as adequate disinfection, flux amelioration, and reduced membrane fouling. To achieve these, the incorporation of nanoparticles with unique properties in membranes has potential. Herein, we review recent developments in the impregnation of polymeric and ceramic microfiltration and ultrafiltration membranes with silver nanoparticles that are applied in water treatment. We critically evaluated the potential of these membranes in enhanced antifouling, increased permeability quality and flux compared to uncoated membranes. Despite the intensive research in this area, most studies have been performed at laboratory scale for short periods of time. There is a need for studies that assess the long-term stability of the nanoparticles and the impact on disinfection and antifouling performance. These challenges are addressed in this study and future directions.
Collapse
Affiliation(s)
- Achisa C. Mecha
- Renewable Energy, Environment, Nanomaterials, and Water Research Group, Department of Chemical and Process Engineering, Moi University, P.O. Box 3900, Eldoret 30100, Kenya
| | - Martha N. Chollom
- Environmental Pollution and Remediation Research Group, Department of Chemical Engineering, Mangosuthu University of Technology, P.O. Box 12363, Durban 4026, South Africa
| | - Bakare F. Babatunde
- Environmental Pollution and Remediation Research Group, Department of Chemical Engineering, Mangosuthu University of Technology, P.O. Box 12363, Durban 4026, South Africa
| | - Emmanuel K. Tetteh
- Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - Sudesh Rathilal
- Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| |
Collapse
|
5
|
Gao Y, Xu G, Zhao P, Liu L, Zhang E. One step co-sintering synthesis of gradient ceramic microfiltration membrane with mullite/alumina whisker bi-layer for high permeability oil-in-water emulsion treatment. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Tian H, Yang S, Wu X, Zhang K. Two-dimensional molybdenum disulfide oxide (O-MoS2) enhanced tight ultrafiltration membrane with improved molecular separation performance and antifouling properties. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Ye Y, Han Q, Zhao C, Ke W, Qiu M, Chen X, Fan Y. Improved negative charge of tight ceramic ultrafiltration membranes for protein-resistant and easy-cleaning performance. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Zhang Y, Xu P, Chen X, Qiu M, Fan Y. Preparation of high permeance thin-film composite nanofiltration membrane on macroporous ceramic support. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
One-step sintering for anti-fouling piezoelectric α-quartz and thin layer of alumina membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Shi W, Hu X, Qiu M, Jin Z, Chen X, Fan Y. Low temperature preparation of high-flux α-alumina tight ultrafiltration membrane by modified co-sintering process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Yu Y, Zhou Z, Huang G, Cheng H, Han L, Zhao S, Chen Y, Meng F. Purifying water with silver nanoparticles (AgNPs)-incorporated membranes: Recent advancements and critical challenges. WATER RESEARCH 2022; 222:118901. [PMID: 35933814 DOI: 10.1016/j.watres.2022.118901] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/19/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
In the face of the growing global water crisis, membrane technology is a promising means of purifying water and wastewater. Silver nanoparticles (AgNPs) have been widely used to improve membrane performance, for antibiofouling, and to aid in photocatalytic degradation, thermal response, and electro-conductivity. However, several critical issues such as short antimicrobial periods, trade-off effects and silver inactivation seriously restrict the engineering application of AgNPs-incorporated membranes. In addition, there is controversy around the use of AgNPs given the toxic preparation process and environmental/biological risks. Hence, it is of great significance to summarize and analyze the recent developments and critical challenges in the use of AgNPs-incorporated membranes in water and wastewater treatment, and to propose potential solutions. We reviewed the different properties and functions of AgNPs and their corresponding applications in AgNPs-incorporated membranes. Recently, multifunctional, novel AgNP-incorporated membranes combined with other functional materials have been developed with high-performance. We further clarified the synergistic mechanisms between AgNPs and these novel nanomaterials and/or polymers, and elucidated their functions and roles in membrane separation. Finally, the critical challenges of AgNPs-incorporated membranes and the proposed solutions were outlined: i) Prolonging the antimicrobial cycle through long-term and controlled AgNPs release; ii) Overcoming the trade-off effect and organic fouling of the AgNPs-incorporated membranes; iii) Preparation of sustainable AgNPs-incorporated membranes; iv) Addressing biotoxicity induced by AgNPs; and v) Deactivation of AgNPs-incorporated membrane. Overall, this review provides a comprehensive discussion of the advancements and challenges of AgNPs-incorporated membranes and guides the development of more robust, multi-functional and sustainable AgNPs-incorporated membranes.
Collapse
Affiliation(s)
- Yuanyuan Yu
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing, 400715, China
| | - Zhongbo Zhou
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing, 400715, China.
| | - Guocheng Huang
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian, 350108, China
| | - Hong Cheng
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Le Han
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Shanshan Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yucheng Chen
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing, 400715, China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
12
|
Zou D, Ni S, Yao H, Hu C, Nicholas Low ZX, Zhong Z. Co-sintering of high-purity α-alumina ultrafiltration membrane with gradient pore structures for separation of dye/salt wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Yang W, Zhao Z, Pan M, Gong L, Wu F, Huang C, Wang X, Wang J, Zeng H. Mussel-inspired polyethylene glycol coating for constructing antifouling membrane for water purification. J Colloid Interface Sci 2022; 625:628-639. [PMID: 35772200 DOI: 10.1016/j.jcis.2022.06.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/17/2022] [Accepted: 06/07/2022] [Indexed: 10/31/2022]
Abstract
HYPOTHESIS Polyethylene glycol (PEG) holds considerable potential in the fabrication of antifouling surfaces due to its strong hydration property. However, anchoring PEG polymer as a stable surface coating is still challenging because of its weak surface bonding property. Inspired by the mussel adhesion strategy, it is hypothesized that PEG polymer can be robustly attached onto substrates with the assistance of a "bio-glue" layer. EXPERIMENTS The "bio-glue" layer composited of Levodopa/polyethyleneimine (LP) is firstly deposited onto substrates, followed by covalently anchoring the poly(ethylene glycol) diglycidyl ether (PEGDE) layer via ring-opening reaction. The antifouling property of as-prepared coating was characterized using several techniques including quartz crystal microbalance (QCM) and surface forces apparatus (SFA). Furthermore, the PEGDE/LP coating was applied in membrane functionalization for oil-in-water (O/W) emulsion separation. FINDINGS PEGDE/LP coating shows outstanding stability and superior antifouling properties towards various potential foulants. In the O/W emulsion separation process, the PEGDE/LP-coated membrane maintains its super-hydrophilic property under harsh solution conditions and achieves high water flux (∼3000 L m-2 h-1 bar-1) and 90% water flux recovery ratio for separation of O/W emulsions containing different bio-foulants. This coating strategy provides a promising approach for fabricating stable coating with outstanding antifouling properties in various environmental engineering applications.
Collapse
Affiliation(s)
- Wenshuai Yang
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Ziqian Zhao
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mingfei Pan
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Lu Gong
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Feiyi Wu
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Charley Huang
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xiaogang Wang
- Heavy Machinery Engineering Research Center of Education Ministry, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Jianmei Wang
- Heavy Machinery Engineering Research Center of Education Ministry, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Hongbo Zeng
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
14
|
|
15
|
Din J, Wu H, Wu P. One-Step Water-Induced Phase Separation Simultaneously Triggering Polymer Solidification and Polyelectrolyte Complexation for Porous Ultrafiltration Membranes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8482-8489. [PMID: 35113528 DOI: 10.1021/acsami.1c24059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Functional additives have been widely utilized for the membrane structure modulation and performance improvement during the nonsolvent-induced phase separation process, but the resulted membranes easily suffer from additives' inhomogeneous dispersity and compatibility with the polymer matrix. Herein, a facile and robust strategy, i.e., one-step water-induced phase separation, was proposed for the preparation of polyelectrolytes-contained composite membranes. Polyanion (dopamine modified polyacrylic acid) and polycation (quaternized chitosan paired with bis(trifluoromethane-sulfonyl)imide) were first premixed in dimethyl sulfoxide and used as polyelectrolyte additives in a polysulfone (PSF) solution, and then a uniform PSF-based casting solution was readily obtained. During the solvent-water exchange process, polymer solidification and polyelectrolyte complexation were simultaneously triggered, in situ generating a polyelectrolyte complex fixed within the membrane matrix. Ultrafiltration membranes with hierarchical structures were notably tailored through altering the concentration, molecular weight, and type of polyelectrolytes. The obtained membrane exhibited a water flux of 672 L·m-2·h-1, three times over the raw PSF membrane, while almost maintaining high bovine serum albumin (BSA) rejection. This work paves a straightforward and convenient path for the preparation of composite membranes with tunable architecture and properties.
Collapse
Affiliation(s)
- Jincheng Din
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, China
- National Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong 271000, China
| | - Huiqing Wu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
- National Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong 271000, China
| | - Peiyi Wu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
- National Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong 271000, China
| |
Collapse
|
16
|
Zhao Y, Qiu Y, Mamrol N, Ren L, Li X, Shao J, Yang X, van der Bruggen B. Membrane bioreactors for hospital wastewater treatment: recent advancements in membranes and processes. Front Chem Sci Eng 2021; 16:634-660. [PMID: 34849268 PMCID: PMC8617552 DOI: 10.1007/s11705-021-2107-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/15/2021] [Indexed: 11/26/2022]
Abstract
Discharged hospital wastewater contains various pathogenic microorganisms, antibiotic groups, toxic organic compounds, radioactive elements, and ionic pollutants. These contaminants harm the environment and human health causing the spread of disease. Thus, effective treatment of hospital wastewater is an urgent task for sustainable development. Membranes, with controllable porous and nonporous structures, have been rapidly developed for molecular separations. In particular, membrane bioreactor (MBR) technology demonstrated high removal efficiency toward organic compounds and low waste sludge production. To further enhance the separation efficiency and achieve material recovery from hospital waste streams, novel concepts of MBRs and their applications are rapidly evolved through hybridizing novel membranes (non hydrophilic ultrafiltration/microfiltration) into the MBR units (hybrid MBRs) or the MBR as a pretreatment step and integrating other membrane processes as subsequent secondary purification step (integrated MBR-membrane systems). However, there is a lack of reviews on the latest advancement in MBR technologies for hospital wastewater treatment, and analysis on its major challenges and future trends. This review started with an overview of main pollutants in common hospital waste-water, followed by an understanding on the key performance indicators/criteria in MBR membranes (i.e., solute selectivity) and processes (e.g., fouling). Then, an in-depth analysis was provided into the recent development of hybrid MBR and integrated MBR-membrane system concepts, and applications correlated with wastewater sources, with a particular focus on hospital wastewaters. It is anticipated that this review will shed light on the knowledge gaps in the field, highlighting the potential contribution of hybrid MBRs and integrated MBR-membrane systems toward global epidemic prevention.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Chemical Engineering, KU Leuven, B-3001 Leuven, Belgium
| | - Yangbo Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Natalie Mamrol
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Longfei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xin Li
- Department of Chemical Engineering, KU Leuven, B-3001 Leuven, Belgium
| | - Jiahui Shao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xing Yang
- Department of Chemical Engineering, KU Leuven, B-3001 Leuven, Belgium
| | | |
Collapse
|
17
|
Zhang J, Shi K, Zhu Y, An Z, Wang W, Ma X, Shu X, Song H, Xiang X, He J. Interfacial Sites in Ag Supported Layered Double Oxide for Dehydrogenation Coupling of Ethanol to n-Butanol. ChemistryOpen 2021; 10:1095-1103. [PMID: 33496388 PMCID: PMC8562315 DOI: 10.1002/open.202000295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/07/2021] [Indexed: 11/12/2022] Open
Abstract
Upgrading of ethanol to n-butanol through dehydrogenation coupling has received increasing attention due to the wide application of n-butanol. But the enhancement of ethanol dehydrogenation and followed coupling to produce high selectivity to n-butanol is still highly desired. Our previous work has reported an acid-base-Ag synergistic catalysis, with Ag particles supported on Mg and Al-containing layered double oxides (Ag/MgAl-LDO). Here, Ag-LDO interfaces have been manipulated for dehydrogenation coupling of ethanol to n-butanol by tailoring the size of Ag particles and the interactions between Ag and LDO. It has been revealed that increasing the population of surface Ag sites at Ag-LDO interfaces promotes not only the dehydrogenation of ethanol to acetaldehyde but also the subsequent aldol condensation of generated acetaldehyde. A selectivity of up to 76 % to n-butanol with an ethanol conversion of 44 % has been achieved on Ag/LDO with abundant interfacial Ag sites, much superior to the state-of-the-art catalysts.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Chemical Resource Engineering & BeijingAdvanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBox 98, 15 Beisanhuan DongluBeijing100029China
| | - Kai Shi
- State Key Laboratory of Chemical Resource Engineering & BeijingAdvanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBox 98, 15 Beisanhuan DongluBeijing100029China
| | - Yanru Zhu
- State Key Laboratory of Chemical Resource Engineering & BeijingAdvanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBox 98, 15 Beisanhuan DongluBeijing100029China
| | - Zhe An
- State Key Laboratory of Chemical Resource Engineering & BeijingAdvanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBox 98, 15 Beisanhuan DongluBeijing100029China
| | - Wanning Wang
- State Key Laboratory of Chemical Resource Engineering & BeijingAdvanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBox 98, 15 Beisanhuan DongluBeijing100029China
| | - Xiaodan Ma
- State Key Laboratory of Chemical Resource Engineering & BeijingAdvanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBox 98, 15 Beisanhuan DongluBeijing100029China
| | - Xin Shu
- State Key Laboratory of Chemical Resource Engineering & BeijingAdvanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBox 98, 15 Beisanhuan DongluBeijing100029China
| | - Hongyan Song
- State Key Laboratory of Chemical Resource Engineering & BeijingAdvanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBox 98, 15 Beisanhuan DongluBeijing100029China
| | - Xu Xiang
- State Key Laboratory of Chemical Resource Engineering & BeijingAdvanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBox 98, 15 Beisanhuan DongluBeijing100029China
| | - Jing He
- State Key Laboratory of Chemical Resource Engineering & BeijingAdvanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBox 98, 15 Beisanhuan DongluBeijing100029China
| |
Collapse
|
18
|
In-situ grown inorganic layer coated PVDF/PSF composite hollow fiber membranes with enhanced separation performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119632] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Kosmulski M. The pH dependent surface charging and points of zero charge. IX. Update. Adv Colloid Interface Sci 2021; 296:102519. [PMID: 34496320 DOI: 10.1016/j.cis.2021.102519] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 01/23/2023]
Abstract
of the points of zero charge (PZC) and isoelectric points (IEP) of various materials published in the recent literature and of older results overlooked in the previous compilations. The roles of experimental conditions, especially of the temperature, of the nature and concentration of supporting electrolyte, and of the type of apparatus are emphasized. The newest results are compared with the zero points reported in previous reviews. Most recent studies were carried out with materials whose pH dependent surface charging is already well-documented, and the newest results are consistent with the older literature. Isoelectric points of Gd(OH)3, Sm(OH)3, and TeO2 have been reported for the first time in the recent literature.
Collapse
Affiliation(s)
- Marek Kosmulski
- Lublin University of Technology, Nadbystrzycka 38, PL-20618 Lublin, Poland.
| |
Collapse
|
20
|
Yu R, Zhu R, Jiang J, Liang R, Liu X, Liu G. Mussel-inspired surface functionalization of polyamide microfiltration membrane with zwitterionic silver nanoparticles for efficient anti-biofouling water disinfection. J Colloid Interface Sci 2021; 598:302-313. [PMID: 33901854 DOI: 10.1016/j.jcis.2021.04.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/23/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022]
Abstract
Mature microfiltration (MF) membrane is a low-cost, effective, and promising technology to provide affordable purified water for people living in developing countries. However, the lack of disinfection ability and inherent membrane fouling problems have seriously restricted the large-scale application of conventional MF treatment system in producing safe drinking water. In this work, zwitterionic silver nanoparticles (AgNPs) with surface modification of poly(carboxybetaine acrylate-co-dopamine methacryamide) (PCBDA) copolymers were robustly immobilized onto commercial polyamide MF membrane via mussel-inspired chemistry for water disinfection. The designed microfiltration membrane, named as PCBDA@AgNPs-MF, exhibited integrated properties of high and stable payload of AgNPs, broad-spectrum anti-adhesive and antimicrobial activities, and easy removal of inactivated microbial cells from membrane surface. Ascribing to the synergetic effect of anti-adhesive and antimicrobial features brought by zwitterionic PCBDA@AgNPs, the biofilms growth on polyamide membrane surface was significantly inhibited, which showed potential access to achieve long-term biofouling resistance and maintain water flux for conventional MF membrane. As water disinfection device, these attributes enabled PCBDA@AgNPs-MF to effectively disinfect the model and natural bacteria-contaminated water.
Collapse
Affiliation(s)
- Ruiquan Yu
- National Engineering Research Center of Clean Technology in Leather Industry, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Ruixin Zhu
- National Engineering Research Center of Clean Technology in Leather Industry, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jing Jiang
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Ruifeng Liang
- The State Key Laboratory of Hydraulic and Mountain River Engineering, Sichuan University, Chengdu 610065, China.
| | - Xiangsheng Liu
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Gongyan Liu
- National Engineering Research Center of Clean Technology in Leather Industry, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
21
|
Jiang B, Hu B, Yang N, Zhang L, Sun Y, Xiao X. Study of Turbulence Promoters in Prolonging Membrane Life. MEMBRANES 2021; 11:268. [PMID: 33917725 PMCID: PMC8068148 DOI: 10.3390/membranes11040268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 01/06/2023]
Abstract
Nanofiltration membrane technology is an effective method for secondary treated sewage purification. However, membrane fouling, which is inevitable in the membrane-separation process, can reduce membrane performance and shorten membrane life. Installing a turbulence promoter is a promising means of improving the hydraulic conditions inside the membrane chamber. In this study, the effect of turbulence promoter on prolonging membrane life was studied for the first time. Flat-sheet polyethersulfone nanofiltration membrane was used to filter humic acid solution, used for simulating secondary treated sewage. By comparing photographs and SEM images of the membrane before and after the simulated secondary treated sewage filtration, it was found that humic acid tended to be deposited on the low-velocity region, which was reflected by COMSOL simulation. After incorporating a turbulence promoter, the reduction of the humic acid deposition area and membrane fouling resistance indicated that the turbulence promoter could reduce membrane fouling due to the improved hydraulic conditions. Additionally, the turbulence promoter also increased the flux and reduced the flux decay rate. The turbulence promoter was then place in the crossflow flat-sheet membrane filtration module, and the variation of flux with time was tested in simulated secondary treated sewage with different concentrations. The results showed that the membrane life for the filtration of simulated secondary treated sewage comprising 50, 250, and 500 ppm humic acid increased by 23.1%, 80.4%, and 85.7%, respectively. The results of this article can serve as a reference for the prediction of membrane life and the performance enhancement mechanism of membranes containing a turbulence promoter.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoming Xiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (B.J.); (B.H.); (N.Y.); (L.Z.); (Y.S.)
| |
Collapse
|
22
|
Sun Y, Xu D, Li S, Cui L, Zhuang Y, Xing W, Jing W. Assembly of multidimensional MXene-carbon nanotube ultrathin membranes with an enhanced anti-swelling property for water purification. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119075] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Salar-García M, Walter X, Gurauskis J, de Ramón Fernández A, Ieropoulos I. Effect of iron oxide content and microstructural porosity on the performance of ceramic membranes as microbial fuel cell separators. Electrochim Acta 2021; 367:137385. [PMID: 33518777 PMCID: PMC7829595 DOI: 10.1016/j.electacta.2020.137385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Suitable bioelectrochemical application of ceramic clays with varying Fe2O3 content. 5.75% of Fe2O3 and 1100 °C of sintering temperature allow MFCs to reach 1.045 mW. The Fe2O3 content mitigates the effect of porosity features on the MFC power output. Good stability of the MFCs working during 65 days in continuous mode.
Ceramic materials based on naturally occurring clays are a low cost and environmentally friendly alternative to commercial polymer-based membranes in bioelectrochemical systems. In this work, ceramic membranes containing different amounts of iron oxide (1.06, 2.76 and 5.75 vol.%) and sintered at different temperatures (1100, 1200 and 1300 °C) have been elaborated and tested as separators in urine-fed microbial fuel cells (MFCs). The results reveal that the presence of iron oxide in the ceramic membrane composition increases the structural porosity and reduces the pore size for the three temperatures investigated. On the other hand, it was also observed that the iron content mitigates the negative effect of the high sintering temperature on the power performance of the MFCs. In the case of the ceramic membranes sintered at 1300 °C, power output improved ca. 10-fold when the iron oxide content in the membrane increased from 1.06 up to 5.75 vol.% (30.9 and 286.6 µW, respectively). Amongst the different combinations of iron phase content and sintering temperatures, the maximum power output was obtained by MFCs working with separators containing 5.75 vol. % of iron oxide and sintered at 1100 °C (1.045 mW). Finally, the system was stable for 65 days, which supports the long-term functionality of the different materials assessed.
Collapse
Affiliation(s)
- M.J. Salar-García
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, University of the West of England, Bristol BS16 1QY, United Kingdom
- Corresponding authors.
| | - X.A. Walter
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, University of the West of England, Bristol BS16 1QY, United Kingdom
| | - J. Gurauskis
- ARAID Foundation, Aragón Materials Science Institute (CSIC-Unizar), Zaragoza E-50009, Spain
| | | | - I. Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, University of the West of England, Bristol BS16 1QY, United Kingdom
- Corresponding authors.
| |
Collapse
|
24
|
Qi T, Da X, Zhang Y, Chen X, Cui Z, Qiu M, Fan Y. Modeling and optimal operation of intermittent feed diafiltration for refining oligodextran using nanoporous ceramic membranes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Chen H, Huang M, Liu Y, Meng L, Ma M. Functionalized electrospun nanofiber membranes for water treatment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139944. [PMID: 32535464 DOI: 10.1016/j.scitotenv.2020.139944] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Electrospun nanofiber membranes (ENMs) have high porosity, high specific surface area and unique interconnected structure. It has huge advantages and potential in the treatment and recycling of wastewater. In addition, ENMs can be easily functionalized by combining multifunctional materials to achieve different water treatment effects. Based on this, this review summarizes the preparation of functionalized ENMs and its detailed application in the field of water treatment. First, the process and influence factors of electrospinning process are introduced. ENMs with high porosity, thin and small fiber diameter have better performance. Secondly, the modification methods of ENMs are analyzed. Pre-electrospinning and post-electrospinning modification technology can prepare specific functionalized ENMs. Subsequently, functionalized ENMs show water treatment capabilities such as separation, adsorption, photocatalysis, and antimicrobial. Subsequently, the application of functionalized ENMs in water treatment capabilities such as separation, adsorption, photocatalysis, and antimicrobial capabilities were listed. Finally, we also made some predictions about the future development direction of ENMs in water treatment, and hope this article can provide some clues and guidance for the research of ENMs in water treatment.
Collapse
Affiliation(s)
- Haisheng Chen
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China; Aerospace Kaitian Environmental Technology Co., Ltd, Changsha 410100, China
| | - Manhong Huang
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China; College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China.
| | - Yanbiao Liu
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Lijun Meng
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Mengdie Ma
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| |
Collapse
|
26
|
Peng S, Chen Y, Jin X, Lu W, Gou M, Wei X, Xie J. Polyimide with half encapsulated silver nanoparticles grafted ceramic composite membrane: Enhanced silver stability and lasting anti‒biofouling performance. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118340] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Kanagaraj P, Huang W, Liu C. Noncovalently Functionalized Sulfated Castor Oil-Graphene Oxide-Strengthened Polyetherimide Composite Membranes for Superior Separation of Organic Pollutants and Their Fouling Mitigation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37054-37066. [PMID: 32691583 DOI: 10.1021/acsami.0c07670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel sulfated castor oil (SCO)-graphene oxide (GO)-strengthened polyetherimide (PEI) membrane was prepared for the first time via phase inversion process for the efficient separation of multiple organic pollutants with superior long-term antifouling stability. X-ray diffraction, attenuated total reflectance-Fourier transfer infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and mechanical strength studies revealed that the SCO and GO were successfully incorporated into the PEI membrane with enhanced mechanical strength. The water flux of the PEI/SCO@GO membrane (410.6 L m-2 h-1) was about 50 times that of bare PEI (7.8 L m-2 h-1) and about 6 times that of PEI/SCO (64.5 L m-2 h-1) membranes. The surface hydrophilicity of the PEI/SCO@GO membrane was significantly increased in terms of the decrease of the water contact angle from 98.5° (bare PEI) to 40.4°. The PEI/SCO@GO membrane separation efficiency was found to be greater than 99.0%, particularly for both the oil-in-water emulsion and the humic acid solution, respectively. Because of the higher flux recovery ratio and the lower total fouling rate of the PEI/SCO@GO membrane, a comprehensive antifouling performance was observed during the long-term foulant filtration cycle analyses. Hence, the incorporation of both SCO and GO into the PEI matrix would render the highly hydrophobic PEI material as the suitable and desirable antifouling membrane toward the treatment of various organic foulants in wastewater.
Collapse
Affiliation(s)
- Palsamy Kanagaraj
- College of Chemistry and Environmental Engineering, Shenzhen University, Xili Campus, 1066 Xueyuan Boulevard, Nanshan District, Shenzhen 518071, People's Republic of China
| | - Wei Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Xili Campus, 1066 Xueyuan Boulevard, Nanshan District, Shenzhen 518071, People's Republic of China
| | - Changkun Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Xili Campus, 1066 Xueyuan Boulevard, Nanshan District, Shenzhen 518071, People's Republic of China
| |
Collapse
|
28
|
Wang F, Dai J, Huang L, Si Y, Yu J, Ding B. Biomimetic and Superelastic Silica Nanofibrous Aerogels with Rechargeable Bactericidal Function for Antifouling Water Disinfection. ACS NANO 2020; 14:8975-8984. [PMID: 32644778 DOI: 10.1021/acsnano.0c03793] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Disinfecting drinking water in a reliable, sustainable, and affordable manner is a great challenge, especially for water contaminated with pathogenic microbes, and traditional water disinfection strategies still suffer from biofouling, irreversible depletion of disinfectants, and energy consumption. In this study, we developed biomimetic and superelastic skeletal-structured silica nanofibrous aerogels (SNAs) with rechargeable bactericidal and antifouling property via the combination of electrospun silica nanofibers and a functional Si-O-Si bonding network. The premise for our design is that the Si-O-Si network comprising rechargeable N-halamine moieties can provide the aerogels with structural stability yet durable bactericidal activity. The resulting aerogels exhibit intriguing properties of high porosity, superhydrophilicity, superelasticity, rechargeable chlorination capability (>4800 ppm), and exceptional bactericidal activity (99.9999%), enabling the aerogels to effectively disinfect the bacteria-contaminated water with ultrahigh flux (57 600 L m-2 h-1) and antifouling function. The synthesis of the SNAs opens pathways for exploring antibacterial and antifouling materials in a renewable and nanofibrous form.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianwu Dai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Liqian Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
29
|
Salar-García M, Ieropoulos I. Optimisation of the internal structure of ceramic membranes for electricity production in urine-fed microbial fuel cells. JOURNAL OF POWER SOURCES 2020; 451:227741. [PMID: 32201453 PMCID: PMC7074064 DOI: 10.1016/j.jpowsour.2020.227741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/22/2019] [Accepted: 01/10/2020] [Indexed: 05/19/2023]
Abstract
The need to find a feasible alternative to commercial membranes for microbial fuel cells (MFCs) poses an important challenge for the practical implementation of this technology. This work aims to analyse the influence of the internal structure of low-cost terracotta clay-based membranes on the behaviour of MFCs. To this purpose, 9 different combinations of temperature and time were used to prepare 27 MFC separators. The results show that the temperature has a significant effect on both porosity and pore size distribution, whereas the ramp time do not show a significant influence on these parameters. It was observed that kilning temperatures higher than 1030 °C dramatically reduce the porosity of the samples, reaching a minimum value of 16.85%, whereas the pore size increases as the temperature also increases. Among the membranes with similar porosities, those with a medium pore size distribution exhibited the lowest bulk resistance allowing MFCs to reach the highest power output (94.67 μW cm-2). These results demonstrate the importance of not only the porosity but also the pore size distribution of the separator in terms of MFC performance and longevity, which for these experiments was for 90 days.
Collapse
|
30
|
Shao DD, Yang WJ, Xiao HF, Wang ZY, Zhou C, Cao XL, Sun SP. Self-Cleaning Nanofiltration Membranes by Coordinated Regulation of Carbon Quantum Dots and Polydopamine. ACS APPLIED MATERIALS & INTERFACES 2020; 12:580-590. [PMID: 31809020 DOI: 10.1021/acsami.9b16704] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Performance declination of nanofiltration (NF) membranes caused by concentration polarization (CP) and membrane fouling has severely restricted their practical application in many fields. This work reports the construction of a novel interlayer between the substrate and the selective layer of conventional composite membranes by coordinating regulation of carbon quantum dots (CQDs) and polydopamine (PDA). Unlike traditional methods that treat CP and fouling separately, the new strategy grants the membrane with dual functions at one time. First, the insertion of the PDA-CQDs layer reformulates the interfacial polymerization process that reduces the solute transport resistance and mitigates the CP issue. Second, the sandwiched photoactive CQDs can degrade organic molecules adsorbed on the membrane surface under visible light, which is promising for low-cost fouling remediation. This study may offer valuable insights into the preparation of durable self-cleaning NF membranes for the effective treatment of complex wastewater in various industries.
Collapse
|