1
|
Yamazaki K, Tsuji A, Takizawa M, Murata J. Ultrafast Solid-State Electrochemical Imprinting Utilizing Polymer Electrolyte Membrane Stamps for Static/Dynamic Structural Coloration and Letter Encryption. SMALL METHODS 2024; 8:e2301787. [PMID: 38426651 PMCID: PMC11672171 DOI: 10.1002/smtd.202301787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/13/2024] [Indexed: 03/02/2024]
Abstract
Micro and nanopatterned surfaces hold potential for various applications, such as wettability control, antibiofouling, and optical components. However, conventional patterning processes are characterized by complexity, high costs, and environmental burdens because of the use of resists. Therefore, this paper proposes facile and ultrafast electrochemical imprinting employing a polymer electrolyte membrane (PEM) stamp for achieving micro and nanoscale patterning on Si surfaces. The solid-state electrochemical process efficiently generates oxide and hydrated oxide (Si-OH) patterns within several seconds at room temperature in a dry ambient environment. The formed oxide pattern can be employed as an etching mask to prepare diffraction gratings with diverse high-resolution (≈100 nm) patterns utilizing the dry PEM stamp. The resulting oxide pattern on the Si surface exhibits instantaneous structural coloration upon exposure to humid air, attributable to the formation of a water microdroplet array on the oxide pattern. The oxide pattern is successfully applied for dynamic diffraction grating and letter encryption. The proposed solid-state electrochemical oxidation scheme based on a PEM stamp, which eliminates the need for liquid electrolyte and resist, represents a simple and ultrafast process with a time cost of a few seconds, characterized by low processing costs and environmental impact.
Collapse
Affiliation(s)
- Katsuma Yamazaki
- Department of Mechanical EngineeringRitsumeikan UniversityKusatsuShiga525–8577Japan
| | - Atsuki Tsuji
- Department of Mechanical EngineeringRitsumeikan UniversityKusatsuShiga525–8577Japan
| | - Masaru Takizawa
- Department of Physical SciencesRitsumeikan UniversityKusatsuShiga525–8577Japan
| | - Junji Murata
- Department of Mechanical EngineeringRitsumeikan UniversityKusatsuShiga525–8577Japan
| |
Collapse
|
2
|
Dong X, Zheng Y, Deng H, Pang X, Wu T, Zhu S, Zhang R, Jiang Z. Bubble Drainage Assisted Fabrication of Polyamide Membranes with Crater-like Structures for Efficient Desalination. NANO LETTERS 2024; 24:14389-14397. [PMID: 39498839 DOI: 10.1021/acs.nanolett.4c04175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Bubble drainage (BD) occurs in various natural phenomena and industrial activities, in which bubbles rise toward the water surface and create a progressively thinned two-sided liquid film, called a lamella. Surfactant, as an important regulator in the BD process, not only assembles on both sides of the lamellae, generating a configuration of lamellae sandwiched by monolayers of surfactants (lamellae/MS), but also induces interfacial deformation by lowering interfacial tension. Herein, we developed a strategy of BD assisted interfacial polymerization for the fabrication of polyamide (PA) membranes. The regulated interfacial deformation at the water-oil interface produced a membrane with crater-like structures, which greatly increased the surface area of the PA membrane. Moreover, the lamellae/MS configuration served as a reservoir to spontaneously enrich amine monomers and thus modulate the diffusion-reaction kinetics. The resulting PA membranes exhibited superior separation performance with a water permeance of 44.7 L m-2 h-1 bar-1 and a Na2SO4 rejection of 99.2%.
Collapse
Affiliation(s)
- Xu Dong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Yu Zheng
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Hao Deng
- Department Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Xiao Pang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Tao Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Shiyi Zhu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Runnan Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Department Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
3
|
Pi P, Ren Z, Yang Y, Chen W, Lin Y. A review of various dimensional superwetting materials for oil-water separation. NANOSCALE 2024; 16:17248-17275. [PMID: 39225194 DOI: 10.1039/d4nr01473a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In recent years, the application and fabrication technologies of superwetting materials in the field of oil-water separation have become a research hotspot, aiming to address challenges in marine oil spill response and oily wastewater treatment. Simultaneously, the fabrication technologies and related applications of superwetting materials have been increasingly diversified. This paper systematically reviews the sources and hazards of oily wastewater and oil-water emulsions, several traditional oil-water separation methods, and their limitations, thereby highlighting the advantages of superwetting materials. Additionally, this paper provides an overview of the fundamental theories of wetting and conducts a microanalysis of the penetration mechanism based on Laplace pressure at the gas-liquid-solid three-phase interface. Following this, the latest advances in superwetting oil-water separation materials are elucidated, focusing on five categories: (i) superhydrophobic-superoleophilic materials; (ii) superhydrophilic-underwater superoleophobic materials; (iii) superhydrophobic-superoleophobic materials; (iv) "special" superwetting materials; and (v) smart switchable superwetting materials. This paper innovatively discusses these materials from the perspectives of two-dimensional and three-dimensional materials, deeply studying the mechanisms of oil-water separation and using data to quantify the separation efficiency. Comparative discussions are conducted on the materials from various dimensions, including different substrates, innovations in existing technologies, and fabrication methods as discussed in various articles, followed by corresponding summaries. Finally, the existing shortcomings and challenges of current superwetting materials are summarized, and prospects are proposed. We firmly believe that developing low-cost, stable, environmentally friendly, and practical large-scale superwetting oil-water separation materials will have broad application prospects and potential in the future.
Collapse
Affiliation(s)
- Peng Pi
- School of Mechanical Engineering and Automation, Institute of Metal Rubber & Vibration Noise, Fuzhou University, Fuzhou 350116, People's Republic of China.
| | - Zhiying Ren
- School of Mechanical Engineering and Automation, Institute of Metal Rubber & Vibration Noise, Fuzhou University, Fuzhou 350116, People's Republic of China.
| | - Yu Yang
- School of Mechanical Engineering and Automation, Institute of Metal Rubber & Vibration Noise, Fuzhou University, Fuzhou 350116, People's Republic of China.
| | - Weiping Chen
- School of Mechanical Engineering and Automation, Institute of Metal Rubber & Vibration Noise, Fuzhou University, Fuzhou 350116, People's Republic of China.
| | - Youxi Lin
- School of Mechanical Engineering and Automation, Institute of Metal Rubber & Vibration Noise, Fuzhou University, Fuzhou 350116, People's Republic of China.
| |
Collapse
|
4
|
Park JE, Je H, Kim CR, Park S, Yu Y, Cho W, Won S, Kang DJ, Han TH, Kwak R, Lee SG, Kim S, Wie JJ. Programming Anisotropic Functionality of 3D Microdenticles by Staggered-Overlapped and Multilayered Microarchitectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309518. [PMID: 38014492 DOI: 10.1002/adma.202309518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/10/2023] [Indexed: 11/29/2023]
Abstract
Natural sharkskin features staggered-overlapped and multilayered architectures of riblet-textured anisotropic microdenticles, exhibiting drag reduction and providing a flexible yet strong armor. However, the artificial fabrication of three-dimensional (3D) sharkskin with these unique functionalities and mechanical integrity is a challenge using conventional techniques. In this study, it is reported on the facile microfabrication of multilayered 3D sharkskin through the magnetic actuation of polymeric composites and subsequent chemical shape fixation by casting thin polymeric films. The fabricated hydrophobic sharkskin, with geometric symmetry breaking, achieves anisotropic drag reduction in frontal and backward flow directions against the riblet-textured microdenticles. For mechanical integrity, hard-on-soft multilayered mechanical properties are realized by coating the polymeric sharkskin with thin layers of zinc oxide and platinum, which have higher hardness and recovery behaviors than the polymer. This multilayered hard-on-soft sharkskin exhibits friction anisotropy, mechanical robustness, and structural recovery. Furthermore, coating the MXene nanosheets provides the fabricated sharkskin with a low electrical resistance of ≈5.3 Ω, which leads to high Joule heating (≈229.9 °C at 2.75 V). The proposed magnetomechanical actuation-assisted microfabrication strategy is expected to facilitate the development of devices requiring multifunctional microtextures.
Collapse
Affiliation(s)
- Jeong Eun Park
- Department of Organic and Nano Engineering, The Research Institute of Industrial Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyeongmin Je
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Chae Ryean Kim
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Sudong Park
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yeonuk Yu
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Woongbi Cho
- Department of Organic and Nano Engineering, Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sukyoung Won
- Department of Organic and Nano Engineering, The Research Institute of Industrial Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Dong Jun Kang
- Department of Organic and Nano Engineering, The Research Institute of Industrial Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae Hee Han
- Department of Organic and Nano Engineering, The Research Institute of Industrial Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Rhokyun Kwak
- Department of Mechanical Convergence Engineering, Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seung Goo Lee
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Sanha Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jeong Jae Wie
- Department of Organic and Nano Engineering, Human-Tech Convergence Program, Department of Chemical Engineering, Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Chemical Engineering, The Michael M. Szwarc Polymer Research Institute, State University of New York College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| |
Collapse
|
5
|
Xin JH, Fan HY, Guo BB, Yang HC, Zhu CY, Zhang C, Xu ZK. Interfacial polymerization at unconventional interfaces: an emerging strategy to tailor thin-film composite membranes. Chem Commun (Camb) 2023; 59:13258-13271. [PMID: 37869905 DOI: 10.1039/d3cc04171a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Interfacial polymerization is a well-known process to synthesize separation layers for thin film composite membranes at an immiscible organic liquid-aqueous liquid interface. The organic-aqueous interface determines the diffusion dynamics of monomers and the chemical environment for polymerization, exerting a critical influence on the formation of polymer thin films. This review summarizes recent advances in tailoring interfacial polymerization using interfaces beyond the conventional alkane-water interface to achieve high-performance separation films with designed structures. Diverse liquid-liquid interfaces are introduced for synthesizing separation films by adding co-solvents into the organic phase and/or the aqueous phase, respectively, or by replacing one of the liquid phases with other solvents. Innovative liquid-gel and liquid-gas interfaces are then summarized for the synthesis of polymer thin films for separation. Novel strategies to form reaction interfaces, such as spray-coating, are also presented and discussed. In addition, we discuss the details of how a physically or chemically patterned substrate affects interfacial polymerization. Finally, the potential of unconventional interfaces in interfacial polymerization is forecast with both challenges and opportunities.
Collapse
Affiliation(s)
- Jia-Hui Xin
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Hong-Yu Fan
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Bian-Bian Guo
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Hao-Cheng Yang
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Cheng-Ye Zhu
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Chao Zhang
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Wang Q, Lin W, Chou S, Dai P, Huang X. Patterned membranes for improving hydrodynamic properties and mitigating membrane fouling in water treatment: A review. WATER RESEARCH 2023; 236:119943. [PMID: 37054608 DOI: 10.1016/j.watres.2023.119943] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Membrane technologies have been widely applied in water treatment over the past few decades. However, membrane fouling remains a hinderance for the widespread use of membrane processes because it decreases effluent quality and increases operating costs. To mitigate membrane fouling, researchers have been exploring effective anti-fouling strategies. Recently, patterned membranes are gaining attention as a novel non-chemical membrane modification for membrane fouling control. In this paper, we review the research on patterned membranes used in water treatment over the past 20 years. In general, patterned membranes show superior anti-fouling performances, which mainly results from two aspects: hydrodynamic effects and interaction effects. Due to the introduction of diversified topographies onto the membrane surface, patterned membranes yield dramatic improvements on hydrodynamic properties, e.g., shear stress, velocity field and local turbulence, restraining concentration polarization and foulants' deposition on the membrane surface. Besides, the membrane-foulant and foulant-foulant interactions play an important role in the mitigation of membrane fouling. Due to the existence of surface patterns, the hydrodynamic boundary layer is destroyed and the interaction force as well as the contact area between foulants and surface are decreased, which contributes to the fouling suppression. However, there are still some limitations in the research and application of patterned membranes. Future research is suggested to focus on the development of patterned membranes appropriate for different water treatment scenarios, the insights into the interaction forces affected by surface patterns, and the pilot-scale and long-term studies to verify the anti-fouling performances of patterned membranes in practical applications.
Collapse
Affiliation(s)
- Qiao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Weichen Lin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Shuren Chou
- Beijing OriginWater Membrane Technology Co., Ltd, Beijing 101407, China
| | - Pan Dai
- Beijing OriginWater Membrane Technology Co., Ltd, Beijing 101407, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Cui X, Chen D, Chen H. Multistage Gradient Bioinspired Riblets for Synergistic Drag Reduction and Efficient Antifouling. ACS OMEGA 2023; 8:8569-8581. [PMID: 36910977 PMCID: PMC9996761 DOI: 10.1021/acsomega.2c07729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Shark skin-inspired riblets have represented the tremendous potential for drag reduction (DR) and antifouling in submarine, ship, and so on. Most studies simplified the complex denticle embedded in the shark skin into the single-stage riblet with uniform parameters, ignoring the influence of riblet height gradient and material deformation on DR and antifouling. In the present study, flexible multistage gradient riblets (MSGRs) with varied heights were proposed, and their DR and antifouling effects were investigated by the experiment and numerical simulation. The experimental results showed that the maximum DR rate of flexible MSGRs with an elastic modulus of 4.592 MPa could reach 16.8% at a flow velocity of 0.5 m/s. Moreover, the dynamic adhesion measurement indicated a reduction by 69.6% of the adhesion area of Chlorella vulgaris on the flexible MSGR surface. The results identified that flexible MSGRs with low surface energy could generate steady high- and low-velocity streaks and alter the flow state of the fluid, thus lessening the average velocity gradient near the wall and the adhering selectivity of pollutants in riblet and achieving synergistic DR and efficient antifouling. Taken together, the proposed flexible MSGR surface holds promise for reducing surface friction and inhibiting particle attachment in engineering applications.
Collapse
Affiliation(s)
- Xianxian Cui
- School
of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Dengke Chen
- School
of Transportation, Ludong University, Yantai 264025, Shandong Province, China
| | - Huawei Chen
- School
of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
- Advanced
Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
8
|
Chen D, Cui X, Chen H. Controllable deformation based self‐adaptive drag reduction for complex surface. BIOSURFACE AND BIOTRIBOLOGY 2023. [DOI: 10.1049/bsb2.12057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Affiliation(s)
- Dengke Chen
- College of Transportation Ludong University Yantai Shandong China
| | - Xianxian Cui
- School of Mechanical Engineering and Automation Beihang University Beijing China
| | - Huawei Chen
- School of Mechanical Engineering and Automation Beihang University Beijing China
- Advanced Innovation Center for Biomedical Engineering Beihang University Beijing China
| |
Collapse
|
9
|
Park JE, Kang TG, Moon H. The Effect of the Rotating Disk Geometry on the Flow and Flux Enhancement in a Dynamic Filtration System. MEMBRANES 2023; 13:291. [PMID: 36984677 PMCID: PMC10056996 DOI: 10.3390/membranes13030291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
A numerical study was conducted to investigate the effect of rotating patterned disks on the flow and permeate flux in a dynamic filtration (DF) system. The DF system consists of a rotating patterned disk and a stationary housing with a circular flat membrane. The feed flow is driven by the rotating disk with the angular velocity ranging from 200 to 1000 rpm and the applied pressure difference between inlet and outlet ports. Wheel-shaped patterns are engraved on the disk surfaces to add perturbation to the flow field and improve the permeate flux in the filtration system. Five disks with varying numbers of patterns were used in numerical simulations to examine the effects of the number of patterns and the angular velocity of the disk on the flow and permeate flux in the DF system. The flow characteristics are studied using the velocity profiles, the cross-sectional velocity vectors, the vortex structures, and the shear stress distribution. The wheel-shaped patterns shift the central core layer in the circumferential velocity profile towards the membrane, leading to higher shear stresses at the membrane and higher flux compared to a plain disk. When the number of patterns on the disk exceeded eight at a fixed Reynolds number, there were significant increases in wall shear stress and permeate flux compared to a plain disk filtration system with no pattern.
Collapse
Affiliation(s)
- Jo Eun Park
- School of Aerospace and Mechanical Engineering, Korea Aerospace University, 76 Hanggongdaehak-ro, Deogyang-gu, Goyang-si 10540, Gyeonggi-do, Republic of Korea
| | - Tae Gon Kang
- School of Aerospace and Mechanical Engineering, Korea Aerospace University, 76 Hanggongdaehak-ro, Deogyang-gu, Goyang-si 10540, Gyeonggi-do, Republic of Korea
- Department of Smart Air Mobility, Korea Aerospace University, 76 Hanggongdaehak-ro, Deogyang-gu, Goyang-si 10540, Gyeongi-do, Republic of Korea
| | - Heejang Moon
- School of Aerospace and Mechanical Engineering, Korea Aerospace University, 76 Hanggongdaehak-ro, Deogyang-gu, Goyang-si 10540, Gyeonggi-do, Republic of Korea
- Department of Smart Air Mobility, Korea Aerospace University, 76 Hanggongdaehak-ro, Deogyang-gu, Goyang-si 10540, Gyeongi-do, Republic of Korea
| |
Collapse
|
10
|
Marmo AC, Grunlan MA. Biomedical Silicones: Leveraging Additive Strategies to Propel Modern Utility. ACS Macro Lett 2023; 12:172-182. [PMID: 36669481 PMCID: PMC10848296 DOI: 10.1021/acsmacrolett.2c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
Silicones have a long history of use in biomedical devices, with unique properties stemming from the siloxane (Si-O-Si) backbone that feature a high degree of flexibility and chemical stability. However, surface, rheological, mechanical, and electrical properties of silicones can limit their utility. Successful modification of silicones to address these limitations could lead to superior and new biomedical devices. Toward improving such properties, recent additive strategies have been leveraged to modify biomedical silicones and are highlighted herein.
Collapse
Affiliation(s)
- Alec C. Marmo
- Department
of Materials Science and Engineering Texas
A&M University, College
Station, Texas 77843-3003, United States
| | - Melissa A. Grunlan
- Department
of Biomedical Engineering, Department of Materials Science and Engineering,
Department of Chemistry Texas A&M University, College Station, Texas 77843-3003, United
States
| |
Collapse
|
11
|
Ilyas A, Vankelecom IFJ. Designing sustainable membrane-based water treatment via fouling control through membrane interface engineering and process developments. Adv Colloid Interface Sci 2023; 312:102834. [PMID: 36634445 DOI: 10.1016/j.cis.2023.102834] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/05/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Membrane-based water treatment processes have been established as a powerful approach for clean water production. However, despite the significant advances made in terms of rejection and flux, provision of sustainable and energy-efficient water production is restricted by the inevitable issue of membrane fouling, known to be the major contributor to the elevated operating costs due to frequent chemical cleaning, increased transmembrane resistance, and deterioration of permeate flux. This review provides an overview of fouling control strategies in different membrane processes, such as microfiltration, ultrafiltration, membrane bioreactors, and desalination via reverse osmosis and forward osmosis. Insights into the recent advancements are discussed and efforts made in terms of membrane development, modules arrangement, process optimization, feed pretreatment, and fouling monitoring are highlighted to evaluate their overall impact in energy- and cost-effective water treatment. Major findings in four key aspects are presented, including membrane surface modification, modules design, process integration, and fouling monitoring. Among the above mentioned anti-fouling strategies, a large part of research has been focused on membrane surface modifications using a number of anti-fouling materials whereas much less research has been devoted to membrane module advancements and in-situ fouling monitoring and control. At the end, a critical analysis is provided for each anti-fouling strategy and a rationale framework is provided for design of efficient membranes and process for water treatment.
Collapse
Affiliation(s)
- Ayesha Ilyas
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium
| | - Ivo F J Vankelecom
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium.
| |
Collapse
|
12
|
Cheng K, Huang Z, Wang P, Sun L, Ghasemi H, Ardebili H, Karim A. Antibacterial flexible triboelectric nanogenerator via capillary force lithography. J Colloid Interface Sci 2023; 630:611-622. [DOI: 10.1016/j.jcis.2022.10.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/03/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
13
|
Yang M, Wang J, Zhang M, Liu K, Huang H. Particle oscillation at corrugated membrane-water interface: An in-situ direct observation and implication to membrane fouling control. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
14
|
Jankowski W, Li G, Kujawski W, Kujawa J. Recent development of membranes modified with natural compounds: Preparation methods and applications in water treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Fan S, Blevins A, Martinez J, Ding Y. Effects of Co-diluent on the pore structure, patterning fidelity, and properties of membranes fabricated by lithographically templated thermally induced phase separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Durand H, Whiteley A, Mailley P, Nonglaton G. Combining Topography and Chemistry to Produce Antibiofouling Surfaces: A Review. ACS APPLIED BIO MATERIALS 2022; 5:4718-4740. [PMID: 36162127 DOI: 10.1021/acsabm.2c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite decades of research on the reduction of surface fouling from biomolecules or micro-organisms, the ultimate antibiofouling surface remains undiscovered. The recent covid-19 pandemic strengthened the crucial need for such treatments. Among the numerous approaches that are able to provide surfaces with antibiofouling properties, chemical, biological, and topographical strategies have been implemented for instance in the marine, medical, or food industries. However, many of these methods have a biocidal effect and, with antibioresistance and biocide resistance a growing threat on humanity, strategies based on reducing adsorption of biomolecules and micro-organism are necessary for long-term solutions. Bioinspired strategies, combining both surface chemistry and topography, are currently at the heart of the best innovative and sustainable solutions. The synergistic effect of micro/nanostructuration, together with engineered chemical or biological functionalization is believed to contribute to the development of antibiofouling surfaces. This review aims to present approaches combining hydrophobic or hydrophilic chemistries with a specific topography to avoid biofouling in various industrial environments and healthcare facilities.
Collapse
Affiliation(s)
| | - Amelia Whiteley
- Univ. Grenoble Alpes, CEA, LETI, DTBS, F-38000 Grenoble, France
| | - Pascal Mailley
- Univ. Grenoble Alpes, CEA, LETI, DTBS, F-38000 Grenoble, France
| | | |
Collapse
|
17
|
Shao S, Zeng F, Long L, Zhu X, Peng LE, Wang F, Yang Z, Tang CY. Nanofiltration Membranes with Crumpled Polyamide Films: A Critical Review on Mechanisms, Performances, and Environmental Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12811-12827. [PMID: 36048162 DOI: 10.1021/acs.est.2c04736] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanofiltration (NF) membranes have been widely applied in many important environmental applications, including water softening, surface/groundwater purification, wastewater treatment, and water reuse. In recent years, a new class of piperazine (PIP)-based NF membranes featuring a crumpled polyamide layer has received considerable attention because of their great potential for achieving dramatic improvements in membrane separation performance. Since the report of novel crumpled Turing structures that exhibited an order of magnitude enhancement in water permeance ( Science 2018, 360 (6388), 518-521), the number of published research papers on this emerging topic has grown exponentially to approximately 200. In this critical review, we provide a systematic framework to classify the crumpled NF morphologies. The fundamental mechanisms and fabrication methods involved in the formation of these crumpled morphologies are summarized. We then discuss the transport of water and solutes in crumpled NF membranes and how these transport phenomena could simultaneously improve membrane water permeance, selectivity, and antifouling performance. The environmental applications of these emerging NF membranes are highlighted, and future research opportunities/needs are identified. The fundamental insights in this review provide critical guidance on the further development of high-performance NF membranes tailored for a wide range of environmental applications.
Collapse
Affiliation(s)
- Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Fanxi Zeng
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Li Long
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Lu Elfa Peng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Fei Wang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| |
Collapse
|
18
|
Shang C, Xia J, Sun L, Lipscomb GG, Zhang S. Concentration polarization on surface patterned membranes. AIChE J 2022. [DOI: 10.1002/aic.17832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chuning Shang
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore Singapore
| | - Jianzhong Xia
- Institute for Advanced Study Shenzhen University Shenzhen China
| | - Lili Sun
- Department of Chemical Engineering The University of Toledo Toledo Ohio USA
| | - G. Glenn Lipscomb
- Department of Chemical Engineering The University of Toledo Toledo Ohio USA
| | - Sui Zhang
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore Singapore
| |
Collapse
|
19
|
Enhancement of Bacterial Anti−Adhesion Properties on Robust PDMS Micro−Structure Using a Simple Flame Treatment Method. NANOMATERIALS 2022; 12:nano12030557. [PMID: 35159902 PMCID: PMC8839957 DOI: 10.3390/nano12030557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023]
Abstract
Biofilm-associated infections caused by an accumulation of micro-organisms and pathogens significantly impact the environment, health risks, and the global economy. Currently, a non-biocide-releasing superhydrophobic surface is a potential solution for antibacterial purposes. This research demonstrated a well-designed robust polydimethylsiloxane (PDMS) micro-structure and a flame treatment process with improved hydrophobicity and bacterial anti-adhesion properties. After the flame treatment at 700 ± 20 °C for 15 s, unique flower-petal re-entrant nano-structures were formed on pillars (PIL-F, width: 1.87 ± 0.30 μm, height: 7.76 ± 0.13 μm, aspect ratio (A.R.): 4.14) and circular rings with eight stripe supporters (C-RESS-F, width: 0.50 ± 0.04 μm, height: 3.55 ± 0.11 μm, A.R.: 7.10) PDMS micro-patterns. The water contact angle (WCA) and ethylene glycol contact angle (EGCA) of flame-treated flat-PDMS (FLT-F), PIL–F, and C–RESS-F patterns were (133.9 ± 3.8°, 128.6 ± 5.3°), (156.1 ± 1.5°, 151.5 ± 2.1°), and (146.3 ± 3.5°, 150.7 ± 1.8°), respectively. The Escherichia coli adhesion on the C-RESS-F micro-pattern with hydrophobicity and superoleophobicity was 42.6%, 31.8%, and 2.9% less than FLT-F, PIL-F, and Teflon surfaces. Therefore, the flame-treated C-RESS-F pattern is one of the promising bacterial anti-adhesion micro-structures in practical utilization for various applications.
Collapse
|
20
|
Ward LM, Fickling BG, Weinman ST. Effect of Nanopatterning on Concentration Polarization during Nanofiltration. MEMBRANES 2021; 11:961. [PMID: 34940462 PMCID: PMC8707940 DOI: 10.3390/membranes11120961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022]
Abstract
Membranes used for desalination still face challenges during operation. One of these challenges is the buildup of salt ions at the membrane surface. This is known as concentration polarization, and it has a negative effect on membrane water permeance and salt rejection. In an attempt to decrease concentration polarization, a line-and-groove nanopattern was applied to a nanofiltration (NF) membrane. Aqueous sodium sulfate (Na2SO4) solutions were used to test the rejection and permeance of both pristine and patterned membranes. It was found that the nanopatterns did not reduce but increased the concentration polarization at the membrane surface. Based on these studies, different pattern shapes and sizes should be investigated to gain a fundamental understanding of the influence of pattern size and shape on concentration polarization.
Collapse
Affiliation(s)
| | | | - Steven T. Weinman
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA; (L.M.W.); (B.G.F.)
| |
Collapse
|
21
|
Wang M, Wang J, Jiang J. Membrane Fouling: Microscopic Insights into the Effects of Surface Chemistry and Roughness. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mao Wang
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117576 Singapore
| | - John Wang
- Department of Materials Science and Engineering National University of Singapore Singapore 117575 Singapore
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117576 Singapore
| |
Collapse
|
22
|
A rigid-flexible interpenetrating polyamide reverse osmosis membrane with improved antifouling property fabricated via two step modifications. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Malakian A, Husson SM. Evaluating Protein Fouling on Membranes Patterned by Woven Mesh Fabrics. MEMBRANES 2021; 11:730. [PMID: 34677496 PMCID: PMC8538970 DOI: 10.3390/membranes11100730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/23/2022]
Abstract
Membrane surface patterning is one approach used to mitigate fouling. This study used a combination of flux decline measurements and visualization experiments to evaluate the effectiveness of a microscale herringbone pattern for reducing protein fouling on polyvinylidene fluoride (PVDF) ultrafiltration membranes. Thermal embossing with woven mesh stamps was used for the first time to pattern membranes. Embossing process parameters were studied to identify conditions replicating the mesh patterns with high fidelity and to determine their effect on membrane permeability. Permeability increased or remained constant when patterning at low pressure (≤4.4 MPa) as a result of increased effective surface area; whereas permeability decreased at higher pressures due to surface pore-sealing of the membrane active layer upon compression. Flux decline measurements with dilute protein solutions showed monotonic decreases over time, with lower rates for patterned membranes than as-received membranes. These data were analyzed by the Hermia model to follow the transient nature of fouling. Confocal laser scanning microscopy (CLSM) provided complementary, quantitative, spatiotemporal information about protein deposition on as-received and patterned membrane surfaces. CLSM provided a greater level of detail for the early (pre-monolayer) stage of fouling than could be deduced from flux decline measurements. Images show that the protein immediately started to accumulate rapidly on the membranes, likely due to favorable hydrophobic interactions between the PVDF and protein, followed by decreasing rates of fouling with time as protein accumulated on the membrane surface. The knowledge generated in this study can be used to design membranes that inhibit fouling or otherwise direct foulants to deposit selectively in regions that minimize loss of flux.
Collapse
Affiliation(s)
| | - Scott M. Husson
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA;
| |
Collapse
|
24
|
Kim KT, Park JE, Jung SY, Kang TG. Fouling Mitigation via Chaotic Advection in a Flat Membrane Module with a Patterned Surface. MEMBRANES 2021; 11:membranes11100724. [PMID: 34677490 PMCID: PMC8539713 DOI: 10.3390/membranes11100724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022]
Abstract
Fouling mitigation using chaotic advection caused by herringbone-shaped grooves in a flat membrane module is numerically investigated. The feed flow is laminar with the Reynolds number (Re) ranging from 50 to 500. In addition, we assume a constant permeate flux on the membrane surface. Typical flow characteristics include two counter-rotating flows and downwelling flows, which are highly influenced by the groove depth at each Re. Poincaré sections are plotted to represent the dynamical systems of the flows and to analyze mixing. The flow systems become globally chaotic as the groove depth increases above a threshold value. Fouling mitigation via chaotic advection is demonstrated using the dimensionless average concentration (c¯w*) on the membrane and its growth rate. When the flow system is chaotic, the growth rate of c¯w* drops significantly compared to that predicted from the film theory, demonstrating that chaotic advection is an attractive hydrodynamic technique that mitigates membrane fouling. At each Re, there exists an optimal groove depth minimizing c¯w* and the growth rate of c¯w*. Under the optimum groove geometry, foulants near the membrane are transported back to the bulk flow via the downwelling flows, distributed uniformly in the entire channel via chaotic advection.
Collapse
Affiliation(s)
- Kyung Tae Kim
- School of Aerospace and Mechanical Engineering, Korea Aerospace University, Goyang-si 10540, Gyeonggi-do, Korea; (K.T.K.); (J.E.P.)
| | - Jo Eun Park
- School of Aerospace and Mechanical Engineering, Korea Aerospace University, Goyang-si 10540, Gyeonggi-do, Korea; (K.T.K.); (J.E.P.)
| | - Seon Yeop Jung
- Department of Chemical Engineering, Dankook University, Yongin-si 16890, Gyeonggi-do, Korea;
| | - Tae Gon Kang
- School of Aerospace and Mechanical Engineering, Korea Aerospace University, Goyang-si 10540, Gyeonggi-do, Korea; (K.T.K.); (J.E.P.)
- Correspondence:
| |
Collapse
|
25
|
Curtin AM, Thibodeau MC, Buckley HL. Anti-biofouling efficacy of three home and personal care product preservatives: Pseudomonas aeruginosa biofilm inhibition and prevention. BIOFOULING 2021; 37:879-893. [PMID: 34628997 DOI: 10.1080/08927014.2021.1978988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Due to increasing water scarcity, it is essential to determine cost-effective and efficient methods of producing potable water, especially ones that utilize non-traditional sources. Although reverse osmosis (RO) shows promise as a key-player in mitigating water scarcity, it is limited by biofouling. It is therefore integral to identify effective antifoulants that also do not damage the membrane, cause resistance, or negatively impact human health and the environment. Potential antifoulants include preservatives used in home and personal care products. It is hypothesized that safer preservatives can be applied to RO systems to remove or prevent biofouling. Three preservatives including methylisothiazolinone (MIT), phenoxyethanol (PE), and sodium benzoate (SB) were tested via antimicrobial susceptibility tests against P. aeruginosa biofilms grown in 96-well plates to investigate both biofilm prevention and biofilm removal. Data were collected in the form of minimum biofilm inhibitory concentration (MBIC) and minimum biofilm eradication concentration (MBEC), respectively. MIT was the most effective of the three preservatives but also poses the highest hazard to human health and the environment. Due to efficacy and safety concerns, MIT, PE, and SB are not the final solution; however, a process was demonstrated for determining the efficacy of novel, safer antifoulants. Ultimately, further investigations into safer antifoulants, paired with a greater understanding of biofilm removal and prevention doses will help make RO a better solution for water scarcity.
Collapse
Affiliation(s)
- A M Curtin
- Green Safe Water Lab, Civil Engineering Department, University of Victoria, Victoria, BC, Canada
| | - M C Thibodeau
- Green Safe Water Lab, Civil Engineering Department, University of Victoria, Victoria, BC, Canada
| | - H L Buckley
- Green Safe Water Lab, Civil Engineering Department, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
26
|
Desalination membranes with ultralow biofouling via synergistic chemical and topological strategies. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
The role of biofilm in the development and dissemination of ubiquitous pathogens in drinking water distribution systems: an overview of surveillance, outbreaks, and prevention. World J Microbiol Biotechnol 2021; 37:36. [PMID: 33507414 DOI: 10.1007/s11274-021-03008-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/19/2021] [Indexed: 12/30/2022]
Abstract
A variety of pathogenic microorganisms can survive in the drinking water distribution systems (DWDS) by forming stable biofilms and, thus, continually disseminating their population through the system's dynamic water bodies. The ingestion of the pathogen-contaminated water could trigger a broad spectrum of illnesses and well-being-related obstacles. These waterborne diseases are a significant concern for babies, pregnant women, and significantly low-immune individuals. This review highlights the recent advances in understanding the microbiological aspects of drinking water quality, biofilm formation and its dynamics, health issues caused by the emerging microbes in biofilm, and approaches for biofilm investigation its prevention and suppression in DWDS.
Collapse
|
28
|
Malakian A, Zhou Z, Messick L, Spitzer TN, Ladner DA, Husson SM. Understanding the Role of Pattern Geometry on Nanofiltration Threshold Flux. MEMBRANES 2020; 10:445. [PMID: 33371519 PMCID: PMC7767534 DOI: 10.3390/membranes10120445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022]
Abstract
Colloidal fouling can be mitigated by membrane surface patterning. This contribution identifies the effect of different pattern geometries on fouling behavior. Nanoscale line-and-groove patterns with different feature sizes were applied by thermal embossing on commercial nanofiltration membranes. Threshold flux values of as-received, pressed, and patterned membranes were determined using constant flux, cross-flow filtration experiments. A previously derived combined intermediate pore blocking and cake filtration model was applied to the experimental data to determine threshold flux values. The threshold fluxes of all patterned membranes were higher than the as-received and pressed membranes. The pattern fraction ratio (PFR), defined as the quotient of line width and groove width, was used to analyze the relationship between threshold flux and pattern geometry quantitatively. Experimental work combined with computational fluid dynamics simulations showed that increasing the PFR leads to higher threshold flux. As the PFR increases, the percentage of vortex-forming area within the pattern grooves increases, and vortex-induced shielding increases. This study suggests that the PFR should be higher than 1 to produce patterned membranes with maximal threshold flux values. Knowledge generated in this study can be applied to other feature types to design patterned membranes for improved control over colloidal fouling.
Collapse
Affiliation(s)
- Anna Malakian
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA; (A.M.); (L.M.); (T.N.S.)
| | - Zuo Zhou
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA; (Z.Z.); (D.A.L.)
| | - Lucas Messick
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA; (A.M.); (L.M.); (T.N.S.)
| | - Tara N. Spitzer
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA; (A.M.); (L.M.); (T.N.S.)
| | - David A. Ladner
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA; (Z.Z.); (D.A.L.)
| | - Scott M. Husson
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA; (A.M.); (L.M.); (T.N.S.)
| |
Collapse
|
29
|
Patterning flat-sheet Poly(vinylidene fluoride) membrane using templated thermally induced phase separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118627] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Shang C, Wang L, Xia J, Zhang S. Macropatterning of Microcrumpled Nanofiltration Membranes by Spacer Imprinting for Low-Scaling Desalination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15527-15533. [PMID: 33166125 DOI: 10.1021/acs.est.0c05779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface patterns provide a chemical-free approach to reduce fouling by mimicking nature and are yet limited by their complicated fabrication procedures. Here, we report readily scalable methods to create sub-micrometer- and millimeter-scale patterns on membrane surfaces for low-scaling desalination, with a focus on the antiscaling mechanism. Specifically, a robust polyethylene (PE) lithium battery separator prepared from melt casting and stretching has been used as the support for nanofiltration (NF), giving micrometer-scale crumples on the surface. Then, the PENF membrane is imprinted by a permeate spacer during tests, leading to millimeter-scale patterns. Two types of experiments are designed to give insights into the impact of surface structure on scaling in NF processes, including (1) comparisons of smooth surfaces and surfaces with nanometer-, micrometer-, and millimeter-scale features and (2) no-stirring dead-end tests and crossflow tests. It has been found that micrometer-scale patterns are resistant to scaling through both spatial and hydrodynamic effects, and millimeter-scale patterns are also effective in reducing scaling solely due to hydrodynamic effects. Computational fluid dynamics (CFD) simulation gives further explanations. In addition, organic and microbial fouling has been studied to give implications for future membrane engineering.
Collapse
Affiliation(s)
- Chuning Shang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Li Wang
- Beijing OriginWater Technology Co., Ltd., Beijing 101407, China
| | - Jianzhong Xia
- Beijing OriginWater Technology Co., Ltd., Beijing 101407, China
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Sui Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| |
Collapse
|
31
|
A Review of CFD Modelling and Performance Metrics for Osmotic Membrane Processes. MEMBRANES 2020; 10:membranes10100285. [PMID: 33076290 PMCID: PMC7602433 DOI: 10.3390/membranes10100285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 01/10/2023]
Abstract
Simulation via Computational Fluid Dynamics (CFD) offers a convenient way for visualising hydrodynamics and mass transport in spacer-filled membrane channels, facilitating further developments in spiral wound membrane (SWM) modules for desalination processes. This paper provides a review on the use of CFD modelling for the development of novel spacers used in the SWM modules for three types of osmotic membrane processes: reverse osmosis (RO), forward osmosis (FO) and pressure retarded osmosis (PRO). Currently, the modelling of mass transfer and fouling for complex spacer geometries is still limited. Compared with RO, CFD modelling for PRO is very rare owing to the relative infancy of this osmotically driven membrane process. Despite the rising popularity of multi-scale modelling of osmotic membrane processes, CFD can only be used for predicting process performance in the absence of fouling. This paper also reviews the most common metrics used for evaluating membrane module performance at the small and large scales.
Collapse
|