1
|
Liu L, Wang J, Yang G, Wang S, Wang J, Ren Z, Guo W, Liu P. High-Performance Composite Separator with a Porous Bicontinuous Structure for Alkaline Water Electrolysis. ACS OMEGA 2025; 10:9007-9017. [PMID: 40092835 PMCID: PMC11904439 DOI: 10.1021/acsomega.4c07167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/03/2024] [Accepted: 12/13/2024] [Indexed: 03/19/2025]
Abstract
Alkaline water electrolysis is considered an optimal technology for large-scale production of green hydrogen because of its economic and mature characteristics. The separator plays a crucial role in the alkaline water electrolysis process, as it fulfills the functions of gas separation and electrolyte transport. Nevertheless, the development of advanced separators with low ohmic resistance, high gas barrier ability, and good durability simultaneously remains a major challenge. Here, we first fabricated a series of high-performance composite separators with a porous bicontinuous structure by employing a nonsolvent-induced phase separation technique using a "weak solvent" (a solvent with a low affinity toward the membrane-forming polymer). The unique porous bicontinuous structure endows the membranes with high porosity, narrow pore size distribution with nanopores, and good hydrophilicity. As a result, the composite separator exhibits not only a low area resistance (0.13 Ω·cm2) but also a high bubble point pressure (5.1 bar). The composite separator also displays excellent durability in both long-term electrolysis and alkaline-aging tests.
Collapse
Affiliation(s)
- Liping Liu
- Huaneng
Clean Energy Research Institute, Beijing 102209, China
| | - Ju Wang
- Huaneng
Clean Energy Research Institute, Beijing 102209, China
| | - Guanjun Yang
- Huaneng
Clean Energy Research Institute, Beijing 102209, China
| | - Shuyuan Wang
- North China
Electric Power University, Beijing 102206, China
| | - Jinyi Wang
- Huaneng
Clean Energy Research Institute, Beijing 102209, China
| | - Zhibo Ren
- Huaneng
Clean Energy Research Institute, Beijing 102209, China
| | - Weiqi Guo
- Huaneng
Clean Energy Research Institute, Beijing 102209, China
| | - Peng Liu
- Huaneng
Clean Energy Research Institute, Beijing 102209, China
| |
Collapse
|
2
|
Tao R, Shao M, Kim Y. Polyarylene-Based Anion Exchange Membranes for Fuel Cells. Chemistry 2024; 30:e202401208. [PMID: 38953321 DOI: 10.1002/chem.202401208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Indexed: 07/04/2024]
Abstract
Anion exchange membrane fuel cell (AEMFC) is an emerging and promising technology that can help realize a carbon-neutral, sustainable economy. Also, compared to the proton exchange membrane counterpart, AEMFC can achieve comparable cell outputs with lower costs due to the applicability of non-platinum group metal electrocatalysts for the reaction on the electrodes' surfaces. However, the wide application of the AEMFCs has been impeded by the unsatisfactory stability and performance of the hydroxide-conductive membranes in the past. Recently researchers have made breakthroughs using polyarylene (PA)-based AEMs. This article summarizes the recent advances of a class of AEMs with aromatic backbone without ether bonds, mainly synthesized by Friedel-Crafts polycondensation. Such PA-based AEMs showed high chemical/mechanical stabilities and ionic conductivity, and even the fuel cell with those AEMs showed impressive peak power density of up to 2.58 W cm-2. In this concept article, we classify major strategies for making PA-based AEMs to show the recent trends, highlight synthesis, characterization, and properties, and provide a brief outlook.
Collapse
Affiliation(s)
- Ran Tao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
- Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
- Energy Institute, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
- CIAC-HKUST Joint Laboratory for Hydrogen Energy, The Hong Kong University of Science and Technology Clear Watery Bay, Kowloon, Hong Kong SAR, China
- Guangzhou Key Laboratory of Electrochemical Energy Storage Technologies, Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou, 511458, China
| | - Yoonseob Kim
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
- Energy Institute, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
3
|
Gong S, Liu A, Qaisrani NA, Han L, Yuan M, Ren Y, Yan X, He G, Zhang F. Completely Methylene-Free Side Chain Enables Significant Microphase Separation at Medium IECs for Fuel-Cell Anion Exchange Membranes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27741-27749. [PMID: 38745362 DOI: 10.1021/acsami.4c03693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The introduction of hydrophobic side chain structures in anion exchange membranes (AEMs) to facilitate ion transport has been widely studied; however, low or moderate hydrophobic hydrocarbon and semifluorinated side chains are insufficient to induce a high degree of microphase separation. Herein, we design and prepare poly(aryl piperidinium) AEMs with completely methylene-free perfluorinated side chains, which can maximize the thermodynamic incompatibility between main- and side chains, thus enhancing microphase separation at medium ion exchange capacities (IECs). According to the molecular dynamics study, the methylene-free perfluorinated side chain leads to better hydration of cations. The hydroxide conductivity of the methylene-free perfluorinated side chain-grafted PAP-pF-1 membrane reaches 124.9 mS cm-1 at 80 °C, and the PAP-sF-1 with semifluorinated side chains and PAP-CH-1 with hydrocarbon side chains show lower conductivity (116.8 and 104.0 mS cm-1). The H2/O2 fuel cell using the PAP-pF-1 membrane demonstrates a remarkable peak power density (1651 mW cm-2 at 80 °C) and durability (greater than 300 h). This work provides a novel insight into enhancing microphase separation in AEMs; it opens up new possibilities for developing high-performance AEMs.
Collapse
Affiliation(s)
- Shoutao Gong
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Anmin Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Naeem Akhtar Qaisrani
- Institute of Chemical and Environmental Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Abu Dhabi Rd, Rahim Yar Khan 64200, Pakistan
| | - Long Han
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Minghao Yuan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Yanzhen Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Xiaoming Yan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Fengxiang Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
4
|
Henkensmeier D, Cho WC, Jannasch P, Stojadinovic J, Li Q, Aili D, Jensen JO. Separators and Membranes for Advanced Alkaline Water Electrolysis. Chem Rev 2024; 124:6393-6443. [PMID: 38669641 PMCID: PMC11117188 DOI: 10.1021/acs.chemrev.3c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/23/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Traditionally, alkaline water electrolysis (AWE) uses diaphragms to separate anode and cathode and is operated with 5-7 M KOH feed solutions. The ban of asbestos diaphragms led to the development of polymeric diaphragms, which are now the state of the art material. A promising alternative is the ion solvating membrane. Recent developments show that high conductivities can also be obtained in 1 M KOH. A third technology is based on anion exchange membranes (AEM); because these systems use 0-1 M KOH feed solutions to balance the trade-off between conductivity and the AEM's lifetime in alkaline environment, it makes sense to treat them separately as AEM WE. However, the lifetime of AEM increased strongly over the last 10 years, and some electrode-related issues like oxidation of the ionomer binder at the anode can be mitigated by using KOH feed solutions. Therefore, AWE and AEM WE may get more similar in the future, and this review focuses on the developments in polymeric diaphragms, ion solvating membranes, and AEM.
Collapse
Affiliation(s)
- Dirk Henkensmeier
- Hydrogen
· Fuel Cell Research Center, Korea
Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division
of Energy & Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- KU-KIST
Green School, Korea University, Seoul 02841, Republic of Korea
| | - Won-Chul Cho
- Department
of Future Energy Convergence, Seoul National
University of Science & Technology, 232 Gongreung-ro, Nowon-gu, Seoul 01811, Korea
| | - Patric Jannasch
- Polymer
& Materials Chemistry, Department of Chemistry, Lund University, 221 00 Lund, Sweden
| | | | - Qingfeng Li
- Department
of Energy Conversion and Storage, Technical
University of Denmark (DTU), Fysikvej 310, 2800 Kgs. Lyngby, Denmark
| | - David Aili
- Department
of Energy Conversion and Storage, Technical
University of Denmark (DTU), Fysikvej 310, 2800 Kgs. Lyngby, Denmark
| | - Jens Oluf Jensen
- Department
of Energy Conversion and Storage, Technical
University of Denmark (DTU), Fysikvej 310, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
5
|
Wang X, Thomas AM, Lammertink RGH. Dimensionally Stable Anion Exchange Membranes Based on Macromolecular-Cross-Linked Poly(arylene piperidinium) for Water Electrolysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2593-2605. [PMID: 38175180 PMCID: PMC10797592 DOI: 10.1021/acsami.3c13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
The advancement of anion exchange membranes (AEMs) with superior ionic conductivity has been greatly hindered due to the inherent "trade-off" between membrane swelling and ionic conductivity. To resolve this dilemma, macromolecular covalently cross-linked C-FPVBC-x AEMs were fabricated by combining partially functionalized ether-bond-free polystyrene (FPVBC) with poly(arylene piperidinium). The results from atomic force microscopy reveal that an increase in the ratio of FPVBC promotes the fabrication of microphase separation morphology, resulting in a high ionic conductivity of 40.15 mS cm-1 (30 °C) for the C-FPVBC-1.7 membrane. Molecular dynamics simulations further examine the ionic conduction effect of cross-linked AEMs. Besides, the unique cross-linking structure significantly improves mechanical and alkaline stability. After treatment in 1 M KOH at 50 °C for 1200 h, the C-FPVBC-1.7 membrane shows only a 6.9% decrease in conductivity. The C-FPVBC-1.7 AEM-based water electrolyzer achieves a high current density of 890 mA cm-2 at 2.4 V (80 °C) and maintains good stability, enduring over 100 h at 100 mA cm-2 (50 °C). These results demonstrate the significant potential of macromolecularly cross-linked AEMs for practical applications in water electrolysis.
Collapse
Affiliation(s)
- Xiuqin Wang
- Soft
Matter, Fluidics and Interfaces, Faculty of Science and Technology,
MESA+ Institute for Nanotechnology, University
of Twente, 7522 NB Enschede, The Netherlands
- School
of Environment and Civil Engineering, Dongguan
University of Technology, Dongguan 523808, P. R. China
| | - Angela Mary Thomas
- Soft
Matter, Fluidics and Interfaces, Faculty of Science and Technology,
MESA+ Institute for Nanotechnology, University
of Twente, 7522 NB Enschede, The Netherlands
- TECNALIA, Basque Research and Technology
Alliance (BRTA), Mikeletegi
Pasealekua 2, 20009 Donostia-San Sebastian, Spain
| | - Rob G. H. Lammertink
- Soft
Matter, Fluidics and Interfaces, Faculty of Science and Technology,
MESA+ Institute for Nanotechnology, University
of Twente, 7522 NB Enschede, The Netherlands
| |
Collapse
|
6
|
Yu Z, Gao WT, Liu YJ, Zhang QG, Zhu AM, Liu QL. Fluorinated poly(p-triphenyl piperidine) anion exchange membranes with robust dimensional stability for fuel cells. J Colloid Interface Sci 2023; 651:404-414. [PMID: 37549525 DOI: 10.1016/j.jcis.2023.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
Anion exchange membrane fuel cells (AEMFCs), which are more economical than proton exchange membrane fuel cells (PEMFCs), stand out in the context of the rapid development of renewable energy. Superacid-catalyzed ether-free aromatic polymers have recently received a lot of attention due to their exceptional performance, but their development has been hampered by the trade-off between the dimensional stability and ionic conductivity of anion exchange membranes (AEMs). Here, we introduced fluoroketones containing different numbers of fluorinated groups (x = 0, 3 and 6) in the main chain of p-terphenyl piperidine because of the favorable hydrophobic properties of fluorinated groups. The results show that fluorinated AEMs can enhance OH- conductivity by building more aggregated hydrophilic channels while ensuring dimensional stability. The PTF6-QAPTP AEM with more fluorinated groups has the most excellent performance at 80 °C with an OH- conductivity of 142.7 mS cm-1 and a swelling ratio (SR) of only 4.55 %. Additionally, it exhibits good alkali durability, with the OH- conductivity and quaternary ammonium (QA) cation retaining at 93.45% and 92.6%, respectively, after immersion in a 2 M NaOH solution at 80 °C for 1200 h. In addition, the power density of the PTF6-QAPTP based single cell reaches 849 mW cm-2 when the current density is 1600 mA cm-2. The PTF6-QAPTP based cell has a voltage retention of 88% after 80 h of stability testing at a constant current density of 300 mA cm-2 at 80 °C.
Collapse
Affiliation(s)
- Ze Yu
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Wei Ting Gao
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Ying Jie Liu
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Qiu Gen Zhang
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Ai Mei Zhu
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Qing Lin Liu
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| |
Collapse
|
7
|
Kim YS. Hydrocarbon Ionomeric Binders for Fuel Cells and Electrolyzers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303914. [PMID: 37814366 DOI: 10.1002/advs.202303914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Indexed: 10/11/2023]
Abstract
Ionomeric binders in catalyst layers, abbreviated as ionomers, play an essential role in the performance of polymer-electrolyte membrane fuel cells and electrolyzers. Due to environmental issues associated with perfluoroalkyl substances, alternative hydrocarbon ionomers have drawn substantial attention over the past few years. This review surveys literature to discuss ionomer requirements for the electrodes of fuel cells and electrolyzers, highlighting design principles of hydrocarbon ionomers to guide the development of advanced hydrocarbon ionomers.
Collapse
Affiliation(s)
- Yu Seung Kim
- MPA-11: Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
8
|
Chen C, Zeng X, Peng Z, Chen Z. Polyaromatic anion exchange membranes for alkaline fuel cells with high hydroxide conductivity and alkaline stability. J Appl Polym Sci 2023. [DOI: 10.1002/app.53795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
9
|
Fang S, Tang H, Wang M, Xu Z, Li N. The antifouling and separation performance of an ultrafiltration membrane derived from a novel amphiphilic copolymer containing a crown ether. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
10
|
Xu L, Wang H, Min L, Xu W, Zhang W. Poly (aryl piperidinium) Anion Exchange Membranes for Acid Recovery: The Effect of Backbone Structure. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
11
|
Wang JJ, Gao WT, Choo YSL, Cai ZH, Zhang QG, Zhu AM, Liu QL. Highly conductive branched poly(aryl piperidinium) anion exchange membranes with robust chemical stability. J Colloid Interface Sci 2023; 629:377-387. [DOI: 10.1016/j.jcis.2022.08.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022]
|
12
|
Liu L, Bai L, Liu Z, Miao S, Pan J, Shen L, Shi Y, Li N. Side-chain structural engineering on poly(terphenyl piperidinium) anion exchange membrane for water electrolysers. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Liu R, Nie Y, Chen J, Shen C, Gao S. Anion exchange membranes based on poly (styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene) grafted poly (2,6‐dimethyl‐1,4‐phenylene oxide). J Appl Polym Sci 2022. [DOI: 10.1002/app.53579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rui Liu
- School of Materials Science and Engineering Wuhan University of Technology Wuhan People's Republic of China
| | - Yiwen Nie
- School of Materials Science and Engineering Wuhan University of Technology Wuhan People's Republic of China
| | - Junjie Chen
- School of Materials Science and Engineering Wuhan University of Technology Wuhan People's Republic of China
| | - Chunhui Shen
- School of Materials Science and Engineering Wuhan University of Technology Wuhan People's Republic of China
| | - Shanjun Gao
- School of Materials Science and Engineering Wuhan University of Technology Wuhan People's Republic of China
| |
Collapse
|
14
|
Mechanically flexible bulky imidazolium-based anion exchange membranes by grafting PEG pendants for alkaline fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Xu L, Wang H, Min L, Xu W, Wang Y, Zhang W. Anion Exchange Membranes Based on Poly(aryl piperidinium) Containing Both Hydrophilic and Hydrophobic Side Chains. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People’s Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, People’s Republic of China
| | - Huimin Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People’s Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, People’s Republic of China
| | - Luofu Min
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People’s Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, People’s Republic of China
| | - Wei Xu
- Tianjin Mainland Hydrogen Equipment Co., Ltd., Tianjin 301609, People’s Republic of China
| | - Yuxin Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People’s Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, People’s Republic of China
| | - Wen Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People’s Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, People’s Republic of China
| |
Collapse
|
16
|
Patil SS, V M, Kammakakam I, Swamy MHH, Patil KS, Lai Z, Rao H N A. Quinuclidinium-piperidinium based dual hydroxide anion exchange membranes as highly conductive and stable electrolyte materials for alkaline fuel cell applications. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Gao WT, Gao XL, Gou WW, Wang JJ, Cai ZH, Zhang QG, Zhu AM, Liu QL. High-performance tetracyclic aromatic anion exchange membranes containing twisted binaphthyl for fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Wang X, Qiao X, Liu S, Liu L, Li N. Poly(terphenyl piperidinium) containing hydrophilic crown ether units in main chains as anion exchange membranes for alkaline fuel cells and water electrolysers. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Su X, Wang J, Xu S, Zhang D, He R. Construction of macromolecule cross-linked anion exchange membranes containing free radical inhibitor groups for superior chemical stability. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Min K, Chae JE, Lee Y, Kim HJ, Kim TH. Crosslinked poly(m-terphenyl N-methyl piperidinium)-SEBS membranes with aryl-ether free and kinked backbones as highly stable and conductive anion exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Wang S, Wang Z, Xu J, Liu Q, Sui Z, Du X, Cui Y, Yuan Y, Yu J, Wang Y, Chang Y. Construction of N-spirocyclic cationic three-dimensional highly stable transport channels by electrospinning for anion exchange membrane fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Host-guest interaction induced ion channels for accelerated OH− transport in anion exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Yu W, Ge Z, Zhang K, Liang X, Ge X, Wang H, Li M, Shen X, Xu Y, Wu L, Xu T. Development of a High-Performance Proton Exchange Membrane: From Structural Optimization to Quantity Production. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weisheng Yu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Zijuan Ge
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Kaiyu Zhang
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Xian Liang
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Xiaolin Ge
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Huijuan Wang
- Experimental Center of Engineering and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Ming Li
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xianhe Shen
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Yan Xu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Liang Wu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Tongwen Xu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
24
|
Highly conductive fluorinated poly(biphenyl piperidinium) anion exchange membranes with robust durability. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Wang F, Cui Y, Sang J, Zhang H, Zhu H. Cross‐linked of poly(biphenyl pyridine) and poly(styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene) grafted with double cations for anion exchange membrane. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Liu Q, Li X, Zhang S, Wang Z, Chen Y, Zhou S, Wang C, Wu K, Liu J, Mao Q, Jian X. Novel sulfonated N-heterocyclic poly(aryl ether ketone ketone)s with pendant phenyl groups for proton exchange membrane performing enhanced oxidative stability and excellent fuel cell properties. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119926] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Sang J, Yang L, Li Z, Wang F, Wang Z, Zhu H. Comb-shaped SEBS-based anion exchange membranes with obvious microphase separation morphology. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Kim MJ, Ahn M, Chae M, Kim S, Kim D, Wee KR. meta-Terphenyl linked donor-π-acceptor dyads: intramolecular charge transfer controlled by electron acceptor group tuning. RSC Adv 2021; 11:34945-34954. [PMID: 35494739 PMCID: PMC9042948 DOI: 10.1039/d1ra06602a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/21/2021] [Indexed: 01/05/2023] Open
Abstract
A series of meta-terphenyl linked donor-π-acceptor (D-π-A) dyads were prepared to understand the electronic effects of a meta-terphenyl linker according to the electron-accepting ability change. The energy band gaps of the dyads were controlled by tuning the accepting ability, which resulted in emission colors ranging from blue-green to red. In the Lippert-Mataga plots, intramolecular charge transfer (ICT) behavior was observed, which showed gradually increased ICT characteristics as the accepting ability was increased. On the other hand, in the absorption spectra, a red shift of the ICT transition was observed differently from the electron-accepting ability tendency. Thus, the experimental results show that the ICT is determined by steric hindrance rather than the acceptor ability in the ground state due to the lack of π-conjugation of the terphenyl linker by the electron node in the meta-position, whereas ICT in the excited state is controlled by electron-accepting ability.
Collapse
Affiliation(s)
- Min-Ji Kim
- Department of Chemistry, Institute of Natural Science, Daegu University Gyeongsan 38453 Republic of Korea
| | - Mina Ahn
- Department of Chemistry, Institute of Natural Science, Daegu University Gyeongsan 38453 Republic of Korea
| | - Minjung Chae
- Department of Chemistry, Institute of Natural Science, Daegu University Gyeongsan 38453 Republic of Korea
| | - Sanghyun Kim
- Department of Chemistry, Institute of Natural Science, Daegu University Gyeongsan 38453 Republic of Korea
| | - Daehoon Kim
- Department of Chemistry, Institute of Natural Science, Daegu University Gyeongsan 38453 Republic of Korea
| | - Kyung-Ryang Wee
- Department of Chemistry, Institute of Natural Science, Daegu University Gyeongsan 38453 Republic of Korea
| |
Collapse
|
29
|
Ma L, Hussain M, Li L, Qaisrani NA, Bai L, Jia Y, Yan X, Zhang F, He G. Octopus-like side chain grafted poly(arylene piperidinium) membranes for fuel cell application. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
30
|
Rational design of comb-shaped poly(arylene indole piperidinium) to enhance hydroxide ion transport for H2/O2 fuel cell. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119335] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Xue J, Zhang J, Liu X, Huang T, Jiang H, Yin Y, Qin Y, Guiver MD. Toward alkaline-stable anion exchange membranes in fuel cells: cycloaliphatic quaternary ammonium-based anion conductors. ELECTROCHEM ENERGY R 2021. [DOI: 10.1007/s41918-021-00105-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Zhu H, Sun Z, Cao H, Wang B, Zhao J, Pan J, Xu G, Jin Z, Yan F. Highly Conductive and Dimensionally Stable Anion Exchange Membranes Based on Poly(dimethoxybenzene- co-methyl 4-formylbenzoate) Ionomers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Hairong Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhe Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Huixing Cao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Bowen Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Junliang Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ji Pan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Guodong Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhiyu Jin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Feng Yan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
33
|
Li L, Wang J, Hussain M, Ma L, Qaisrani NA, Ma S, Bai L, Yan X, Deng X, He G, Zhang F. Side-chain manipulation of poly (phenylene oxide) based anion exchange membrane: Alkoxyl extender integrated with flexible spacer. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119088] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
34
|
Hu X, Huang Y, Liu L, Ju Q, Zhou X, Qiao X, Zheng Z, Li N. Piperidinium functionalized aryl ether-free polyaromatics as anion exchange membrane for water electrolysers: Performance and durability. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118964] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Mayadevi TS, Sung S, Varghese L, Kim TH. Poly( meta/para-Terphenylene-Methyl Piperidinium)-Based Anion Exchange Membranes: The Effect of Backbone Structure in AEMFC Application. MEMBRANES 2020; 10:E329. [PMID: 33167367 PMCID: PMC7694387 DOI: 10.3390/membranes10110329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022]
Abstract
A series of poly(meta/para-terphenylene-methyl piperidinium)-based anion exchange membranes devoid of benzylic sites or aryl ether bonds, that are vulnerable to degradation by hydroxide ions, are synthesized and investigated for their application as novel anion exchange membranes. The copolymers are composed of both linear para-terphenyl units and kink-structured meta-terphenyl units. The meta-connectivity in terphenyl units permits the polymer backbones to fold back, maximizing the interactions among the hydrocarbon polymer chains and enhancing the peripheral formation of ion aggregates, due to the free volume generated by the kink structure. The effects of the copolymer composition between para-terphenyl and meta-terphenyl on the morphology and the electrochemical and physicochemical properties of the corresponding polymer membranes are investigated.
Collapse
Affiliation(s)
- T. S. Mayadevi
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea; (T.S.M.); (S.S.); (L.V.)
- Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea
| | - Seounghwa Sung
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea; (T.S.M.); (S.S.); (L.V.)
- Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea
| | - Listo Varghese
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea; (T.S.M.); (S.S.); (L.V.)
- Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea
| | - Tae-Hyun Kim
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea; (T.S.M.); (S.S.); (L.V.)
- Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea
| |
Collapse
|
36
|
Zhegur-Khais A, Kubannek F, Krewer U, Dekel DR. Measuring the true hydroxide conductivity of anion exchange membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118461] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|