1
|
Kozmai A, Poroznyy M, Gil V, Butylskii D, Lopatin D, Rodichenko A, Voroshilov I, Mareev A, Nikonenko V. Accounting for the Structure-Property Relationship of Hollow-Fiber Membranes in Modeling Hemodialyzer Clearance. Polymers (Basel) 2024; 16:3491. [PMID: 39771343 PMCID: PMC11728457 DOI: 10.3390/polym16243491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
The relevance of the hemodialysis procedure is increasing worldwide due to the growing number of patients suffering from chronic kidney disease. Taking into account the structure of dialysis polymer membranes is an important aspect in their development to achieve the required performance of hemodialyzers. We propose a new mathematical model of mass transfer that allows hollow-fiber membrane structural parameters to be taken into account in simulating the clearance (CL) of hemodialyzers in a way that does not require difficult to achieve close approximation to the exact geometry of the membrane porous structure. The model was verified by a comparison of calculations with experimental data on CL obtained using a lab-made dialyzer as well as commercially available ones. The simulations by the model show the non-trivial behavior of the dialyzer clearance as a function of membrane porosity (fp) and the arrangement of pores (α). The analysis of this behavior allows one to consider two strategies for increasing the CL of the dialyzer by optimizing the polymer membrane structure: (1) creating a membrane with a well-structured pore system (where α → 1) since doubling α at a high enough fp can lead to an almost tenfold increase in CL; (2) increasing the porosity of the membrane characterized by a random arrangement of pores (α → 0), where, at a relatively low α, a sharp increase in CL is observed with a small increase in fp over a certain threshold value.
Collapse
Affiliation(s)
- Anton Kozmai
- Membrane Institute, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia; (M.P.); (V.G.); (D.B.); (A.M.); (V.N.)
| | - Mikhail Poroznyy
- Membrane Institute, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia; (M.P.); (V.G.); (D.B.); (A.M.); (V.N.)
| | - Violetta Gil
- Membrane Institute, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia; (M.P.); (V.G.); (D.B.); (A.M.); (V.N.)
| | - Dmitrii Butylskii
- Membrane Institute, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia; (M.P.); (V.G.); (D.B.); (A.M.); (V.N.)
| | | | | | | | - Artem Mareev
- Membrane Institute, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia; (M.P.); (V.G.); (D.B.); (A.M.); (V.N.)
| | - Victor Nikonenko
- Membrane Institute, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia; (M.P.); (V.G.); (D.B.); (A.M.); (V.N.)
| |
Collapse
|
2
|
Nazari S, Abdelrasoul A. Simulation-based assessment of zwitterionic pendant group variations on the hemocompatibility of polyethersulfone membranes. FUNCTIONAL COMPOSITE MATERIALS 2024; 5:12. [PMID: 39399384 PMCID: PMC11412084 DOI: 10.1186/s42252-024-00062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/26/2024] [Indexed: 10/15/2024]
Abstract
In the realm of hemodialysis, Polyethersulfone (PES) membranes dominate due to their exceptional stability and mechanical properties, capturing 93% of the market. Despite their widespread usage, the hydrophobic nature of PES introduces complications in hemodialysis, potentially leading to severe adverse reactions in patients with end-stage renal disease (ESRD) through protein fouling. Addressing this issue, our study focused on enhancing hemocompatibility by modifying PES surfaces with zwitterionic materials, known for their hydrophilicity and biological membrane compatibility. We investigated the functionalization of PES membranes utilizing various zwitterions in different ratios. Utilizing molecular docking, we examined the interactions of three zwitterionic ligands-carboxybetaine methacrylate (CBMA), sulfobetaine methacrylate (SBMA), and (2-(methacryloyloxy)ethyl) phosphorylcholine (MPC)-with human serum proteins. Our analysis revealed that a 1:1 ratio of phosphobetaine and sulfobetaine exhibits the lowest affinity energy towards serum proteins, denoting an optimal hemocompatibility without the limitations associated with increased zwitterion ratios. This pivotal finding offers a new pathway for developing more efficient and safer hemodialysis membranes, promising improved care for ESRD patients. Supplementary information The online version contains supplementary material available at 10.1186/s42252-024-00062-6.
Collapse
Affiliation(s)
- Simin Nazari
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, S7N 5A9 Canada
| | - Amira Abdelrasoul
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, S7N 5A9 Canada
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, S7N 5A9 Canada
| |
Collapse
|
3
|
Wojciechowski C, Wasyłeczko M, Lewińska D, Chwojnowski A. A Comprehensive Review of Hollow-Fiber Membrane Fabrication Methods across Biomedical, Biotechnological, and Environmental Domains. Molecules 2024; 29:2637. [PMID: 38893513 PMCID: PMC11174095 DOI: 10.3390/molecules29112637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
This work presents methods of obtaining polymeric hollow-fiber membranes produced via the dry-wet phase inversion method that were published in renowned specialized membrane publications in the years 2010-2020. Obtaining hollow-fiber membranes, unlike flat membranes, requires the use of a special installation for their production, the most important component of which is the hollow fiber forming spinneret. This method is most often used in obtaining membranes made of polysulfone, polyethersulfone, polyurethane, cellulose acetate, and its derivatives. Many factors affect the properties of the membranes obtained. By changing the parameters of the spinning process, we change the thickness of the membranes' walls and the diameter of the hollow fibers, which causes changes in the membranes' structure and, as a consequence, changes in their transport/separation parameters. The type of bore fluid affects the porosity of the inner epidermal layer or causes its atrophy. Porogenic compounds such as polyvinylpyrrolidones and polyethylene glycols and other substances that additionally increase the membrane porosity are often added to the polymer solution. Another example is a blend of two- or multi-component membranes and dual-layer membranes that are obtained using a three-nozzle spinneret. In dual-layer membranes, one layer is the membrane scaffolding, and the other is the separation layer. Also, the temperature during the process, the humidity, and the composition of the solution in the coagulating bath have impact on the parameters of the membranes obtained.
Collapse
Affiliation(s)
- Cezary Wojciechowski
- Nalecz Institute of Biocybernetic and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 Str., 02-109 Warsaw, Poland; (M.W.); (D.L.); (A.C.)
| | | | | | | |
Collapse
|
4
|
Fukuda M, Sakai K. 3D porous structure imaging of membranes for medical devices using scanning probe microscopy and electron microscopy: from membrane science points of view. J Artif Organs 2024; 27:83-90. [PMID: 38311666 DOI: 10.1007/s10047-023-01431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/06/2023] [Indexed: 02/06/2024]
Abstract
The evolution of hemodialysis membranes (dialyzer, artificial kidney) was remarkable, since Dow Chemical began manufacturing hollow fiber hemodialyzers in 1968, especially because it involved industrial chemistry, including polymer synthesis and membrane manufacturing process. The development of hemodialysis membranes has brought about the field of medical devices as a major industry. In addition to conventional electron microscopy, scanning probe microscopy (SPM), represented by atomic force microscopy (AFM), has been used in membrane science research on porous membranes for hemodialysis, and membrane science contributes greatly to the hemodialyzer industry. Practical studies of membrane porous structure-function relationship have evolved, and methods for analyzing membrane cross-sectional morphology were developed, such as the ion milling method, which was capable of cutting membrane cross sections on the order of molecular size to obtain smooth surface structures. Recently, following the global pandemic of SARS-CoV-2 infection, many studies on new membranes for extracorporeal membrane oxygenator have been promptly reported, which also utilize membrane science researches. Membrane science is playing a prominent role in membrane-based technologies such as separation and fabrication, for hemodialysis, membrane oxygenator, lithium ion battery separators, lithium recycling, and seawater desalination. These practical studies contribute to the global medical devices industry.
Collapse
Affiliation(s)
- Makoto Fukuda
- Department of Biomedical Engineering, Kindai University, 930 Nishimitani, Kinokawa-City, Wakayama, 649-6493, Japan.
| | - Kiyotaka Sakai
- Professor Emeritus of Chemical Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| |
Collapse
|
5
|
Puppi D, Braccini S, Battisti A, Manariti A, Pecorini G, Samal SK. Additive Manufacturing of Wet-Spun Polysulfone Medical Implants. ACS Biomater Sci Eng 2023; 9:5418-5429. [PMID: 37691546 DOI: 10.1021/acsbiomaterials.3c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Research on additive manufacturing (AM) of high-performance polymers provides novel materials and technologies for advanced applications in different sectors, such as aerospace and biomedical engineering. The present article is contextualized in this research trend by describing a novel AM protocol for processing a polysulfone (PSU)/N-methyl-2-pyrrolidone (NMP) solution into medical implant prototypes. In particular, an AM technique involving the patterned deposition of the PSU/NMP mixture in a coagulation bath was employed to fabricate PSU implants with different predefined shape, fiber diameter, and macropore size. Scanning electron microscopy (SEM) analysis highlighted a fiber transversal cross-section morphology characterized by a dense external skin layer and an inner macroporous/microporous structure, as a consequence of the nonsolvent-induced polymer solidification process. Physical-chemical and thermal characterization of the fabricated samples demonstrated that PSU processing did not affect its macromolecular structure and glass-transition temperature, as well as that after post-processing PSU implants did not contain residual solvent or nonsolvent. Mechanical characterization showed that the developed PSU scaffold tensile and compressive modulus could be changed by varying the macroporous architecture. In addition, PSU scaffolds supported the in vitro adhesion and proliferation of the BALB/3T3 clone A31 mouse embryo cell line. These findings encourage further research on the suitability of the developed processing method for the fabrication of customized PSU implants.
Collapse
Affiliation(s)
- Dario Puppi
- Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM - Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Simona Braccini
- Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM - Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Antonella Battisti
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, p.zza San Silvestro 12, 56127 Pisa, Italy
| | - Antonella Manariti
- Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM - Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Gianni Pecorini
- Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM - Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Sangram Keshari Samal
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, Indian Council of Medical Research-Regional Medical Research Center, Bhubaneswar 751013, Odisha, India
| |
Collapse
|
6
|
Ramada DL, de Vries J, Vollenbroek J, Noor N, Ter Beek O, Mihăilă SM, Wieringa F, Masereeuw R, Gerritsen K, Stamatialis D. Portable, wearable and implantable artificial kidney systems: needs, opportunities and challenges. Nat Rev Nephrol 2023:10.1038/s41581-023-00726-9. [PMID: 37277461 DOI: 10.1038/s41581-023-00726-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/07/2023]
Abstract
Haemodialysis is life sustaining but expensive, provides limited removal of uraemic solutes, is associated with poor patient quality of life and has a large carbon footprint. Innovative dialysis technologies such as portable, wearable and implantable artificial kidney systems are being developed with the aim of addressing these issues and improving patient care. An important challenge for these technologies is the need for continuous regeneration of a small volume of dialysate. Dialysate recycling systems based on sorbents have great potential for such regeneration. Novel dialysis membranes composed of polymeric or inorganic materials are being developed to improve the removal of a broad range of uraemic toxins, with low levels of membrane fouling compared with currently available synthetic membranes. To achieve more complete therapy and provide important biological functions, these novel membranes could be combined with bioartificial kidneys, which consist of artificial membranes combined with kidney cells. Implementation of these systems will require robust cell sourcing; cell culture facilities annexed to dialysis centres; large-scale, low-cost production; and quality control measures. These challenges are not trivial, and global initiatives involving all relevant stakeholders, including academics, industrialists, medical professionals and patients with kidney disease, are required to achieve important technological breakthroughs.
Collapse
Affiliation(s)
- David Loureiro Ramada
- Advanced Organ bioengineering and Therapeutics, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O Box 217, 7500, AE Enschede, The Netherlands
| | - Joost de Vries
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen Vollenbroek
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
- BIOS Lab on a Chip Group, MESA + Institute, University of Twente, Hallenweg 15, 7522, NH Enschede, The Netherlands
| | - Nazia Noor
- Advanced Organ bioengineering and Therapeutics, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O Box 217, 7500, AE Enschede, The Netherlands
| | - Odyl Ter Beek
- Advanced Organ bioengineering and Therapeutics, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O Box 217, 7500, AE Enschede, The Netherlands
| | - Silvia M Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Fokko Wieringa
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Autonomous Therapeutics, IMEC, Eindhoven, The Netherlands
- European Kidney Health Alliance (EKHA), WG3 "Breakthrough Innovation", Brussels, Belgium
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Karin Gerritsen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dimitrios Stamatialis
- Advanced Organ bioengineering and Therapeutics, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O Box 217, 7500, AE Enschede, The Netherlands.
- European Kidney Health Alliance (EKHA), WG3 "Breakthrough Innovation", Brussels, Belgium.
| |
Collapse
|
7
|
Tarkhani M, Mousavi SA, Asadollahi M, Bastani D, Pourasad F. Investigating the effect of zirconium‐based and titanium‐based metal–organic frameworks nanoparticles on the performance of polysulfone hollow fiber mixed matrix membrane for dialysis application. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Mehdi Tarkhani
- Department of Chemical and Petroleum Engineering Sharif University of Technology Tehran Iran
| | - Seyyed Abbas Mousavi
- Department of Chemical and Petroleum Engineering Sharif University of Technology Tehran Iran
| | - Mahdieh Asadollahi
- Department of Chemical and Petroleum Engineering Sharif University of Technology Tehran Iran
| | - Dariush Bastani
- Department of Chemical and Petroleum Engineering Sharif University of Technology Tehran Iran
| | - Fatemeh Pourasad
- Department of Chemical and Petroleum Engineering Sharif University of Technology Tehran Iran
| |
Collapse
|
8
|
Comparative Study on Elution of Polyvinylpyrrolidone on Dialyzers Using Ultraviolet Analysis and Iodine Method. ASAIO J 2023; 69:225-230. [PMID: 35417428 DOI: 10.1097/mat.0000000000001751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
It is known that poly(arylethersulfone)-based dialyzers can elute poly( N -vinyl-2-pyrrolidone) (PVP). With regard to chronic renal replacement therapy, this is a burden for the patient, because PVP is deposited in different organs and cannot be degraded or released from there; so elutable PVP has to be minimized. Usually, the iodine method is used for quantification of extractable PVP. To overcome the chain length dependency of this method, we used an ultraviolet method that is independent from the PVP chain lengths; so the absolute amount of eluted PVP can be quantified. The current study shows the amount of eluted PVP on differently sterilized low flux dialyzers (1.6 m 2 , similar storage time, n = 12)-PS160 (Allmed, Egypt), F7HPS (Fresenius Medical Care, Germany), F16 (Wego, China), and B-16P (Bain, China). Using the ultraviolet method, the irradiated filters show a sum total of approximately 9 mg more eluted PVP compared with the steam-sterilized ones, whereas the iodine method shows a value about three times lower between different types of sterilization. The boundary conditions during the radiation sterilization could lead to PVP degradation instead of cross-linking. The resulting shorter PVP chains can be more easily rinsed out and can falsely decrease the calculated eluted PVP amount by using the iodine complexation method.
Collapse
|
9
|
Nguyen TT, Jang K, Her N, Kim CS, Kim SW, Kim IS. Fabrication of hollow fiber membranes with different inner diameters for enhanced uremic toxins removal in hemodialysis: Exploring from high-flux to high molecular weight retention onset classes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Andrade-Guel M, Reyes-Rodríguez PY, Cabello-Alvarado CJ, Cadenas-Pliego G, Ávila-Orta CA. Influence of Modified Carbon Black on Nylon 6 Nonwoven Fabric and Performance as Adsorbent Material. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4247. [PMID: 36500869 PMCID: PMC9735733 DOI: 10.3390/nano12234247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The number of chronic kidney disease (CKD) persons continues to rise in Mexico. They require renal replacement therapy, and in the absence of it, hemodialysis is the major option for their survival. The uremic toxins present in the blood are removed by hemodialysis, which involve membranes. In this study, nonwoven fabrics with modified carbon black nanoparticles in a matrix polymer of Nylon 6 were obtained and evaluated as an adsorbent material of uremic toxins. All nonwoven fabrics were characterized by FTIR, XRD, TGA, SEM, and contact angle measurements and were evaluated as an adsorbent material for the urea toxin and as an albumin retainer. The findings suggest their potential application as a hemodialysis membrane. Nanocomposites had a higher hydrophilic characteristic compared to pure Nylon 6. The average diameter size of the fibers was in the range of 5 to 50 μm. All nanocomposites nonwoven fabrics showed high removal percentages of inulin in a range of 80-85% at 15 min of contact. Most Ny6 Zytel/CB nanocomposites showed a high percentage of urea removal (80 to 90%).
Collapse
Affiliation(s)
| | | | - Christian J. Cabello-Alvarado
- Centro de Investigación en Química Aplicada, Saltillo 25294, Mexico
- CONACYT—Centro de Investigación en Química Aplicada, Saltillo 25294, Mexico
| | | | | |
Collapse
|
11
|
Nazari S, Abdelrasoul A. Impact of Membrane Modification and Surface Immobilization Techniques on the Hemocompatibility of Hemodialysis Membranes: A Critical Review. MEMBRANES 2022; 12:1063. [PMID: 36363617 PMCID: PMC9698264 DOI: 10.3390/membranes12111063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Despite significant research efforts, hemodialysis patients have poor survival rates and low quality of life. Ultrafiltration (UF) membranes are the core of hemodialysis treatment, acting as a barrier for metabolic waste removal and supplying vital nutrients. So, developing a durable and suitable membrane that may be employed for therapeutic purposes is crucial. Surface modificationis a useful solution to boostmembrane characteristics like roughness, charge neutrality, wettability, hemocompatibility, and functionality, which are important in dialysis efficiency. The modification techniques can be classified as follows: (i) physical modification techniques (thermal treatment, polishing and grinding, blending, and coating), (ii) chemical modification (chemical methods, ozone treatment, ultraviolet-induced grafting, plasma treatment, high energy radiation, and enzymatic treatment); and (iii) combination methods (physicochemical). Despite the fact that each strategy has its own set of benefits and drawbacks, all of these methods yielded noteworthy outcomes, even if quantifying the enhanced performance is difficult. A hemodialysis membrane with outstanding hydrophilicity and hemocompatibility can be achieved by employing the right surface modification and immobilization technique. Modified membranes pave the way for more advancement in hemodialysis membrane hemocompatibility. Therefore, this critical review focused on the impact of the modification method used on the hemocompatibility of dialysis membranes while covering some possible modifications and basic research beyond clinical applications.
Collapse
Affiliation(s)
- Simin Nazari
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Amira Abdelrasoul
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
- Department of Chemical and Biological Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
12
|
Zheng X, Ni C, Xiao W, Yu G, Li Y. In vitro hemocompatibility and hemodialysis performance of hydrophilic ionic liquid grafted polyethersulfone hollow fiber membranes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Zhang L, Zhang H, Jiang J, Zhao D, Shen C, Zha S, Qu S, Lin R, Wang Y, Dai G. Rheological behavior of
PES
/
PVP
/
DMAc
solution and
PVP
structural regulation for hollow fiber membrane. J Appl Polym Sci 2022. [DOI: 10.1002/app.52870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Chemical Engineering East China University of Science and Technology (ECUST) Shanghai China
| | - Haoran Zhang
- State Key Laboratory of Chemical Engineering East China University of Science and Technology (ECUST) Shanghai China
| | - Jinhu Jiang
- State Key Laboratory of Chemical Engineering East China University of Science and Technology (ECUST) Shanghai China
| | - Dong Zhao
- State Key Laboratory of Chemical Engineering East China University of Science and Technology (ECUST) Shanghai China
| | - Chunyin Shen
- State Key Laboratory of Chemical Engineering East China University of Science and Technology (ECUST) Shanghai China
| | - Shangwen Zha
- Department of Research and development Shanghai Eco. Polymer Sci.&Tech CO., Ltd Shanghai China
| | - Shaoyi Qu
- Department of Research and development Shanghai Eco. Polymer Sci.&Tech CO., Ltd Shanghai China
| | - Ru Lin
- Department of Research and development Shanghai Eco. Polymer Sci.&Tech CO., Ltd Shanghai China
| | - Yanli Wang
- State Key Laboratory of Chemical Engineering East China University of Science and Technology (ECUST) Shanghai China
| | - Gance Dai
- State Key Laboratory of Chemical Engineering East China University of Science and Technology (ECUST) Shanghai China
| |
Collapse
|
14
|
Zhang X, Du B, Dai Y, Zheng W, Ruan X, He G. Hemocompatible polydimethylsiloxane/polysulfone ultrathin composite membrane for extracorporeal membrane oxygenation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Synergic effect of PVP and PEG hydrophilic additives on porous polyethersulfone (PES) membranes: preparation, characterization and biocompatibility. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-021-02868-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Lau HS, Lau SK, Soh LS, Hong SU, Gok XY, Yi S, Yong WF. State-of-the-Art Organic- and Inorganic-Based Hollow Fiber Membranes in Liquid and Gas Applications: Looking Back and Beyond. MEMBRANES 2022; 12:539. [PMID: 35629866 PMCID: PMC9144028 DOI: 10.3390/membranes12050539] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
The aggravation of environmental problems such as water scarcity and air pollution has called upon the need for a sustainable solution globally. Membrane technology, owing to its simplicity, sustainability, and cost-effectiveness, has emerged as one of the favorable technologies for water and air purification. Among all of the membrane configurations, hollow fiber membranes hold promise due to their outstanding packing density and ease of module assembly. Herein, this review systematically outlines the fundamentals of hollow fiber membranes, which comprise the structural analyses and phase inversion mechanism. Furthermore, illustrations of the latest advances in the fabrication of organic, inorganic, and composite hollow fiber membranes are presented. Key findings on the utilization of hollow fiber membranes in microfiltration (MF), nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), pervaporation, gas and vapor separation, membrane distillation, and membrane contactor are also reported. Moreover, the applications in nuclear waste treatment and biomedical fields such as hemodialysis and drug delivery are emphasized. Subsequently, the emerging R&D areas, precisely on green fabrication and modification techniques as well as sustainable materials for hollow fiber membranes, are highlighted. Last but not least, this review offers invigorating perspectives on the future directions for the design of next-generation hollow fiber membranes for various applications. As such, the comprehensive and critical insights gained in this review are anticipated to provide a new research doorway to stimulate the future development and optimization of hollow fiber membranes.
Collapse
Affiliation(s)
- Hui Shen Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Siew Kei Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Leong Sing Soh
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Seang Uyin Hong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Xie Yuen Gok
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Shouliang Yi
- U.S. Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Rd, Pittsburgh, PA 15236, USA;
| | - Wai Fen Yong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
17
|
Yogarathinam LT, Goh PS, Ismail AF, Gangasalam A, Ahmad NA, Samavati A, Mamah SC, Zainol Abidin MN, Ng BC, Gopal B. Nanocrystalline cellulose incorporated biopolymer tailored polyethersulfone mixed matrix membranes for efficient treatment of produced water. CHEMOSPHERE 2022; 293:133561. [PMID: 35031248 DOI: 10.1016/j.chemosphere.2022.133561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Membrane technology is a sustainable method to remove pollutants from petroleum wastewater. However, the presence of hydrophobic oil molecules and inorganic constituents can cause membrane fouling. Biomass derived biopolymers are promising renewable materials for membrane modification. In this study, fouling resistant biopolymer N-phthaloylchitosan (CS)- based polythersulfone (PES) mixed matrix membranes (MMMs) incorporated with nanocrystalline cellulose (NCC) was fabricated via phase inversion method and applied for produced water (PW) treatment. The morphological and Fourier-transform infrared spectroscopy (FTIR) analyses of the as-prepared NCC evidenced the formation of fibrous sheet-like structure and the presence of hydrophilic group. The membrane morphology and AFM analysis showed that the NCC altered the surface and cross-sectional morphology of the CS-PES MMMs. The tensile strength of NCC-CS-PES MMMs was also enhanced. 0.5 wt% NCC-CS-PES MMMs displayed a water permeability of 1.11 × 10-7 m/s.kPa with the lowest contact angle value of 61°. It affirmed that its hydrophilicity increased through the synergetic interaction between CS biopolymer and NCC. The effect of process variables such as transmembrane pressure (TMP) and synthetic produced water (PW) concentration were evaluated for both neat PES and NCC-CS-PES MMMs membranes. 0.5 wt% NCC-CS-PES MMMs exhibited the highest PW rejection of 98% when treating 50 mgL-1 of synthetic PW at a transmembrane pressure (TMP) of 200 kPa. The effect of nano silica and sodium chloride on the long-term PW filtration of NCC-CS-PES MMMs was also investigated.
Collapse
Affiliation(s)
- Lukka Thuyavan Yogarathinam
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Arthanareeswaran Gangasalam
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620015, India.
| | - Nor Akalili Ahmad
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Alireza Samavati
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Stanley Chinedu Mamah
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Muhammad Nidzhom Zainol Abidin
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Be Cheer Ng
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Balamurugan Gopal
- School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
18
|
Nazari S, Abdelrasoul A. Surface Zwitterionization of HemodialysisMembranesfor Hemocompatibility Enhancement and Protein-mediated anti-adhesion: A Critical Review. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
19
|
Fu X, Lei T, Li SJ, Liu YF, Peng J, Ning JP. Construction of novel antiplatelet modified polyethersulfone membrane and study into its blood compatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112659. [DOI: 10.1016/j.msec.2022.112659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/29/2021] [Accepted: 01/06/2022] [Indexed: 01/17/2023]
|
20
|
Said N, Lau WJ, Ho YC, Lim SK, Zainol Abidin MN, Ismail AF. A Review of Commercial Developments and Recent Laboratory Research of Dialyzers and Membranes for Hemodialysis Application. MEMBRANES 2021; 11:767. [PMID: 34677533 PMCID: PMC8540739 DOI: 10.3390/membranes11100767] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022]
Abstract
Dialyzers have been commercially used for hemodialysis application since the 1950s, but progress in improving their efficiencies has never stopped over the decades. This article aims to provide an up-to-date review on the commercial developments and recent laboratory research of dialyzers for hemodialysis application and to discuss the technical aspects of dialyzer development, including hollow fiber membrane materials, dialyzer design, sterilization processes and flow simulation. The technical challenges of dialyzers are also highlighted in this review, which discusses the research areas that need to be prioritized to further improve the properties of dialyzers, such as flux, biocompatibility, flow distribution and urea clearance rate. We hope this review article can provide insights to researchers in developing/designing an ideal dialyzer that can bring the best hemodialysis treatment outcomes to kidney disease patients.
Collapse
Affiliation(s)
- Noresah Said
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (N.S.); (M.N.Z.A.); (A.F.I.)
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (N.S.); (M.N.Z.A.); (A.F.I.)
| | - Yeek-Chia Ho
- Centre of Urban Resource Sustainability, Department of Civil and Environmental Engineering, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia;
| | - Soo Kun Lim
- University Malaya Primary Care Research Group (UMPCRG), Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Muhammad Nidzhom Zainol Abidin
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (N.S.); (M.N.Z.A.); (A.F.I.)
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (N.S.); (M.N.Z.A.); (A.F.I.)
| |
Collapse
|
21
|
Structure design and performance study on filtration-adsorption bifunctional blood purification membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Nano architectured cues as sustainable membranes for ultrafiltration in blood hemodialysis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112260. [PMID: 34474819 DOI: 10.1016/j.msec.2021.112260] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/24/2022]
Abstract
Membranes with zeolites are encouraging for performing blood dialysis because zeolites can eliminate uremic toxins through molecular sieving. Although the addition of various pore-gen and adsorbent in the membrane can certainly impact the membrane production along with creatinine adsorption, however, it is not directed which pore-gen along with zeolite leads to better performance. The research was aimed at reducing the adsorption of protein-bound and uremic toxins by using mordenite zeolite as an adsorbent while polyethylene glycol and cellulose acetate as a pore generating agent. Membranes were cast by a phase-inversion technique which is cheap and easy to handle as compared to the electro-spinning technique. Through this strategy, the ability to adsorb creatinine and solute rejection percentage were measured and compared against the pristine PSU, when only PEG was used as a pore-modifier and when PEG along with CA was used as a pore-modifier along with a different concentration of zeolite. The experiments revealed that PEG membranes can give a better solute rejection percentage (93%) but with a low creatinine adsorption capacity that is 7654 μg/g and low bio-compatibility (PRT 392 s, HR 0.46%). However, PEG/CA membranes give maximum creatinine adsorption that is 9643 μg/g and also better bio-compatibility (PRT 490 s, HR 0.37%) but with a low BSA rejection (72%) as compared to the pristine PSU and PEG membranes. The present study finds that the concentration of mordenite zeolite affects the membrane performance because its entrapment and large pore size of the membrane decreases solute rejection but increases creatinine uptake level along with the better bio-compatibility.
Collapse
|
23
|
Heidari A, Abdollahi E, Mohammadi T, Asadi AA. Improving permeability, hydrophilicity and antifouling characteristic of PES hollow fiber UF membrane using carboxylic PES: A promising substrate to fabricate NF layer. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118811] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Ayub M, Othman MHD, Kadir SHSA, Ali A, Khan IU, Yusop MZM, Matsuura T, Fauzi Ismail A, A. Rahman M, Jaafar J. Research and Development Journey and Future Trends of Hollow Fiber Membranes for Purification Applications (1970-2020): A Bibliometric Analysis. MEMBRANES 2021; 11:membranes11080600. [PMID: 34436363 PMCID: PMC8400483 DOI: 10.3390/membranes11080600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 01/03/2023]
Abstract
Hollow fiber membrane (HFM) technology has received significant attention due to its broad range separation and purification applications in the industry. In the current study, we applied bibliometric analysis to evaluate the global research trends on key applications of HFMs by evaluating the global publication outputs. Results obtained from 5626 published articles (1970-2020) from the Scopus database were further manipulated using VOSviewer software through cartography analysis. The study emphasizes the performance of most influential annual publications covering mainstream journals, leading countries, institutions, leading authors and author's keywords, as well as future research trends. The study found that 62% of the global HFM publications were contributed by China, USA, Singapore, Japan and Malaysia, followed by 77 other countries. This study will stimulate the researchers by showing the future-minded research directions when they select new research areas, particularly in those related to water treatment, biomedical and gas separation applications of HFM.
Collapse
Affiliation(s)
- Muhammad Ayub
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (M.A.); (M.Z.M.Y.); (A.F.I.); (M.A.R.); (J.J.)
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (M.A.); (M.Z.M.Y.); (A.F.I.); (M.A.R.); (J.J.)
- Correspondence: (M.H.D.O.); (S.H.S.A.K.)
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi Mara (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
- Correspondence: (M.H.D.O.); (S.H.S.A.K.)
| | - Adnan Ali
- Azman Hashim International Business School (AHIBS), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia;
- Department of Management Sciences, Shaheed Benazir Bhutto University, Sheringal, Dir Upper 18050, Khyber Pakhtunkkhwa, Pakistan
| | - Imran Ullah Khan
- Department of Chemical and Energy Engineering, Pak-Austria Fachhochschule, Institute of Applied Sciences & Technology (PAF:IAST), Khanpur Road, Mang, Haripur 22650, Pakistan;
| | - Mohd Zamri Mohd Yusop
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (M.A.); (M.Z.M.Y.); (A.F.I.); (M.A.R.); (J.J.)
| | - Takeshi Matsuura
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (M.A.); (M.Z.M.Y.); (A.F.I.); (M.A.R.); (J.J.)
| | - Mukhlis A. Rahman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (M.A.); (M.Z.M.Y.); (A.F.I.); (M.A.R.); (J.J.)
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (M.A.); (M.Z.M.Y.); (A.F.I.); (M.A.R.); (J.J.)
| |
Collapse
|
25
|
Tchantchaleishvili V. Dimitrios Stamatialis to serve as an Associate Editor of Artificial Organs. Artif Organs 2021; 45:799-800. [PMID: 34155663 DOI: 10.1111/aor.14010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Heparin immobilized graphene oxide in polyetherimide membranes for hemodialysis with enhanced hemocompatibility and removal of uremic toxins. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Xix-Rodriguez C, Varguez-Catzim P, Alonzo-García A, Rodriguez-Fuentes N, Vázquez-Torres H, González-Diaz A, Aguilar-Vega M, González-Díaz MO. Amphiphilic poly(lactic acid) membranes with low fouling and enhanced hemodiafiltration. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Sikorska W, Wasyłeczko M, Przytulska M, Wojciechowski C, Rokicki G, Chwojnowski A. Chemical Degradation of PSF-PUR Blend Hollow Fiber Membranes-Assessment of Changes in Properties and Morphology after Hydrolysis. MEMBRANES 2021; 11:51. [PMID: 33445806 PMCID: PMC7828234 DOI: 10.3390/membranes11010051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/02/2022]
Abstract
In this study, we focused on obtaining polysulfone-polyurethane (PSF-PUR) blend partly degradable hollow fiber membranes (HFMs) with different compositions while maintaining a constant PSF:PUR = 8:2 weight ratio. It was carried out through hydrolysis, and evaluation of the properties and morphology before and after the hydrolysis process while maintaining a constant cut-off. The obtained membranes were examined for changes in ultrafiltration coefficient (UFC), retention, weight loss, morphology assessment using scanning electron microscopy (SEM) and MeMoExplorer™ Software, as well as using the Fourier-transform infrared spectroscopy (FT-IR) method. The results of the study showed an increase in the UFC value after the hydrolysis process, changes in retention, mass loss, and FT-IR spectra. The evaluation in MeMoExplorer™ Software showed the changes in membranes' morphology. It was confirmed that polyurethane (PUR) was partially degraded, the percentage of ester bonds has an influence on the degradation process, and PUR can be used as a pore precursor instead of superbly known polymers.
Collapse
Affiliation(s)
- Wioleta Sikorska
- Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 Street, 02-109 Warsaw, Poland; (M.W.); (M.P.); (C.W.); (A.C.)
| | - Monika Wasyłeczko
- Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 Street, 02-109 Warsaw, Poland; (M.W.); (M.P.); (C.W.); (A.C.)
| | - Małgorzata Przytulska
- Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 Street, 02-109 Warsaw, Poland; (M.W.); (M.P.); (C.W.); (A.C.)
| | - Cezary Wojciechowski
- Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 Street, 02-109 Warsaw, Poland; (M.W.); (M.P.); (C.W.); (A.C.)
| | - Gabriel Rokicki
- Warsaw University of Technology, Noakowskiego 3 Street, 00-644 Warsaw, Poland;
| | - Andrzej Chwojnowski
- Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 Street, 02-109 Warsaw, Poland; (M.W.); (M.P.); (C.W.); (A.C.)
| |
Collapse
|
29
|
|