1
|
Yan L, Chen J, Zhang Z, Liu Z, Ding T, Shi G. Reduced graphene oxide membrane with small nanosheets for efficient and ultrafast removal of both microplastics and small molecules. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137078. [PMID: 39798305 DOI: 10.1016/j.jhazmat.2024.137078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/24/2024] [Accepted: 12/31/2024] [Indexed: 01/15/2025]
Abstract
The clogging of sieving pores due to the complex sewage system of mixed molecules and nanoparticles of different scales is a difficulty in the membrane-based separation process. When the holes are reduced to the point where they can repel small molecules in the contaminants, large-molecule contaminants can adsorb to the holes and decrease the permeability. A similar question remains in new promising graphene oxide (GO) membranes. In this study, we prepared a small lateral-sized reduced graphene oxide (S-rGO) membrane with short Z-type water transport pathways and a lower adsorption energy for pollutant molecules. The S-rGO membrane presented an ultrahigh permeability for large size microplastics (MPs) of 236.2 L m-2 h-1 bar-1 (99.9 % rejection rate) and small dye molecules of 234.2 L m-2 h-1 bar-1, which was 40 and 25 times higher than the permeability of traditional GO membranes with larger sized sheets, respectively. We evaluated the long-term stability of the membrane in cross-flow system. The membrane maintained more than 212.8 L m-2 h-1 bar-1 permeability and a 99.9 % rejection rate under 16 h. Our findings provided a new strategy to address the difficulty of efficient membrane use for complex water pollutants.
Collapse
Affiliation(s)
- Linghui Yan
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, China
| | - Junjie Chen
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, China
| | - Zehui Zhang
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, China
| | - Zhengyang Liu
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, China
| | - Tao Ding
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, China
| | - Guosheng Shi
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, China; Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China.
| |
Collapse
|
2
|
Feilizadeh M, Kochaki SH, Estahbanati MRK, Kiendrebeogo M, Drogui P. Combining nanofiltration and electrooxidation for complete removal of nanoplastics from water. MARINE POLLUTION BULLETIN 2025; 213:117621. [PMID: 39892060 DOI: 10.1016/j.marpolbul.2025.117621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Nanoplastics (NPs) have emerged as significant water contaminants, attracting increasing attention due to their potential impacts on aquatic ecosystems and human health. In addressing the environmental and health hazards posed by NPs in water, this new study explores a combined nanofiltration (NF) and electrooxidation (EO) approach. The proposed process begins with NF to concentrate the NPs in the water, followed by EO to degrade the NPs in the NF rejection. The results indicated that the employed NF system could completely eliminate NPs at different transmembrane pressures and times. The study also highlighted the influence of NP concentrations on recovery rates, showing a reduction in recovery at higher concentrations. Moreover, following the NF process, the EO process was examined for its efficiency in removing NPs over time and at various initial NP concentrations. The results revealed that the most effective durations were 20, 30, and 40 min for NP concentrations of 10, 22.5, and 35 mg/L, respectively. As a kinetic study, the rate of NPs degradation by the EO process was modeled using Langmuir-Hinshelwood (L-H) as well as power law models. The comparison between the models' predictions and the experimental data demonstrated that the power law and L-H models had good predictability for NP concentrations exceeding 10 mg/L and 2 mg/L, respectively. At concentrations below the 2 mg/L, deviations from the model were observed, likely due to changes in the reaction mechanism. It can be concluded from these results that, at low concentrations, the surface reactions were no longer the rate-determining step.
Collapse
Affiliation(s)
- Mehrzad Feilizadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran.
| | - Saeed Heidari Kochaki
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - M R Karimi Estahbanati
- Institut national de la recherche scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 rue de la Couronne, Québec (QC) G1K 9A9, Canada
| | - Marthe Kiendrebeogo
- Institut national de la recherche scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 rue de la Couronne, Québec (QC) G1K 9A9, Canada
| | - Patrick Drogui
- Institut national de la recherche scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 rue de la Couronne, Québec (QC) G1K 9A9, Canada.
| |
Collapse
|
3
|
Sezer M, Topkaya E, Aksan S, Veli S, Arslan A. Optimizing microplastic treatment in the effluent of biological nutrient removal processes using electrocoagulation: Taguchi experimental design. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122413. [PMID: 39236617 DOI: 10.1016/j.jenvman.2024.122413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Microplastics (MPs) have become one of the most critical environmental pollution problems in recent years. Due to the growing abundance of MPs in aquatic environments, extensive research has been conducted and continues to be ongoing to develop effective treatment methods. In this study, the removal of MPs in the effluent of biological wastewater treatment plant (WWTP) was investigated by electrocoagulation (EC) process with aluminum electrodes. Using Taguchi design, the importance of process variables such as pH, current density, and reaction time were evaluated by Analysis of Variance (ANOVA). Statistically, according to F and p values, the most effective parameter for microplastic (MP) removal was current density, followed by pH and reaction time. The R2 value of the created model was found to be above 98%. According to Taguchi results, the optimum process conditions were determined as pH 9, current density 1.905 mA/cm2, and reaction time 15 min and 99% MP removal efficiency was obtained. Under these optimum conditions, the process cost was calculated as 0.049 $/m3 wastewater, considering energy and electrode consumption. As a result of visual analyses, fiber, film, pellet, amorphous, and undefined forms were dominant in WWTP effluent, while only fiber structures were observed after treatment with EC. In this study, it was concluded that the EC process is an alternative treatment method that can be integrated into wastewater treatment plant effluent to achieve MP removal at very low cost and high efficiency. In addition, as a result of this study, it was observed that the EC process can also be used in MP removal by applying it to real wastewater.
Collapse
Affiliation(s)
- Mesut Sezer
- Department of Environmental Engineering, Kocaeli University, 41000, Kocaeli, Turkey.
| | - Eylem Topkaya
- Department of Environmental Engineering, Kocaeli University, 41000, Kocaeli, Turkey
| | - Serdar Aksan
- Department of Biology, Kocaeli University, 41000, Kocaeli, Turkey
| | - Sevil Veli
- Department of Environmental Engineering, Kocaeli University, 41000, Kocaeli, Turkey
| | - Ayla Arslan
- Department of Environmental Engineering, Kocaeli University, 41000, Kocaeli, Turkey
| |
Collapse
|
4
|
Junaid M, Liu S, Liao H, Yue Q, Wang J. Environmental nanoplastics quantification by pyrolysis-gas chromatography-mass spectrometry in the Pearl River, China: First insights into spatiotemporal distributions, compositions, sources and risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135055. [PMID: 38941826 DOI: 10.1016/j.jhazmat.2024.135055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
Nanoplastics (NPs, size <1000 nm) are ubiquitous plastic particles, potentially more abundant than microplastics in the environment; however, studies highlighting their distribution dynamics in freshwater are rare due to analytical limitations. Here, we investigated spatiotemporal levels of nine polymers of NPs in surface water samples (n = 30) from the full stretch of the Pearl River (sites, n = 15) using pyrolysis gas chromatography-mass spectrometry (Py-GC/MS). Six polymers were detected, including polystyrene (PS), polyvinyl chloride (PVC), nylon/polyamide 66 (PA66), polyester (PES), poly(methyl methacrylate) (PMMA) and polyethylene (PE), where three polymers showed high detection frequencies; PS (100 % in winter and summer), followed by PVC (73 % in winter and 87 % in summer) and PA66 (53 % in winter and 67 % in summer). The spatiotemporal distribution revealed the sites related to aquaculture (AQ) and shipping (SHP) showed higher NP levels than those of human settlement (HS) and wastewater treatment plants (WWTPs) (p = 0.004), and relatively high average levels of NPs in the urban sites compared to rural sites (p = 0.04), albeit showed no obvious seasonal differences (p = 0.78). For instance, the average PS levels in the Pearl River were in the following order: AQ 411.55 µg/L > SHP 81.75 µg/L > WWTP 56.66 µg/L > HS 47.75 µg/L in summer and HS 188.1 µg/L > SHP 103.55 µg/L > AQ 74.7 µg/L > WWTP 62.1 µg/L in winter. Source apportionment showed a higher contribution through domestic plastic waste emissions among urban sites, while rural sites showed an elevated contribution via aquaculture, agriculture, and surface run-off to the NP pollution. Risk assessment revealed that NPs at SHP and AQ sites posed a higher integrated risk in terms of pollution load index (PLI) than those at WWTP and HS sites. Regarding polymer hazard index (HI), 80 % of sampling sites in summer and 60 % of sampling sites in winter posed level III polymer risk, with PVC posing the highest risk. This study provides novel insights into the seasonal contamination and polymer risks of NP in the Pearl River, which will help to regulate the production and consumption of plastics in the region. ENVIRONMENTAL IMPLICATIONS: The contamination dynamics of field nanoplastics (NPs) in freshwater resources remain little understood, mainly attributed to analytical constraints. This study aims to highlight the spatiotemporal distribution of NPs in the Pearl River among various land use types, urban-rural comparison, seasonal comparison, their compositional profiles, potential sources, interaction with environmental factors, and ecological and polymer hazard assessments of investigated polymers in the full stretch of the Pearl River from Liuxi Reservoir to the Pearl River Delta (PRD) region. This study, with a comparatively large number of samples and NP polymers, will offer novel insights into the contamination profiles of nano-sized plastic particles in one of the important freshwater riverine systems in China.
Collapse
Affiliation(s)
- Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Shulin Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Hongping Liao
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Qiang Yue
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| |
Collapse
|
5
|
Liu S, Chen Q, Ding H, Song Y, Pan Q, Deng H, Zeng EY. Differences of microplastics and nanoplastics in urban waters: Environmental behaviors, hazards, and removal. WATER RESEARCH 2024; 260:121895. [PMID: 38875856 DOI: 10.1016/j.watres.2024.121895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are ubiquitous in the aquatic environment and have caused widespread concerns globally due to their potential hazards to humans. Especially, NPs have smaller sizes and higher penetrability, and therefore can penetrate the human barrier more easily and may pose potentially higher risks than MPs. Currently, most reviews have overlooked the differences between MPs and NPs and conflated them in the discussions. This review compared the differences in physicochemical properties and environmental behaviors of MPs and NPs. Commonly used techniques for removing MPs and NPs currently employed by wastewater treatment plants and drinking water treatment plants were summarized, and their weaknesses were analyzed. We further comprehensively reviewed the latest technological advances (e.g., emerging coagulants, new filters, novel membrane materials, photocatalysis, Fenton, ozone, and persulfate oxidation) for the separation and degradation of MPs and NPs. Microplastics are more easily removed than NPs through separation processes, while NPs are more easily degraded than MPs through advanced oxidation processes. The operational parameters, efficiency, and potential governing mechanisms of various technologies as well as their advantages and disadvantages were also analyzed in detail. Appropriate technology should be selected based on environmental conditions and plastic size and type. Finally, current challenges and prospects in the detection, toxicity assessment, and removal of MPs and NPs were proposed. This review intends to clarify the differences between MPs and NPs and provide guidance for removing MPs and NPs from urban water systems.
Collapse
Affiliation(s)
- Shuan Liu
- Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Haojie Ding
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 123456, China
| | - Yunqian Song
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Qixin Pan
- Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Huiping Deng
- Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Eddy Y Zeng
- Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
6
|
Yoon S, Song H, Dang YM, Ha JH. Elimination microplastic particles in brine process water for ensuring the safety of brined cabbage. Heliyon 2024; 10:e25984. [PMID: 38390085 PMCID: PMC10881328 DOI: 10.1016/j.heliyon.2024.e25984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/21/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Various studies have investigated the presence of microplastics (MPs) in food and their potential hazardous impact on human health. The frequency of human exposure to MPs, particularly through the consumption of manufactured food and drinking water, is increasing. However, data regarding MP contamination in brine and brined cabbage used for the production of kimchi are limited. Here, we quantified MPs in brine process water during the production of brined cabbage. Pretreatment of the brine process water by performing a filtration step resulted in an MP-removal efficiency of 98.7-100%; 3671 ± 174 MP particles were observed in brining process water that was not filtered. A glass filter, STS filter, and Si Filter showed significant MP-removal efficiency, decreasing the number of MP particles in brining process water to 2,361, 2,775, and 3,490, respectively (p < 0.05). Our results provide data on how filtering of brine can effectively safeguard kimchi from MP contamination and e can be produced. However, to overcome the limitations of our laboratory-scale study, additional technologies should be used in the future for large-scale filtration processes.
Collapse
Affiliation(s)
- Sora Yoon
- Hygienic Safety Materials Research Group, World Institute of Kimchi, Gwangju 61755, South Korea
| | - Hyeyeon Song
- Hygienic Safety Materials Research Group, World Institute of Kimchi, Gwangju 61755, South Korea
| | - Yun-Mi Dang
- Hygienic Safety Materials Research Group, World Institute of Kimchi, Gwangju 61755, South Korea
| | - Ji-Hyoung Ha
- Hygienic Safety Materials Research Group, World Institute of Kimchi, Gwangju 61755, South Korea
| |
Collapse
|
7
|
Zdarta A, Kaczorek E. Advances in electrospun materials for the adsorption and separation of environmental pollutants: A comprehensive review. ENVIRONMENTAL RESEARCH 2023; 236:116783. [PMID: 37517499 DOI: 10.1016/j.envres.2023.116783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Despite a broad range of new techniques developed, adsorption methods remain one of the technologies of choice for the removal of contaminants. However, significant progress has also been made in these, which finds reflection in a new spectrum of adsorbents that can be used. This comprehensive review discusses properties, advantages, and perspectives on the use of custom-made electrospun adsorbents in the processes of heavy metals, agrochemicals, and microplastic contaminants removal from the environment. It presents the versatility and adaptability of materials that can be used as electrospun fibers matrix, also considering the mechanism and parameters of the sorption process carried out with them. The presented review proves, that due to the use of new, custom-made sorbents, such as electrospun materials, the adsorption processes still possess great application potential and development opportunities to provide an attractive and effective alternative to other remediation techniques.
Collapse
Affiliation(s)
- Agata Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Greater Poland, Poland.
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Greater Poland, Poland.
| |
Collapse
|
8
|
Liu Q, Chen Y, Chen Z, Xie Y, Yu H, Yuan S, Guo Y, Cheng Y, Qian H, Yao W. Rapid magnetization and removal of microplastics from environment and food based on magnetic metal-organic framework Fe 3O 4@SiO 2@MIL-53(Al). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117373-117389. [PMID: 37867171 DOI: 10.1007/s11356-023-30314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023]
Abstract
Microplastics (MPs) are now not only emerging as pollutants in the environment, but their current state of contamination in food is also a cause for concern. It is necessary to focus how to control, reduce, and even remove MPs. In this study, a magnetic metal-organic framework (MOF) material, Fe3O4@SiO2@MIL-53(Al), was synthesized and applied to simulate the magnetization and removal of four types of MPs. Fe3O4@SiO2@MIL-53(Al) was characterized by various means to demonstrate its successful synthesis as a core-shell nanomaterial. The conditions of the method were optimized by examining the effect of time, the mass ratio of material to MPs, temperature, and pH on the removal effect. The removal rates of four MPs were 54.10-94.17%, and the maximum adsorption capacities of Fe3O4@SiO2@MIL-53(Al) that can be adsorbed were 10511.45-44390.24 mg g-1. Notably, the material can effectively magnetize and remove MPs from liquid food containing alcohol with highest efficiency of 97.10 ± 1.21%. Potential adsorption mechanisms were analyzed using kinetic, isothermal, and thermodynamic models, and electrostatic attraction and hydrogen bonding were found to play a dominant role in the adsorption process. In addition, not only can Fe3O4@SiO2@MIL-53(Al) be reused up to five times to maintain high removal rates, but it can also be used in food systems. Therefore, Fe3O4@SiO2@MIL-53(Al) not only has the advantages of ease of use and stability, but also can efficiently and quickly magnetize and remove many common MPs in more complex matrices such as food.
Collapse
Affiliation(s)
- Qingrun Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yulun Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Zhe Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu Province, China
| | - He Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu Province, China.
| |
Collapse
|
9
|
Li Z, Xie W, Zhang Z, Wei S, Chen J, Li Z. Multifunctional sodium alginate/chitosan-modified graphene oxide reinforced membrane for simultaneous removal of nanoplastics, emulsified oil, and dyes in water. Int J Biol Macromol 2023; 245:125524. [PMID: 37355070 DOI: 10.1016/j.ijbiomac.2023.125524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Membrane technology is widely recognized as an efficient and advanced approach for wastewater treatment. However, the development of environmentally friendly and versatile membranes capable of effectively removing multiple contaminants remains a significant challenge. Inspired by natural magnets, we developed a heterostructured membrane using biomass materials to achieve the efficient removal of multiple contaminants from wastewater. Specifically, a bionic three-layer SA/GO/CS composite membrane was prepared by using sodium alginate (SA) and chitosan (CS) to modify graphene oxide (GO), respectively, and then assembled to both sides of the glass fiber (GF) membrane. The composite membranes achieved 99.87 % and 97.10 % removal of NPs with particle sizes of 500 nm and 50 nm. Moreover, the membrane demonstrated superior separation performance for mixed wastewater, enabling effective treatment of a broad spectrum of contaminants. Additionally, the membrane exhibited excellent stability when exposed to strong acid and alkali environments and demonstrated good recyclability throughout the multiple contaminants removal process. The bionic membrane, prepared using a straightforward method proposed in this study, provides an effective approach for enhanced removal of multiple contaminants in water. These findings contribute to the advancement of eco-friendly and versatile wastewater treatment membranes, opening new possibilities for sustainable water purification technologies.
Collapse
Affiliation(s)
- Zichen Li
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Wei Xie
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Zheng Zhang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Shuxia Wei
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Jiaqi Chen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Zhili Li
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China.
| |
Collapse
|
10
|
Zhao L, Dou Q, Chen S, Wang Y, Yang Q, Chen W, Zhang H, Du Y, Xie M. Adsorption abilities and mechanisms of Lactobacillus on various nanoplastics. CHEMOSPHERE 2023; 320:138038. [PMID: 36736839 DOI: 10.1016/j.chemosphere.2023.138038] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
As a new type of pollutants, nanoplastics (NPs), which are easily ingested by humans from food wraps, salt, drinking water, have been widely detected in various water environments, and are a threat to human health. It is therefore urgent to develop an efficient method to remove NPs from the diet or relief its harm. In the present study, the possibility of a well-known human probiotic, lactic acid bacteria (LAB), was evaluated to remove NPs from food as an absorbent. The results indicated that LAB from infant feces could efficiently absorb three types NPs, i.e. polypropylene (PP), polyethylene (PE), and polyvinyl chloride (PVC) with the adsorption rates of PP > PE > PVC (PP 78.57%, PE 71.59%, PVC 66.57%) and the Nile red-stained NPs being aggregated on the surfaces of Lactobacillus cells. The smaller the particle size, the stronger the ability of NP adsorption on the cell surface. The hydrophobicity of NPs and bacterial cells affected the adsorption process. The measurement of adsorption rates of different cell components indicated that the overall adsorption effect of cell was better than that of individual cell component. The results of molecular dynamics analysis revealed that adsorption was mainly caused by electrostatic interactions, van der Waals forces, and hydrogen bonds. The hydrophobic interaction was also involved in adsorption process. Overall, this research may provide new information for developing new strategies for NPs removal in intestinal environment.
Collapse
Affiliation(s)
- Lili Zhao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China
| | - Qingnan Dou
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Shiyue Chen
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yinbin Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Qingxiang Yang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China.
| | - Wanrong Chen
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Hao Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Yirong Du
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Mengfei Xie
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| |
Collapse
|
11
|
Mastropietro TF. Metal-organic frameworks and plastic: an emerging synergic partnership. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2189890. [PMID: 37007671 PMCID: PMC10054298 DOI: 10.1080/14686996.2023.2189890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Mismanagement of plastic waste results in its ubiquitous presence in the environment. Despite being durable and persistent materials, plastics are reduced by weathering phenomena into debris with a particle size down to nanometers. The fate and ecotoxicological effects of these solid micropollutants are not fully understood yet, but they are raising increasing concerns for the environment and people's health. Even if different current technologies have the potential to remove plastic particles, the efficiency of these processes is modest, especially for nanoparticles. Metal-organic frameworks (MOFs) are crystalline nano-porous materials with unique properties, have unique properties, such as strong coordination bonds, large and robustus porous structures, high accessible surface areas and adsorption capacity, which make them suitable adsorbent materials for micropollutants. This review examines the preliminary results reported in literature indicating that MOFs are promising adsorbents for the removal of plastic particles from water, especially when MOFs are integrated in porous composite materials or membranes, where they are able to assure high removal efficiency, superior water flux and antifouling properties, even in the presence of other dissolved co-pollutants. Moreover, a recent trend for the alternative preparation of MOFs starting from plastic waste, especially polyethylene terephthalate, as a sustainable source of organic linkers is also reviewed, as it represents a promising route for mitigating the impact of the costs deriving from the widescale MOFs production and application. This connubial between MOFs and plastic has the potential to contribute at implementing a more effective waste management and the circular economy principles in the polymer life cycle.
Collapse
|
12
|
Liu Q, Chen Y, Chen Z, Yang F, Xie Y, Yao W. Current status of microplastics and nanoplastics removal methods: Summary, comparison and prospect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:157991. [PMID: 35964738 DOI: 10.1016/j.scitotenv.2022.157991] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/17/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
In modern society, plastics also play an indispensable role in people's lives due to their various excellent properties. However, when these plastic products are discarded after being used, after being subjected to external influences, they will continue to be worn, damaged and degraded into micro- and nano-scale plastics, which are microplastics and nanoplastics (M/NPs). Although people's attention has been paid to M/NPs at present, the focus is still mainly on the detection and hazard of M/NPs, and how to remove M/NPs is relatively less popular. This review was written in order to draw the attention of more researchers to remove M/NPs. This review first briefly introduces the research background of M/NPs, and also shows the main analytical methods currently used for qualitative and quantitative M/NPs. Then, most of the current literature on the removal of M/NPs was collected, and they were classified, summarized, and introduced according to the classification of physical, physicochemical, and biological methods. The advantages and disadvantages of various methods are summarized, and they are also compared, which can help more researchers choose the appropriate method for research. In addition, the application scenarios of these methods are briefly introduced. Finally, some future research directions are proposed for the current research status of M/NPs removal. It is hoped that this will further promote the development on the method of removing M/NPs.
Collapse
Affiliation(s)
- Qingrun Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yulun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Zhe Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
13
|
Mohana AA, Rahman M, Sarker SK, Haque N, Gao L, Pramanik BK. Nano/microplastics: Fragmentation, interaction with co-existing pollutants and their removal from wastewater using membrane processes. CHEMOSPHERE 2022; 309:136682. [PMID: 36195121 DOI: 10.1016/j.chemosphere.2022.136682] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 05/09/2023]
Abstract
NANO: and microplastic (NP/MP) is one of the most challenging types of micropollutants, coming from either direct release or degradation of plastic items into ecosystems. NP/MP can adsorb hazardous pollutants (such as heavy metals and pharmaceutical compounds) and pathogens onto their surface that are consumed by humans, animals, and aquatic living organisms. This paper presents the interaction of NP/MP with other pollutants in the water environment and mechanisms involved to enable the ultimate fate of NP/MP as well as the effectiveness of metal-organic frame (MOF)-based membrane over conventional membrane processes for NP/MP removal. It is found that conventional membranes could remove MPs when their size is usually more than 1000 nm, but they are ineffective in removing NPs. These NPs have potentially greater health impacts due to their greater surface area. MOF-based membrane could effectively remove both NP and MP due to its large porous structure, high adsorption capacity, and low density. This paper also discusses some challenges associated with MOF-based membranes for NP/MP removal. Finally, we conclude a specific MOF-based ultrafiltration membrane (ED-MIL-101 (Cr)) that can potentially remove both negative and positive charged NP/MP from wastewater by electrostatic attraction and repulsion force with efficient water permeability.
Collapse
Affiliation(s)
- Anika Amir Mohana
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Mahbubur Rahman
- Chittagong University of Engineering and Technology, Bangladesh
| | | | - Nawshad Haque
- CSIRO Mineral Resources, Clayton South, Melbourne, VIC, 3169, Australia
| | - Li Gao
- South East Water, Frankston, Victoria, 3199, Australia
| | | |
Collapse
|
14
|
Kokilathasan N, Dittrich M. Nanoplastics: Detection and impacts in aquatic environments - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157852. [PMID: 35944628 DOI: 10.1016/j.scitotenv.2022.157852] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The rise in the global production of plastics has led to severe concerns about the impacts of plastics in aquatic environments. Although plastic materials degrade over extreme long periods, they can be broken down through physical, chemical, and/or biological processes to form microplastics (MPs), defined here as particles between 1 μm and 5 mm in size, and later to form nanoplastics (NPls), defined as particles <1 μm in size. We know little about the abundance and effects of NPls, even though a lot of research has been conducted on the ecotoxicological impacts of MPs on both aquatic biota. Nevertheless, there is evidence that NPls can both bypass the cell membranes of microorganisms and bioaccumulate in the tissues and organs of higher organisms. This review analyzes 150 publications collected by searching through the databases Web of Science, SCOPUS, and Google Scholar using keywords such as nanoplastics*, aquatic*, detection*, toxic*, biofilm*, formation*, and extracellular polymeric substance* as singular or plural combinations. We highlight and critically synthesize current studies on the formation and degradation of NPls, NPls' interactions with aquatic biota and biofilm communities, and methods of detection. One reason for the missing data and studies in this area of research is the lack of a protocol for the detection of, and suitable methods for the characterization of, NPls in the field. Our primary aim is to identify gaps in knowledge throughout the review and define future directions of research to address the impacts of NPls in aquatic environments. The development of consistent and standardized sets of procedures would address the gaps in knowledge regarding the formation and degradation of NPls as well as sampling and characterizing natural NPls needed to observe the full extent of NPls on aquatic biota and biofilm communities.
Collapse
Affiliation(s)
- Nigarsan Kokilathasan
- Biogeochemistry Group, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON M1C1A4, Canada
| | - Maria Dittrich
- Biogeochemistry Group, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON M1C1A4, Canada.
| |
Collapse
|
15
|
Keerthana Devi M, Karmegam N, Manikandan S, Subbaiya R, Song H, Kwon EE, Sarkar B, Bolan N, Kim W, Rinklebe J, Govarthanan M. Removal of nanoplastics in water treatment processes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157168. [PMID: 35817120 DOI: 10.1016/j.scitotenv.2022.157168] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Nanoplastics are drawing a significant attention as a result of their propensity to spread across the environment and pose a threat to all organisms. The presence of nanoplastics in water is given attention nowadays as the transit of nanoplastics occurs through the aquatic ecosphere besides terrestrial mobility. The principal removal procedures for macro-and micro-plastic particles are effective, but nanoparticles escape from the treatment, increasing in the water and significantly influencing the society. This critical review is aimed to bestow the removal technologies of nanoplastics from aquatic ecosystems, with a focus on the treatment of freshwater, drinking water, and wastewater, as well as the importance of transit and its impact on health concerns. Still, there exists a gap in providing a collective knowledge on the methods available for nanoplastics removal. Hence, this review offered various nanoplastic removal technologies (microorganism-based degradation, membrane separation with a reactor, and photocatalysis) that could be the practical/effective measures along with the traditional procedures (filtration, coagulation, centrifugation, flocculation, and gravity settling). From the analyses of different treatment systems, the effectiveness of nanoplastics removal depends on various factors, source, size, and type of nanoplastics apart from the treatment method adopted. Combined removal methods, filtration with coagulation offer great scope for the removal of nanoplastics from drinking water with >99 % efficiency. The collected data could serve as base-line information for future research and development in water nanoplastics cleanup.
Collapse
Affiliation(s)
- M Keerthana Devi
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - N Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India.
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - Hocheol Song
- Department of Environment and Energy, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, South Korea
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Nanthi Bolan
- School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India; Department of Environment and Energy, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, South Korea.
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.
| |
Collapse
|
16
|
Fine regulation on hour-glass like spongy structure of polyphenylsulfone (PPSU)/sulfonated polysulfone (SPSf) microfiltration membranes via a vapor-liquid induced phase separation (V-LIPS) technique. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Hanif MA, Ibrahim N, Dahalan FA, Md Ali UF, Hasan M, Jalil AA. Microplastics and nanoplastics: Recent literature studies and patents on their removal from aqueous environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152115. [PMID: 34896138 DOI: 10.1016/j.scitotenv.2021.152115] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
The presence of microplastics (MP) and nanoplastics (NP) in the environment poses significant hazards towards microorganisms, humans, animals and plants. This paper is focused on recent literature studies and patents discussing the removal process of these plastic pollutants. Microplastics and nanoplastics can be quantified by counting, weighing, absorbance and turbidity and can be further analyzed using scanning electron microscopy (SEM), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, surface-enhanced Raman spectroscopy and Raman tweezers. Mitigation methods reported are categorized depending on the removal characteristics: (i) Filtration and separation method: Filtration and separation, electrospun nanofiber membrane, constructed wetlands; (ii) Capture and surface attachment method: coagulation, flocculation and sedimentation (CFS), electrocoagulation, adsorption, magnetization, micromachines, superhydrophobic materials and microorganism aggregation; and (iii) Degradation method: photocatalytic degradation, microorganism degradation and thermal degradation; where removal efficiency between 58 and 100% were reported. As these methods are significantly distinctive, the parameters which affect the MP/NP removal performance e.g., pH, type of plastics, presence of interfering chemicals or ions, surface charges etc. are also discussed. 42 granted international patents related to microplastics and nanoplastics removal are also reviewed where the majority of these patents are focused on separation or filtration devices. These devices are efficient for microplastics up to 20 μm but may be ineffective for nanoplastics or fibrous plastics. Several patents were found to focus on methods similar to literature studies e.g., magnetization, CFS, biofilm and microorganism aggregation; with the addition of another method: thermal degradation.
Collapse
Affiliation(s)
- Muhammad Adli Hanif
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Naimah Ibrahim
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia; Water Research and Environmental Sustainability Growth (WAREG), Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.
| | - Farrah Aini Dahalan
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia; Water Research and Environmental Sustainability Growth (WAREG), Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Umi Fazara Md Ali
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Masitah Hasan
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia; Water Research and Environmental Sustainability Growth (WAREG), Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Aishah Abdul Jalil
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, 81310 Skudai, Johor, Malaysia
| |
Collapse
|
18
|
Yogarathinam LT, Usman J, Othman MHD, Ismail AF, Goh PS, Gangasalam A, Adam MR. Low-cost silica based ceramic supported thin film composite hollow fiber membrane from guinea corn husk ash for efficient removal of microplastic from aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127298. [PMID: 34571470 DOI: 10.1016/j.jhazmat.2021.127298] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/01/2021] [Accepted: 09/17/2021] [Indexed: 05/26/2023]
Abstract
In this study, an economic silica based ceramic hollow fiber (HF) microporous membrane was fabricated from guinea cornhusk ash (GCHA). A silica interlayer was coated to form a defect free silica membrane which serves as a support for the formation of thin film composite (TFC) ceramic hollow fiber (HF) membrane for the removal of microplastics (MPs) from aqueous solutions. Polyacrylonitrile (PAN), polyvinyl-chloride (PVC), polyvinylpyrrolidone (PVP) and polymethyl methacrylate (PMMA) are the selected MPs The effects of amine monomer concentration (0.5 wt% and 1 wt%) on the formation of poly (piperazine-amide) layer via interfacial polymerization over the GCHA ceramic support were also investigated. The morphology analysis of TFC GCHA HF membranes revealed the formation of a poly (piperazine-amide) layer with narrow pore arrangement. The pore size of TFC GCHA membrane declined with the formation of poly (piperazine-amide) layer, as evidenced from porosimetry analysis. The increase of amine concentration reduced the porosity and water flux of TFC GCHA HF membranes. During MPs filtration, 1 wt% (piperazine) based TFC GCHA membrane showed a lower transmission percentage of PVP (2.7%) and other suspended MPs also displayed lower transmission. The impact of humic acid and sodium alginate on MPs filtration and seawater pretreatment were also analyzed.
Collapse
Affiliation(s)
- Lukka Thuyavan Yogarathinam
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Jamilu Usman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Department of Chemistry, Faculty of Science, Sokoto State University, P.M.B. 2134, Sokoto, Sokoto State, Nigeria
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Arthanareeswaran Gangasalam
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology Tiruchirappalli, 620015, India
| | - Mohd Ridhwan Adam
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| |
Collapse
|
19
|
Wan H, Mills R, Wang Y, Wang K, Xu S, Bhattacharyya D, Xu Z. Gravity-driven electrospun membranes for effective removal of perfluoro-organics from synthetic groundwater. J Memb Sci 2022; 644:120180. [PMID: 35911189 PMCID: PMC9337624 DOI: 10.1016/j.memsci.2021.120180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are emerging contaminants in water and soil. Electrospun membranes with open structure could treat PFAS in a gravity-driven mode with ultralow pressure needs. The electrospun ultrathin fibers (67 ± 27 nm) was prepared for the enhanced specific surface area; where polyvinylidene fluoride (PVDF) backbones and the grafted quaternary ammonium moieties (QA; PVDF-g-QA membranes) provided both hydrophobicity and anion-exchange ability (electrostatic interaction). High affinity towards the perfluorooctanoic acid (PFOA)/perfluorooctanesulfonic acid (PFOS) molecules (denoted as PFOX collectively) was observed, and >95% PFOX was removed from synthetic groundwater with a flux of 32.3 Lm-2h-1 at ΔPo = 313 Pa. With a higher octanol/water partitioning coefficient (Log Kow = 6.3) and close dispersion interaction parameter to the membrane backbones (16.6% difference in δd), the effective PFOS removal remained under alkaline and high conductivity conditions due to the intensive hydrophobic interaction compared to that of PFOA. Long-term studies exhibited >90% PFOX removal in an 8 h test with a capacity of 258 L/m2. Under mild regeneration conditions, PFOA and PFOS were concentrated by 35-fold and 39-fold, respectively. Overall, the gravity-driven electrospun PVDF-g-QA membranes, with adsorptive effectiveness and ease of regeneration, showed great potential in PFAS remediation.
Collapse
Affiliation(s)
- Hongyi Wan
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Rollie Mills
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506, USA
| | - Yixing Wang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Keyu Wang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Sunjie Xu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506, USA
| | - Zhi Xu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
20
|
Kumarage S, Munaweera I, Kottegoda N. A comprehensive review on electrospun nanohybrid membranes for wastewater treatment. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:137-159. [PMID: 35186649 PMCID: PMC8822457 DOI: 10.3762/bjnano.13.10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Electrospinning, being a versatile and straightforward method to produce nanofiber membranes, has shown significant advancement in recent years. On account of the unique properties such as high surface area, high porosity, mechanical strength, and controllable surface morphologies, electrospun nanofiber membranes have been found to have a great potential in many disciplines. Pure electrospun fiber mats modified with different techniques of surface modification and additive incorporation have exhibited enhanced properties compared to traditional membranes and are even better than the as-prepared electrospun membranes. In this review, we have summarized recently developed electrospun nanohybrids fabricated by the incorporation of functional specific nanosized additives to be used in various water remediation membrane techniques. The adsorption, filtration, photocatalytic, and bactericidal capabilities of the hybrid membranes in removing common major water pollutants such as metal ions, dyes, oils, and biological pollutants have been discussed. Finally, an outlook on the future research pathways to fill the gaps existing in water remediation have been suggested.
Collapse
Affiliation(s)
- Senuri Kumarage
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Imalka Munaweera
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
- Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Nilwala Kottegoda
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
- Centre for Advanced Materials Research (CAMR), Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| |
Collapse
|
21
|
Wang Q, Peng Y, Ji X, Hadi MK, Zhang S, Tang J, Ran F. Conductive 3D networks in a 2D layer for high performance ultrafiltration membrane with high flux-retention and robust cyclic stability. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Mohana AA, Farhad SM, Haque N, Pramanik BK. Understanding the fate of nano-plastics in wastewater treatment plants and their removal using membrane processes. CHEMOSPHERE 2021; 284:131430. [PMID: 34323805 DOI: 10.1016/j.chemosphere.2021.131430] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/20/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Nanoplastics (NPs) have become a major environmental issue due to their adverse effect on the water environment. Wastewater treatment plant (WWTP) is considered as one of the main sources for breaking down of larger-sized plastic debris and microplastics (MPs) into NPs. This study aims to provide a comprehensive understanding of NPs generation in the WWTPs, their physiochemical characteristics and interaction with the WWTPs. It is found that cracking is the major mechanism of plastics fragmentation in the WWTPs. This review also discusses the current membrane process used for NPs removal. It is found that conventional membrane processes are ineffective as they are not designed for NPs removal and fouling is a major obstacle for its application. Therefore, this study concludes by providing an outlook of developing a bio-nanofiltration process that can be used as a tertiary treatment for removing NPs and other components present in water. Such a process can produce NPs-free water for non-potable use or safe discharge into open waterways.
Collapse
Affiliation(s)
- Anika Amir Mohana
- Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia, Bangladesh
| | - S M Farhad
- Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia, Bangladesh
| | - Nawshad Haque
- CSIRO Mineral Resources, Clayton South, Melbourne, VIC, 3169, Australia
| | | |
Collapse
|
23
|
Gnanasekaran G, G A, Mok YS. A high-flux metal-organic framework membrane (PSF/MIL-100 (Fe)) for the removal of microplastics adsorbing dye contaminants from textile wastewater. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Rius-Ayra O, Biserova-Tahchieva A, López-Jiménez I, Llorca-Isern N. Superhydrophobic and nanostructured CuFeCo powder alloy for the capture of microplastics. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Kundu A, Shetti NP, Basu S, Reddy KR, Nadagouda MN, Aminabhavi TM. Identification and removal of micro- and nano-plastics: Efficient and cost-effective methods. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 421:10.1016/j.cej.2021.129816. [PMID: 34504393 PMCID: PMC8422880 DOI: 10.1016/j.cej.2021.129816] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) have gained much attention in recent years because of their ubiquitous presence, which is the widely acknowledged threat to the environment. MPs can be <5 mm size, while NPs are <100 nm, and both can be detected in various forms and shapes in the environment to alleviate their harmful effects on aquatic species, soil organisms, birds, and humans. In efforts to address these issues, the present review discusses about sampling methods for water, sediments, and biota along with their merits and demerits. Various identification techniques such as FTIR, Raman, ToF-SIMS, MALDI TOF MS, and ICP-MS are critically discussed. The detrimental effects caused by MPs and NPs are discussed critically along with the efficient and cost-effective treatment processes including membrane technologies in order to remove plastics particles from various sources to mitigate their environmental pollution and risk assessment.
Collapse
Affiliation(s)
- Aayushi Kundu
- School of Chemistry and Biochemistry, Affiliate Faculty—TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Nagaraj P. Shetti
- Department of Chemistry, K.L.E. Institute of Technology, Hubballi 580 027, Karnataka, India
| | - Soumen Basu
- School of Chemistry and Biochemistry, Affiliate Faculty—TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mallikarjuna N. Nadagouda
- The United States Environmental Protection Agency, ORD, CESER, WID, CMTB, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA
| | | |
Collapse
|
26
|
Ganie ZA, Khandelwal N, Tiwari E, Singh N, Darbha GK. Biochar-facilitated remediation of nanoplastic contaminated water: Effect of pyrolysis temperature induced surface modifications. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126096. [PMID: 34229390 DOI: 10.1016/j.jhazmat.2021.126096] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
Abstract
"Nanoplastics- the emerging contaminants" and "agricultural waste to resource conversion" both are currently at the scientific frontiers and require solutions. This study aims to utilize sugarcane bagasse-derived biochar for the removal of nanoplastics (NPs) from aqueous environment. Three types of biochar were synthesized at three different pyrolysis temperatures, i.e. 350, 550, and 750 ℃ and evaluated for their potential in removing NPs. Effect of various environmental parameters, i.e., competing ions, pH, humic acid and complex aqueous matrices on NPs sorption was also studied. Results showed that attributing to decreased carbonyl functional groups, increased surface area and pore abundance, biochar prepared at 750 ℃ showed drastically higher NPs removal (>99%), while BC-550 and BC-350 showed comparatively lower NPs sorption (<39% and <24%, respectively). Further sorption studies confirmed instantaneous NPs removal with equilibrium attainment within 5 min of interaction and efficient NPs sorption capacity, i.e. 44.9 mg/g for biochar prepared at 750 ℃. Non-linear-kinetic modeling suggested pseudo 1st order removal kinetics while isotherm and thermodynamic modeling confirmed- monolayer instantaneous sorption of NPs sorption. Enhanced electrostatic repulsion resulted in decrease in NPs sorption at alkaline conditions, whereas steric hindrance caused limited removal (<25%) at higher humic acid concentrations.
Collapse
Affiliation(s)
- Zahid Ahmad Ganie
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741246, India
| | - Nitin Khandelwal
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741246, India
| | - Ekta Tiwari
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741246, India
| | - Nisha Singh
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741246, India
| | - Gopala Krishna Darbha
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education, and Research, Kolkata, Mohanpur, West Bengal 741246, India.
| |
Collapse
|
27
|
Batool A, Valiyaveettil S. Surface functionalized cellulose fibers - A renewable adsorbent for removal of plastic nanoparticles from water. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125301. [PMID: 33588331 DOI: 10.1016/j.jhazmat.2021.125301] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/16/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Both micro- and nanoparticles of common plastic materials are considered as emerging pollutants with significant impact on the environment owing to large concentration, high stability and widespread distribution. To mitigate the risk of such pollutants, new methodologies for the detection and removal of plastic nanoparticles from the environment are needed. Here, a simple and effective method of using surface modified cellulose fibers for the removal of polymer nanoparticles from spiked water samples is discussed in detail. Almost quantitative (> 98%) removal of polymer nanoparticles and high adsorption efficiencies were obtained within 30 minutes. The mechanism of adsorption of polymer nanoparticles on the surface of PEI@CE fibers was monitored by Fourier transform infrared (FTIR) spectroscopy, kinetic studies, thermal analyses, changes in zeta potentials and scanning electron microscopy (SEM). The renewable adsorbent PEI@CE is a promising material for a wide range of applications owing to biodegradability, easy accessibility, and high extraction efficiencies.
Collapse
Affiliation(s)
- Asma Batool
- Department of Chemistry, National University of Singapore, 3 Science Drive 3,117543, Singapore
| | - Suresh Valiyaveettil
- Department of Chemistry, National University of Singapore, 3 Science Drive 3,117543, Singapore.
| |
Collapse
|
28
|
Karimi Estahbanati MR, Kiendrebeogo M, Khosravanipour Mostafazadeh A, Drogui P, Tyagi RD. Treatment processes for microplastics and nanoplastics in waters: State-of-the-art review. MARINE POLLUTION BULLETIN 2021; 168:112374. [PMID: 33895392 DOI: 10.1016/j.marpolbul.2021.112374] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/17/2021] [Accepted: 04/09/2021] [Indexed: 05/06/2023]
Abstract
In this work, established treatment processes for microplastics (MPs) and nanoplastics (NPs) in water as well as developed analytical techniques for evaluation of the operation of these processes were reviewed. In this regard, the strengths and limitations of different qualitative and quantitative techniques for the analysis of MPs and NPs in water treatment processes were first discussed. Afterward, the MPs and NPs treatment processes were categorized into the separation and degradation processes and the challenges and opportunities in their performance were analyzed. The evaluation of these processes revealed that the MPs or NPs removal efficiency of the separation and degradation processes could reach up to 99% and 90%, respectively. It can be concluded from this work that the combination of separation and degradation processes could be a promising approach to mineralize MPs and NPs in water with high efficiency.
Collapse
Affiliation(s)
- M R Karimi Estahbanati
- Institut national de la recherche scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 rue de la Couronne, Québec, (QC) G1K 9A9, Canada.
| | - Marthe Kiendrebeogo
- Institut national de la recherche scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 rue de la Couronne, Québec, (QC) G1K 9A9, Canada
| | - Ali Khosravanipour Mostafazadeh
- Institut national de la recherche scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 rue de la Couronne, Québec, (QC) G1K 9A9, Canada; Institut de recherche et de développement en agroenvironnement, 2700 Rue Einstein, Québec, QC G1P 3W8, Canada
| | - Patrick Drogui
- Institut national de la recherche scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 rue de la Couronne, Québec, (QC) G1K 9A9, Canada.
| | - R D Tyagi
- Distinguished Prof, School of Technology, Huzhou University, China; BOSK Bioproducts, 100-399 rue Jacquard, Québec G1N 4J6, Canada
| |
Collapse
|
29
|
Rius-Ayra O, Biserova-Tahchieva A, LLorca-Isern N. Surface-functionalised materials for microplastic removal. MARINE POLLUTION BULLETIN 2021; 167:112335. [PMID: 33839572 DOI: 10.1016/j.marpolbul.2021.112335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Microplastic (MP) pollution is a matter of great concern attracting increasing attention due to its adverse effects on the environment. Different technologies and methodologies have been developed to remove these pollutants. Herein, we focus on a promising environmental solution that involves surface modification to change the wettability properties of MPs or solid materials by conferring superhydrophobicity and superoleophilicity to increase the selectivity for MP separation. Both processes can be used to selectively separate MPs because of the changes in the wettable properties of the MP or by changing the oil used in the case of superhydrophobic surfaces. We show two distinct methods based on changing the wettability properties of surfaces that could lead to innovative and environmental applications. We also discuss some of the challenges that need to be overcome.
Collapse
Affiliation(s)
- O Rius-Ayra
- CPCM Departament de Ciència dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1 - 11, 08028 Barcelona, Spain.
| | - A Biserova-Tahchieva
- CPCM Departament de Ciència dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1 - 11, 08028 Barcelona, Spain
| | - N LLorca-Isern
- CPCM Departament de Ciència dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1 - 11, 08028 Barcelona, Spain
| |
Collapse
|
30
|
Liu Y, Li J, Wu L, Wan D, Shi Y, He Q, Chen J. Synergetic adsorption and Fenton-like degradation of tetracycline hydrochloride by magnetic spent bleaching earth carbon: Insights into performance and reaction mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143956. [PMID: 33352346 DOI: 10.1016/j.scitotenv.2020.143956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
In this study, the synergetic adsorption and Fenton-like degradation of tetracycline hydrochloride (TCH) by magnetic spent bleaching earth carbon (Mag-SBE@C) with H2O2 were developed and performed, with 91.5% of TCH degradation efficiency and 42.1% of TOC removal efficiency. The effects of the reaction parameters (temperature, initial pH, catalyst dosage, molar ratio of TCH to H2O2) on TCH degradation in Mag-SBE@C/H2O2 system were studied. Under the optimal conditions (temperature 41.1 °C, initial pH 4.89 and molar ratio of H2O2 to TCH 114.435) forecasted by response surface methodology (RSM), high TCH degradation efficiency (99%) was achieved. Also, four cycling tests were performed to confirm the excellent stability and regeneration ability of Mag-SBE@C in presence of H2O2. In addition, the characteristics of Mag-SBE@C after reaction are analyzed in details via scanning electron microscope (SEM), energy dispersive spectrometer (EDS), Brunner-Emmet-Teller (BET), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectrum (FTIR) and X-ray diffraction (XRD), and it was found that Fe3O4 nanoparticles on Mag-SBE@C surface acted as co-catalyst and participated in degradation and improved reaction efficiency, while its properties were not greatly changed. The quenching experiments showed that hydroxyl radicals on Mag-SBE@C surface (OHadsorption) were dominant in Mag-SBE@C/H2O2 system. Meanwhile, three possible TCH degradation pathways were given based on the possible intermediates determined by liquid chromatography quadrupole-time-of-flight mass spectrometry (LC-Q-TOF-MS/MS). Mag-SBE@C is an excellent heterogeneous Fenton-like catalyst, exhibiting greatly potential to antibiotics elimination.
Collapse
Affiliation(s)
- Yongde Liu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan Academician Workstation of Combined Pollution Control and Research, Zhengzhou, Henan 450001, China.
| | - Jinsong Li
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Lairong Wu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Dongjin Wan
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan Academician Workstation of Combined Pollution Control and Research, Zhengzhou, Henan 450001, China.
| | - Yahui Shi
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan Academician Workstation of Combined Pollution Control and Research, Zhengzhou, Henan 450001, China
| | - Qiaochong He
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan Academician Workstation of Combined Pollution Control and Research, Zhengzhou, Henan 450001, China
| | - Jing Chen
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan Academician Workstation of Combined Pollution Control and Research, Zhengzhou, Henan 450001, China
| |
Collapse
|
31
|
Rius-Ayra O, Llorca-Isern N. A robust and anticorrosion non-fluorinated superhydrophobic aluminium surface for microplastic removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:144090. [PMID: 33348156 DOI: 10.1016/j.scitotenv.2020.144090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/10/2020] [Accepted: 11/22/2020] [Indexed: 05/26/2023]
Abstract
Solid particulate pollutants such as microplastics constitute a global environmental issue in the 21st century. Many studies are exploring ways of removing these particles from marine environments such as seas and oceans. Here, we present a superhydrophobic surface obtained by combining anodisation and the liquid-phase deposition of lauric acid. The superhydrophobic surface was examined by field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) to elucidate its hierarchical structure and wetting state, while time-of-flight secondary ion mass spectrometry (TOF-SIMS) and high-resolution X-ray photoelectron spectroscopy (HR-XPS) were applied to identify the chemical composition of the surface, which revealed that aluminium laurate decreased the surface free energy. As microplastics are usually found in saline water, it was important to study the anticorrosion properties of the surface. Polarisation curves of the anodised surface showed excellent anticorrosion properties in 3.5 wt% NaCl aqueous solution, which was enhanced by the superhydrophobic properties when the aluminium surface was anodised for 60 min. The functionalised surface was superhydrophobic (154°) and superoleophilic (0°). These wetting properties allowed the surface to remove microplastics from the NaCl aqueous solution with an efficiency higher than 99%. Thus, we present a novel application of a superhydrophobic and anticorrosive surface in the removal of microplastics. This has not been reported previously and provides a new scope for superwettable materials and their environmental applications.
Collapse
Affiliation(s)
- Oriol Rius-Ayra
- CPCM, Departament de Ciència dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| | - Nuria Llorca-Isern
- CPCM, Departament de Ciència dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
32
|
Gaylarde CC, Baptista Neto JA, da Fonseca EM. Nanoplastics in aquatic systems - are they more hazardous than microplastics? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115950. [PMID: 33303235 DOI: 10.1016/j.envpol.2020.115950] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 05/20/2023]
Abstract
The fragmentation of plastic materials into nanoparticles of less than 1000 nm (secondary nanoplastics) and their possible accumulation in the environment is a recent matter of concern. There are still no suitable standard methods for determining the concentrations and chemical makeup of these particles in aquatic systems and the fate and effect of nanoplastics in the aquatic environment has been little explored, although there has been research using engineered nanoparticles as models. In this review, we give a summary of the (mainly laboratory-based) studies on the influences of nanoplastics. We aim to provide an updated overview of this emerging topic, reviewing the literature mainly from 2018 onwards and considering the effects of nanoplastics on ecosystems, their uptake and transport of polluting molecules, and the challenges that are faced by workers in this area. The review includes 119 references.
Collapse
Affiliation(s)
- Christine C Gaylarde
- Department of Microbiology and Plant Biology, Oklahoma University, 770 Van Vleet Oval, Norman, OK, 73019, USA.
| | - José Antonio Baptista Neto
- Department of Geology and Geophysics/LAGEMAR, Instituto de Geociências, Universidade Federal Fluminense, Avenida Litorânea s/n, 24210-340, Niterói, RJ, Brazil.
| | - Estefan Monteiro da Fonseca
- Department of Geology and Geophysics/LAGEMAR, Instituto de Geociências, Universidade Federal Fluminense, Avenida Litorânea s/n, 24210-340, Niterói, RJ, Brazil.
| |
Collapse
|
33
|
Affiliation(s)
- Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|