1
|
Liu Z, Tan H, Shao Y, Nie G, Hou Z, Yang P, Li S, Liu C. Membrane-based adsorbent materials for uranium extraction from seawater: recent progress and future prospects. NANOSCALE 2025; 17:9764-9785. [PMID: 40136246 DOI: 10.1039/d4nr04603j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The global energy shortage is becoming increasingly severe, making it urgent to address the energy deficit. Nuclear energy is considered a green, efficient and clean energy source. The reserves of uranium, an essential strategic nuclear fuel resource, have become pivotal in addressing the energy crisis. Compared to uranium resources on land, the ocean is rich in uranium. Therefore, uranium extraction from seawater has become an ideal choice. However, the variety of competing ions in seawater, its high salinity and the complex marine environment make uranium extraction from seawater a huge challenge. In the context of assessing the economics and sustainability of the entire uranium separation process, membrane-based adsorbents are considered ideal materials for large-scale uranium extraction from seawater due to their ease of collection and reuse. This review discusses different types of membrane-based adsorbent materials, including modified non-woven membranes, phase conversion membranes, and other types of membrane materials. In addition, this review summarizes recent studies on the use of membrane-based adsorbents for extracting uranium from seawater and the prospects for their development. With the rapid development of membrane-based adsorbents for uranium extraction from seawater, this review also discusses the challenges and future prospects of this frontier field.
Collapse
Affiliation(s)
- Zhong Liu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China.
- Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lake, Xining, Qinghai 810008, China
| | - Huanhuan Tan
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China.
| | - Yuling Shao
- Xi'an North Huian Chemical Industries Co., Ltd, Xi'an 710302, China
| | - Guoliang Nie
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China.
- Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lake, Xining, Qinghai 810008, China
| | - Zewei Hou
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China.
- Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lake, Xining, Qinghai 810008, China
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China.
| | - Peipei Yang
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China.
| | - Songwei Li
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China.
| | - Chuntai Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China.
| |
Collapse
|
2
|
He H, Wang X, Huang X, Wang X, Zhu H, Chen F, Wu X, Wu H, Ma J, Wen X. Leveraging almost hydrophobic PVDF membrane and in-situ ozonation in O 3/UF/BAC system for superior anti-fouling and rejection performance in drinking water treatment. WATER RESEARCH 2025; 274:123105. [PMID: 39798531 DOI: 10.1016/j.watres.2025.123105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/16/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The almost hydrophobic PVDF membrane (PVDF matrix) commonly exhibited excellent performance in pollutant rejection but with poor anti-fouling performance. This study intended to develop the rejection performance and enhance anti-fouling of the PVDF membrane in an O3/UF/BAC system for high quality water production through leveraging the advantages of in-situ ozonation and the nature of the PVDF membrane. Reduced density gradient (RDG) analysis demonstrated that the PVDF membrane exhibited excellent ozone resistance by reducing hydrogen bonds and electrostatic interactions between the membrane surface and ozone. Consequently, the physicochemical properties of the PVDF membrane remained unchanged in the laboratory continuous flow experiment with in-situ ozonation at 2.86 mg/L. The almost hydrophobicity of the PVDF membrane not only resisted fouling but also facilitated the reaction between ozone and foulants of higher concentrations locally at membrane surface, leading to dynamic changes in membrane fouling, with TMP/TMP0 initially increasing, then decreasing and stable. Therefore, the Rtotal, Rcake and Rgel of the PVDF membrane decreased by 47.40 %, 46.79 % and 50.99 % as compared to the UF/BAC system, respectively, in the O3/UF/BAC system. In-situ ozonation transformed macromolecular substances into micromolecules, particularly organic matter with lignin/carboxylic-rich alicyclic molecules and aromatic structures. The majority of these micromolecules were either rejected by the deposited foulants layer through Van der Waals interaction and utilized as a carbon source by membrane surface microorganisms (eg., Curvibacter and Methyloversatilis), or further degraded by microorganism in the BAC unit. This resulted in a 19.34 % and 40.58 % reduction in CODMn concentrations in the UF and BAC effluents, respectively. The system's anti-fouling and water purification performance observed in laboratory experiments was confirmed in a pilot test, providing new insights into the use of in-situ ozonation and organic membranes.
Collapse
Affiliation(s)
- Haiyang He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiao Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaomao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Fengxiang Chen
- CITIC Environment Investment Group Co., Ltd., Beijing, 100020, China
| | - Xianzhi Wu
- CITIC Environment Investment Group Co., Ltd., Beijing, 100020, China
| | - Huifeng Wu
- CITIC Environment Investment Group Co., Ltd., Beijing, 100020, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xianghua Wen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Ding X, Zhang B, Shen C, Wang R, Yin S, Li F, Xu C. Are we underestimating the driving factors and potential risks of freshwater microplastics from in situ and in silico perspective? WATER RESEARCH 2025; 281:123568. [PMID: 40174563 DOI: 10.1016/j.watres.2025.123568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/17/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
The high loads of heterogeneous microplastics (MPs) in water system sparked the exploration of MPs source and impact in the environment. However, the contributions of driving factors to MPs contamination and the potential risks posed by multidimensional characteristics are still poorly understood. By incorporating in situ investigation with machine learning predictions, this study reported widespread MPs contamination in both textile upstream and receiving watershed in the Yangtze River Delta. The dominant MPs categories were fibers (0.1-0.5 mm in size), transparent in color, and composed of polyethylene terephthalate. These morphological characteristics indicated a conditional fragmentation process, suggesting that larger MPs are more prone to fragmentation. Multivariable analysis revealed significant correlations between MPs occurrence and factors of metal concentrations, geographic locations, and water qualities, highlighting the roles of textile production and automotive tire wear in determining MPs abundance. Among five machine learning models, Random Forest outperformed others in predicting MPs abundance. The interpretable analysis indicated that longitude (35.3 %), TN (13.8 %) and Sb (13.4 %) were pivotal nodes in shaping the MPs abundance. Emission point sources from express, autotire and textile yield feature importance from 6.60 % to 7.88 %. A total 12.39 % of the predicted variability can be further explained by interaction effects. Besides, MPERI and MultiMP indices based on abundance, size, color, shape, and polymer distributions suggested that most sampling sites fell within moderate to high-risk categories. Artificial neural network-based assessment results are suitable for explaining the MPs induced risks and polymer type was the most influential variable in determining the risk values. These quantitative insights into the driving factors and potential risks behind MPs occurrence improve our knowledge to manage MPs pollution in large-scale watersheds, providing crucial information for the development of effective mitigation strategies.
Collapse
Affiliation(s)
- Xiaowei Ding
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Binyan Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Chensi Shen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Rundong Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Shanshan Yin
- Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Fang Li
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Chenye Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
4
|
Roni MNP, Neshath TA, Hakim MA, Hasan MM, Rahman MH, Hossan MS, Zahid AASM, Alam MNE, Khatun MH. Optimizing β-Phase Content in PVDF Membranes via Modification of Dope Solution with Citric Acid/Nano-TiO 2 Using Nonsolvent-Induced Phase Separation Method. Polymers (Basel) 2025; 17:481. [PMID: 40006143 PMCID: PMC11859342 DOI: 10.3390/polym17040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
The morphology of Poly (vinylidene fluoride) (PVDF) membranes prepared via the nonsolvent-induced phase separation (NIPS) method was modulated by altering the dope solution with citric acid (CA) and titanium dioxide nanoparticles (nano-TiO2) to optimize the β-phase content. Three series of dope solutions were prepared in dimethyl acetamide (DMAc): (i) TONx series contained 0.0-10% citric acid, (ii) Mx series contained 0.0-0.4% nano-TiO2, and (iii) TAx series contained 5% CA and 0.0-0.40% nano-TiO2. A field emission scanning electron microscopy (FESEM) study revealed that CA enhances pore opening, and nano-TiO2 transforms the sponge-like uneven porous structures into a compact, relatively regular honeycomb structure in the PVDF membranes. The combined effect of CA and nano-TiO2 in the dope solution made the channels and chambers of the membrane well organized, and the walls of the channels transformed from solid fibrils to cross-woven nanofiber-like entities. Porosity initially peaked at 84% in the TAx series, gradually decreasing to 72% with increasing nano-TiO2 concentrations. X-ray diffraction (XRD), Fourier-Transformed Infrared Spectroscopy (FTIR), and Differential Scanning Calorimetry (DSC) revealed the presence of a combined relative amount of the β- and γ-polymorphs of 84% in a neat PVDF membrane, 88% in an Mx, and 96% in a TAx series membrane, with the β-PVDF constituting nearly the entire portion of the combined polymorphs. The presence of 96% electroactive polymorph content in the PVDF membrane is noteworthy, highlighting its potential biomedical and industrial applications.
Collapse
Affiliation(s)
- Md. Nahid Parvez Roni
- Department of Chemistry, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.N.P.R.); (T.A.N.); (M.A.H.); (M.M.H.); (M.S.H.); (A.A.S.M.Z.)
| | - Tanvir Ahmed Neshath
- Department of Chemistry, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.N.P.R.); (T.A.N.); (M.A.H.); (M.M.H.); (M.S.H.); (A.A.S.M.Z.)
| | - Md. Azizul Hakim
- Department of Chemistry, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.N.P.R.); (T.A.N.); (M.A.H.); (M.M.H.); (M.S.H.); (A.A.S.M.Z.)
| | - Md. Mahadi Hasan
- Department of Chemistry, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.N.P.R.); (T.A.N.); (M.A.H.); (M.M.H.); (M.S.H.); (A.A.S.M.Z.)
| | - M. Habibur Rahman
- Department of Chemistry, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.N.P.R.); (T.A.N.); (M.A.H.); (M.M.H.); (M.S.H.); (A.A.S.M.Z.)
| | - Md. Shamim Hossan
- Department of Chemistry, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.N.P.R.); (T.A.N.); (M.A.H.); (M.M.H.); (M.S.H.); (A.A.S.M.Z.)
| | - A. A. S. Mostofa Zahid
- Department of Chemistry, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.N.P.R.); (T.A.N.); (M.A.H.); (M.M.H.); (M.S.H.); (A.A.S.M.Z.)
| | - Md. Nur E Alam
- Bangladesh Atomic Energy Commission, Dhaka 1207, Bangladesh;
| | | |
Collapse
|
5
|
Tan H, Tang Y, Hou Z, Yang P, Liu C, Xie Z, Li S. Antimicrobial polymer-based zeolite imidazolate framework composite membranes for uranium extraction from wastewater and seawater. J Colloid Interface Sci 2025; 677:435-445. [PMID: 39098277 DOI: 10.1016/j.jcis.2024.07.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Extraction uranium (VI) (U(VI)) from wastewater and seawater is highly important for environmental protection and life safety, but it remains a great challenge. In this work, the growth of the zeolitic imidazolate framework-8 (ZIF-8) nanoparticles on the tannic acid (TA)-3-aminopropyltriethoxysilane (APTES) modified PVDF (TAP) membrane was designed to obtain an excellent U(VI) adsorbent. The zeolite imidazolate framework composite membrane (TAPP-ZIF-60) was prepared through polyethyleneimine (PEI) bridging strategy and temperature regulation strategy in solvothermal method. The coordination bond between PEI and ZIF-8 and the covalent bond between PEI and TAP are essential in forming stable composite membrane. TAPP-ZIF with different properties was synthesized through a temperature regulation process and the TAPP-ZIF prepared at 60 °C has the uniform morphology and good performance. The adsorption capacity of TAPP-ZIF-60 is 153.68 mg/g (C0 = 95.01 mg/L and pH = 8.0) and water permeability is 5459 L m-2 h-1 bar-1. After ten adsorption-desorption cycles, it is proved that TAPP-ZIF-60 has good repeatability and stability. In addition, the TAPP-ZIF-60 composites membrane has a good inhibitory effect on Staphylococcus aureus and Escherichia coli. X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) analysis reveal that the coordination between TAPP-ZIF-60 and uranyl ions is the primary factor contributing to the high adsorption capacity.
Collapse
Affiliation(s)
- Huanhuan Tan
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Yang Tang
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Zewei Hou
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Peipei Yang
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Chuntai Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Zhipeng Xie
- Xiamen Branch of Luoyang Ship Material Research Institutes, Xiamen, Fujian 361116, China; National Key Laboratory of Marine Corrosion and Protection, Xiamen, Fujian 361116, China.
| | - Songwei Li
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China.
| |
Collapse
|
6
|
Zhang J, Zhao W, Shi C, Zhao L, Chu Y, Ren Y, Wang Q, Chi Y, Zhou S. A Novel PVDF Ultrafiltration Membrane Modified by C 60(OH) n-Ag. Polymers (Basel) 2024; 16:3359. [PMID: 39684103 DOI: 10.3390/polym16233359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Ultrafiltration membranes in the fields of water treatment and biomedicine should have high permeability as well as antibacterial and antifouling capabilities. In this study, based on the hydrophilicity of fullerol (C60(OH)n) and the bacteriostatic properties of silver (Ag), a fullerol-silver (C60(OH)n-Ag) complex was prepared as a multifunctional additive. A polyvinylidene fluoride (PVDF)-composited C60(OH)n-Ag ultrafiltration membrane (C60(OH)n-Ag/PVDF) was prepared by immersion precipitation phase transformation. Addition of the C60(OH)n-Ag complex improved the permeability and retention of the traditional PVDF membrane. Compared with the traditional PVDF membrane, the surface water contact angle of the modified PVDF and C60(OH)n-Ag ultrafiltration membrane was reduced from 75.05° to 34.50°, its pure water flux increased from 224.11 L·m-2·h-1 to 804.05 L·m-2·h-1, the retention rate on bovine serum protein was increased from 75.00% to 96.44% and the flux recovery rate increased from 64.91% to 79.08%. The C60(OH)n-Ag/PVDF ultrafiltration membrane had good inhibitory effects on Escherichia coli and Staphylococcus aureus, while the PVDF ultrafiltration membrane had no obvious inhibitory effects.
Collapse
Affiliation(s)
- Jie Zhang
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Wenjun Zhao
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Chengyang Shi
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Liman Zhao
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Yudi Chu
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Yanan Ren
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Qun Wang
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Yanxia Chi
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Shujing Zhou
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
7
|
Sun W, Xia L, Luo P, Zou D. A Novel Delayed Phase Inversion Strategy Enables Green PVDF Membranes for Membrane Distillation. MEMBRANES 2024; 14:241. [PMID: 39590627 PMCID: PMC11596376 DOI: 10.3390/membranes14110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024]
Abstract
Polyvinylidene fluoride (PVDF) membranes are extensively utilized in membrane distillation (MD) for water treatment. However, traditional methods easily form asymmetrical membranes with dense skin layers that are detrimental to membrane flux. Herein, an eco-friendly PVDF membrane was fabricated by utilizing a delayed phase separation process without using any pore-forming agents. In addition, methyl-5-(dimethylamino)-2-methyl-5-oxopentanoate (PolarClean) was used as a green solvent without posing risks to humans and the environment. It was demonstrated that the PVDF concentration is crucial in influencing the microstructures and performance of the resulting membranes. As the PVDF concentration increased, the morphology changed significantly, resulting in a reduction of pore size. When feeding the device with NaCl solution at a concentration of 35 g/L, the MD water vapor flux reached 18.49 kg·m-2·h-1, while maintaining a salt rejection of over 99.97% during the continuous operation for 24 h. This work presented a method for producing green PVDF membranes via delayed phase inversion with satisfactory water vapor flux and salt rejection, highlighting their prospect for effective applications in MD for water treatment.
Collapse
Affiliation(s)
- Wenbin Sun
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (W.S.); (L.X.)
| | - Longbo Xia
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (W.S.); (L.X.)
| | - Ping Luo
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (W.S.); (L.X.)
| | - Dong Zou
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (W.S.); (L.X.)
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
Sharma M, Bains A, Goksen G, Dhull SB, Ali N, Rashid S, Elossaily GM, Chawla P. A review of valorization of agricultural waste for the synthesis of cellulose membranes: Separation of organic, inorganic, and microbial pollutants. Int J Biol Macromol 2024; 277:134170. [PMID: 39067731 DOI: 10.1016/j.ijbiomac.2024.134170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Agricultural waste presents a significant environmental challenge due to improper disposal and management practices, contributing to soil degradation, biodiversity loss, and pollution of water and air resources. To address these issues, there is a growing emphasis on the valorization of agricultural waste. Cellulose, a major component of agricultural waste, offers promising opportunities for resource utilization due to its unique properties, including biodegradability, biocompatibility, and renewability. Thus, this review explored various types of agricultural waste, their chemical composition, and pretreatment methods for cellulose extraction. It also highlights the significance of rice straw, sugarcane bagasse, and other agricultural residues as cellulose-rich resources. Among the various membrane fabrication techniques, phase inversion is highly effective for creating porous membranes with controlled thickness and uniformity, while electrospinning produces nanofibrous membranes with high surface area and exceptional mechanical properties. The review further explores the separation of pollutants including using cellulose membranes, demonstrating their potential in environmental remediation. Hence, by valorizing agricultural residues into functional materials, this approach addresses the challenge of agricultural waste management and contributes to the development of innovative solutions for pollution control and water treatment.
Collapse
Affiliation(s)
- Madhu Sharma
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey.
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia.
| | - Gehan M Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Prince Chawla
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India.
| |
Collapse
|
9
|
Luo T, Farooq A, Weng W, Lu S, Luo G, Zhang H, Li J, Zhou X, Wu X, Huang L, Chen L, Wu H. Progress in the Preparation and Application of Breathable Membranes. Polymers (Basel) 2024; 16:1686. [PMID: 38932036 PMCID: PMC11207707 DOI: 10.3390/polym16121686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Breathable membranes with micropores enable the transfer of gas molecules while blocking liquids and solids, and have a wide range of applications in medical, industrial, environmental, and energy fields. Breathability is highly influenced by the nature of a material, pore size, and pore structure. Preparation methods and the incorporation of functional materials are responsible for the variety of physical properties and applications of breathable membranes. In this review, the preparation methods of breathable membranes, including blown film extrusion, cast film extrusion, phase separation, and electrospinning, are discussed. According to the antibacterial, hydrophobic, thermal insulation, conductive, and adsorption properties, the application of breathable membranes in the fields of electronics, medicine, textiles, packaging, energy, and the environment are summarized. Perspectives on the development trends and challenges of breathable membranes are discussed.
Collapse
Affiliation(s)
- Tingshuai Luo
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
| | - Ambar Farooq
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
| | - Wenwei Weng
- Fujian Key Laboratory of Disposable Sanitary Products, Fujian Hengan International Group Company Ltd., Jinjiang 362261, China; (W.W.); (G.L.)
| | - Shengchang Lu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
| | - Gai Luo
- Fujian Key Laboratory of Disposable Sanitary Products, Fujian Hengan International Group Company Ltd., Jinjiang 362261, China; (W.W.); (G.L.)
| | - Hui Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China
| | - Jianguo Li
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China
| | - Xiaxing Zhou
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China
| | - Xiaobiao Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
- Fujian Key Laboratory of Disposable Sanitary Products, Fujian Hengan International Group Company Ltd., Jinjiang 362261, China; (W.W.); (G.L.)
| | - Liulian Huang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China
| | - Lihui Chen
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China
| |
Collapse
|
10
|
Spiering GA, Godshall GF, Moore RB. High Modulus, Strut-like poly(ether ether ketone) Aerogels Produced from a Benign Solvent. Gels 2024; 10:283. [PMID: 38667702 PMCID: PMC11049303 DOI: 10.3390/gels10040283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Poly(ether ether ketone) (PEEK) was found to form gels in the benign solvent 1,3-diphenylacetone (DPA). Gelation of PEEK in DPA was found to form an interconnected, strut-like morphology composed of polymer axialites. To our knowledge, this is the first report of a strut-like morphology for PEEK aerogels. PEEK/DPA gels were prepared by first dissolving PEEK in DPA at 320 °C. Upon cooling to 50 °C, PEEK crystallizes and forms a gel in DPA. The PEEK/DPA phase diagram indicated that phase separation occurs by solid-liquid phase separation, implying that DPA is a good solvent for PEEK. The Flory-Huggins interaction parameter, calculated as χ12 = 0.093 for the PEEK/DPA system, confirmed that DPA is a good solvent for PEEK. PEEK aerogels were prepared by solvent exchanging DPA to water then freeze-drying. PEEK aerogels were found to have densities between 0.09 and 0.25 g/cm3, porosities between 80 and 93%, and surface areas between 200 and 225 m2/g, depending on the initial gel concentration. Using nitrogen adsorption analyses, PEEK aerogels were found to be mesoporous adsorbents, with mesopore sizes of about 8 nm, which formed between stacks of platelike crystalline lamellae. Scanning electron microscopy and X-ray scattering were utilized to elucidate the hierarchical structure of the PEEK aerogels. Morphological analysis found that the PEEK/DPA gels were composed of a highly nucleated network of PEEK axialites (i.e., aggregates of stacked crystalline lamellae). The highly connected axialite network imparted robust mechanical properties on PEEK aerogels, which were found to densify less upon freeze-drying than globular PEEK aerogel counterparts gelled from dichloroacetic acid (DCA) or 4-chlorphenol (4CP). PEEK aerogels formed from DPA were also found to have a modulus-density scaling that was far more efficient in supporting loads than the poorly connected aerogels formed from PEEK/DCA or PEEK/4CP solutions. The strut-like morphology in these new PEEK aerogels also significantly improved the modulus to a degree that is comparable to high-performance crosslinked aerogels based on polyimide and polyurea of comparable densities.
Collapse
Affiliation(s)
| | | | - Robert B. Moore
- Department of Chemistry, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA; (G.A.S.); (G.F.G.)
| |
Collapse
|
11
|
Fan K, Kong N, Ma J, Lin H, Gao C, Lei J, Zeng Z, Hu J, Qi J, Shen L. Enhanced management and antifouling performance of a novel NiFe-LDH@MnO 2/PVDF hybrid membrane for efficient oily wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119922. [PMID: 38150929 DOI: 10.1016/j.jenvman.2023.119922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 12/29/2023]
Abstract
Layered double hydroxides (LDHs) have gained significant recognition for their facile synthesis and super-hydrophilic two-dimensional (2D) structure to fabricate antifouling membranes for oily wastewater separation. However, conventional PVDF membranes, due to their hydrophobic nature and inert matrix, often exhibit insufficient permeance and compatibility. In this study, a novel NiFe-LDH@MnO2/PVDF membrane was synthesized using ultrasonic, redox, and microwave-hydrothermal processes. This innovative approach cultivated grass-like NiFe-LDH@MnO2 nanoparticles within an inert PVDF matrix, promoting the growth of highly hydrophilic composites. The presence of NiFe-LDH@MnO2 resulted in pronounced enhancements in surface morphology, interfacial wettability, and oil rejection for the fabricated membrane. The optimal NiFe-LDH@MnO2/PVDF-2 membrane exhibited an extremely high pure water flux (1364 L m-2•h-1), and increased oil rejection (from 81.2% to 93.5%) without sacrificing water permeation compared to the original PVDF membrane. Additionally, the NiFe-LDH@MnO2/PVDF membrane demonstrated remarkable antifouling properties, evident by an exceptional fouling resistance ratio of 96.8% following slight water rinsing. Mechanistic insights into the enhanced antifouling performance were elucidated through a comparative "semi-immersion" investigation. The facile synthesis method, coupled with the improved membrane performance, highlights the potential application prospects of this hybrid membrane in emulsified oily wastewater treatment and environmental remediation.
Collapse
Affiliation(s)
- Kai Fan
- School of Architecture and Materials, Chongqing College of Electronic Engineering, Chongqing, 401331, China.
| | - Ning Kong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jing Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Chuanyang Gao
- School of Architecture and Materials, Chongqing College of Electronic Engineering, Chongqing, 401331, China.
| | - Jinshen Lei
- School of Architecture and Materials, Chongqing College of Electronic Engineering, Chongqing, 401331, China.
| | - Zihang Zeng
- School of Architecture and Materials, Chongqing College of Electronic Engineering, Chongqing, 401331, China.
| | - Jun Hu
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China; Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China; Xiangfu Laboratory, Jiashan, 314102, China.
| | - Juncheng Qi
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
12
|
Basko A, Lebedeva T, Yurov M, Ilyasova A, Elyashevich G, Lavrentyev V, Kalmykov D, Volkov A, Pochivalov K. Mechanism of PVDF Membrane Formation by NIPS Revisited: Effect of Precipitation Bath Nature and Polymer-Solvent Affinity. Polymers (Basel) 2023; 15:4307. [PMID: 37959987 PMCID: PMC10650574 DOI: 10.3390/polym15214307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
A new interpretation of the mechanism of the polyvinylidene fluoride (PVDF) membrane formation using the nonsolvent-induced phase separation (NIPS) method based on an analysis of the complete experimental phase diagram for the three-component mixture PVDF-dimethyl acetamide (DMAc)-water is proposed. The effects of the precipitation bath's harshness and thermodynamic affinity of the polymer's solvent on the morphology, crystalline structure, transport and physical-mechanical properties of the membranes are investigated. These characteristics were studied via scanning electron microscopy, wide-angle X-ray scattering, liquid-liquid porosimetry and standard methods of physico-mechanical analysis. It is established that an increase in DMAc concentration in the precipitation bath results in the growth of mean pore size from ~60 to ~150 nm and an increase in permeance from ~2.8 to ~8 L m-2 h-1 bar-1. It was observed that pore size transformations are accompanied by changes in the tensile strength of membranes from ~9 to ~11 and to 6 MPa, which were explained by the degeneration of finger-like pores and appearance of spherulitic structures in the samples. The addition of water to the dope solution decreased both the transport (mean pore size changed from ~55 to ~25 nm and permeance reduced from ~2.8 to ~0.5 L m-2 h-1 bar-1) and mechanical properties of the membranes (tensile strength decreased from ~9 to ~6 MPa). It is possible to conclude that the best membrane quality may be reached using pure DMAc as a solvent and a precipitation bath containing 10-30% wt. of DMAc, in addition to water.
Collapse
Affiliation(s)
- Andrey Basko
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.); (T.L.); (M.Y.); (A.I.); (D.K.)
| | - Tatyana Lebedeva
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.); (T.L.); (M.Y.); (A.I.); (D.K.)
| | - Mikhail Yurov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.); (T.L.); (M.Y.); (A.I.); (D.K.)
| | - Anna Ilyasova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.); (T.L.); (M.Y.); (A.I.); (D.K.)
| | - Galina Elyashevich
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 31 Bolshoy pr., 199004 St. Petersburg, Russia; (G.E.); (V.L.)
| | - Viktor Lavrentyev
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 31 Bolshoy pr., 199004 St. Petersburg, Russia; (G.E.); (V.L.)
| | - Denis Kalmykov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.); (T.L.); (M.Y.); (A.I.); (D.K.)
- A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia;
| | - Alexey Volkov
- A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia;
| | - Konstantin Pochivalov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.); (T.L.); (M.Y.); (A.I.); (D.K.)
| |
Collapse
|
13
|
Han DY, Son HB, Han SH, Song CK, Jung J, Lee S, Choi SS, Song WJ, Park S. Hierarchical 3D Electrode Design with High Mass Loading Enabling High-Energy-Density Flexible Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305416. [PMID: 37528714 DOI: 10.1002/smll.202305416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Indexed: 08/03/2023]
Abstract
Flexible lithium-ion batteries (LIBs) have attracted significant attention owing to their ever-increasing use in flexible and wearable electronic devices. However, the practical application of flexible LIBs in devices has been plagued by the challenge of simultaneously achieving high energy density and high flexibility. Herein, a hierarchical 3D electrode (H3DE) is introduced with high mass loading that can construct highly flexible LIBs with ultrahigh energy density. The H3DE features a bicontinuous structure and the active materials along with conductive agents are uniformly distributed on the 3D framework regardless of the active material type. The bicontinuous electrode/electrolyte integration enables a rapid ion/electron transport, thereby improving the redox kinetics and lowering the internal cell resistance. Moreover, the H3DE exhibits exceptional structural integrity and flexibility during repeated mechanical deformations. Benefiting from the remarkable physicochemical properties, pouch-type flexible LIBs using H3DE demonstrate stable cycling under various bending states, achieving a record-high energy density (438.6 Wh kg-1 and 20.4 mWh cm-2 ), and areal capacity (5.6 mAh cm-2 ), outperforming all previously reported flexible LIBs. This study provides a feasible solution for the preparation of high-energy-density flexible LIBs for various energy storage devices.
Collapse
Affiliation(s)
- Dong-Yeob Han
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hye Bin Son
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sang Hyun Han
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chi Keung Song
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jaeho Jung
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sangyeop Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Su Seok Choi
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Woo-Jin Song
- Department of Organic Materials Engineering, Department of Chemical Engineering and Applied Chemistry, Department of Polymer Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Soojin Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
14
|
Ahmad T, Rehman LM, Al-Nuaimi R, de Levay JPBB, Thankamony R, Mubashir M, Lai Z. Thermodynamics and kinetic analysis of membrane: Challenges and perspectives. CHEMOSPHERE 2023; 337:139430. [PMID: 37422221 DOI: 10.1016/j.chemosphere.2023.139430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/18/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
The ultimate structure of the membrane is determined using two important effects: (i) thermodynamic effect and (ii) kinetic effect. Controlling the mechanism of kinetic and thermodynamic processes in phase separation is essential for enhancing membrane performance. However, the relationship between system parameters and the ultimate membrane morphology is still largely empirical. This review focuses on the fundamental ideas behind thermally induced phase separation (TIPS) and nonsolvent-induced phase separation (NIPS) methods, including both kinetic and thermodynamic elements. The thermodynamic approach to understanding phase separation and the effect of different interaction parameters on membrane morphology has been discussed in detail. Furthermore, this review explores the capabilities and limitations of different macroscopic transport models used for the last four decades to explore the phase inversion process. The application of molecular simulations and phase field to understand phase separation has also been briefly examined. Finally, it discusses the thermodynamic approach to understanding phase separation and the consequence of different interaction parameters on membrane morphology, as well as possible directions for artificial intelligence to fill the gaps in the literature. This review aims to provide comprehensive knowledge and motivation for future modeling work for membrane fabrication via new techniques such as nonsolvent-TIPS, complex-TIPS, non-solvent assisted TIPS, combined NIPS-TIPS method, and mixed solvent phase separation.
Collapse
Affiliation(s)
- Tausif Ahmad
- Advanced Membranes and Porous Materials Centre, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Lubna M Rehman
- Advanced Membranes and Porous Materials Centre, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Reham Al-Nuaimi
- Advanced Membranes and Porous Materials Centre, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jean-Pierre Benjamin Boross de Levay
- Advanced Membranes and Porous Materials Centre, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Roshni Thankamony
- Advanced Membranes and Porous Materials Centre, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Muhammad Mubashir
- Advanced Membranes and Porous Materials Centre, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Zhiping Lai
- Advanced Membranes and Porous Materials Centre, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
15
|
Li C, Tang Y, Lin H, Zhang C, Liu Z, Yu L, Wang X, Lin Y. Novel multiscale simulations on the membrane formation via hybrid induced phase separation process based on dissipative particle dynamics. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
16
|
Pusphanathan K, Shukor H, Shoparwe NF, Makhtar MMZ, Zainuddin NI, Jullok N, Siddiqui MR, Alam M, Rafatullah M. Efficiency of Fabricated Adsorptive Polysulfone Mixed Matrix Membrane for Acetic Acid Separation. MEMBRANES 2023; 13:565. [PMID: 37367769 DOI: 10.3390/membranes13060565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023]
Abstract
The ultrafiltration mixed matrix membrane (UF MMMs) process represents an applicable approach for the removal of diluted acetic acid at low concentrations, owing to the low pressures applied. The addition of efficient additives represents an approach to further improve membrane porosity and, subsequently, enhance acetic acid removal. This work demonstrates the incorporation of titanium dioxide (TiO2) and polyethylene glycol (PEG) as additives into polysulfone (PSf) polymer via the non-solvent-induced phase-inversion (NIPS) method to improve the performance of PSf MMMs performance. Eight PSf MMMs samples designated as M0 to M7, each with independent formulations, were prepared and investigated for their respective density, porosity, and degree of AA retention. Morphology analysis through scanning electron microscopy elucidated sample M7 (PSf/TiO2/PEG 6000) to have the highest density and porosity among all samples with concomitant highest AA retention at approximately 92.2%. The application of the concentration polarization method further supported this finding by the higher concentration of AA solute present on the surface of the membrane compared to that of AA feed for sample M7. Overall, this study successfully demonstrates the significance of TiO2 and PEG as high MW additives in improving PSf MMM performance.
Collapse
Affiliation(s)
- Kavita Pusphanathan
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Hafiza Shukor
- Centre of Excellence for Biomass Utilization, Faculty of Chemical Engineering Technology, University Malaysia Perlis, Arau 02600, Malaysia
| | - Noor Fazliani Shoparwe
- Gold, Rare Earth and Material Technopreneurship Centre (GREAT), Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
| | - Muaz Mohd Zaini Makhtar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | | | - Nora Jullok
- Centre of Excellence for Biomass Utilization, Faculty of Chemical Engineering Technology, University Malaysia Perlis, Arau 02600, Malaysia
| | - Masoom Raza Siddiqui
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mahboob Alam
- Division of Chemistry and Biotechnology, Dongguk University, 123, Dongdaero, Gyeongju-si 780714, Republic of Korea
| | - Mohd Rafatullah
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| |
Collapse
|
17
|
Pochivalov K, Basko A, Lebedeva T, Yurov M, Yushkin A, Volkov A, Bronnikov S. Controlled Swelling of Monolithic Films as a Facile Approach to the Synthesis of UHMWPE Membranes. MEMBRANES 2023; 13:422. [PMID: 37103849 PMCID: PMC10145273 DOI: 10.3390/membranes13040422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
A new method of fabricating porous membranes based on ultra-high molecular weight polyethylene (UHMWPE) by controlled swelling of the dense film was proposed and successfully utilized. The principle of this method is based on the swelling of non-porous UHMWPE film in organic solvent at elevated temperatures, followed by its cooling and further extraction of organic solvent, resulting in the formation of the porous membrane. In this work, we used commercial UHMWPE film (thickness 155 μm) and o-xylene as a solvent. Either homogeneous mixtures of the polymer melt and solvent or thermoreversible gels with crystallites acting as crosslinks of the inter-macromolecular network (swollen semicrystalline polymer) can be obtained at different soaking times. It was shown that the porous structure and filtration performance of the membranes depended on the swelling degree of the polymer, which can be controlled by the time of polymer soaking in organic solvent at elevated temperature (106 °C was found to be the optimal temperature for UHMWPE). In the case of homogeneous mixtures, the resulting membranes possessed both large and small pores. They were characterized by quite high porosity (45-65% vol.), liquid permeance of 46-134 L m-2 h-1 bar-1, a mean flow pore size of 30-75 nm, and a very high crystallinity degree of 86-89% at a decent tensile strength of 3-9 MPa. For these membranes, rejection of blue dextran dye with a molecular weight of 70 kg/mol was 22-76%. In the case of thermoreversible gels, the resulting membranes had only small pores located in the interlamellar spaces. They were characterized by a lower crystallinity degree of 70-74%, a moderate porosity of 12-28%, liquid permeability of up to 12-26 L m-2 h-1 bar-1, a mean flow pore size of up to 12-17 nm, and a higher tensile strength of 11-20 MPa. These membranes demonstrated blue dextran retention of nearly 100%.
Collapse
Affiliation(s)
- Konstantin Pochivalov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.)
| | - Andrey Basko
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.)
| | - Tatyana Lebedeva
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.)
| | - Mikhail Yurov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.)
| | - Alexey Yushkin
- A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia
| | - Alexey Volkov
- A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia
- Biological and Environmental Science, and Engineering Division (BESE), Advanced Membranes and Porous Materials Center (AMPM), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Sergei Bronnikov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 31 Bolshoy pr., 199004 St. Petersburg, Russia
| |
Collapse
|
18
|
Chan KY, Li CL, Wang DM, Lai JY. Formation of Porous Structures and Crystalline Phases in Poly(vinylidene fluoride) Membranes Prepared with Nonsolvent-Induced Phase Separation-Roles of Solvent Polarity. Polymers (Basel) 2023; 15:polym15051314. [PMID: 36904555 PMCID: PMC10007550 DOI: 10.3390/polym15051314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
PVDF membranes were prepared with nonsolvent-induced phase separation, using solvents with various dipole moments, including HMPA, NMP, DMAc and TEP. Both the fraction of the polar crystalline phase and the water permeability of the prepared membrane increased monotonously with an increasing solvent dipole moment. FTIR/ATR analyses were conducted at the surfaces of the cast films during membrane formation to provide information on if the solvents were present as the PVDF crystallized. The results reveal that, with HMPA, NMP or DMAc being used to dissolve PVDF, a solvent with a higher dipole moment resulted in a lower solvent removal rate from the cast film, because the viscosity of the casting solution was higher. The lower solvent removal rate allowed a higher solvent concentration on the surface of the cast film, leading to a more porous surface and longer solvent-governed crystallization. Because of its low polarity, TEP induced non-polar crystals and had a low affinity for water, accounting for the low water permeability and the low fraction of polar crystals with TEP as the solvent. The results provide insight into how the membrane structure on a molecular scale (related to the crystalline phase) and nanoscale (related to water permeability) was related to and influenced by solvent polarity and its removal rate during membrane formation.
Collapse
Affiliation(s)
- Kuan-Ying Chan
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chia-Ling Li
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu County 310401, Taiwan
| | - Da-Ming Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: ; Tel.: +886-2-3366-3006; Fax: +886-2-2362-3040
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
19
|
Wastewater Treatment of Real Effluents by Microfiltration Using Poly(vinylidene fluoride-hexafluoropropylene) Membranes. Polymers (Basel) 2023; 15:polym15051143. [PMID: 36904383 PMCID: PMC10007253 DOI: 10.3390/polym15051143] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Over the last decades, the growing contamination of wastewater, mainly caused by industrial processes, improper sewage, natural calamities, and a variety of anthropogenic activities, has caused an increase in water-borne diseases. Notably, industrial applications require careful consideration as they pose significant threats to human health and ecosystem biodiversity due to the production of persistent and complex contaminants. The present work reports on the development, characterization, and application of a poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) porous membrane for the remediation of a wide range of contaminants from wastewater withdrawn from industrial applications. The PVDF-HFP membrane showed a micrometric porous structure with thermal, chemical, and mechanical stability and a hydrophobic nature, leading to high permeability. The prepared membranes exhibited simultaneous activity on the removal of organic matter (total suspended and dissolved solids, TSS, and TDS, respectively), the mitigation of salinity in 50%, and the effective removal of some inorganic anions and heavy metals, achieving efficiencies around 60% for nickel, cadmium, and lead. The membrane proved to be a suitable approach for wastewater treatment, as it showed potential for the simultaneous remediation of a wide range of contaminants. Thus, the as-prepared PVDF-HFP membrane and the designed membrane reactor represent an efficient, straightforward, and low-cost alternative as a pretreatment step for continuous treatment processes for simultaneous organic and inorganic contaminants' remediation in real industrial effluent sources.
Collapse
|
20
|
Helical-Ridge-Membranes from PVDF for enhanced gas–liquid mass transfer. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
21
|
The Role of Morphology on Thermal and Electrical Properties of MWCNT-Doped-PVDF Nanocomposites. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02535-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
22
|
Geleta TA, Maggay IV, Chang Y, Venault A. Recent Advances on the Fabrication of Antifouling Phase-Inversion Membranes by Physical Blending Modification Method. MEMBRANES 2023; 13:58. [PMID: 36676865 PMCID: PMC9864519 DOI: 10.3390/membranes13010058] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 05/31/2023]
Abstract
Membrane technology is an essential tool for water treatment and biomedical applications. Despite their extensive use in these fields, polymeric-based membranes still face several challenges, including instability, low mechanical strength, and propensity to fouling. The latter point has attracted the attention of numerous teams worldwide developing antifouling materials for membranes and interfaces. A convenient method to prepare antifouling membranes is via physical blending (or simply blending), which is a one-step method that consists of mixing the main matrix polymer and the antifouling material prior to casting and film formation by a phase inversion process. This review focuses on the recent development (past 10 years) of antifouling membranes via this method and uses different phase-inversion processes including liquid-induced phase separation, vapor induced phase separation, and thermally induced phase separation. Antifouling materials used in these recent studies including polymers, metals, ceramics, and carbon-based and porous nanomaterials are also surveyed. Furthermore, the assessment of antifouling properties and performances are extensively summarized. Finally, we conclude this review with a list of technical and scientific challenges that still need to be overcome to improve the functional properties and widen the range of applications of antifouling membranes prepared by blending modification.
Collapse
Affiliation(s)
| | | | - Yung Chang
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| | - Antoine Venault
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| |
Collapse
|
23
|
Lv Z, Xue P, Xie T, Zhao J, Tian S, Liu H, Qi Y, Sun S, Lv X. High-performing PVDF membranes modified by Na+ MMT/ionic liquids (ILs) with different chain lengths: dye adsorption and separation from O/W emulsion. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Zhang Y, Tan L, Han N, Tian S, Li W, Wang W, Wu Y, Sun Z, Zhang X. Janus ZIF-8/P(AN-MA) hybrid microfiltration membrane with selected wettability for highly efficient separation of water/oil emulsions. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Construction of membrane formation system with low critical solution temperature for preparing hydrophilic polysulfone membrane via modified reverse thermally induced phase separation process. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Li K, Xu W, Wen G, Zhou Z, Han M, Zhang S, Huang T. Aging of polyvinylidene fluoride (PVDF) ultrafiltration membrane due to ozone exposure in water treatment: Evolution of membrane properties and performance. CHEMOSPHERE 2022; 308:136520. [PMID: 36152832 DOI: 10.1016/j.chemosphere.2022.136520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/11/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Pre-ozonation is an effective pretreatment tactic for mitigating fouling of ultrafiltration (UF) membrane in water and wastewater treatment, but the compatibility of polymeric UF membranes with residual ozone remains unclear. In this study, effects of long-term ozone exposure on properties and performance of polyvinylidene fluoride (PVDF) UF membrane reinforced by polyethylene terephthalate (PET) layer were systematically investigated. The exposure intensities were designed to simulate ozone exposure at 0.1 mg/L for 0.5-5 years. Chemical composition analysis suggested that the hydrophilic additives, such as possibly polyvinyl pyrrolidone (PVP), was gradually degraded and released from the membrane, whereas the PVDF matrix exhibited fairly good ozone resistance. Ozonation resulted in increase of pore size and decrease of surface hydrophilicity, which can be attributed to oxidation and dislodgement of hydrophilic additives. Accordingly, long-term ozonation led to moderate changes in performance factors, including increase of membrane permeability by 34%, decrease of retention ability by 21.8%, increase of organic fouling propensity. It is worth noting that membrane tensile strength suffered substantial decrease after ozonation, probably due to ozonation of the PET support layer. Overall, it seems that the PVDF functional layer exhibited good ozone resistance, but the PET support layer was the Achilles' heel of the reinforced PVDF membrane for integrating with pre-ozonation.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Weihua Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Zhipeng Zhou
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Min Han
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Shujia Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| |
Collapse
|
27
|
Ma W, Zhou Z, Ismail N, Tocci E, Figoli A, Khayet M, Matsuura T, Cui Z, Tavajohi N. Membrane formation by thermally induced phase separation: Materials, involved parameters, modeling, current efforts and future directions. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Pochivalov KV, Basko AV, Lebedeva TN, Ilyasova AN, Shandryuk GA, Snegirev VV, Artemov VV, Ezhov AA, Kudryavtsev YV. A New Look at the Structure and Thermal Behavior of Polyvinylidene Fluoride-Camphor Mixtures. Polymers (Basel) 2022; 14:polym14235214. [PMID: 36501608 PMCID: PMC9735715 DOI: 10.3390/polym14235214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
An experimental quasi-equilibrium phase diagram of the polyvinylidene fluoride (PVDF)-camphor mixture is constructed using an original optical method. For the first time, it contains a boundary curve that describes the dependence of camphor solubility in the amorphous regions of PVDF on temperature. It is argued that this diagram cannot be considered a full analogue of the eutectic phase diagrams of two low-molar-mass crystalline substances. The phase diagram is used to interpret the polarized light hot-stage microscopy data on cooling the above mixtures from a homogeneous state to room temperature and scanning electron microscopy data on the morphology of capillary-porous bodies formed upon camphor removal. Based on our calorimetry and X-ray studies, we put in doubt the possibility of incongruent crystalline complex formation between PVDF and camphor previously suggested by Dasgupta et al. (Macromolecules 2005, 38, 5602-5608). We also describe and discuss the high-temperature crystalline structure of racemic camphor, which is not available in the modern literature.
Collapse
Affiliation(s)
- Konstantin V. Pochivalov
- Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya ul. 1, Ivanovo 153045, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, St. Petersburg 199004, Russia
| | - Andrey V. Basko
- Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya ul. 1, Ivanovo 153045, Russia
| | - Tatyana N. Lebedeva
- Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya ul. 1, Ivanovo 153045, Russia
| | - Anna N. Ilyasova
- Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya ul. 1, Ivanovo 153045, Russia
| | - Georgiy A. Shandryuk
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, Moscow 119991, Russia
| | - Vyacheslav V. Snegirev
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1–2, Moscow 119991, Russia
| | - Vladimir V. Artemov
- Shubnikov Institute of Crystallography, Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences, Leninskii pr. 59, Moscow 119333, Russia
| | - Alexander A. Ezhov
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, Moscow 119991, Russia
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1–2, Moscow 119991, Russia
- Shubnikov Institute of Crystallography, Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences, Leninskii pr. 59, Moscow 119333, Russia
| | - Yaroslav V. Kudryavtsev
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, Moscow 119991, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119071, Russia
- Correspondence:
| |
Collapse
|
29
|
Basko A, Pochivalov K. Current State-of-the-Art in Membrane Formation from Ultra-High Molecular Weight Polyethylene. MEMBRANES 2022; 12:membranes12111137. [PMID: 36422129 PMCID: PMC9696610 DOI: 10.3390/membranes12111137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 05/12/2023]
Abstract
One of the materials that attracts attention as a potential material for membrane formation is ultrahigh molecular weight polyethylene (UHMWPE). One potential material for membrane formation is ultrahigh molecular weight polyethylene (UHMWPE). The present review summarizes the results of studies carried out over the last 30 years in the field of preparation, modification and structure and property control of membranes made from ultrahigh molecular weight polyethylene. The review also presents a classification of the methods of membrane formation from this polymer and analyzes the conventional (based on the analysis of incomplete phase diagrams) and alternative (based on the analysis of phase diagrams supplemented by a boundary line reflecting the polymer swelling degree dependence on temperature) physicochemical concepts of the thermally induced phase separation (TIPS) method used to prepare UHMWPE membranes. It also considers the main ways to control the structure and properties of UHMWPE membranes obtained by TIPS and the original variations of this method. This review discusses the current challenges in UHMWPE membrane formation, such as the preparation of a homogeneous solution and membrane shrinkage. Finally, the article speculates about the modification and application of UHMWPE membranes and further development prospects. Thus, this paper summarizes the achievements in all aspects of UHMWPE membrane studies.
Collapse
|
30
|
Surface modification of PVDF membrane via deposition-grafting of UiO-66-NH2 and their application in oily water separations. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Rotation-in-a-Spinneret integrates static mixers inside hollow fiber membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Pochivalov KV, Basko AV, Lebedeva TN, Ilyasova AN, Guseinov SS, Kudryavtsev YV. Thermodynamically-informed approach to the synthesis of 3D printing powders from the mixtures of polyamide 12 with benzyl alcohol. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
33
|
Preparation of polyamide 12 powder for additive manufacturing applications via thermally induced phase separation. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Spherical polyamide 12 (PA12) powder for selective laser sintering (SLS) was prepared by thermally induced phase separation (TIPS) method. It was authenticated that the mixed solvent can regulate the liquid–liquid phase separation (LLPS) process by changing the ratio of diluent to non-diluent. The polymer droplets mainly coalesced in the solution, and then the crystal nucleus of PA12 was formed in the droplets. Finally, high crystallinity PA12 powder was precipitated. The morphology, particle size distribution, thermal properties, the change of crystal structure, and powder spreading performances of the obtained powder were characterized. The powder had a narrow particle size distribution, an average particle size of 55.2 μm, and a broad sintering window of 29°C. The results exhibited that the powders prepared by TIPS had excellent sintering properties, and TIPS method provided more choices for SLS technology.
Collapse
|
34
|
Wang W, Zhang Z, Ma L, Xu X, Zhang P, Yu H. Explorations of complex thermally induced phase separation (C-TIPS) method for manufacturing novel diphenyl ether polysulfate flat microporous membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Li J, Pan Y, Ji W, Zhu H, Liu G, Zhang G, Jin W. High-flux corrugated PDMS composite membrane fabricated by using nanofiber substrate. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120336] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
|
37
|
Choi DH, Kwon S, Yoo Y, Kim IC, Park H, Park YI, Yang SY, Nam SE, Cho YH. Isoporous Polyvinylidene Fluoride Membranes with Selective Skin Layers via a Thermal-Vapor Assisted Phase Separation Method for Industrial Purification Applications. MEMBRANES 2022; 12:membranes12030250. [PMID: 35323725 PMCID: PMC8953312 DOI: 10.3390/membranes12030250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023]
Abstract
The membrane filtration process is the most widely used purification process in various industries due to its high separation efficiency, process simplicity, and low cost. Although there is a wide range of membrane products with diverse materials and pore sizes on the market, there is a technological gap between microfiltration and ultrafiltration membranes. Here we developed highly porous polyvinylidene fluoride (PVDF) membranes with a selective skin layer with a pore size range of 20 to 80 nm by using a thermal-vapor assisted phase separation method. Porous and bi-continuous sublayers were generated from spinodal decomposition induced by cooling. The overall membrane structure and pore size changed with the dope composition, while the pore size and thickness of the selective skin layer were effectively controlled by water vapor exposure. The excellent nanoparticle removal efficiencies of the prepared PVDF membranes were confirmed, indicating their potential application in high-level purification processes to remove small trace organic or inorganic impurities from various industrial fluids.
Collapse
Affiliation(s)
- Da Han Choi
- Green Carbon Research Center, Chemical Process Division, Korea Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (D.H.C.); (S.K.); (Y.Y.); (I.-C.K.); (H.P.); (Y.-I.P.)
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea
| | - Sei Kwon
- Green Carbon Research Center, Chemical Process Division, Korea Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (D.H.C.); (S.K.); (Y.Y.); (I.-C.K.); (H.P.); (Y.-I.P.)
| | - Youngmin Yoo
- Green Carbon Research Center, Chemical Process Division, Korea Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (D.H.C.); (S.K.); (Y.Y.); (I.-C.K.); (H.P.); (Y.-I.P.)
| | - In-Chul Kim
- Green Carbon Research Center, Chemical Process Division, Korea Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (D.H.C.); (S.K.); (Y.Y.); (I.-C.K.); (H.P.); (Y.-I.P.)
| | - Hosik Park
- Green Carbon Research Center, Chemical Process Division, Korea Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (D.H.C.); (S.K.); (Y.Y.); (I.-C.K.); (H.P.); (Y.-I.P.)
- Department of Advanced Materials and Chemical Engineering, University of Science & Technology (UST), Daejeon 34113, Korea
| | - You-In Park
- Green Carbon Research Center, Chemical Process Division, Korea Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (D.H.C.); (S.K.); (Y.Y.); (I.-C.K.); (H.P.); (Y.-I.P.)
| | - Sung Yun Yang
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea
- Correspondence: (S.Y.Y.); (S.-E.N.); (Y.H.C.)
| | - Seung-Eun Nam
- Green Carbon Research Center, Chemical Process Division, Korea Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (D.H.C.); (S.K.); (Y.Y.); (I.-C.K.); (H.P.); (Y.-I.P.)
- Correspondence: (S.Y.Y.); (S.-E.N.); (Y.H.C.)
| | - Young Hoon Cho
- Green Carbon Research Center, Chemical Process Division, Korea Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (D.H.C.); (S.K.); (Y.Y.); (I.-C.K.); (H.P.); (Y.-I.P.)
- Department of Advanced Materials and Chemical Engineering, University of Science & Technology (UST), Daejeon 34113, Korea
- Correspondence: (S.Y.Y.); (S.-E.N.); (Y.H.C.)
| |
Collapse
|