1
|
Zhang G, Dong S, Esmaeili N, Attia F, Chen K, Pazanialenjareghi F, Lin H. Nanofilm Composite Membranes of Bottlebrush Poly(1,3-Dioxolane) Plasticized by Poly(Ethylene Glycol) for CO 2/N 2 Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2503461. [PMID: 40304176 DOI: 10.1002/smll.202503461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/12/2025] [Indexed: 05/02/2025]
Abstract
Poly(1,3-dioxolane) has emerged as a leading membrane material for post-combustion CO2 capture due to its high ether oxygen content and strong affinity toward CO2. However, they are often cross-linked to inhibit crystallization, which makes them impossible to fabricate into industrial thin-film composite membranes. Herein, soluble and high molecular weight bottlebrush polymers (bPDXLA) are synthesized using reversible addition-fragmentation chain transfer polymerization and demonstrate the feasibility of fabricating nanofilm (≈100 nm) composite membranes (NCMs). Furthermore, bPDXLA can be plasticized using a miscible additive of poly(ethylene glycol) dimethyl ether (PEGDME) to improve CO2 permeability while retaining good CO2/N2 selectivity. For example, adding 20 mass% PEGDME improves CO2 permeance from 930 to 1300 GPU and decreases CO2/N2 selectivity from 74 to 53 at 25 °C; the membrane exhibits stable separation performance competitive with state-of-the-art commercial membranes. This work unveils a practical approach to designing uncross-linked, highly polar polymers for practical membrane gas separation and highlights a facile way to enhance performance by incorporating miscible plasticizers using industrial manufacturing processes.
Collapse
Affiliation(s)
- Gengyi Zhang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University at New York, Buffalo, NY, 14260, USA
| | - Shiwen Dong
- Department of Chemical and Biological Engineering, University at Buffalo, The State University at New York, Buffalo, NY, 14260, USA
| | - Narjes Esmaeili
- Department of Chemical and Biological Engineering, University at Buffalo, The State University at New York, Buffalo, NY, 14260, USA
| | - Fathy Attia
- Department of Chemical and Biological Engineering, University at Buffalo, The State University at New York, Buffalo, NY, 14260, USA
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Kai Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University at New York, Buffalo, NY, 14260, USA
| | - Farhang Pazanialenjareghi
- Department of Chemical and Biological Engineering, University at Buffalo, The State University at New York, Buffalo, NY, 14260, USA
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University at New York, Buffalo, NY, 14260, USA
| |
Collapse
|
2
|
Oh NY, Lee SY, Lee J, Min HJ, Hosseini SS, Patel R, Kim JH. Material Aspects of Thin-Film Composite Membranes for CO 2/N 2 Separation: Metal-Organic Frameworks vs. Graphene Oxides vs. Ionic Liquids. Polymers (Basel) 2024; 16:2998. [PMID: 39518207 PMCID: PMC11548788 DOI: 10.3390/polym16212998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Thin-film composite (TFC) membranes containing various fillers and additives present an effective alternative to conventional dense polymer membranes, which often suffer from low permeance (flux) and the permeability-selectivity tradeoff. Alongside the development and utilization of numerous new polymers over the past few decades, diverse additives such as metal-organic frameworks (MOFs), graphene oxides (GOs), and ionic liquids (ILs) have been integrated into the polymer matrix to enhance performance. However, achieving desirable interfacial compatibility between these additives and the host polymer matrix, particularly in TFC structures, remains a significant challenge. This review discusses recent advancements in TFC membranes for CO2/N2 separation, focusing on material structure, polymer-additive interaction, interface and separation properties. Specifically, we examine membranes operating under dry conditions to clearly assess the impact of additives on membrane properties and performance. Additionally, we provide a perspective on future research directions for designing high-performance membrane materials.
Collapse
Affiliation(s)
- Na Yeong Oh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; (N.Y.O.); (S.Y.L.)
| | - So Youn Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; (N.Y.O.); (S.Y.L.)
| | - Jiwon Lee
- Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Hyo Jun Min
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; (N.Y.O.); (S.Y.L.)
| | - Seyed Saeid Hosseini
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium;
| | - Rajkumar Patel
- Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Jong Hak Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; (N.Y.O.); (S.Y.L.)
| |
Collapse
|
3
|
Darmayanti MG, Tuck KL, Thang SH. Carbon Dioxide Capture by Emerging Innovative Polymers: Status and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403324. [PMID: 38709571 DOI: 10.1002/adma.202403324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/30/2024] [Indexed: 05/08/2024]
Abstract
A significant amount of research has been conducted in carbon dioxide (CO2) capture, particularly over the past decade, and continues to evolve. This review presents the most recent advancements in synthetic methodologies and CO2 capture capabilities of diverse polymer-based substances, which includes the amine-based polymers, porous organic polymers, and polymeric membranes, covering publications in the last 5 years (2019-2024). It aims to assist researchers with new insights and approaches to develop innovative polymer-based materials with improved capturing CO2 capacity, efficiency, sustainability, and cost-effective, thereby addressing the current obstacles in carbon capture and storage to sooner meeting the net-zero CO2 emission target.
Collapse
Affiliation(s)
- Made Ganesh Darmayanti
- School of Chemistry, Monash University, Clayton Campus, Victoria, 3800, Australia
- Faculty of Mathematics and Natural Sciences, University of Mataram, Jalan Majapahit 62 Mataram, Nusa Tenggara Barat, 83125, Indonesia
| | - Kellie L Tuck
- School of Chemistry, Monash University, Clayton Campus, Victoria, 3800, Australia
| | - San H Thang
- School of Chemistry, Monash University, Clayton Campus, Victoria, 3800, Australia
| |
Collapse
|
4
|
Ignatusha P, Lin H, Kapuscinsky N, Scoles L, Ma W, Patarachao B, Du N. Membrane Separation Technology in Direct Air Capture. MEMBRANES 2024; 14:30. [PMID: 38392657 PMCID: PMC10889985 DOI: 10.3390/membranes14020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
Direct air capture (DAC) is an emerging negative CO2 emission technology that aims to introduce a feasible method for CO2 capture from the atmosphere. Unlike carbon capture from point sources, which deals with flue gas at high CO2 concentrations, carbon capture directly from the atmosphere has proved difficult due to the low CO2 concentration in ambient air. Current DAC technologies mainly consider sorbent-based systems; however, membrane technology can be considered a promising DAC approach since it provides several advantages, e.g., lower energy and operational costs, less environmental footprint, and more potential for small-scale ubiquitous installations. Several recent advancements in validating the feasibility of highly permeable gas separation membrane fabrication and system design show that membrane-based direct air capture (m-DAC) could be a complementary approach to sorbent-based DAC, e.g., as part of a hybrid system design that incorporates other DAC technologies (e.g., solvent or sorbent-based DAC). In this article, the ongoing research and DAC application attempts via membrane separation have been reviewed. The reported membrane materials that could potentially be used for m-DAC are summarized. In addition, the future direction of m-DAC development is discussed, which could provide perspective and encourage new researchers' further work in the field of m-DAC.
Collapse
Affiliation(s)
- Pavlo Ignatusha
- Energy, Mining and Environment Research Center, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada (N.K.); (L.S.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Noe Kapuscinsky
- Energy, Mining and Environment Research Center, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada (N.K.); (L.S.)
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Ludmila Scoles
- Energy, Mining and Environment Research Center, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada (N.K.); (L.S.)
| | - Weiguo Ma
- Energy, Mining and Environment Research Center, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada (N.K.); (L.S.)
| | - Bussaraporn Patarachao
- Energy, Mining and Environment Research Center, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada (N.K.); (L.S.)
| | - Naiying Du
- Energy, Mining and Environment Research Center, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada (N.K.); (L.S.)
| |
Collapse
|
5
|
Hillman F, Wang K, Liang CZ, Seng DHL, Zhang S. Breaking The Permeance-Selectivity Tradeoff for Post-Combustion Carbon Capture: A Bio-Inspired Strategy to Form Ultrathin Hollow Fiber Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305463. [PMID: 37672561 DOI: 10.1002/adma.202305463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/24/2023] [Indexed: 09/08/2023]
Abstract
Thin film composite (TFC) hollow fiber membranes with ultrathin selective layer are desirable to maximize the gas permeance for practical applications. Herein, a bio-inspired strategy is proposed to fabricate sub-100-nm membranes via a tree-mimicking polymer network with amphipathic components featuring multifunctionalities. The hydrophobic polydimethylsiloxane (PDMS) brushes act as the roots that can strongly cling to the gutter layer, the PDMS crosslinkers function as the xylems to enable fast gas transport, and the hydrophilic ethylene-oxide moieties (brushes and mobile molecules) resemble tree leaves that selectively attract CO2 molecules. As a result, a ≈27 nm-thick selective layer can be attached to the hollow fiber-supported PDMS gutter layer through a simple dip-coating method without any modification. Furthermore, a CO2 permeance of ≈2700 GPU and a CO2 /N2 selectivity of ≈21 that is beyond the permeance-selectivity upper bound for hollow fiber membranes is achieved. This bio-inspired concept can potentially open the possibility of scalable hollow fiber membranes production for commercial applications in post-combustion carbon capture and beyond.
Collapse
Affiliation(s)
- Febrian Hillman
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Kaiyu Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Can Zeng Liang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Debbie Hwee Leng Seng
- Institute of Material Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Sui Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| |
Collapse
|
6
|
Liu J, Pan Y, Xu J, Wang Z, Zhu H, Liu G, Zhong J, Jin W. Introducing amphipathic copolymer into intermediate layer to fabricate ultra-thin Pebax composite membrane for efficient CO2 capture. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|