1
|
Peng X, Wang K, Chen L. Biphasic glucose-stimulated insulin secretion over decades: a journey from measurements and modeling to mechanistic insights. LIFE METABOLISM 2025; 4:loae038. [PMID: 39872989 PMCID: PMC11770817 DOI: 10.1093/lifemeta/loae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 01/30/2025]
Abstract
Glucose-stimulated insulin release from pancreatic β-cells is critical for maintaining blood glucose homeostasis. An abrupt increase in blood glucose concentration evokes a rapid and transient rise in insulin secretion followed by a prolonged, slower phase. A diminished first phase is one of the earliest indicators of β-cell dysfunction in individuals predisposed to develop type 2 diabetes. Consequently, researchers have explored the underlying mechanisms for decades, starting with plasma insulin measurements under physiological conditions and advancing to single-vesicle exocytosis measurements in individual β-cells combined with molecular manipulations. Based on a chain of evidence gathered from genetic manipulation to in vivo mouse phenotyping, a widely accepted theory posits that distinct functional insulin vesicle pools in β-cells regulate biphasic glucose-stimulated insulin secretion (GSIS) via activation of different metabolic signal pathways. Recently, we developed a high-resolution imaging technique to visualize single vesicle exocytosis from β-cells within an intact islet. Our findings reveal that β-cells within the islet exhibit heterogeneity in their secretory capabilities, which also differs from the heterogeneous Ca2+ signals observed in islet β-cells in response to glucose stimulation. Most importantly, we demonstrate that biphasic GSIS emerges from the interactions among α-, β-, and δ-cells within the islet and is driven by a small subset of hypersecretory β-cells. Finally, we propose that a shift from reductionism to holism may be required to fully understand the etiology of complex diseases such as diabetes.
Collapse
Affiliation(s)
- Xiaohong Peng
- New Cornerstone Science Laboratory, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, The Beijing Laboratory of Biomedical Imaging, Peking-Tsinghua Center for Life Sciences, School of Future Technology, Peking University, Beijing 100871, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Liangyi Chen
- New Cornerstone Science Laboratory, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, The Beijing Laboratory of Biomedical Imaging, Peking-Tsinghua Center for Life Sciences, School of Future Technology, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| |
Collapse
|
2
|
Kamat V, Sweet IR. Hypertonicity during a rapid rise in D-glucose mediates first-phase insulin secretion. Front Endocrinol (Lausanne) 2024; 15:1395028. [PMID: 38989001 PMCID: PMC11233695 DOI: 10.3389/fendo.2024.1395028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Biphasic insulin secretion is an intrinsic characteristic of the pancreatic islet and has clinical relevance due to the loss of first-phase in patients with Type 2 diabetes. As it has long been shown that first-phase insulin secretion only occurs in response to rapid changes in glucose, we tested the hypothesis that islet response to an increase in glucose is a combination of metabolism plus an osmotic effect where hypertonicity is driving first-phase insulin secretion. Methods Experiments were performed using perifusion analysis of rat, mouse, and human islets. Insulin secretion rate (ISR) and other parameters associated with its regulation were measured in response to combinations of D-glucose and membrane-impermeable carbohydrates (L-glucose or mannitol) designed to dissect the effect of hypertonicity from that of glucose metabolism. Results Remarkably, the appearance of first-phase responses was wholly dependent on changes in tonicity: no first-phase in NAD(P)H, cytosolic calcium, cAMP secretion rate (cAMP SR), or ISR was observed when increased D-glucose concentration was counterbalanced by decreases in membrane-impermeable carbohydrates. When D-glucose was greater than 8 mM, rapid increases in L-glucose without any change in D-glucose resulted in first-phase responses in all measured parameters that were kinetically similar to D-glucose. First-phase ISR was completely abolished by H89 (a non-specific inhibitor of protein kinases) without affecting first-phase calcium response. Defining first-phase ISR as the difference between glucose-stimulated ISR with and without a change in hypertonicity, the peak of first-phase ISR occurred after second-phase ISR had reached steady state, consistent with the well-established glucose-dependency of mechanisms that potentiate glucose-stimulated ISR. Discussion The data collected in this study suggests a new model of glucose-stimulated biphasic ISR where first-phase ISR derives from (and after) a transitory amplification of second-phase ISR and driven by hypertonicity-induced rise in H89-inhibitable kinases likely driven by first-phase responses in cAMP, calcium, or a combination of both.
Collapse
Affiliation(s)
| | - Ian R. Sweet
- University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA, United States
| |
Collapse
|
3
|
Al-Ghafari A, Elmorsy EM, Doghaither HA, Fahmy E. Cyclic AMP and calcium signaling are involved in antipsychotic-induced diabetogenic effects in isolated pancreatic β cells of CD1 mice. Int J Health Sci (Qassim) 2022; 16:9-20. [PMID: 36101852 PMCID: PMC9441645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Antipsychotics (APs) are medications used for different psychological disorders. They can introduce diabetogenic effects through different mechanisms, including cyclic adenosine monophosphate (cAMP) and calcium (Ca2+) signaling pathways. However, this effect is poorly understood. Therefore, this study aimed to evaluate the effect of three widely used APs (chlorpromazine, haloperidol, and clozapine) on cAMP and Ca2+ signaling. METHODS The local bioethics committee of Northern Border University approved the study. Pancreatic β-cells were isolated from male CD1 mice, and three drug stock solutions were made in different concentrations (0.1, 1, 10, and 100 μM). The levels of glucose-stimulated insulin secretion (GSIS) and cAMP as well as the activities of adenylyl cyclase (AC), cAMP-dependent protein kinase (PKA), guanine-nucleotide exchange protein activated by cAMP (Epac 1 and 2), Ca2+ mobilization, and Ca2+/calmodulin kinase II (CaMKII) were then determined using different methods. RESULTS APs were found to be cytotoxic to pancreatic β cells and caused a parallel and significant decrease in GSIS. APs significantly reduced the levels of cAMP in the treated cells, with an associated reduction in ATP production, CaMKII, PKA, and transmembrane AC activities as well as Ca2+ mobilization to variable extents. In addition, the gene expression results showed that APs significantly decreased the expression of both the active subunits AC1 and AC8, the PKA α and β subunits, Epac1 and Epac2 as well as the four main subunits of CaMKII to variable extents. CONCLUSION AP-induced alterations in the cAMP and Ca2+ signaling pathways can play a significant role in their diabetogenic potential.
Collapse
Affiliation(s)
- Ayat Al-Ghafari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia,Scientific Research Center, Dar Al-Hekma University, Jeddah, Saudi Arabia,Cancer and Mutagenesis Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ekramy Mahmoud Elmorsy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt,Department of Pathology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia,Address for correspondence: Ekramy Mahmoud Elmorsy, Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt/Department of Pathology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia. Phone: +966501275835. E-mail:
| | - Huda Al Doghaither
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eslam Fahmy
- Department of Physiology, College of Medicine, Zagazig University, Egypt,Department of Physiology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
4
|
Huang YF, Chang LC, Chen CY, Chen YH, Walzem RL, Chen SE. Unrestricted Feed Intake Induces β-Cell Death and Impairs Insulin Secretion in Broiler Breeder Hens. Animals (Basel) 2020; 10:ani10111969. [PMID: 33114772 PMCID: PMC7693285 DOI: 10.3390/ani10111969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Ad-feed intake caused transient hyperinsulinemia, but ultimately impaired insulin secretion and glucose clearance leading to hyperglycemia in broiler breeder hens. The impairments were operated at insulin gene expression and at pyruvate anaplerosis for ATP supply for insulin release. Lipotoxicity, inflammation, and cell apoptosis in the β-islets contributed to impaired insulin secretion in Ad-hens. Abstract Past studies regarding to insulin secretion and glucose disposal in chickens were focused on rapidly growing juvenile broilers and may not reflect glucose/insulin physiology in adulthood. The study aimed to assess insulin secretion and glucose disposal in respect to restricted (R) vs. ad libitum (Ad) feed intake for obesity development in broiler breeder hens. Hens at age of 26 weeks were continued on R rations, or allowed Ad-feed intake up to 45 weeks. Results from prandial changes and glucose tolerance test suggested that Ad-feed intake to 45 weeks impaired insulin secretion and glucose clearance, and, thus, caused hyperglycemia in accompany with transient hyperinsulinemia at age of 33 weeks (p < 0.05). The alterations were shown operating at both transcript and protein level of insulin gene expression per se and at ATP supply for insulin release as evidenced by consistent changes of enzyme expression and activity in pyruvate anaplerosis in the β-islets (p < 0.05). Ad-feed intake also increased β-islet triacylglycerol and ceramide accumulation and provoked interleukin-1β (IL-1β) production (p < 0.05), which were further manifested by a detrimental increase of caspase 3/7 activity and cell apoptosis (p < 0.05). Results support the conclusion that release to Ad-feed intake in broiler breeder hens transiently induced hyperinsulinemia along rapid bodyweight gain and adiposity, but later provoked lipotoxicity and inflammation leading to β-cell apoptosis and ultimately impaired insulin secretion and glucose disposal.
Collapse
Affiliation(s)
- Yu-Feng Huang
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-F.H.); (C.-Y.C.); (Y.-H.C.)
| | - Ling-Chu Chang
- Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung 40447, Taiwan;
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung 40447, Taiwan
| | - Chung-Yu Chen
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-F.H.); (C.-Y.C.); (Y.-H.C.)
| | - Yu-Hui Chen
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-F.H.); (C.-Y.C.); (Y.-H.C.)
| | - Rosemary L. Walzem
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA;
| | - Shuen-Ei Chen
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-F.H.); (C.-Y.C.); (Y.-H.C.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
- Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung 40227, Taiwan
- Correspondence:
| |
Collapse
|
5
|
Morsi M, Schulze T, Früh E, Brüning D, Panten U, Rustenbeck I. Fresh and cultured mouse islets differ in their response to nutrient stimulation. Endocr Connect 2020; 9:769-782. [PMID: 32688335 PMCID: PMC7424343 DOI: 10.1530/ec-20-0289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/19/2020] [Indexed: 12/25/2022]
Abstract
Observing different kinetics of nutrient-induced insulin secretion in fresh and cultured islets under the same condition we compared parameters of stimulus secretion coupling in freshly isolated and 22-h-cultured NMRI mouse islets. Stimulation of fresh islets with 30 mM glucose after perifusion without nutrient gave a continuously ascending secretion rate. In 22-h-cultured islets the same protocol produced a brisk first phase followed by a moderately elevated plateau, a pattern regarded to be typical for mouse islets. This was also the response of cultured islets to the nutrient secretagogue alpha-ketoisocaproic acid, whereas the secretion of fresh islets increased similarly fast but remained strongly elevated. The responses of fresh and cultured islets to purely depolarizing stimuli (tolbutamide or KCl), however, were closely similar. Signs of apoptosis and necrosis were rare in both preparations. In cultured islets, the glucose-induced rise of the cytosolic Ca2+ concentration started from a lower value and was larger as was the increase of the ATP/ADP ratio. The prestimulatory level of mitochondrial reducing equivalents, expressed as the NAD(P)H/FAD fluorescence ratio, was lower in cultured islets, but increased more strongly than in fresh islets. When culture conditions were modified by replacing RPMI with Krebs-Ringer medium and FCS with BSA, the amount of released insulin varied widely, but the kinetics always showed a predominant first phase. In conclusion, the secretion kinetics of fresh mouse islets is more responsive to variations of nutrient stimulation than cultured islets. The more uniform kinetics of the latter may be caused by a different use of endogenous metabolites.
Collapse
Affiliation(s)
- Mai Morsi
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Torben Schulze
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Eike Früh
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dennis Brüning
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Uwe Panten
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ingo Rustenbeck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
- Correspondence should be addressed to I Rustenbeck:
| |
Collapse
|
6
|
Sarmiento BE, Santos Menezes LF, Schwartz EF. Insulin Release Mechanism Modulated by Toxins Isolated from Animal Venoms: From Basic Research to Drug Development Prospects. Molecules 2019; 24:E1846. [PMID: 31091684 PMCID: PMC6571724 DOI: 10.3390/molecules24101846] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/23/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
Venom from mammals, amphibians, snakes, arachnids, sea anemones and insects provides diverse sources of peptides with different potential medical applications. Several of these peptides have already been converted into drugs and some are still in the clinical phase. Diabetes type 2 is one of the diseases with the highest mortality rate worldwide, requiring specific attention. Diverse drugs are available (e.g., Sulfonylureas) for effective treatment, but with several adverse secondary effects, most of them related to the low specificity of these compounds to the target. In this context, the search for specific and high-affinity compounds for the management of this metabolic disease is growing. Toxins isolated from animal venom have high specificity and affinity for different molecular targets, of which the most important are ion channels. This review will present an overview about the electrical activity of the ion channels present in pancreatic β cells that are involved in the insulin secretion process, in addition to the diversity of peptides that can interact and modulate the electrical activity of pancreatic β cells. The importance of prospecting bioactive peptides for therapeutic use is also reinforced.
Collapse
Affiliation(s)
- Beatriz Elena Sarmiento
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Luis Felipe Santos Menezes
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Elisabeth F Schwartz
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
7
|
Mori N, Kurata M, Yamazaki H, Matsumura S, Hashimoto T, Kanazawa K, Nadamoto T, Inoue K, Fushiki T. Allyl isothiocyanate increases carbohydrate oxidation through enhancing insulin secretion by TRPV1. Biosci Biotechnol Biochem 2017; 82:698-708. [PMID: 29207921 DOI: 10.1080/09168451.2017.1407234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The transient receptor potential (TRP) V1 is a cation channel belonging to the TRP channel family and it has been reported to be involved in energy metabolism, especially glucose metabolism. While, we have previously shown that intragastric administration of allyl isothiocyanate (AITC) enhanced glucose metabolism via TRPV1, the underlying mechanism has not been elucidated. In this study, we examined the relationship between insulin secretion and the increase in carbohydrate oxidation due to AITC. Intragastric administration of AITC elevated blood insulin levels in mice and AITC directly enhanced insulin secretion from isolated islets. These observations were not reproduced in TRPV1 knockout mice. Furthermore, AITC did not increase carbohydrate oxidation in streptozotocin-treated mice. These results suggest that intragastric administration of AITC could induce insulin secretion from islets via TRPV1 and that enhancement of insulin secretion was related to the increased carbohydrate oxidation due to AITC.
Collapse
Affiliation(s)
- Noriyuki Mori
- a Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture , Kyoto University , Kyoto , Japan.,b Division of Nutrition Sciences, School of Human Culture , University of Shiga Prefecture , Shiga , Japan
| | - Manami Kurata
- a Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture , Kyoto University , Kyoto , Japan
| | - Hanae Yamazaki
- c Laboratory of Ajinomoto Integrative Research for Advanced Dieting, Graduate School of Agriculture , Kyoto University , Kyoto , Japan
| | - Shigenobu Matsumura
- a Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture , Kyoto University , Kyoto , Japan
| | - Takashi Hashimoto
- d Department of Agrobioscience, Graduate School of Agricultural Science , Kobe University , Kobe , Japan
| | - Kazuki Kanazawa
- d Department of Agrobioscience, Graduate School of Agricultural Science , Kobe University , Kobe , Japan
| | - Tomonori Nadamoto
- b Division of Nutrition Sciences, School of Human Culture , University of Shiga Prefecture , Shiga , Japan
| | - Kazuo Inoue
- a Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture , Kyoto University , Kyoto , Japan
| | - Tohru Fushiki
- a Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture , Kyoto University , Kyoto , Japan
| |
Collapse
|
8
|
Song S, Yeung R, Park J, Posselt AM, Desai TA, Tang Q, Roy S. Glucose-Stimulated Insulin Response of Silicon Nanopore-Immunoprotected Islets under Convective Transport. ACS Biomater Sci Eng 2017; 3:1051-1061. [PMID: 29250596 DOI: 10.1021/acsbiomaterials.6b00814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Major clinical challenges associated with islet transplantation for type 1 diabetes include shortage of donor organs, poor engraftment due to ischemia, and need for immunosuppressive medications. Semipermeable membrane capsules can immunoprotect transplanted islets by blocking passage of the host's immune components while providing exchange of glucose, insulin, and other small molecules. However, capsules-based diffusive transport often exacerbates ischemic injury to islets by reducing the rate of oxygen and nutrient transport. We previously reported the efficacy of a newly developed semipermeable ultrafiltration membrane, the silicon nanopore membrane (SNM) under convective-driven transport, in limiting the passage of pro-inflammatory cytokines while overcoming the mass transfer limitations associated with diffusion through nanometer-scale pores. In this study, we report that SNM-encapsulated mouse islets perfused in culture solution under convection outperformed those under diffusive conditions in terms of magnitude (1.49-fold increase in stimulation index and 3.86-fold decrease in shutdown index) and rate of insulin secretion (1.19-fold increase and 6.45-fold decrease during high and low glucose challenges), respectively. Moreover, SNM-encapsulated mouse islets under convection demonstrated rapid glucose-insulin sensing within a physiologically relevant time-scale while retaining healthy islet viability even under cytokine exposure. We conclude that encapsulation of islets with SNM under convection improves islet in vitro functionality. This approach may provide a novel strategy for islet transplantation in the clinical setting.
Collapse
Affiliation(s)
- Shang Song
- Department of Bioengineering and Therapeutic Sciences, University of California-San Francisco, San Francisco, California 94158, United States
| | - Raymond Yeung
- Department of Bioengineering and Therapeutic Sciences, University of California-San Francisco, San Francisco, California 94158, United States
| | - Jaehyun Park
- Department of Bioengineering and Therapeutic Sciences, University of California-San Francisco, San Francisco, California 94158, United States
| | - Andrew M Posselt
- Department of Surgery, University of California-San Francisco, San Francisco, California 94143, United States
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California-San Francisco, San Francisco, California 94158, United States
| | - Qizhi Tang
- Department of Surgery, University of California-San Francisco, San Francisco, California 94143, United States
| | - Shuvo Roy
- Department of Bioengineering and Therapeutic Sciences, University of California-San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
9
|
Hugill A, Shimomura K, Cox RD. Islet Insulin Secretion Measurements in the Mouse. ACTA ACUST UNITED AC 2016; 6:256-271. [PMID: 27584553 DOI: 10.1002/cpmo.14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This article describes detailed protocols for in vitro measurements of insulin function and secretion in isolated mouse islets for the analysis of glucose homeostasis. We specify a method of enzyme digestion and hand picking to isolate and release the greatest number of high quality islets from the pancreas of the mouse. We describe an effective method for generating dynamic measurements of insulin secretion using a perifusion assay including a detailed protocol for constructing a peristaltic pump and tubing assembly. In addition we describe an alternative and simple technique for measuring insulin secretion using static incubation of isolated islets. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Alison Hugill
- Mammalian Genetics Unit, Medical Research Council Harwell, Harwell Science and Innovation Campus, Oxfordshire, United Kingdom
| | - Kenju Shimomura
- Department of Medical Electrophysiology, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | - Roger D Cox
- Mammalian Genetics Unit, Medical Research Council Harwell, Harwell Science and Innovation Campus, Oxfordshire, United Kingdom
| |
Collapse
|
10
|
Kolic J, Manning Fox JE, Chepurny OG, Spigelman AF, Ferdaoussi M, Schwede F, Holz GG, MacDonald PE. PI3 kinases p110α and PI3K-C2β negatively regulate cAMP via PDE3/8 to control insulin secretion in mouse and human islets. Mol Metab 2016; 5:459-471. [PMID: 27408772 PMCID: PMC4921792 DOI: 10.1016/j.molmet.2016.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 04/26/2016] [Accepted: 05/04/2016] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Phosphatidylinositol-3-OH kinase (PI3K) signalling in the endocrine pancreas contributes to glycaemic control. However, the mechanism by which PI3K modulates insulin secretion from the pancreatic beta cell is poorly understood. Thus, our objective was two-fold; to determine the signalling pathway by which acute PI3K inhibition enhances glucose-stimulated insulin secretion (GSIS) and to examine the role of this pathway in islets from type-2 diabetic (T2D) donors. METHODS Isolated islets from mice and non-diabetic or T2D human donors, or INS 832/13 cells, were treated with inhibitors of PI3K and/or phosphodiesterases (PDEs). The expression of PI3K-C2β was knocked down using siRNA. We measured insulin release, single-cell exocytosis, intracellular Ca(2+) responses ([Ca(2+)]i) and Ca(2+) channel currents, intracellular cAMP concentrations ([cAMP]i), and activation of cAMP-dependent protein kinase A (PKA) and protein kinase B (PKB/AKT). RESULTS The non-specific PI3K inhibitor wortmannin amplifies GSIS, raises [cAMP]i and activates PKA, but is without effect in T2D islets. Direct inhibition of specific PDE isoforms demonstrates a role for PDE3 (in humans and mice) and PDE8 (in mice) downstream of PI3K, and restores glucose-responsiveness of T2D islets. We implicate a role for the Class II PI3K catalytic isoform PI3K-C2β in this effect by limiting beta cell exocytosis. CONCLUSIONS PI3K limits GSIS via PDE3 in human islets. While inhibition of p110α or PIK-C2β signalling per se, may promote nutrient-stimulated insulin release, we now suggest that this signalling pathway is perturbed in islets from T2D donors.
Collapse
Affiliation(s)
- Jelena Kolic
- Department of Pharmacology, and the Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
| | - Jocelyn E Manning Fox
- Department of Pharmacology, and the Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Oleg G Chepurny
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | - Aliya F Spigelman
- Department of Pharmacology, and the Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Mourad Ferdaoussi
- Department of Pharmacology, and the Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Frank Schwede
- BIOLOG Life Science Institute, 28199 Bremen, Germany
| | - George G Holz
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA; Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | - Patrick E MacDonald
- Department of Pharmacology, and the Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| |
Collapse
|
11
|
Abstract
OBJECTIVES The effects of glucocorticoid during culture on human islet cells have been controversial. Exendin-4 (EX) enhances the insulin secretion and significantly improves clinical outcomes in islet cell transplantation. In this study, we examined the effects of glucocorticoids and EX on human islet cells during pretransplant culture. METHODS Methylprednisolone (MP) and/or EX were added to the standard culture medium for clinical islet cell transplantation. Islets were cultured for 24 hours with 3 different conditions (control, no additives; MP alone; and MP + EX). β-Cell fractional viability, cellular composition, multiple cytokine/chemokine production, multiple phosphorylation proteins, and glucose-induced insulin secretion were evaluated. RESULTS Viable β-cell survival in MP and MP + EX group was significantly higher than in the control group. Exendin-4 prevented MP-induced reduction of insulin secretion. Methylprednisolone supplementation to the culture medium decreased cytokine and chemokine production. Moreover, extracellular signal-regulated kinase 1/2 phosphorylation was significantly increased by MP and MP + EX. CONCLUSIONS Glucocorticoid supplementation into culture media significantly decreased the cytokine/chemokine production and increased the extracellular signal-regulated kinase 1/2 phosphorylation, resulting in the improvement of human β-cell survival. In addition, EX maintained the insulin secretion suppressed by MP. The supplementation of MP and EX together could be a useful strategy to create suitable human islets for transplantation.
Collapse
|
12
|
Hectors TLM, Vanparys C, Pereira-Fernandes A, Martens GA, Blust R. Evaluation of the INS-1 832/13 cell line as a beta-cell based screening system to assess pollutant effects on beta-cell function. PLoS One 2013; 8:e60030. [PMID: 23555872 PMCID: PMC3605429 DOI: 10.1371/journal.pone.0060030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/22/2013] [Indexed: 01/15/2023] Open
Abstract
Environmental pollutants have recently emerged as potential risk factors for metabolic diseases, urging systematic investigation of pollutant effects on metabolic disease processes. To enable risk assessment of these so-called metabolic disruptors the use of stable, robust and well-defined cell based screening systems has recently been encouraged. Since beta-cell (dys)functionality is central in diabetes pathophysiology, the need to develop beta-cell based pollutant screening systems is evident. In this context, the present research evaluated the strengths and weaknesses of the INS-1 832/13 pancreatic beta-cell line as diabetogenic pollutant screening system with a focus on beta-cell function. After optimization of exposure conditions, positive (exendin-4, glibenclamide) and negative (diazoxide) control compounds for acute insulin secretion responses were tested and those with the most profound effects were selected to allow potency estimations and ranking of pollutants. This was followed by a first explorative screening of acute bisphenol A and bis(2-ethylhexyl)phthalate effects. The same approach was applied for chronic exposures, focusing primarily on evaluation of acknowledged chronic stimulators (diazoxide, T0901317, exendin-4) or inhibitors (glibenclamide) of insulin secretion responses to select the most responsive ones for use as control compounds in a chronic pollutant testing framework. Our results showed that INS-1 832/13 cells responded conform previous observations regarding acute effects of control compounds on insulin secretion, while bisphenol A and bis(2-ethylhexyl)phthalate had limited acute effects. Furthermore, chronic exposure to known beta-cell reactive compounds resulted in deviating insulin secretion and insulin content profiles compared to previous reports. In conclusion, this INS-1 subclone appears to lack certain characteristics needed to respond appropriately to acute pollutant exposure or long term exposure to known beta-cell reactive compounds and thus seems to be, in our setting, inadequate as a diabetogenic pollutant screening system.
Collapse
Affiliation(s)
- Tine L M Hectors
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Antwerp, Belgium.
| | | | | | | | | |
Collapse
|
13
|
Stamper IJ, Wang X. Mathematical modeling of insulin secretion and the role of glucose-dependent mobilization, docking, priming and fusion of insulin granules. J Theor Biol 2012; 318:210-25. [PMID: 23154190 DOI: 10.1016/j.jtbi.2012.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 10/28/2012] [Accepted: 11/02/2012] [Indexed: 01/08/2023]
Abstract
In this paper we develop a new mathematical model of glucose-induced insulin secretion from pancreatic islet β-cells, and we use this model to investigate the rate limiting factors. We assume that insulin granules reside in different pools inside each β-cell, and that all β-cells respond homogeneously to glucose with the same recruitment thresholds. Consistent with recent experimental observations, our model also accounts for the fusion of newcomer granules that are not pre-docked at the plasma membrane. In response to a single step increase in glucose concentration, our model reproduces the characteristic biphasic insulin release observed in multiple experimental systems, including perfused pancreata and isolated islets of rodent or human origin. From our model analysis we note that first-phase insulin secretion depends on rapid depletion of the primed, release-ready granule pools, while the second phase relies on granule mobilization from the reserve. Moreover, newcomers have the potential to contribute significantly to the second phase. When the glucose protocol consists of multiple changes in sequence (a so-called glucose staircase), our model predicts insulin spikes of increasing height, as has been seen experimentally. This increase stems from the glucose-dependent increase in the fusion rate of insulin granules at the plasma membrane of single β-cells. In contrast, previous mathematical models reproduced the staircase experiment by assuming heterogeneous β-cell activation. In light of experimental data indicating limited heterogeneous activation for β-cells within intact islets, our findings suggest that a graded, dose-dependent cell response to glucose may contribute to insulin secretion patterns observed in multiple experiments, and thus regulate in vivo insulin release. In addition, the strength of insulin granule mobilization, priming and fusion are critical limiting factors in determining the total amount of insulin release.
Collapse
Affiliation(s)
- I Johanna Stamper
- Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama, AL 35294, USA.
| | | |
Collapse
|
14
|
Le Marchand SJ, Piston DW. Glucose decouples intracellular Ca2+ activity from glucagon secretion in mouse pancreatic islet alpha-cells. PLoS One 2012; 7:e47084. [PMID: 23077547 PMCID: PMC3471958 DOI: 10.1371/journal.pone.0047084] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 09/12/2012] [Indexed: 11/18/2022] Open
Abstract
The mechanisms of glucagon secretion and its suppression by glucose are presently unknown. This study investigates the relationship between intracellular calcium levels ([Ca2+]i) and hormone secretion under low and high glucose conditions. We examined the effects of modulating ion channel activities on [Ca2+]i and hormone secretion from ex vivo mouse pancreatic islets. Glucagon-secreting α-cells were unambiguously identified by cell specific expression of fluorescent proteins. We found that activation of L-type voltage-gated calcium channels is critical for α-cell calcium oscillations and glucagon secretion at low glucose levels. Calcium channel activation depends on KATP channel activity but not on tetrodotoxin-sensitive Na+ channels. The use of glucagon secretagogues reveals a positive correlation between α-cell [Ca2+]i and secretion at low glucose levels. Glucose elevation suppresses glucagon secretion even after treatment with secretagogues. Importantly, this inhibition is not mediated by KATP channel activity or reduction in α-cell [Ca2+]i. Our results demonstrate that glucose uncouples the positive relationship between [Ca2+]i and secretory activity. We conclude that glucose suppression of glucagon secretion is not mediated by inactivation of calcium channels, but instead, it requires a calcium-independent inhibitory pathway.
Collapse
Affiliation(s)
- Sylvain J. Le Marchand
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - David W. Piston
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
15
|
Ferdaoussi M, Bergeron V, Zarrouki B, Kolic J, Cantley J, Fielitz J, Olson EN, Prentki M, Biden T, MacDonald PE, Poitout V. G protein-coupled receptor (GPR)40-dependent potentiation of insulin secretion in mouse islets is mediated by protein kinase D1. Diabetologia 2012; 55:2682-2692. [PMID: 22820510 PMCID: PMC3543464 DOI: 10.1007/s00125-012-2650-x] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 06/18/2012] [Indexed: 10/28/2022]
Abstract
AIMS/HYPOTHESIS Activation of the G protein-coupled receptor (GPR)40 by long-chain fatty acids potentiates glucose-stimulated insulin secretion (GSIS) from pancreatic beta cells, and GPR40 agonists are in clinical development for type 2 diabetes therapy. GPR40 couples to the G protein subunit Gα(q/11) but the signalling cascade activated downstream is unknown. This study aimed to determine the mechanisms of GPR40-dependent potentiation of GSIS by fatty acids. METHODS Insulin secretion in response to glucose, oleate or diacylglycerol (DAG) was assessed in dynamic perifusions and static incubations in islets from wild-type (WT) and Gpr40 (-/-) mice. Depolymerisation of filamentous actin (F-actin) was visualised by phalloidin staining and epifluorescence. Pharmacological and molecular approaches were used to ascertain the roles of protein kinase D (PKD) and protein kinase C delta in GPR40-mediated potentiation of GSIS. RESULTS Oleate potentiates the second phase of GSIS, and this effect is largely dependent upon GPR40. Accordingly, oleate induces rapid F-actin remodelling in WT but not in Gpr40 (-/-) islets. Exogenous DAG potentiates GSIS in both WT and Gpr40 (-/-) islets. Oleate induces PKD phosphorylation at residues Ser-744/748 and Ser-916 in WT but not Gpr40 (-/-) islets. Importantly, oleate-induced F-actin depolymerisation and potentiation of GSIS are lost upon pharmacological inhibition of PKD1 or deletion of Prkd1. CONCLUSIONS/INTERPRETATION We conclude that the signalling cascade downstream of GPR40 activation by fatty acids involves activation of PKD1, F-actin depolymerisation and potentiation of second-phase insulin secretion. These results provide important information on the mechanisms of action of GPR40, a novel drug target for type 2 diabetes.
Collapse
Affiliation(s)
- M Ferdaoussi
- Montreal Diabetes Research Center, CRCHUM, Technopole Angus, 2901 Rachel Est, Montréal, QC, Canada, H1W 4A4
- Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - V Bergeron
- Montreal Diabetes Research Center, CRCHUM, Technopole Angus, 2901 Rachel Est, Montréal, QC, Canada, H1W 4A4
- Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - B Zarrouki
- Montreal Diabetes Research Center, CRCHUM, Technopole Angus, 2901 Rachel Est, Montréal, QC, Canada, H1W 4A4
- Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - J Kolic
- Department of Pharmacology and the Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - J Cantley
- Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, NSW, Australia
| | - J Fielitz
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- Medical Department, Division of Cardiology, Charité University, Campus Virchow-Klinikum, Berlin, Germany
| | - E N Olson
- Departments of Molecular Biology, Internal Medicine, and Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - M Prentki
- Montreal Diabetes Research Center, CRCHUM, Technopole Angus, 2901 Rachel Est, Montréal, QC, Canada, H1W 4A4
- Departments of Nutrition and Biochemistry, University of Montreal, Montreal, QC, Canada
| | - T Biden
- Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, NSW, Australia
| | - P E MacDonald
- Department of Pharmacology and the Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - V Poitout
- Montreal Diabetes Research Center, CRCHUM, Technopole Angus, 2901 Rachel Est, Montréal, QC, Canada, H1W 4A4.
- Department of Medicine, University of Montreal, Montreal, QC, Canada.
- Departments of Nutrition and Biochemistry, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
16
|
Hinke SA, Navedo MF, Ulman A, Whiting JL, Nygren PJ, Tian G, Jimenez-Caliani AJ, Langeberg LK, Cirulli V, Tengholm A, Dell'Acqua ML, Santana LF, Scott JD. Anchored phosphatases modulate glucose homeostasis. EMBO J 2012; 31:3991-4004. [PMID: 22940692 PMCID: PMC3474922 DOI: 10.1038/emboj.2012.244] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 07/23/2012] [Indexed: 02/07/2023] Open
Abstract
AKAP150 knockout- and mutant knock-in alleles reveal an unexpected role of the adaptor in anchoring phosphatase 2B for efficient insulin secretion from pancreatic β-cells and thus glucose homeostasis. Endocrine release of insulin principally controls glucose homeostasis. Nutrient-induced exocytosis of insulin granules from pancreatic β-cells involves ion channels and mobilization of Ca2+ and cyclic AMP (cAMP) signalling pathways. Whole-animal physiology, islet studies and live-β-cell imaging approaches reveal that ablation of the kinase/phosphatase anchoring protein AKAP150 impairs insulin secretion in mice. Loss of AKAP150 impacts L-type Ca2+ currents, and attenuates cytoplasmic accumulation of Ca2+ and cAMP in β-cells. Yet surprisingly AKAP150 null animals display improved glucose handling and heightened insulin sensitivity in skeletal muscle. More refined analyses of AKAP150 knock-in mice unable to anchor protein kinase A or protein phosphatase 2B uncover an unexpected observation that tethering of phosphatases to a seven-residue sequence of the anchoring protein is the predominant molecular event underlying these metabolic phenotypes. Thus anchored signalling events that facilitate insulin secretion and glucose homeostasis may be set by AKAP150 associated phosphatase activity.
Collapse
Affiliation(s)
- Simon A Hinke
- Department of Pharmacology, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Willenborg M, Belz M, Schumacher K, Paufler A, Hatlapatka K, Rustenbeck I. Ca(2+)-dependent desensitization of insulin secretion by strong potassium depolarization. Am J Physiol Endocrinol Metab 2012; 303:E223-33. [PMID: 22550068 DOI: 10.1152/ajpendo.00010.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Depolarization by a high K(+) concentration is a widely used experimental tool to stimulate insulin secretion. The effects occurring after the initial rise in secretion were investigated here. After the initial peak a fast decline occurred, which was followed by a slowly progressive decrease in secretion when a strong K(+) depolarization was used. At 40 mM KCl, but not at lower concentrations, the decrease continued when the glucose concentration was raised from 5 to 10 mM, suggesting an inhibitory effect of the K(+) depolarization. When tolbutamide was added instead of the glucose concentration being raised, a complete inhibition down to prestimulatory values was observed. Equimolar reduction of the NaCl concentration to preserve isoosmolarity enabled an increase in secretion in response to glucose. Unexpectedly, the same was true when the Na(+)-reduced media were made hyperosmolar by choline chloride or mannitol. The insulinotropic effect of tolbutamide was not rescued by the compensatory reduction of NaCl, suggesting a requirement for activated energy metabolism. These inhibitory effects could not be explained by a lack of depolarizing strength or by a diminished free cytosolic Ca(2+) concentration ([Ca(2+)](i)). Rather, the complexation of extracellular Ca(2+) concomitant with the K(+) depolarization markedly diminished [Ca(2+)](i) and attenuated the inhibitory action of 40 mM KCl. This suggests that a strong but not a moderate depolarization by K(+) induces a [Ca(2+)](i)-dependent, slowly progressive desensitization of the secretory machinery. In contrast, the decline immediately following the initial peak of secretion may result from the inactivation of voltage-dependent Ca(2+) channels.
Collapse
Affiliation(s)
- M Willenborg
- Institute of Pharmacology and Toxicology, University of Braunschweig, Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Kim J, Choi M, Kim JR, Jin H, Kim VN, Cho KH. The co-regulation mechanism of transcription factors in the human gene regulatory network. Nucleic Acids Res 2012; 40:8849-61. [PMID: 22798495 PMCID: PMC3467061 DOI: 10.1093/nar/gks664] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The co-regulation of transcription factors (TFs) has been widely observed in various species. Why is such a co-regulation mechanism needed for transcriptional regulation? To answer this question, the following experiments and analyses were performed. First, examination of the human gene regulatory network (GRN) indicated that co-regulation was significantly enriched in the human GRN. Second, mathematical simulation of an artificial regulatory network showed that the co-regulation mechanism was related to the biphasic dose-response patterns of TFs. Third, the relationship between the co-regulation mechanism and the biphasic dose-response pattern was confirmed using microarray experiments examining different time points and different doses of the toxicant tetrachlorodibenzodioxin. Finally, two mathematical models were constructed to mimic highly co-regulated networks (HCNs) and little co-regulated networks (LCNs), and we found that HCNs were more robust to parameter perturbation than LCNs, whereas LCNs were faster in adaptation to environmental changes than HCNs.
Collapse
Affiliation(s)
- Junil Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
19
|
Coupling of metabolic, second messenger pathways and insulin granule dynamics in pancreatic beta-cells: a computational analysis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 107:293-303. [PMID: 21920379 DOI: 10.1016/j.pbiomolbio.2011.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 08/26/2011] [Accepted: 09/01/2011] [Indexed: 12/26/2022]
Abstract
Insulin secretory responses to nutrient stimuli and hormonal modulators in pancreatic beta-cells are controlled by a variety of secondary messengers. We have analyzed numerous mechanisms responsible for regulated exocytosis in these cells and present an integrated mathematical model of cytosolic Ca²⁺, cAMP and granule dynamics. The insulin-containing granules in the beta-cell were divided into four classes: a large "reserve" granule pool, a smaller pool of the morphologically docked granules that is chemically 'primed' for release or the "readily releasable pool", and a pool of "restless newcomer granules" that undergoes preferential exocytosis. The model incorporates glucose and other aspects of metabolism, the cAMP amplifying pathway, insulin granule dynamics and the exocyst concept for granule binding. The values of most of the model parameters were inferred from available experimental data. The model can generate both the fast first phase and slow biphasic insulin secretion found experimentally in response to a step increase of membrane potential or of glucose. The numerical simulations have also reproduced a variety of experimental conditions, such as periodic stimulation by high K⁺ and the potentiation induced in islets by pre-incubation with cAMP pathway activators. The explicit incorporation of Ca²⁺ channels, Ca²⁺ and cAMP dynamics allows the model to be further connected to current models for calcium and metabolic dynamics and provides an interpretation of the roles of the triggering and amplifying pathways of glucose-stimulated insulin secretion. The model may be important in the identification of pharmacological targets for improving insulin secretion in type 2 diabetes.
Collapse
|
20
|
Mourad NI, Nenquin M, Henquin JC. Metabolic amplification of insulin secretion by glucose is independent of β-cell microtubules. Am J Physiol Cell Physiol 2011; 300:C697-706. [DOI: 10.1152/ajpcell.00329.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucose-induced insulin secretion (IS) by β-cells is controlled by two pathways. The triggering pathway involves ATP-sensitive potassium (KATP) channel-dependent depolarization, Ca2+ influx, and rise in the cytosolic Ca2+ concentration ([Ca2+]c), which triggers exocytosis of insulin granules. The metabolic amplifying pathway augments IS without further increasing [Ca2+]c. After exclusion of the contribution of actin microfilaments, we here tested whether amplification implicates microtubule-dependent granule mobilization. Mouse islets were treated with nocodazole or taxol, which completely depolymerized and polymerized tubulin. They were then perifused to measure [Ca2+]c and IS. Metabolic amplification was studied during imposed steady elevation of [Ca2+]c by tolbutamide or KCl or by comparing [Ca2+]c and IS responses to glucose and tolbutamide. Nocodazole did not alter [Ca2+]c or IS changes induced by the three secretagogues, whereas taxol caused a small inhibition of IS that is partly ascribed to a decrease in [Ca2+]c. When [Ca2+]c was elevated and controlled by KCl or tolbutamide, the amplifying action of glucose was unaffected by microtubule disruption or stabilization. Both phases of IS were larger in response to glucose than tolbutamide, although triggering [Ca2+]c was lower. This difference, due to amplification, persisted in nocodazole- or taxol-treated islets, even when IS was augmented fourfold by microfilament disruption with cytochalasin B or latrunculin B. In conclusion, metabolic amplification rapidly augments first and second phases of IS independently of insulin granule translocation along microtubules. We therefore extend our previous proposal that it does not implicate the cytoskeleton but corresponds to acceleration of the priming process conferring release competence to insulin granules.
Collapse
Affiliation(s)
- Nizar I. Mourad
- Unit of Endocrinology and Metabolism, University of Louvain Faculty of Medicine, Brussels, Belgium
| | - Myriam Nenquin
- Unit of Endocrinology and Metabolism, University of Louvain Faculty of Medicine, Brussels, Belgium
| | - Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, University of Louvain Faculty of Medicine, Brussels, Belgium
| |
Collapse
|
21
|
Gustavsson N, Wang X, Wang Y, Seah T, Xu J, Radda GK, Südhof TC, Han W. Neuronal calcium sensor synaptotagmin-9 is not involved in the regulation of glucose homeostasis or insulin secretion. PLoS One 2010; 5:e15414. [PMID: 21085706 PMCID: PMC2976867 DOI: 10.1371/journal.pone.0015414] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 09/16/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Insulin secretion is a complex and highly regulated process. It is well established that cytoplasmic calcium is a key regulator of insulin secretion, but how elevated intracellular calcium triggers insulin granule exocytosis remains unclear, and we have only begun to define the identities of proteins that are responsible for sensing calcium changes and for transmitting the calcium signal to release machineries. Synaptotagmins are primarily expressed in brain and endocrine cells and exhibit diverse calcium binding properties. Synaptotagmin-1, -2 and -9 are calcium sensors for fast neurotransmitter release in respective brain regions, while synaptotagmin-7 is a positive regulator of calcium-dependent insulin release. Unlike the three neuronal calcium sensors, whose deletion abolished fast neurotransmitter release, synaptotagmin-7 deletion resulted in only partial loss of calcium-dependent insulin secretion, thus suggesting that other calcium-sensors must participate in the regulation of insulin secretion. Of the other synaptotagmin isoforms that are present in pancreatic islets, the neuronal calcium sensor synaptotagmin-9 is expressed at the highest level after synaptotagmin-7. METHODOLOGY/PRINCIPAL FINDINGS In this study we tested whether synaptotagmin-9 participates in the regulation of glucose-stimulated insulin release by using pancreas-specific synaptotagmin-9 knockout (p-S9X) mice. Deletion of synaptotagmin-9 in the pancreas resulted in no changes in glucose homeostasis or body weight. Glucose tolerance, and insulin secretion in vivo and from isolated islets were not affected in the p-S9X mice. Single-cell capacitance measurements showed no difference in insulin granule exocytosis between p-S9X and control mice. CONCLUSIONS Thus, synaptotagmin-9, although a major calcium sensor in the brain, is not involved in the regulation of glucose-stimulated insulin release from pancreatic β-cells.
Collapse
Affiliation(s)
- Natalia Gustavsson
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- * E-mail: (WH); (NG)
| | - Xiaorui Wang
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Yue Wang
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Tingting Seah
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Jun Xu
- Howard Hughes Medical Institute and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - George K. Radda
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Thomas C. Südhof
- Howard Hughes Medical Institute and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Weiping Han
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail: (WH); (NG)
| |
Collapse
|
22
|
Fontés G, Zarrouki B, Hagman DK, Latour MG, Semache M, Roskens V, Moore PC, Prentki M, Rhodes CJ, Jetton TL, Poitout V. Glucolipotoxicity age-dependently impairs beta cell function in rats despite a marked increase in beta cell mass. Diabetologia 2010; 53:2369-79. [PMID: 20628728 PMCID: PMC2947580 DOI: 10.1007/s00125-010-1850-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 06/18/2010] [Indexed: 01/25/2023]
Abstract
AIMS/HYPOTHESIS Prolonged exposure of pancreatic beta cells to excessive levels of glucose and fatty acids, referred to as glucolipotoxicity, is postulated to contribute to impaired glucose homeostasis in patients with type 2 diabetes. However, the relative contribution of defective beta cell function vs diminished beta cell mass under glucolipotoxic conditions in vivo remains a subject of debate. We therefore sought to determine whether glucolipotoxicity in rats is due to impaired beta cell function and/or reduced beta cell mass, and whether older animals are more susceptible to glucolipotoxic condition. METHODS Wistar rats (2 and 6 months old) received a 72 h infusion of glucose + intravenous fat emulsion or saline control. In vivo insulin secretion and sensitivity were assessed by hyperglycaemic clamps. Ex vivo insulin secretion, insulin biosynthesis and gene expression were measured in isolated islets. Beta cell mass and proliferation were examined by immunohistochemistry. RESULTS A 72 h infusion of glucose + intravenous fat emulsion in 2-month-old Wistar rats did not affect insulin sensitivity, insulin secretion or beta cell mass. In 6-month-old rats by contrast it led to insulin resistance and reduced insulin secretion in vivo, despite an increase in beta cell mass and proliferation. This was associated with: (1) diminished glucose-stimulated second-phase insulin secretion and proinsulin biosynthesis; (2) lower insulin content; and (3) reduced expression of beta cell genes in isolated islets. CONCLUSIONS/INTERPRETATION In this in vivo model, glucolipotoxicity is characterised by an age-dependent impairment of glucose-regulated beta cell function despite a marked increase in beta cell mass.
Collapse
Affiliation(s)
- G. Fontés
- Montreal Diabetes Research Center, University of Montreal, Montreal, QC, Canada
- CRCHUM–Technopole Angus, 2901 Rachel Est, Montréal, QC, Canada H1W 4A4
- Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - B. Zarrouki
- Montreal Diabetes Research Center, University of Montreal, Montreal, QC, Canada
- CRCHUM–Technopole Angus, 2901 Rachel Est, Montréal, QC, Canada H1W 4A4
- Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - D. K. Hagman
- Montreal Diabetes Research Center, University of Montreal, Montreal, QC, Canada
- CRCHUM–Technopole Angus, 2901 Rachel Est, Montréal, QC, Canada H1W 4A4
- Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - M. G. Latour
- Montreal Diabetes Research Center, University of Montreal, Montreal, QC, Canada
- CRCHUM–Technopole Angus, 2901 Rachel Est, Montréal, QC, Canada H1W 4A4
| | - M. Semache
- Montreal Diabetes Research Center, University of Montreal, Montreal, QC, Canada
- CRCHUM–Technopole Angus, 2901 Rachel Est, Montréal, QC, Canada H1W 4A4
- Department of Biochemistry, University of Montreal, Montreal, QC, Canada
| | - V. Roskens
- Division of Endocrinology, Diabetes and Metabolism, University of Vermont College of Medicine, Burlington, VT, USA
| | - P. C. Moore
- Kovler Diabetes Center, University of Chicago, Chicago, IL, USA
| | - M. Prentki
- Montreal Diabetes Research Center, University of Montreal, Montreal, QC, Canada
- CRCHUM–Technopole Angus, 2901 Rachel Est, Montréal, QC, Canada H1W 4A4
- Department of Nutrition, University of Montreal, Montreal, QC, Canada
- Department of Biochemistry, University of Montreal, Montreal, QC, Canada
| | - C. J. Rhodes
- Kovler Diabetes Center, University of Chicago, Chicago, IL, USA
| | - T. L. Jetton
- Division of Endocrinology, Diabetes and Metabolism, University of Vermont College of Medicine, Burlington, VT, USA
| | - V. Poitout
- Montreal Diabetes Research Center, University of Montreal, Montreal, QC, Canada
- CRCHUM–Technopole Angus, 2901 Rachel Est, Montréal, QC, Canada H1W 4A4,
- Department of Medicine, University of Montreal, Montreal, QC, Canada
- Department of Nutrition, University of Montreal, Montreal, QC, Canada
- Department of Biochemistry, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
23
|
Mourad NI, Nenquin M, Henquin JC. Metabolic amplifying pathway increases both phases of insulin secretion independently of β-cell actin microfilaments. Am J Physiol Cell Physiol 2010; 299:C389-98. [DOI: 10.1152/ajpcell.00138.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two pathways control glucose-induced insulin secretion (IS) by β-cells. The triggering pathway involves ATP-sensitive potassium (KATP) channel-dependent depolarization, Ca2+ influx, and a rise in the cytosolic Ca2+ concentration ([Ca2+]c), which triggers exocytosis of insulin granules. The metabolic amplifying pathway augments IS without further increasing [Ca2+]c. The underlying mechanisms are unknown. Here, we tested the hypothesis that amplification implicates actin microfilaments. Mouse islets were treated with latrunculin B and cytochalasin B to depolymerize actin or jasplakinolide to polymerize actin. They were then perifused to measure [Ca2+]c and IS. Metabolic amplification was studied during imposed steady elevation of [Ca2+]c by tolbutamide or KCl or by comparing the magnitude of [Ca2+]c and IS changes produced by glucose and tolbutamide. Both actin polymerization and depolymerization augmented IS triggered by all stimuli without increasing (sometimes decreasing) [Ca2+]c, which indicates a predominantly inhibitory function of microfilaments in exocytosis at a step distal to [Ca2+]c increase. When [Ca2+]c was elevated and controlled by KCl or tolbutamide, the amplifying action of glucose was facilitated by actin depolymerization and unaffected by polymerization. Both phases of IS were larger in response to high-glucose than to tolbutamide in low-glucose, although triggering [Ca2+]c was lower. This difference in IS, due to amplification, persisted when the IS rate was doubled by actin depolymerization or polymerization. In conclusion, metabolic amplification is rapid and influences the first as well as the second phase of IS. It is a late step of stimulus-secretion coupling, which does not require functional actin microfilaments and could correspond to acceleration of the priming process conferring release competence to insulin granules.
Collapse
Affiliation(s)
- Nizar I. Mourad
- Unit of Endocrinology and Metabolism, University of Louvain Faculty of Medicine, Brussels, Belgium
| | - Myriam Nenquin
- Unit of Endocrinology and Metabolism, University of Louvain Faculty of Medicine, Brussels, Belgium
| | - Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, University of Louvain Faculty of Medicine, Brussels, Belgium
| |
Collapse
|
24
|
Microassay for glucose-induced preproinsulin mRNA expression to assess islet functional potency for islet transplantation. Transplantation 2010; 89:146-54. [PMID: 20098276 DOI: 10.1097/tp.0b013e3181c4218d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The capacity for insulin synthesis in islets is important for islet transplantation to succeed. We developed a microassay that evaluates the potency of human islets by measuring changes in glucose-induced human insulin gene (INS) expression using a single islet in octuplicate samples. METHODS Poly (A) messenger RNA (mRNA) was purified from a set of single handpicked human islets. Glucose-induced mature (postspliced) and premature (prespliced) insulin mRNA were quantified by reverse-transcriptase polymerase chain reaction using several insulin mRNA primers designed at different locations including, intron, exon, and an exon-intron junction. RESULTS The synthesis of premature INS mRNA was significantly increased in islets exposed to high glucose for 16 vs. 4 hr (P<0.01), whereas mature INS mRNA showed no difference. Glucose-induced premature INS mRNA synthesis was attenuated in heat-damaged islets. Stimulation index (SI) calculated by normalizing premature by mature INS mRNA (SI_INS mRNA) positively correlated with SI of insulin release (SI_16h insulin) from the same set of islets during 16-hr incubation in high or low glucose media, and SI of glucose-mediated insulin release obtained from the same islet lot in a perifusion system (n=12). Furthermore, linear multiple regression analysis using SI_INS mRNA and SI_16h insulin predicted islet transplantation outcome in nonobese diabetic (NOD) scid mice (n=8). CONCLUSION The measurement of glucose-induced premature INS mRNA normalized by mature INS mRNA can be used to assess the functional quality of human islets and may predict islet function after transplantation in type 1 diabetic patients.
Collapse
|
25
|
Berney T. Islet culture and counter-culture. Commentary on: Effect of short-term culture on functional and stress-related parameters in isolated human islets by Ihm et al. Transpl Int 2009; 22:531-3. [PMID: 19459231 DOI: 10.1111/j.1432-2277.2008.00794.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Thierry Berney
- Cell Isolation and Transplantation Center, University of Geneva School of Medicine, and the Division of Visceral/Transplantation Surgery, Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
26
|
Abstract
OBJECTIVE The Sec1/Munc18 protein Munc18c has been implicated in Syntaxin 4-mediated exocytosis events, although its purpose in exocytosis has remained elusive. Given that Syntaxin 4 functions in the second phase of glucose-stimulated insulin secretion (GSIS), we hypothesized that Munc18c would also be required and sought insight into the possible mechanism(s) using the islet beta-cell as a model system. RESEARCH DESIGN AND METHODS Perifusion analyses of isolated Munc18c- (-/+) or Munc18c-depleted (RNAi) mouse islets were used to assess biphasic secretion. Protein interaction studies used subcellular fractions and detergent lysates prepared from MIN6 beta-cells to determine the mechanistic role of Munc18c in Syntaxin 4 activation and docking/fusion of vesicle-associated membrane protein (VAMP)2-containing insulin granules. Electron microscopy was used to gauge changes in granule localization. RESULTS Munc18c (-/+) islets secreted approximately 60% less insulin selectively during second-phase GSIS; RNAi-mediated Munc18c depletion functionally recapitulated this in wild-type and Munc18c (-/+) islets in a gene dosage-dependent manner. Munc18c depletion ablated the glucose-stimulated VAMP2-Syntaxin 4 association as well as Syntaxin 4 activation, correlating with the deficit in insulin release. Remarkably, Munc18c depletion resulted in aberrant granule localization to the plasma membrane in response to glucose stimulation, consistent with its selective effect on the second phase of secretion. CONCLUSIONS Collectively, these studies demonstrate an essential positive role for Munc18c in second-phase GSIS and suggest novel roles for Munc18c in granule localization to the plasma membrane as well as in triggering Syntaxin 4 accessibility to VAMP2 at a step preceding vesicle docking/fusion.
Collapse
Affiliation(s)
- Eunjin Oh
- From the Department of Biochemistry and Molecular Biology, Center for Diabetes Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Debbie C. Thurmond
- From the Department of Biochemistry and Molecular Biology, Center for Diabetes Research, Indiana University School of Medicine, Indianapolis, Indiana
- Corresponding author: Debbie C. Thurmond,
| |
Collapse
|
27
|
Wen T, Peng B, Pintar JE. The MOR-1 opioid receptor regulates glucose homeostasis by modulating insulin secretion. Mol Endocrinol 2009; 23:671-8. [PMID: 19221053 DOI: 10.1210/me.2008-0345] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In addition to producing analgesia, opioids have also been proposed to regulate glucose homeostasis by altering insulin secretion. A considerable controversy exists, however, regarding the contribution of the mu-opioid receptor (MOR-1) to insulin secretion dynamics. We employed congenic C57BL/6J MOR-1 knockout (KO) mice to clarify the role of MOR in glucose homeostasis. We first found that both sexes of MOR-1 KO mice weigh more than wild-type mice throughout postnatal life and that this increase includes preferentially increased fat deposition. We also found that MOR-1 KO mice exhibit enhanced glucose tolerance that results from insulin hypersecretion that reflects increased beta-cell mass and increased secretory dynamics in the MOR-1 mutant mice compared with wild type. Analysis of the isolated islets indicated that islet insulin hypersecretion is mediated directly by MOR expressed on islet cells via a mechanism downstream of ATP-sensitive K(+) channel activation by glucose. These findings indicate that MOR-1 regulates body weight by a mechanism that involves insulin secretion and thus may represent a novel target for new diabetes therapies.
Collapse
Affiliation(s)
- Ting Wen
- Department of Cell Biology and Neuroscience, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
28
|
Hiriart M, Aguilar-Bryan L. Channel regulation of glucose sensing in the pancreatic beta-cell. Am J Physiol Endocrinol Metab 2008; 295:E1298-306. [PMID: 18940941 DOI: 10.1152/ajpendo.90493.2008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mammalian beta-cells are acutely and chronically regulated by sensing surrounding glucose levels that determine the rate at which insulin is secreted, to maintain euglycemia. Experimental research in vitro and in vivo has shown that, when these cells are exposed to adverse conditions like long periods of hypoglycemia or hyperglycemia, their capability to sense glucose is decreased. Understanding the normal physiology and identifying the main players along this route becomes paramount. In this review, we have taken on the task of looking at the role that ion channels play in the regulation of this process, delineating the different families, and describing the signaling that parallels the glucose sensing process that results in insulin release.
Collapse
Affiliation(s)
- Marcia Hiriart
- Pacific Northwest Research Institute, Seattle, WA 98122, USA
| | | |
Collapse
|