1
|
Min L, Chen Y, Liu R, Li Z, Gu L, Mallipattu S, Das B, Lee K, He JC, Zhong F. Targeting Krüppel-Like Factor 2 as a Novel Therapy for Glomerular Endothelial Cell Injury in Diabetic Kidney Disease. J Am Soc Nephrol 2025; 36:193-204. [PMID: 39382984 PMCID: PMC11801754 DOI: 10.1681/asn.0000000000000498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
Key Points Krüppel-like factor 2 (KLF2) has emerged as a key endoprotective regulator by suppressing inflammatory and oxidative pathways, thrombotic activation, and angiogenesis. Our study now demonstrates that KLF2 protects against glomerular endothelial injury and attenuates diabetic kidney disease progression in mice. Compound 6 is a novel KLF2 activator that can potentially confer dual cardiorenal protection against diabetic complications. Background Diabetic kidney disease (DKD) is a microvascular disease, and glomerular endothelial cell injury is a key pathological event in DKD development. Through unbiased screening of glomerular transcriptomes, we previously identified Krüppel-like factor 2 (KLF2) as a highly regulated gene in diabetic kidneys. KLF2 exhibits protective effects in endothelial cells by inhibiting inflammation, thrombotic activation, and angiogenesis, all of which are protective for cardiovascular disease. We previously demonstrated that endothelial cell–specific ablation of Klf2 exacerbated diabetes-induced glomerular endothelial cell injury and DKD in mice. Therefore, in this study, we sought to assess the therapeutic potential of KLF2 activation in murine models of DKD. Methods We first examined the effects of endothelial cell–specific inducible overexpression of KLF2 (KLF2ov) in streptozotocin-induced diabetic mice. We developed small molecule KLF2 activators and tested whether higher KLF2 activity could impede DKD progression in type 2 diabetic db/db and BTBR ob/ob mice. Results Diabetic KLF2ov mice had attenuated albuminuria, glomerular endothelial cell injury, and diabetic glomerulopathy compared with control diabetic mice. A novel KLF2 activator, compound 6 (C-6), effectively induced downstream Nos3 expression and suppressed NF-kB activation in glomerular endothelial cells. The administration of C-6 improved albuminuria and glomerulopathy in db/db and BTBR ob/ob mice, which was associated with improved glomerular endothelial cell and podocyte injury. Conclusions These results validate KLF2 as a potential drug target and KLF2 activators, such as C-6, as a novel therapy for DKD.
Collapse
Affiliation(s)
- Lulin Min
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yixin Chen
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ruijie Liu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zhengzhe Li
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Leyi Gu
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Sandeep Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York
| | - Bhaskar Das
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Renal Section, James J. Peters Veterans Affair Medical Center, Bronx, New York
| | - Fang Zhong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
2
|
Marcinek A, Katarzynska J, Cypryk K, Los-Stegienta A, Slowikowska-Hilczer J, Walczak-Jedrzejowska R, Zielinski J, Gebicki J. Assessment of Microvascular Function Based on Flowmotion Monitored by the Flow-Mediated Skin Fluorescence Technique. BIOSENSORS 2024; 14:459. [PMID: 39451673 PMCID: PMC11505855 DOI: 10.3390/bios14100459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
This review summarizes studies dedicated to the assessment of microvascular function based on microcirculatory oscillations monitored by the Flow-Mediated Skin Fluorescence (FMSF) technique. Two approaches are presented. The first approach uses oscillatory parameters measured under normoxic conditions, expressed as flowmotion (FM), vasomotion (VM), and the normoxia oscillatory index (NOI). These parameters have been used for the identification of impaired microcirculatory oscillations associated with intense physical exercise, post-COVID syndrome, psychological stress, and erectile dysfunction. The second approach involves characterization of the microcirculatory response to hypoxia based on the measurement of hypoxia sensitivity (HS). The HS parameter is used to characterize microvascular complications in diabetes, such as diabetic kidney disease and diabetic foot ulcers. Based on research conducted by the authors of this review, the FMSF parameter ranges characterizing microvascular function are presented. The diagnostic approach to assessing microvascular function based on flowmotion monitored by the FMSF technique has a wide range of applications and the potential to be integrated into widespread medical practice.
Collapse
Affiliation(s)
- Andrzej Marcinek
- Institute of Applied Radiation Chemistry, Lodz University of Technology, 90-924 Lodz, Poland;
- Angionica Ltd., 90-924 Lodz, Poland;
| | | | - Katarzyna Cypryk
- Department of Internal Diseases and Diabetology, Medical University of Lodz, 92-213 Lodz, Poland (A.L.-S.)
| | - Agnieszka Los-Stegienta
- Department of Internal Diseases and Diabetology, Medical University of Lodz, 92-213 Lodz, Poland (A.L.-S.)
| | - Jolanta Slowikowska-Hilczer
- Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, 92-213 Lodz, Poland; (J.S.-H.); (R.W.-J.)
| | - Renata Walczak-Jedrzejowska
- Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, 92-213 Lodz, Poland; (J.S.-H.); (R.W.-J.)
| | - Jacek Zielinski
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, 61-871 Poznan, Poland;
| | - Jerzy Gebicki
- Institute of Applied Radiation Chemistry, Lodz University of Technology, 90-924 Lodz, Poland;
- Angionica Ltd., 90-924 Lodz, Poland;
| |
Collapse
|
3
|
Salem NAB, Ismail WM, Hendawy SR, Abdelrahman AM, El-Refaey AM. Serum angiopoietin-2: a promising biomarker for early diabetic kidney disease in children and adolescents with type 1 diabetes. Eur J Pediatr 2024; 183:3853-3862. [PMID: 38884820 PMCID: PMC11322226 DOI: 10.1007/s00431-024-05637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024]
Abstract
Albuminuria has been considered the golden standard biomarker for diabetic kidney disease (DKD), but appears once significant kidney damage has already occurred. Angiopoietin-2 (Angpt-2) has been implicated in the development and progression of DKD in adults. We aimed to explore the association of serum Angpt-2 levels with DKD in children and adolescents with type 1 diabetes mellitus (T1DM) of short duration (3-5 years) and to evaluate the predictive power of serum Angpt-2 in the early detection of DKD prior to the microalbuminuric phase. The current cross-sectional study included 90 children divided into three age and sex-matched groups based on urinary albumin-to-creatinine ratio (UACR): microalbuminuric diabetic group (n = 30), non-albuminuric diabetic group (n = 30), and control group (n = 30). All participants were subjected to anthropometric measurements, serum Angpt-2 and fasting lipid profile (total cholesterol, triglycerides, LDL-C, HDL-C, and Non-HDL-C) assessment. Glomerular filtration rate was estimated based on serum creatinine (eGFR-Cr). Higher serum Angpt-2 levels were detected in both diabetic groups compared to controls and in microalbuminuric compared to non-albuminuric diabetic group. There was no detected significant difference in eGFR-Cr values across the study groups. Serum Angpt-2 was positively correlated with triglycerides, LDL, Non-HDL-C, HbA1c, and UACR, while UACR, HbA1c, and Non-HDL-C were independent predictors for serum Angpt-2. Serum Angpt-2 at level of 137.4 ng/L could discriminate between microalbuminuric and non-albuminuric diabetic groups with AUC = 0.960 and at level of 115.95 ng/L could discriminate between the non-albuminuric diabetic group and controls with AUC = 0.976.Conclusion: Serum Angpt-2 is a promising potent biomarker for the detection of early stage of DKD in childhood T1DM before albuminuria emerges. What is Known? • Urine albumin-to-creatinine ratio (UACR) and glomerular filtration rate (GFR) are the golden standard but late biomarkers for DKD. • Angiopoietin-2 has been implicated in the development and progression of DKD in adults with diabetes, but has not been explored in T1DM children with DKD. What is New? • Higher serum angiopoietin-2 was detected in diabetic groups compared to controls and in microalbuminuric compared to non-albuminuric group. • Angiopoietin-2 correlated positively with triglycerides, LDL, Non-HDL-C, HbA1c, and UACR. • Serum angiopoietin-2 is a promising early diagnostic biomarker for DKD in children with T1DM.
Collapse
Affiliation(s)
- Nanees Abdel-Badie Salem
- Pediatric Endocrinology and Diabetes Unit, Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Wafaa M Ismail
- Mansoura University Children's Hospital, Mansoura, Egypt
| | - Shimaa R Hendawy
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ashraf M Abdelrahman
- Department of Diagnostic Radiology, Mansoura University Children's Hospital, Mansoura, Egypt
| | - Ahmed M El-Refaey
- Nephrology Unit, Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Min L, Zhong F, Gu L, Lee K, He JC. Krüppel-like factor 2 is an endoprotective transcription factor in diabetic kidney disease. Am J Physiol Cell Physiol 2024; 327:C477-C486. [PMID: 38981608 PMCID: PMC11901337 DOI: 10.1152/ajpcell.00222.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Diabetic kidney disease (DKD) is a microvascular complication of diabetes, and glomerular endothelial cell (GEC) dysfunction is a key driver of DKD pathogenesis. Krüppel-like factor 2 (KLF2), a shear stress-induced transcription factor, is among the highly regulated genes in early DKD. In the kidney, KLF2 expression is mostly restricted to endothelial cells, but its expression is also found in immune cell subsets. KLF2 expression is upregulated in response to increased shear stress by the activation of mechanosensory receptors but suppressed by inflammatory cytokines, both of which characterize the early diabetic kidney milieu. KLF2 expression is reduced in progressive DKD and hypertensive nephropathy in humans and mice, likely due to high glucose and inflammatory cytokines such as TNF-α. However, KLF2 expression is increased in glomerular hyperfiltration-induced shear stress without metabolic dysregulation, such as in settings of unilateral nephrectomy. Lower KLF2 expression is associated with CKD progression in patients with unilateral nephrectomy, consistent with its endoprotective role. KLF2 confers endoprotection by inhibition of inflammation, thrombotic activation, and angiogenesis, and thus KLF2 is considered a protective factor for cardiovascular disease (CVD). Based on similar mechanisms, KLF2 also exhibits renoprotection, and its reduced expression in endothelial cells worsens glomerular injury and albuminuria in settings of diabetes or unilateral nephrectomy. Thus KLF2 confers endoprotective effects in both CVD and DKD, and its activators could potentially be developed as a novel class of drugs for cardiorenal protection in diabetic patients.
Collapse
Affiliation(s)
- Lulin Min
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Fang Zhong
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Leyi Gu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kyung Lee
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - John Cijiang He
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Renal Section, James J. Peters Veterans Affair Medical Center, Bronx, New York, United States
| |
Collapse
|
5
|
Chen Z, Wang Z, Hu Y, Lin H, Yin L, Kong J, Zhang Y, Hu B, Li T, Zheng X, Yang Q, Ye S, Wang S, Zhou Q, Zheng C. ELABELA/APJ Axis Prevents Diabetic Glomerular Endothelial Injury by Regulating AMPK/NLRP3 Pathway. Inflammation 2023; 46:2343-2358. [PMID: 37540330 PMCID: PMC10673989 DOI: 10.1007/s10753-023-01882-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
ELABELA (ELA), a recently discovered peptide, is highly expressed in adult kidneys and the endothelium system. It has been identified as a novel endogenous ligand for the apelin receptor (APJ). This study aims to investigate the role of ELA in diabetic glomerular endothelial pyroptosis and its underlying mechanism. Initially, a significant decrease in ELA mRNA levels was observed in the renal cortex of db/db mice and high glucose-treated glomerular endothelial cells (GECs). It was also found that ELA deficiency in ELA+/- mice significantly accelerated diabetic glomerular injury, as shown by exacerbated glomerular morphological damage, increased serum creatine and blood urea nitrogen, and elevated 24-h urinary albumin excretion. In addition, in vivo overexpression of ELA prevented diabetic glomerular injury, reduced von Willebrand factor expression, restored endothelial marker CD31 expression, and attenuated the production of adhesive molecules such as intercellular adhesion molecule-1 and vascular cell adhesion molecule-1. Furthermore, in vitro studies confirmed that treatment with ELA inhibited GEC injury by regulating the NOD-like receptor protein 3 (NLRP3) inflammasome, as indicated by blocking NLRP3 inflammasome formation, decreasing cleaved Caspase-1 production, and inhibiting interleukin-1β and interleukin-18 production. Moreover, in vitro experiments demonstrated that the protective effects of ELA in GECs during hyperglycemia were diminished by inhibiting adenosine monophosphate-activated protein kinase (AMPK) using Compound C or by APJ deficiency. Taken together, this study provides the first evidence that ELA treatment could prevent diabetic glomerular endothelial injury, which is partly mediated by the regulation of the AMPK/NLRP3 signaling pathway. Therefore, pharmacologically targeting ELA may serve as a novel therapeutic strategy for diabetic kidney disease.
Collapse
Affiliation(s)
- Zhida Chen
- Department of Nephrology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhe Wang
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yepeng Hu
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huangbo Lin
- School of Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Yin
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Kong
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yikai Zhang
- Department of Nephrology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bibi Hu
- Department of Nephrology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tiekun Li
- Nanjing Kingmed Center for Clinical Laboratory, Nanjing, China
| | - Xianan Zheng
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiongying Yang
- Department of Nephrology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shu Ye
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shengyao Wang
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiao Zhou
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chao Zheng
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Kleibert M, Zygmunciak P, Łakomska K, Mila K, Zgliczyński W, Mrozikiewicz-Rakowska B. Insight into the Molecular Mechanism of Diabetic Kidney Disease and the Role of Metformin in Its Pathogenesis. Int J Mol Sci 2023; 24:13038. [PMID: 37685845 PMCID: PMC10487922 DOI: 10.3390/ijms241713038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 09/10/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the leading causes of death among patients diagnosed with diabetes mellitus. Despite the growing knowledge about the pathogenesis of DKD, we still do not have effective direct pharmacotherapy. Accurate blood sugar control is essential in slowing down DKD. It seems that metformin has a positive impact on kidneys and this effect is not only mediated by its hypoglycemic action, but also by direct molecular regulation of pathways involved in DKD. The molecular mechanism of DKD is complex and we can distinguish polyol, hexosamine, PKC, and AGE pathways which play key roles in the development and progression of this disease. Each of these pathways is overactivated in a hyperglycemic environment and it seems that most of them may be regulated by metformin. In this article, we summarize the knowledge about DKD pathogenesis and the potential mechanism of the nephroprotective effect of metformin. Additionally, we describe the impact of metformin on glomerular endothelial cells and podocytes, which are harmed in DKD.
Collapse
Affiliation(s)
- Marcin Kleibert
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Przemysław Zygmunciak
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.Z.); (K.M.)
| | - Klaudia Łakomska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Klaudia Mila
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.Z.); (K.M.)
| | - Wojciech Zgliczyński
- Department of Endocrinology, Centre of Postgraduate Medical Education, Bielanski Hospital, 01-809 Warsaw, Poland;
| | - Beata Mrozikiewicz-Rakowska
- Department of Endocrinology, Centre of Postgraduate Medical Education, Bielanski Hospital, 01-809 Warsaw, Poland;
| |
Collapse
|
7
|
Zhang K, Fu Z, Zhang Y, Chen X, Cai G, Hong Q. The role of cellular crosstalk in the progression of diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1173933. [PMID: 37538798 PMCID: PMC10395826 DOI: 10.3389/fendo.2023.1173933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most common complications of diabetes, and its main manifestations are progressive proteinuria and abnormal renal function, which eventually develops end stage renal disease (ESRD). The pathogenesis of DN is complex and involves many signaling pathways and molecules, including metabolic disorders, genetic factors, oxidative stress, inflammation, and microcirculatory abnormalities strategies. With the development of medical experimental techniques, such as single-cell transcriptome sequencing and single-cell proteomics, the pathological alterations caused by kidney cell interactions have attracted more and more attention. Here, we reviewed the characteristics and related mechanisms of crosstalk among kidney cells podocytes, endothelial cells, mesangial cells, pericytes, and immune cells during the development and progression of DN and highlighted its potential therapeutic effects.
Collapse
|
8
|
Non-Invasive Assessment of Vascular Circulation Based on Flow Mediated Skin Fluorescence (FMSF). BIOLOGY 2023; 12:biology12030385. [PMID: 36979077 PMCID: PMC10044925 DOI: 10.3390/biology12030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023]
Abstract
Flow Mediated Skin Fluorescence (FMSF) is a new non-invasive method for assessing vascular circulation and/or metabolic regulation. It enables assessment of both vasoconstriction and vasodilation. The method measures stimulation of the circulation in response to post-occlusive reactive hyperemia (PORH). It analyzes the dynamical changes in the emission of NADH fluorescence from skin tissue, providing the information on mitochondrial metabolic status and intracellular oxygen delivery through the circulatory system. Assessment of the vascular state using the FMSF technique is based on three parameters: reactive hyperemia response (RHR), hypoxia sensitivity (HS), and normoxia oscillatory index (NOI). The RHR and HS parameters determine the risk of vascular circulatory disorders and are the main diagnostic parameters. The NOI parameter is an auxiliary parameter for evaluating the state of microcirculation under stress of various origins (e.g., emotional stress, physical exhaustion, or post-infection stress). The clinical data show that the risk of vascular complications is limited among people whose RHR, log(HS), and NOI parameters are not significantly below the mean values determined by the FMSF technique, especially if they simultaneously meet the conditions RHR > 30% and log(HS) > 1.5 (HS > 30), and NOI > 60%.
Collapse
|
9
|
Los-Stegienta A, Borkowska A, Cypryk K. Assessment of microvascular function using a novel technique Flow Mediated Skin Fluorescence (FMSF) in patients with diabetic kidney disease: A preliminary study. Microvasc Res 2022; 144:104417. [PMID: 35931125 DOI: 10.1016/j.mvr.2022.104417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/13/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Diabetic kidney disease (DKD) plays an important role in morbidity and mortality in patients with diabetes mellitus. The pathogenesis of this microangiopathy is mainly due to impaired vascular endothelial function. The Flow Mediated Skin Fluorescence (FMSF) method is an innovative, non-invasive tool for assessing the microcirculation function (especially microcirculatory response to hypoxia), also in patients with complications of diabetes mellitus (DM). MATERIAL AND METHODS The study was conducted at the Medical University of Lodz, Poland. Total of 84 volunteers including 30 patients with DKD, 33 patients with DM without complications, and 21 healthy subjects underwent microvascular function assessments using FMSF. This technique measures changes in the intensity of nicotinamide adenine dinucleotide (NADH) fluorescence from the skin on the forearm as a function of time, in response to blocking and releasing blood flow in the forearm. In this study we asses two key parameters: Reactive Hyperemia Response (RHR) and Hypoxia Sensitivity [log(HS)] to characterize vascular circulation in patients with DKD and their response to transient ischemia. RESULTS The patients with low reactive hyperemic response (the RHR parameter) had a significantly higher sCr than patients with moderate and high RHR value (p < 0.001, p < 0.05, respectively) and a significantly lower eGFR than the patients with moderate and high RHR parameter (p < 0.001, p < 0.01, respectively). The patients with very low and low log(HS) values had a significantly higher sCr than the patients with high log(HS) (p < 0.001, p < 0.01, respectively), and a significantly lower eGFR than the patients with high log(HS) parameter (p < 0.001, p < 0.01, respectively). The patients with very low log(HS) had a significantly higher sCr and a significantly lower eGFR than the patients with moderate (p < 0.05, p < 0.01, respectively). The mean value of the RHR parameter was significantly lower in DKD patients (18.31 ± 5.06 %) compared to both healthy subjects (34.37 ± 8.18 %, p < 0.001) and DM without complications subgroup (28.75 ± 7.12 %, p < 0.001). Similar trends were noted with the mean value of log(HS) parameter in DKD subgroup (1.03 ± 0.5) vs. healthy subjects (1.59 ± 0.53, p < 0.001), and vs. DM without complications subgroup (1.73 ± 0.52, p < 0.001). We observed a significant inverse correlation between the RHR parameter and serum creatinine (sCr) and a significant positive correlations with eGFR (R = -0.3; p < 0.05, R = 0.61; p < 0.001, respectively). We found also a significant negative correlations of the log(HS) measure with sCr and a significant positive correlations with eGFR (R = -0.33; p < 0.01, R = 0.55; p < 0.001, respectively). We observed also a significant inverse correlation between the RHR and log(HS) parameters and advanced glycation end products (AGEs) (R = -0.6; p < 0.001, R = -0.32; p < 0.01, respectively). The AGEs parameter was also a significantly higher in patients with low RHR parameter than in patients with moderate (p < 0.01) and high (p < 0.001). CONCLUSIONS The FMSF technique makes it possible to identify impairments of the microvascular function in patients with DKD. This study confirms that the simple two-parametric approach diagnostic tool perfectly characterizes the state of the microvascular system in diabetic patients with impaired renal function. These preliminary results require further validation in a larger patients cohort.
Collapse
Affiliation(s)
- Agnieszka Los-Stegienta
- Department of Internal Diseases and Diabetology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland.
| | - Anna Borkowska
- Department of Internal Diseases and Diabetology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland.
| | - Katarzyna Cypryk
- Department of Internal Diseases and Diabetology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland.
| |
Collapse
|
10
|
Ricciardi CA, Gnudi L. Kidney disease in diabetes: From mechanisms to clinical presentation and treatment strategies. Metabolism 2021; 124:154890. [PMID: 34560098 DOI: 10.1016/j.metabol.2021.154890] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022]
Abstract
Metabolic and haemodynamic perturbations and their interaction drive the development of diabetic kidney disease (DKD) and its progression towards end stage renal disease (ESRD). Increased mitochondrial oxidative stress has been proposed as the central mechanism in the pathophysiology of DKD, but other mechanisms have been implicated. In parallel to increased oxidative stress, inflammation, cell apoptosis and tissue fibrosis drive the relentless progressive loss of kidney function affecting both the glomerular filtration barrier and the renal tubulointerstitium. Alteration of glomerular capillary autoregulation is at the basis of glomerular hypertension, an important pathogenetic mechanism for DKD. Clinical presentation of DKD can vary. Its classical presentation, often seen in patients with type 1 diabetes (T1DM), features hyperfiltration and albuminuria followed by progressive fall in renal function. Patients can often also present with atypical features characterised by progressive reduction in renal function without albuminuria, others in conjunction with non-diabetes related pathologies making the diagnosis, at times, challenging. Metabolic, lipid and blood pressure control with lifestyle interventions are crucial in reducing the progressive renal function decline seen in DKD. The prevention and management of DKD (and parallel cardiovascular disease) is a huge global challenge and therapies that target haemodynamic perturbations, such as inhibitors of the renin-angiotensin-aldosterone system (RAAS) and SGLT2 inhibitors, have been most successful.
Collapse
Affiliation(s)
| | - Luigi Gnudi
- School of Cardiovascular Medicine & Science, King's College London, London, UK.
| |
Collapse
|
11
|
Li L, Wei T, Liu S, Wang C, Zhao M, Feng Y, Ma L, Lu Y, Fu P, Liu J. Complement C5 activation promotes type 2 diabetic kidney disease via activating STAT3 pathway and disrupting the gut-kidney axis. J Cell Mol Med 2020; 25:960-974. [PMID: 33280239 PMCID: PMC7812276 DOI: 10.1111/jcmm.16157] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/28/2020] [Accepted: 11/21/2020] [Indexed: 02/05/2023] Open
Abstract
Diabetic kidney disease (DKD) is a severe DM complication. While complement C5 up-regulation and gut dysbiosis are found in T2DM, their roles in DKD are unclear. Here, we investigated the effect of C5 on the gut microbiota during DKD development. Renal C5a/C5a receptor (C5aR) expression changes were measured in T2DM patients and db/db mice. Db/db mice were treated with a C5aR antagonist (C5aRA), and renal function, gut microbiota and renal genome changes were analysed. The effects of C5a and short-chain fatty acids (SCFAs) on the signal transducer and activator of transcription 3 (STAT3) pathway were examined in vitro. C5a was up-regulated in glomerular endothelial cells (GECs) of T2DM patients and db/db mice. Although glucose and lipid metabolism were unchanged, C5aR blockade alleviated renal dysfunction, ECM deposition, macrophage infiltration and proinflammatory factor expression in db/db mice. C5aRA partly reversed the declines in gut microbiota diversity and abundance and gut SCFA levels in db/db mice. C5aRA down-regulated the expression of many immune response-related genes, such as STAT3, in db/db mouse kidneys. C5aRA and SCFAs suppressed C5a-induced STAT3 activation in human renal glomerular endothelial cells (HRGECs). Based on our results, C5 hyperactivation promotes DKD by activating STAT3 in GECs and impairing the gut-kidney axis, suggesting that this hyperactivation is a potential target for the treatment of DKD.
Collapse
Affiliation(s)
- Ling Li
- Kidney Research Laboratory, Division of Nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Tiantian Wei
- Kidney Research Laboratory, Division of Nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Shuyun Liu
- Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, Chengdu, China
| | - Chengshi Wang
- Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, Chengdu, China
| | - Meng Zhao
- Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, Chengdu, China
| | - Yanhuan Feng
- Kidney Research Laboratory, Division of Nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Liang Ma
- Kidney Research Laboratory, Division of Nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, Chengdu, China
| | - Ping Fu
- Kidney Research Laboratory, Division of Nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Ricciardi CA, Gnudi L. The endoplasmic reticulum stress and the unfolded protein response in kidney disease: Implications for vascular growth factors. J Cell Mol Med 2020; 24:12910-12919. [PMID: 33067928 PMCID: PMC7701511 DOI: 10.1111/jcmm.15999] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/14/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) represent an important challenge for healthcare providers. The identification of new biomarkers/pharmacological targets for kidney disease is required for the development of more effective therapies. Several studies have shown the importance of the endoplasmic reticulum (ER) stress in the pathophysiology of AKI and CKD. ER is a cellular organelle devolved to protein biosynthesis and maturation, and cellular detoxification processes which are activated in response to an insult. This review aimed to dissect the cellular response to ER stress which manifests with activation of the unfolded protein response (UPR) with its major branches, namely PERK, IRE1α, ATF6 and the interplay between ER and mitochondria in the pathophysiology of kidney disease. Further, we will discuss the relationship between mediators of renal injury (with specific focus on vascular growth factors) and ER stress and UPR in the pathophysiology of both AKI and CKD with the aim to propose potential new targets for treatment for kidney disease.
Collapse
Affiliation(s)
- Carlo Alberto Ricciardi
- King's College of London, Faculty of Life Sciences & Medicine, School of Cardiovascular Medicine & Sciences, Section Vascular Biology and Inflammation, British Heart Foundation Centre for Research Excellence, London, UK
| | - Luigi Gnudi
- King's College of London, Faculty of Life Sciences & Medicine, School of Cardiovascular Medicine & Sciences, Section Vascular Biology and Inflammation, British Heart Foundation Centre for Research Excellence, London, UK
| |
Collapse
|
13
|
Ren H, Shao Y, Wu C, Lv C, Zhou Y, Wang Q. VASH-1 Regulates Oxidative Stress and Fibrosis in Diabetic Kidney Disease via SIRT1/HIF1α and TGFβ1/Smad3 Signaling Pathways. Front Mol Biosci 2020; 7:137. [PMID: 32754616 PMCID: PMC7365843 DOI: 10.3389/fmolb.2020.00137] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/08/2020] [Indexed: 11/13/2022] Open
Abstract
Aims: To investigate the role of Vasohibin-1 (VASH-1), silence information adjustment factor 2-related enzyme 1 (SIRT1)/hypoxic-inducible factor 1α (HIF1α) and transforming growth factor-β1 (TGFβ1) /Smad3 signaling pathways in oxidative stress and fibrosis of diabetic kidney disease (DKD). Materials and Methods: A diabetic rat model was established in vivo and rat mesangial cells (RMCs) were cultured in vitro with high glucose via transfection with Vash1 small interfering RNA (siRNA), Hif1a siRNA, Sirt1 siRNA and TGFβ1/Smad3 pathway inhibitor (SB431542). Renal histology was used to detect renal changes. Real-time PCR and western blot were used to analyze the expression of VASH-1, SIRT1, HIF1α, TGFβ1, Smad3, vascular endothelial growth factor (VEGF), connective tissue growth factor (CTGF) and fibronectin (FN). Expression levels of tumor necrosis factor-α (TNFα), TGFβ1, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), and malondialdehyde (MDA) in rat tissues and cell culture supernatant were detected by ELISA and chemiluminescence assay, while cell proliferation was detected by CCK-8. Results: The level of VASH-1 in renal tissues of diabetic rats was decreased, while both high glucose and Vash1 siRNA inhibited the expression of VASH-1 and SIRT1, increased the levels of HIF1α, TGFβ1, and Smad3 in RMCs, thus up-regulating oxidative stress and fibrosis factors, and abnormally increasing cell proliferation activity (P < 0.05). However, inhibition of SIRT1/HIF1α signaling pathway only reduced TGFβ1 and Smad3 (P < 0.05), while VASH-1 remained unchanged (P > 0.05). Conclusion: VASH-1 was under-expressed in renal tissues of diabetic rats and regulated the pathological process of oxidative stress and fibrosis in DKD via downstream SIRT1/HIF1α and TGFβ1/Smad3 signaling pathways.
Collapse
Affiliation(s)
- Huiwen Ren
- Department of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Ying Shao
- Department of Endocrinology, The Second Affiliated Hospital of China Medical University, Shenyang, China
| | - Can Wu
- Department of Gastroenterology and Endoscopy, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chuan Lv
- Department of Endocrinology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Yang Zhou
- Department of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qiuyue Wang
- Department of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Casalena GA, Yu L, Gil R, Rodriguez S, Sosa S, Janssen W, Azeloglu EU, Leventhal JS, Daehn IS. The diabetic microenvironment causes mitochondrial oxidative stress in glomerular endothelial cells and pathological crosstalk with podocytes. Cell Commun Signal 2020; 18:105. [PMID: 32641054 PMCID: PMC7341607 DOI: 10.1186/s12964-020-00605-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In the setting of diabetes mellitus, mitochondrial dysfunction and oxidative stress are important pathogenic mechanisms causing end organ damage, including diabetic kidney disease (DKD), but mechanistic understanding at a cellular level remains obscure. In mouse models of DKD, glomerular endothelial cell (GEC) dysfunction precedes albuminuria and contributes to neighboring podocyte dysfunction, implicating GECs in breakdown of the glomerular filtration barrier. In the following studies we wished to explore the cellular mechanisms by which GECs become dysfunctional in the diabetic milieu, and the impact to neighboring podocytes. METHODS Mouse GECs were exposed to high glucose media (HG) or 2.5% v/v serum from diabetic mice or serum from non-diabetic controls, and evaluated for mitochondrial function (oxygen consumption), structure (electron microscopy), morphology (mitotracker), mitochondrial superoxide (mitoSOX), as well as accumulation of oxidized products (DNA lesion frequency (8-oxoG, endo-G), double strand breaks (γ-H2AX), endothelial function (NOS activity), autophagy (LC3) and apoptotic cell death (Annexin/PI; caspase 3). Supernatant transfer experiments from GECs to podocytes were performed to establish the effects on podocyte survival and transwell experiments were performed to determine the effects in co-culture. RESULTS Diabetic serum specifically causes mitochondrial dysfunction and mitochondrial superoxide release in GECs. There is a rapid oxidation of mitochondrial DNA and loss of mitochondrial biogenesis without cell death. Many of these effects are blocked by mitoTEMPO a selective mitochondrial anti-oxidant. Secreted factors from dysfunctional GECs were sufficient to cause podocyte apoptosis in supernatant transfer experiments, or in co-culture but this did not occur when GECs had been previously treated with mitoTEMPO. CONCLUSION Dissecting the impact of the diabetic environment on individual cell-types from the kidney glomerulus indicates that GECs become dysfunctional and pathological to neighboring podocytes by increased levels of mitochondrial superoxide in GEC. These studies indicate that GEC-signaling to podocytes contributes to the loss of the glomerular filtration barrier in DKD. Video abstract.
Collapse
Affiliation(s)
- Gabriella A Casalena
- Division of Nephrology, Department of Medicine, The Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1003, New York, NY, 10029, USA
| | - Liping Yu
- Division of Nephrology, Department of Medicine, The Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1003, New York, NY, 10029, USA
| | - Roberto Gil
- Division of Nephrology, Department of Medicine, The Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1003, New York, NY, 10029, USA
| | - Samuel Rodriguez
- Division of Nephrology, Department of Medicine, The Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1003, New York, NY, 10029, USA
| | - Shantel Sosa
- Division of Nephrology, Department of Medicine, The Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1003, New York, NY, 10029, USA
| | - William Janssen
- Microscopy CoRE, The Icahn School of Medicine at Mount Sinai, New York, USA
| | - Evren U Azeloglu
- Division of Nephrology, Department of Medicine, The Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1003, New York, NY, 10029, USA
| | - Jeremy S Leventhal
- Division of Nephrology, Department of Medicine, The Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1003, New York, NY, 10029, USA
| | - Ilse S Daehn
- Division of Nephrology, Department of Medicine, The Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1003, New York, NY, 10029, USA.
| |
Collapse
|
15
|
Fadini GP, Albiero M, Bonora BM, Avogaro A. Angiogenic Abnormalities in Diabetes Mellitus: Mechanistic and Clinical Aspects. J Clin Endocrinol Metab 2019; 104:5431-5444. [PMID: 31211371 DOI: 10.1210/jc.2019-00980] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/12/2019] [Indexed: 12/25/2022]
Abstract
CONTEXT Diabetes causes severe pathological changes to the microvasculature in many organs and tissues and is at the same time associated with an increased risk of coronary and peripheral macrovascular events. We herein review alterations in angiogenesis observed in human and experimental diabetes and how they contribute to diabetes onset and development of vascular complications. EVIDENCE ACQUISITION The English language medical literature was searched for articles reporting on angiogenesis/vasculogenesis abnormalities in diabetes and their clinical manifestations, mechanistic aspects, and possible therapeutic implications. EVIDENCE SYNTHESIS Angiogenesis is a complex process, driven by a multiplicity of molecular mechanisms and involved in several physiological and pathological conditions. Incompetent angiogenesis is pervasive in diabetic vascular complications, with both excessive and defective angiogenesis observed in various tissues. A striking different angiogenic response typically occurs in the retina vs the myocardium and peripheral circulation, but some commonalities in abnormal angiogenesis can explain the well-known association between microangiopathy and macroangiopathy. Impaired angiogenesis can also affect endocrine islet and adipose tissue function, providing a link to diabetes onset. Exposure to high glucose itself directly affects angiogenic/vasculogenic processes, and the mechanisms include defective responses to hypoxia and proangiogenic factors, impaired nitric oxide bioavailability, shortage of proangiogenic cells, and loss of pericytes. CONCLUSIONS Dissecting the molecular drivers of tissue-specific alterations of angiogenesis/vasculogenesis is an important challenge to devise new therapeutic approaches. Angiogenesis-modulating therapies should be carefully evaluated in view of their potential off-target effects. At present, glycemic control remains the most reasonable therapeutic strategy to normalize angiogenesis in diabetes.
Collapse
Affiliation(s)
- Gian Paolo Fadini
- Department of Medicine, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| | - Mattia Albiero
- Department of Medicine, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| | - Benedetta Maria Bonora
- Department of Medicine, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| | - Angelo Avogaro
- Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
16
|
Ren H, Shao Y, Ma X, Yang M, Liu Y, Wang Q. Expression levels of serum vasohibin-1 and other biomarkers in type 2 diabetes mellitus patients with different urinary albumin to creatinine ratios. J Diabetes Complications 2019; 33:477-484. [PMID: 31097304 DOI: 10.1016/j.jdiacomp.2019.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/31/2019] [Accepted: 04/07/2019] [Indexed: 11/28/2022]
Abstract
AIM To determine the serum levels of vasohibin (VASH)-1 and other biomarkers in type 2 diabetes mellitus (T2DM) patients with different urinary albumin to creatinine ratios (UACR), and correlate VASH-1 expression with the inflammation and fibrosis in diabetic kidney disease (DKD). METHODS A total of 697 T2DM patients were stratified into four groups: N-UAlb (UACR <30 mg/g with normal blood pressure, n = 144), M-UAlb (UACR 30-300 mg/g with normal blood pressure, n = 143), L-UAlb (UACR >300 mg/g with normal blood pressure, n = 126), and L-UAlb+HP (UACR >300 mg/g with hypertension, n = 134). In addition, 150 healthy subjects were included as normal controls (NC). In addition to recording the age and duration of diabetes, the serum levels of VASH-1, silent information regulator factor 2-related enzyme 1 (sirtuin-1, SIRT1), hypoxia inducible factor 1α (HIF1α), vascular endothelial growth factor (VEGF), C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1), and the erythrocyte sedimentation rate (ESR) were measured. Clinical parameters related to UACR and VASH-1 were analyzed by one-way ANOVA, Pearson correlation and ridge regression analysis. RESULTS The UACR, VASH-1, glycosylated hemoglobin (HbA1c), ESR, CRP, VEGF, HIF1α, TNF-α and TGF-β1 levels in all patient groups were significantly higher, and SIRT1 levels were lower compared to the NC group. Pearson correlation analysis showed that UACR and VASH-1 levels were positively correlated with HbA1c, ESR, CRP, VEGF, HIF1α, TNF-α and TGF-β1, and negatively with SIRT1. Ridge regression analysis showed that every serological marker was an independent factor affecting UACR. CONCLUSION Serum VASH-1 may be associated with the expression of renal inflammation and fibrosis-related factors, and have a potential connection with DKD.
Collapse
Affiliation(s)
- Huiwen Ren
- Department of Endocrinology, the First Hospital Affiliated of China Medical University, Shenyang, Liaoning, China
| | - Ying Shao
- Department of Endocrinology, the Second Hospital Affiliated of China Medical University, Shenyang, Liaoning, China
| | - Xiaoyu Ma
- The Cadre Department, the First Hospital Affiliated of China Medical University, Shenyang, Liaoning, China
| | - Min Yang
- Department of Laboratory Medicine, the First Hospital Affiliated of China Medical University, Shenyang, Liaoning, China
| | - Yu Liu
- Department of Endocrinology, the First Hospital Affiliated of China Medical University, Shenyang, Liaoning, China
| | - Qiuyue Wang
- Department of Endocrinology, the First Hospital Affiliated of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
17
|
Gordin D, Shah H, Shinjo T, St-Louis R, Qi W, Park K, Paniagua SM, Pober DM, Wu IH, Bahnam V, Brissett MJ, Tinsley LJ, Dreyfuss JM, Pan H, Dong Y, Niewczas MA, Amenta P, Sadowski T, Kannt A, Keenan HA, King GL. Characterization of Glycolytic Enzymes and Pyruvate Kinase M2 in Type 1 and 2 Diabetic Nephropathy. Diabetes Care 2019; 42:1263-1273. [PMID: 31076418 PMCID: PMC6609957 DOI: 10.2337/dc18-2585] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/11/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Elevated glycolytic enzymes in renal glomeruli correlated with preservation of renal function in the Medalist Study, individuals with ≥50 years of type 1 diabetes. Specifically, pyruvate kinase M2 (PKM2) activation protected insulin-deficient diabetic mice from hyperglycemia-induced glomerular pathology. This study aims to extend these findings in a separate cohort of individuals with type 1 and type 2 diabetes and discover new circulatory biomarkers for renal protection through proteomics and metabolomics of Medalists' plasma. We hypothesize that increased glycolytic flux and improved mitochondrial biogenesis will halt the progression of diabetic nephropathy. RESEARCH DESIGN AND METHODS Immunoblots analyzed selected glycolytic and mitochondrial enzymes in postmortem glomeruli of non-Medalists with type 1 diabetes (n = 15), type 2 diabetes (n = 19), and no diabetes (n = 5). Plasma proteomic (SOMAscan) (n = 180) and metabolomic screens (n = 214) of Medalists with and without stage 3b chronic kidney disease (CKD) were conducted and significant markers validated by ELISA. RESULTS Glycolytic (PKM1, PKM2, and ENO1) and mitochondrial (MTCO2) enzymes were significantly elevated in glomeruli of CKD- versus CKD+ individuals with type 2 diabetes. Medalists' plasma PKM2 correlated with estimated glomerular filtration rate (r 2 = 0.077; P = 0.0002). Several glucose and mitochondrial enzymes in circulation were upregulated with corresponding downregulation of toxic metabolites in CKD-protected Medalists. Amyloid precursor protein was also significantly upregulated, tumor necrosis factor receptors downregulated, and both confirmed by ELISA. CONCLUSIONS Elevation of enzymes involved in the metabolism of intracellular free glucose and its metabolites in renal glomeruli is connected to preserving kidney function in both type 1 and type 2 diabetes. The renal profile of elevated glycolytic enzymes and reduced toxic glucose metabolites is reflected in the circulation, supporting their use as biomarkers for endogenous renal protective factors in people with diabetes.
Collapse
Affiliation(s)
- Daniel Gordin
- Joslin Diabetes Center, Boston, MA.,Harvard Medical School, Boston, MA.,Folkhälsan Research Center, University of Helsinki, Helsinki, Finland.,Abdominal Center Nephrology, Helsinki University Hospital, Helsinki, Finland
| | - Hetal Shah
- Joslin Diabetes Center, Boston, MA.,Harvard Medical School, Boston, MA
| | - Takanori Shinjo
- Joslin Diabetes Center, Boston, MA.,Harvard Medical School, Boston, MA
| | - Ronald St-Louis
- Joslin Diabetes Center, Boston, MA.,Harvard Medical School, Boston, MA
| | - Weier Qi
- Joslin Diabetes Center, Boston, MA.,Harvard Medical School, Boston, MA.,Translational Research and Early Clinical Development, Cardiovascular and Metabolic Research, AstraZeneca, Mölndal, Sweden
| | - Kyoungmin Park
- Joslin Diabetes Center, Boston, MA.,Harvard Medical School, Boston, MA
| | | | - David M Pober
- Joslin Diabetes Center, Boston, MA.,Harvard Medical School, Boston, MA
| | | | | | | | | | | | - Hui Pan
- Joslin Diabetes Center, Boston, MA
| | | | - Monika A Niewczas
- Joslin Diabetes Center, Boston, MA.,Harvard Medical School, Boston, MA
| | - Peter Amenta
- Joslin Diabetes Center, Boston, MA.,Harvard Medical School, Boston, MA
| | | | - Aimo Kannt
- Sanofi Deutschland GmbH, Frankfurt am Main, Germany.,Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hillary A Keenan
- Joslin Diabetes Center, Boston, MA.,Harvard Medical School, Boston, MA.,Sanofi-Genzyme, Cambridge, MA
| | - George L King
- Joslin Diabetes Center, Boston, MA .,Harvard Medical School, Boston, MA
| |
Collapse
|
18
|
Löwen J, Gröne E, Gröne HJ, Kriz W. Herniation of the tuft with outgrowth of vessels through the glomerular entrance in diabetic nephropathy damages the juxtaglomerular apparatus. Am J Physiol Renal Physiol 2019; 317:F399-F410. [PMID: 31141396 DOI: 10.1152/ajprenal.00617.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
As shown in our previous paper (Kriz W, Löwen J, Federico G, van den Born J, Gröne E, Gröne HJ. Am J Physiol Renal Physiol 312: F1101-F1111, 2017), mesangial matrix expansion in diabetic nephropathy (DN) results for a major part from the accumulation of worn-out undegraded glomerular basement membrane material. Here, based on the reevaluation of >900 biopsies of DN, we show that this process continues with the progression of the disease finally leading to the herniation of the matrix-overloaded tuft through the glomerular entrance to the outside. This leads to severe changes in the glomerular surroundings, including a dissociation of the juxtaglomerular apparatus with displacement of the macula densa. The herniation is associated with a prominent outgrowth of glomerular vessels from the tuft. Mostly, these aberrant vessels are an abnormal type of arteriole with frequent intramural insudations of plasma. They spread into glomerular surroundings extending in intertubular and periglomerular spaces. Their formation is associated with elevated mRNA levels of vascular endothelial growth factor-A, angiopoietins 1 and 2, and the corresponding receptors. Functionally, these processes seem to compromise tubuloglomerular feedback-related functions and may be one factor why Na+-glucose cotransporter-2 inhibitors are not effective in advanced stages of DN.
Collapse
Affiliation(s)
- Jana Löwen
- Medical Faculty Mannheim, Department of Neuroanatomy, University of Heidelberg, Heidelberg, Germany.,German Cancer Research Center, Heidelberg, Germany
| | | | - Hermann-Josef Gröne
- German Cancer Research Center, Heidelberg, Germany.,Institute of Pharmacology, Philipps University, Marburg, Germany
| | - Wilhelm Kriz
- Medical Faculty Mannheim, Department of Neuroanatomy, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
19
|
Hong Q, Zhang L, Fu J, Verghese DA, Chauhan K, Nadkarni GN, Li Z, Ju W, Kretzler M, Cai GY, Chen XM, D'Agati VD, Coca SG, Schlondorff D, He JC, Lee K. LRG1 Promotes Diabetic Kidney Disease Progression by Enhancing TGF- β-Induced Angiogenesis. J Am Soc Nephrol 2019; 30:546-562. [PMID: 30858225 DOI: 10.1681/asn.2018060599] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Glomerular endothelial dysfunction and neoangiogenesis have long been implicated in the pathogenesis of diabetic kidney disease (DKD). However, the specific molecular pathways contributing to these processes in the early stages of DKD are not well understood. Our recent transcriptomic profiling of glomerular endothelial cells identified a number of proangiogenic genes that were upregulated in diabetic mice, including leucine-rich α-2-glycoprotein 1 (LRG1). LRG1 was previously shown to promote neovascularization in mouse models of ocular disease by potentiating endothelial TGF-β/activin receptor-like kinase 1 (ALK1) signaling. However, LRG1's role in the kidney, particularly in the setting of DKD, has been unclear. METHODS We analyzed expression of LRG1 mRNA in glomeruli of diabetic kidneys and assessed its localization by RNA in situ hybridization. We examined the effects of genetic ablation of Lrg1 on DKD progression in unilaterally nephrectomized, streptozotocin-induced diabetic mice at 12 and 20 weeks after diabetes induction. We also assessed whether plasma LRG1 was associated with renal outcome in patients with type 2 diabetes. RESULTS LRG1 localized predominantly to glomerular endothelial cells, and its expression was elevated in the diabetic kidneys. LRG1 ablation markedly attenuated diabetes-induced glomerular angiogenesis, podocyte loss, and the development of diabetic glomerulopathy. These improvements were associated with reduced ALK1-Smad1/5/8 activation in glomeruli of diabetic mice. Moreover, increased plasma LRG1 was associated with worse renal outcome in patients with type 2 diabetes. CONCLUSIONS These findings identify LRG1 as a potential novel pathogenic mediator of diabetic glomerular neoangiogenesis and a risk factor in DKD progression.
Collapse
Affiliation(s)
- Quan Hong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China
| | - Lu Zhang
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Divya A Verghese
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kinsuk Chauhan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Girish N Nadkarni
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zhengzhe Li
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Wenjun Ju
- Division of Nephrology, University of Michigan, Ann Arbor, Michigan
| | | | - Guang-Yan Cai
- Department of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China
| | - Xiang-Mei Chen
- Department of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China
| | - Vivette D D'Agati
- Department of Pathology, Columbia University Medical Center, New York, New York; and
| | - Steven G Coca
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Detlef Schlondorff
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; .,Renal Section, James J. Peters Veterans Affair Medical Center, Bronx, New York
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York;
| |
Collapse
|
20
|
Angiopoietin-1 Promotes the Integrity of Neovascularization in the Subcutaneous Matrigel of Type 1 Diabetic Rats. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2016972. [PMID: 30729120 PMCID: PMC6343146 DOI: 10.1155/2019/2016972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/30/2018] [Indexed: 12/21/2022]
Abstract
Objective This study aimed to investigate the effects of Ang-1 on neovascularization of diabetic organs by subcutaneous Matrigel angiogenesis model, established in type 1 diabetic rats. Methods Ang-1 adenoviral vector was constructed. The rat model was established by STZ and divided into four group. The Matrigel was inserted subcutaneously into the abdominal cavity of rats at 8 weeks, the treatment group was injected with Ang-1 adenovirus vector via tail vein, and the rats were sacrificed at 10 weeks. Neovascularization of Matrigel was observed with transmission electron microscopy. The marker of vascular endothelial cell and pericyte were detected by immunofluorescence. Immunohistochemical detection of the neovascular endothelial junction protein was performed. RT-PCR was used to determine protein expression of neovascular in Matrigel. Results Vascular cavity-like structure could be seen in subcutaneous Matrigel of diabetic rats, and the cavity was filled with a lot of red blood cells. Transmission electron microscopy showed that neovascular endothelial structure of the Matrigel was incomplete, while the Ang-1 treatment group had more vascular cavity-like structures, intact vascular endothelial structure, and reduced inflammatory cell infiltration in Matrigel. Additionally, the integrity of vascularization improved, and the marker of pericyte and the cell tight junctions protein was upregulated in Ang-1 treatment group. Conclusion Hyperglycemia could induce pathological angiogenesis in subcutaneous Matrigel of diabetic rats, and Ang-1 could upregulate the expression of intercellular junction protein in subcutaneous Matrigel of diabetic rats and promote the integrity of neovascularization in the subcutaneous Matrigel of diabetic rats.
Collapse
|
21
|
Early Enhanced Leucine-Rich α-2-Glycoprotein-1 Expression in Glomerular Endothelial Cells of Type 2 Diabetic Nephropathy Model Mice. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2817045. [PMID: 30515388 PMCID: PMC6236974 DOI: 10.1155/2018/2817045] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/03/2018] [Indexed: 12/15/2022]
Abstract
Abnormal angiogenesis plays a major role in the development of early stage diabetic nephropathy. Vascular endothelial growth factor (VEGF) is a classical proangiogenic factor that regulates abnormal glomerular angiogenesis linked to glomerular hypertrophy in the early stage of diabetic nephropathy. Leucine-rich α-2-glycoprotein-1 (LRG1) was recently reported as a novel proangiogenic factor that is expressed in endothelial cells and promotes angiogenesis by modulating the transforming growth factor-β signaling pathway. However, the pathophysiology of LRG1 in diabetic nephropathy remains largely unknown. In the present study, we investigated intrarenal expression of the novel proangiogenic factor LRG1 in diabetic db/db mice by immunohistochemistry and a laser capture microdissection method during the development of diabetic nephropathy. We hypothesized that glomerular LRG1 expression is increased earlier than VEGF expression under conditions of pathological angiogenesis in the early stage of diabetic nephropathy. Thus, we compared glomerular expression of VEGF and LRG1 in diabetic db/db mice at 16 and 24 weeks of age. At 16 weeks, diabetic db/db mice exhibited glomerular hypertrophy with abnormal angiogenesis characterized by endothelial cell proliferation, which was concomitant with an increase in LRG1 expression of glomerular endothelial cells. However, glomerular VEGF expression was not increased at this early stage. At 24 weeks, the features of early diabetic nephropathy in db/db mice had developed further, along with further enhanced glomerular LRG1 expression. At this late stage, glomerular VEGF and fibrosis-related-gene expression was also significantly increased compared with nondiabetic db/m mice. These results suggest that LRG1 plays a pivotal role in the initial development of diabetic nephropathy by promoting abnormal angiogenesis, thereby suggesting that LRG1 is a potential preemptive therapeutic target of diabetic nephropathy.
Collapse
|
22
|
Fu J, Wei C, Zhang W, Schlondorff D, Wu J, Cai M, He W, Baron MH, Chuang PY, Liu Z, He JC, Lee K. Gene expression profiles of glomerular endothelial cells support their role in the glomerulopathy of diabetic mice. Kidney Int 2018; 94:326-345. [PMID: 29861058 PMCID: PMC6054896 DOI: 10.1016/j.kint.2018.02.028] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/06/2018] [Accepted: 02/15/2018] [Indexed: 01/15/2023]
Abstract
Endothelial dysfunction promotes the pathogenesis of diabetic nephropathy (DN), which is considered to be an early event in disease progression. However, the molecular changes associated with glomerular endothelial cell (GEC) injury in early DN are not well defined. Most gene expression studies have relied on the indirect assessment of GEC injury from isolated glomeruli or renal cortices. Here, we present transcriptomic analysis of isolated GECs, using streptozotocin-induced diabetic wildtype (STZ-WT) and diabetic eNOS-null (STZ-eNOS-/-) mice as models of mild and advanced DN, respectively. GECs of both models in comparison to their respective nondiabetic controls showed significant alterations in the regulation of apoptosis, oxidative stress, and proliferation. The extent of these changes was greater in STZ-eNOS-/- than in STZ-WT GECs. Additionally, genes in STZ-eNOS-/- GECs indicated further dysregulation in angiogenesis and epigenetic regulation. Moreover, a biphasic change in the number of GECs, characterized by an initial increase and subsequent decrease over time, was observed only in STZ-eNOS-/- mice. This is consistent with an early compensatory angiogenic process followed by increased apoptosis, leading to an overall decrease in GEC survival in DN progression. From the genes altered in angiogenesis in STZ-eNOS-/- GECs, we identified potential candidate genes, Lrg1 and Gpr56, whose function may augment diabetes-induced angiogenesis. Thus, our results support a role for GEC in DN by providing direct evidence for alterations of GEC gene expression and molecular pathways. Candidate genes of specific pathways, such as Lrg1 and Gpr56, can be further explored for potential therapeutic targeting to mitigate the initiation and progression of DN.
Collapse
Affiliation(s)
- Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Chengguo Wei
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Detlef Schlondorff
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jinshan Wu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Minchao Cai
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Wu He
- Flow Cytometry Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Margaret H Baron
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peter Y Chuang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Renal Program, James J. Peters VA Medical Center at Bronx, New York, New York, USA.
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
23
|
NaoXinTong Capsules inhibit the development of diabetic nephropathy in db/db mice. Sci Rep 2018; 8:9158. [PMID: 29904053 PMCID: PMC6002396 DOI: 10.1038/s41598-018-26746-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/04/2018] [Indexed: 12/17/2022] Open
Abstract
NaoXinTong Capsule (NXT), a Chinese medicine, is currently used to treat patients with cardiovascular and cerebrovascular diseases. Clinical observations indicate its anti-diabetic functions with unclear mechanisms. Herein, we report the effect of NXT on diabetic nephropathy (DN). Type 2 diabetic db/db mice were treated with NXT for 14 weeks. In the course of treatment, NXT reduced diabetes-increased glucose levels and improved renal functions. At the end of treatment, we found that NXT ameliorated serum lipid profiles and other biochemical parameters. In the kidney, NXT inhibited mesangial matrix expansion, expression of vascular endothelial growth factor A, fibronectin, advanced glycation end product and its receptor. Meanwhile, it reduced the diabetes-induced podocyte injury by increasing WT1 and nephrin expression. In addition, NXT inhibited accumulation of extracellular matrix proteins by increasing MMP2/9 expression through inactivation of TGFβ/Smad pathway and CTGF expression. Mechanically, NXT activated insulin signaling pathway by increasing expression of INSR, IRS and FGF21, phosphorylation of Akt and AMPKα in the liver, INSR phosphorylation in the kidney, and FGF21 and GLUT4 expression in adipose tissue and skeletal muscle. Taken together, our study demonstrates that NXT inhibits DN by ameliorating glucose/lipid metabolism, maintaining tissue structure integrity, and correcting diabetes-induced renal dysfunctions.
Collapse
|
24
|
Campochiaro PA, Khanani A, Singer M, Patel S, Boyer D, Dugel P, Kherani S, Withers B, Gambino L, Peters K, Brigell M. Enhanced Benefit in Diabetic Macular Edema from AKB-9778 Tie2 Activation Combined with Vascular Endothelial Growth Factor Suppression. Ophthalmology 2016; 123:1722-1730. [DOI: 10.1016/j.ophtha.2016.04.025] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/15/2016] [Accepted: 04/15/2016] [Indexed: 12/21/2022] Open
|
25
|
Abstract
Diabetic nephropathy is the main cause of end-stage renal failure in the Western world. In diabetes, metabolic and haemodynamic perturbations disrupt the integrity of the glomerular filtration barrier, leading to ultrastructural alterations of the glomeruli, including podocyte foot process fusion and detachment, glomerular basement membrane thickening, reduced endothelial cell glycocalyx, and mesangial extracellular matrix accumulation and glomerulosclerosis, ultimately leading to albuminuria and end-stage renal disease. Many vascular growth factors, such as angiopoietins, are implicated in glomerular biology. In normal physiology angiopoietins regulate the function of the glomerular filtration barrier. When they are dysregulated, however, as they are in diabetes, they drive the cellular mechanisms that mediate diabetic glomerular pathology. Modulation of angiopoietins expression and signalling has been proposed as a tool to correct the cellular mechanisms involved in the pathophysiology of diabetic microvascular disease, such as retinopathy in humans. Future work might evaluate whether this novel therapeutic approach should be extended to diabetic kidney disease.
Collapse
Affiliation(s)
- Luigi Gnudi
- Unit for Metabolic Medicine, Cardiovascular Division, Faculty of Life Science & Medicine, King's College London, 3rd Floor Franklin-Wilkins Building, Waterloo Campus, Stamford Street, London, SE1 9RT, UK.
| |
Collapse
|
26
|
Jiang ZZ, Liu YM, Niu X, Yin JY, Hu B, Guo SC, Fan Y, Wang Y, Wang NS. Exosomes secreted by human urine-derived stem cells could prevent kidney complications from type I diabetes in rats. Stem Cell Res Ther 2016; 7:24. [PMID: 26852014 PMCID: PMC4744390 DOI: 10.1186/s13287-016-0287-2] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 12/16/2022] Open
Abstract
Background Diabetic nephropathy is one of the most serious complications in patients with diabetes. At present, there are no satisfactory treatments available for diabetic nephropathy. Stem cells are currently the main candidates for the development of new treatments for diabetic nephropathy, as they may exert their therapeutic effects mainly through paracrine mechanisms. Exosomes derived from stem cells have been reported to play an important role in kidney injury. In this article, we try to investigate whether exosomes retrieved from urine stem cells could itself prevent diabetic nephropathy at an early stage in vivo and in vitro. Methods Exosomes from conditioned medium of urine-derived stem cells (USCs-Exo) were isolated using ultrafiltration-combined purification methods. USCs-Exo were then verified by morphology, size, and specific biomarkers using transmission electron microscopy, tunable resistive pulse sensing analysis, and western blotting. After establishment of the streptozotocin-induced Sprague–Dawley rat model, the effects of USCs-Exo on kidney injury and angiogenesis were observed via weekly tail intravenous injection of USCs-Exo or control until 12 weeks. In vitro, podocytes cultured in high-glucose medium were treated with USCs-Exo to test the protective effect of USCs-Exo on podocytic apoptosis. Meanwhile, the potential factors in promoting vascular regeneration in USCs-Exo and urine-derived stem cell conditioned medium were investigated by enzyme-linked immunosorbent assay. Results Urine-derived stem cells were cultured and were verified by positive markers for CD29, CD73, CD90 and CD44 antigens, and negative markers for CD34, CD45 and HLA-DR. USCs-Exo were approximately 50–100 nm spherical vesicles, and the specific markers included CD9, CD63 and CD81. Intravenous injections of USCs-Exo could potentially reduce the urine volume and urinary microalbumin excretion, prevent podocyte and tubular epithelial cell apoptosis, suppress the caspase-3 overexpression and increase glomerular endothelial cell proliferation in diabetic rats. In addition, USCs-Exo could reduce podocytic apoptosis induced by high glucose in vitro. USCs-Exo contained the potential factors, including growth factor, transforming growth factor-β1, angiogenin and bone morphogenetic protein-7, which may be related with vascular regeneration and cell survival. Conclusion USCs-Exo may have the potential to prevent kidney injury from diabetes by inhibiting podocyte apoptosis and promoting vascular regeneration and cell survival. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0287-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhen-zhen Jiang
- Department of Nephrology and Rheumatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R. China.
| | - Yu-mei Liu
- Department of Nephrology and Rheumatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R. China.
| | - Xin Niu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R. China.
| | - Jian-yong Yin
- Department of Nephrology and Rheumatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R. China.
| | - Bin Hu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R. China.
| | - Shang-chun Guo
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R. China.
| | - Ying Fan
- Department of Nephrology and Rheumatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R. China.
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R. China.
| | - Nian-song Wang
- Department of Nephrology and Rheumatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R. China.
| |
Collapse
|
27
|
Piccoli GB, Grassi G, Cabiddu G, Nazha M, Roggero S, Capizzi I, De Pascale A, Priola AM, Di Vico C, Maxia S, Loi V, Asunis AM, Pani A, Veltri A. Diabetic Kidney Disease: A Syndrome Rather Than a Single Disease. Rev Diabet Stud 2015; 12:87-109. [PMID: 26676663 PMCID: PMC5397985 DOI: 10.1900/rds.2015.12.87] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 04/15/2015] [Accepted: 04/22/2015] [Indexed: 12/13/2022] Open
Abstract
The term "diabetic kidney" has recently been proposed to encompass the various lesions, involving all kidney structures that characterize protean kidney damage in patients with diabetes. While glomerular diseases may follow the stepwise progression that was described several decades ago, the tenet that proteinuria identifies diabetic nephropathy is disputed today and should be limited to glomerular lesions. Improvements in glycemic control may have contributed to a decrease in the prevalence of glomerular lesions, initially described as hallmarks of diabetic nephropathy, and revealed other types of renal damage, mainly related to vasculature and interstitium, and these types usually present with little or no proteinuria. Whilst glomerular damage is the hallmark of microvascular lesions, ischemic nephropathies, renal infarction, and cholesterol emboli syndrome are the result of macrovascular involvement, and the presence of underlying renal damage sets the stage for acute infections and drug-induced kidney injuries. Impairment of the phagocytic response can cause severe and unusual forms of acute and chronic pyelonephritis. It is thus concluded that screening for albuminuria, which is useful for detecting "glomerular diabetic nephropathy", does not identify all potential nephropathies in diabetes patients. As diabetes is a risk factor for all forms of kidney disease, diagnosis in diabetic patients should include the same combination of biochemical, clinical, and imaging tests as employed in non-diabetic subjects, but with the specific consideration that chronic kidney disease (CKD) may develop more rapidly and severely in diabetic patients.
Collapse
Affiliation(s)
- Giorgina B. Piccoli
- SS Nefrologia, SCDU Urologia, San Luigi Gonzaga Hospital, Department of Clinical and Biological Sciences, University of Torino, Italy
| | - Giorgio Grassi
- SCDU Endocrinologia, Diabetologia e Metabolismo, Citta della Salute e della Scienza Torino, Italy
| | | | - Marta Nazha
- SS Nefrologia, SCDU Urologia, San Luigi Gonzaga Hospital, Department of Clinical and Biological Sciences, University of Torino, Italy
| | - Simona Roggero
- SS Nefrologia, SCDU Urologia, San Luigi Gonzaga Hospital, Department of Clinical and Biological Sciences, University of Torino, Italy
| | - Irene Capizzi
- SS Nefrologia, SCDU Urologia, San Luigi Gonzaga Hospital, Department of Clinical and Biological Sciences, University of Torino, Italy
| | - Agostino De Pascale
- SCDU Radiologia, san Luigi Gonzaga Hospital, Department of Oncology, University of Torino, Italy
| | - Adriano M. Priola
- SCDU Radiologia, san Luigi Gonzaga Hospital, Department of Oncology, University of Torino, Italy
| | - Cristina Di Vico
- SS Nefrologia, SCDU Urologia, San Luigi Gonzaga Hospital, Department of Clinical and Biological Sciences, University of Torino, Italy
| | | | | | - Anna M. Asunis
- SCD Anatomia Patologica, Brotzu Hospital, Cagliari, Italy
| | | | - Andrea Veltri
- SCDU Radiologia, san Luigi Gonzaga Hospital, Department of Oncology, University of Torino, Italy
| |
Collapse
|
28
|
Li L, Chen L, Zang J, Tang X, Liu Y, Zhang J, Bai L, Yin Q, Lu Y, Cheng J, Fu P, Liu F. C3a and C5a receptor antagonists ameliorate endothelial-myofibroblast transition via the Wnt/β-catenin signaling pathway in diabetic kidney disease. Metabolism 2015; 64:597-610. [PMID: 25682062 DOI: 10.1016/j.metabol.2015.01.014] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 01/28/2023]
Abstract
BACKGROUND Endothelial-myofibroblast transition (EndMT) has been implicated in the pathogenesis of diabetic renal fibrosis. In this study, the effect of the complement fragments C3a/C5a and their receptor antagonists C3aRA and C5aRA on EndMT in diabetic kidney disease (DKD) and the possible mechanisms were investigated. METHODS The coexpression of CD31 with α-smooth muscle (α-SMA), C3a receptor (C3aR) and C5a receptor (C5aR) was detected in human renal biopsy tissue obtained from patients with early and advanced DKD and in normal renal tissues from patients with renal-cell carcinoma. The effects of C3aRA and C5aRA on EndMT and the expression of C3a/C3aR, C5a/C5aR, α-SMA, CD31, TGFβ, FN and β-catenin were examined in a streptozotocin (STZ)-induced rat model of DKD and in human renal glomerular endothelial cells (HRGECs) cultured in high glucose and with C3a/C5a, and DKK1 (a Wnt/β-catenin inhibitor). RESULTS Double-labeling of α-SMA, C3aR, C5aR and CD31 was detected in the glomerulus of renal tissues obtained from biopsies of patients with DKD. Upregulated expression of α-SMA, TGF-β, FN and β-catenin and downregulated expression of CD31 were detected in the GECs of diabetic rats. The expression of these proteins was inhibited by treatment with C3aRA/C5aRA. In vitro, C3aRA/C5aRA and DKK1 ameliorated the high glucose-induced EndMT and the subsequent expression of α-SMA, TGFβ, FN and β-catenin in HRGECs. CONCLUSIONS The blockade of C3aR/C5aR and the downstream Wnt/β-catenin pathway may prevent EndMT and alleviate fibrosis in the glomeruli of individuals with DKD.
Collapse
Affiliation(s)
- Ling Li
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Lijia Chen
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jing Zang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Xi Tang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Yan Liu
- Laboratory Animal Center of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jie Zhang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Lin Bai
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Qinghua Yin
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Ping Fu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Fang Liu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
29
|
Chen S, Li H, Zhang C, Li Z, Wang Q, Guo J, Luo C, Wang Y. Urinary angiopoietin-2 is associated with albuminuria in patients with type 2 diabetes mellitus. Int J Endocrinol 2015; 2015:163120. [PMID: 25873946 PMCID: PMC4383519 DOI: 10.1155/2015/163120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/08/2014] [Accepted: 09/18/2014] [Indexed: 12/31/2022] Open
Abstract
Aims. To evaluate the levels of angiopoietin-1 (Ang-1), Ang-2, and vascular endothelial growth factor (VEGF) in serum and urine, and their association with albuminuria in patients with type 2 diabetes mellitus. Methods. In 113 type 2 diabetic patients with normoalbuminuria, microalbuminuria, and macroalbuminuria and 30 healthy controls, the levels of Ang-1, Ang-2, and VEGF in serum and urine were measured by enzyme-linked immunosorbent assay (ELISA). Results. Urinary and serum levels of Ang-2 were significantly higher in diabetic patients with normoalbuminuria than in healthy controls. Increased urinary Ang-2 level was positively associated with the degree of albuminuria. Urinary Ang-1 levels were significantly higher in normoalbuminuria patients and lower in macroalbuminuria patients than in controls. The levels of urinary VEGF increased in the albuminuria subgroup, though serum levels of Ang-1 and VEGF did not change. Urinary Ang-2 levels were correlated positively with albuminuria and negatively with glomerular filtration rate (GFR). Stepwise multiple regression analysis identified albuminuria (P < 0.001) and GFR (P = 0.001) as significant predictors of urinary Ang-2. Conclusions. Our data suggest that urinary Ang-2 is stepwise increased with renal damage in patients with type 2 diabetes mellitus and is associated with albuminuria.
Collapse
Affiliation(s)
- Shan Chen
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Huiqing Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Zhenqiong Li
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Qiuyuan Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Jinting Guo
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Changqing Luo
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Yumei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
- *Yumei Wang:
| |
Collapse
|
30
|
Angiopoietin-like-2: a multifaceted protein with physiological and pathophysiological properties. Expert Rev Mol Med 2014; 16:e17. [PMID: 25417860 DOI: 10.1017/erm.2014.19] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angptl2 is a multifaceted protein, displaying both physiological and pathological functions, in which scientific and clinical interest is growing exponentially within the past few years. Its physiological functions are not well understood, but angptl2 was first acknowledged for its pro-angiogenic and antiapoptotic capacities. In addition, angptl2 can be considered a growth factor, since it increases survival and expansion of hematopoietic stem cells and may promote vasculogenesis. Finally, angptl2 has an important, but largely unrecognised, physiological role: in the cytosol, angptl2 binds to type 1A angiotensin II receptors and induces their recycling, with recovery of the receptor signal functions. Despite these important physiological properties, angptl2 is better acknowledged for its deleterious pro-inflammatory properties and its contribution in multiple chronic diseases such as cancer, diabetes, atherosclerosis, metabolic disorders and many other chronic diseases. This review aims at presenting an updated description of both the beneficial and deleterious biological properties of angptl2, in addition to its molecular signalling pathways and transcriptional regulation. The multiplicity of diseases in which angptl2 contributes makes it a new highly relevant clinical therapeutic target.
Collapse
|
31
|
Abstract
Chronic progressive renal fibrosis leads to end-stage renal failure many patients with chronic kidney disease (CKD). Loss of the rich peritubular capillary network is a prominent feature, and seems independent of the specific underlying disease. The mechanisms that contribute to peritubular capillary regression include the loss of glomerular perfusion, as flow-dependent shear forces are required to provide the survival signal for endothelial cells. Also, reduced endothelial cell survival signals from sclerotic glomeruli and atrophic or injured tubule epithelial cells contribute to peritubular capillary regression. In response to direct tubular epithelial cell injury, and the inflammatory reaction that ensues, capillary pericytes dissociate from their blood vessels, also reducing endothelial cell survival. In addition, direct inflammatory injury of capillary endothelial cells, for instance in chronic allograft nephropathy, also contributes to capillary dropout. Chronic tissue hypoxia, which ensues from the rarefaction of the peritubular capillary network, can generate both an angiogenic and a fibrogenic response. However, in CKD, the balance is strongly tipped toward fibrogenesis. Understanding the underlying mechanisms for failed angiogenesis in CKD and harnessing endothelial-specific survival and pro-angiogenic mechanisms for therapy should be our goal if we are to reduce the disease burden from CKD.
Collapse
Affiliation(s)
| | - Marya Obeidat
- Department of Medicine, University of Alberta , Edmonton, Alberta, Canada
| |
Collapse
|
32
|
Reduced Krüppel-like factor 2 expression may aggravate the endothelial injury of diabetic nephropathy. Kidney Int 2014; 87:382-95. [PMID: 25185079 PMCID: PMC4312548 DOI: 10.1038/ki.2014.286] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/18/2014] [Accepted: 07/10/2014] [Indexed: 12/15/2022]
Abstract
Kruppel-like Factor 2 (KLF2), a shear-stress inducible transcription factor, has endoprotective effects. In streptozotocin-induced diabetic rats, we found that glomerular Klf2 expression was reduced in comparison to non-diabetic rats. However, normalization of hyperglycemia by insulin treatment increased Klf2 expression to a level higher than that of non-diabetic rats. Consistent with this, we found that Klf2 expression was suppressed by high glucose but increased by insulin in cultured endothelial cells. To determine the role of KLF2 in streptozotocin-induced diabetic nephropathy, we used endothelial cell-specific Klf2 heterozygous knockout mice and found that diabetic knockout mice developed more kidney/glomerular hypertrophy and proteinuria than diabetic wide type mice. Glomerular expression of Vegfa, Flk1, and angiopoietin 2 increased but expression of Flt1, Tie2, and angiopoietin 1 decreased in diabetic knockout compared to diabetic wide type mice. Glomerular expression of ZO-1, glycocalyx, and eNOS was also decreased in diabetic knockout compared to diabetic wide type mice. These data suggest knockdown of Klf2 expression in the endothelial cells induced more endothelial cell injury. Interestingly, podocyte injury was also more prominent in diabetic knockout compared to diabetic wide type mice, indicating a crosstalk between these two cell types. Thus, KLF2 may play a role in glomerular endothelial cell injury in early diabetic nephropathy.
Collapse
|
33
|
Flynn ER, Lee J, Hutchens ZM, Chade AR, Maric-Bilkan C. C-peptide preserves the renal microvascular architecture in the streptozotocin-induced diabetic rat. J Diabetes Complications 2013; 27:538-47. [PMID: 23994433 PMCID: PMC3818424 DOI: 10.1016/j.jdiacomp.2013.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 07/12/2013] [Accepted: 07/17/2013] [Indexed: 12/11/2022]
Abstract
AIMS C-peptide is renoprotective in type 1 diabetes, however, the mechanisms of its actions are not completely understood. We hypothesized that C-peptide attenuates diabetes-associated renal microvascular injury. METHOD After 4 or 8weeks of streptozotocin (STZ)-induced diabetes, rats received either vehicle or C-peptide in the presence of low or high doses of insulin. Urine albumin excretion (UAE) was measured prior to initiation of treatment (baseline) and 2 or 4weeks after treatment (sacrifice). Glomerular hypertrophy, glomerular filtration rate (GFR) and renal microvascular density, quantified ex vivo by 3D micro-CT reconstruction, were measured at sacrifice. RESULTS In rats receiving low doses of insulin, treatment with C-peptide reduced HbA1c levels by 24%. In these rats, the 107% increase in UAE rate from baseline to sacrifice in vehicle-treated rats was largely prevented with C-peptide. C-peptide also reduced diabetes-associated glomerular hyperfiltration by 30%, glomerular hypertrophy by 22% and increased the density of microvessels between 0 and 500μm in diameter by an average of 31% compared with vehicle-treated groups. Similar renoprotective effects of C-peptide were observed in rats treated with higher doses of daily insulin, despite no differences in HbA1c levels. CONCLUSIONS The study suggests that C-peptide is renoprotective by preserving the integrity of the renal microvasculature irrespective of glucose regulation.
Collapse
Affiliation(s)
- Elizabeth R. Flynn
- The Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| | - Jonathan Lee
- The Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| | - Zachary M. Hutchens
- The Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| | - Alejandro R. Chade
- The Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
- Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, MS
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS
| | - Christine Maric-Bilkan
- The Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
- Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, MS
- Correspondence to: Christine Maric-Bilkan, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216-4505, Phone: 601-984-1818, Fax: 601-984-1817,
| |
Collapse
|
34
|
Aronis KN, Chamberland JP, Mantzoros CS. GLP-1 promotes angiogenesis in human endothelial cells in a dose-dependent manner, through the Akt, Src and PKC pathways. Metabolism 2013; 62:1279-86. [PMID: 23684008 PMCID: PMC3755020 DOI: 10.1016/j.metabol.2013.04.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Novel anti-diabetic medications that mimic or augment the physiological actions of GLP-1 improve cardiovascular risk factors in diabetics and GLP-1 has been proposed to have a beneficial role in the cardiovascular system. GLP-1 may have a direct cardioprotective role by decreasing infarct size and protecting from ischemia-reperfusion injury while prolonging survival in rodent models. The mechanisms underlying these observations remain largely unknown. In vitro studies suggest that GLP-1 may promote endothelial cell proliferation, but no study to date has evaluated a potential direct effect of GLP-1 on angiogenesis. SPECIFIC AIM To evaluate whether GLP-1 affects angiogenesis in humans and to elucidate underlying molecular mechanisms. MATERIAL AND METHODS We utilized a 3D culture system where spherules of human umbilical vein endothelial cells (HUVECs) embedded in a collagen scaffold were treated with escalating doses of human recombinant GLP-1 (50-2000 nmol/L) and the formation of new vessels was observed and quantified. Signaling inhibitors were utilized to identify molecular pathways through which GLP-1 promotes angiogenesis. RESULTS We demonstrate that GLP-1 promotes angiogenesis in a dose-dependent manner. The maximum effect on angiogenesis was observed at a GLP-1 dose of 500 nmol/L, while increased angiogenesis occurred in response to doses ranging from 200 nmol/L to 1000 nmol/L. Pre-treatment of the system with Akt inhibitor IV, Bisindolylmaleimide (PKC inhibitor) and src inhibitor I resulted in a significant decrease of the GLP-1 induced angiogenesis. CONCLUSIONS This is the first study to demonstrate that GLP-1 promotes angiogenesis in a HUVEC three dimensional in vitro model. This effect requires pharmacological doses and is mediated through the Akt, PKC and src pathways.
Collapse
Affiliation(s)
- Konstantinos N Aronis
- Division of Endocrinology, Diabetes & Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
35
|
Hamasaki H, Moriyama S, Yanai H. A crosstalk between macroangiopathy and microangiopathy in type 2 diabetes. Int J Cardiol 2013; 168:550-1. [PMID: 23453875 DOI: 10.1016/j.ijcard.2013.01.199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/13/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Hidetaka Hamasaki
- Department of Internal Medicine, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| | | | | |
Collapse
|