1
|
Nagori R, Vigoreaux JO. β-hydroxy- β-methylbutyrate Attenuates Age-Dependent Loss of Flight Ability and Extends Lifespan in Drosophila. Int J Mol Sci 2025; 26:2664. [PMID: 40141306 PMCID: PMC11941854 DOI: 10.3390/ijms26062664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/11/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
β-hydroxy-β-methylbutyrate (HMB) has been shown to enhance muscle function and strength in older humans and rodents after periods of consumption extending for several weeks. We investigated the feasibility of utilizing Drosophila as a model organism to study the biological effects of HMB on aging muscle when consumed throughout adult life. Using flight ability as an index of flight muscle function, we found that HMB attenuates the age-dependent decline in flight ability. Male and female flies fed a diet supplemented with 10 mg/mL HMB had significantly higher flight scores from median age until the onset of flight senescence than control flies fed a standard diet. HMB supplementation also resulted in improved flight scores in males before median age and delayed the onset of flight senescence in females. Notably, the consumption of HMB throughout adult life increased the rate of survival and extended lifespan. The effect on lifespan did not result from changes in food consumption or body weight. Old flies on the HMB-supplemented diet retained a higher proportion of flight muscle mitochondria whose morphology resembled that of young flies than the control diet group. Together, these results suggest that HMB attenuates the age-dependent decline in flight ability and prolongs lifespan by enhancing muscle health.
Collapse
|
2
|
Yang L, Liu D, Jiang S, Li H, Chen L, Wu Y, Essien AE, Opoku M, Naranmandakh S, Liu S, Ru Q, Li Y. SIRT1 signaling pathways in sarcopenia: Novel mechanisms and potential therapeutic targets. Biomed Pharmacother 2024; 177:116917. [PMID: 38908209 DOI: 10.1016/j.biopha.2024.116917] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/29/2024] [Accepted: 06/09/2024] [Indexed: 06/24/2024] Open
Abstract
Sarcopenia is an aging-related skeletal disease characterized by decreased muscle mass, strength, and physical function, severely affecting the quality of life (QoL) of the elderly population. Sirtuin 1 (SIRT1), as a nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases, has been reported to participate in various aging-related signaling pathways and exert protective effect on many human diseases. SIRT1 functioned as an important role in the occurrence and progression of sarcopenia through regulating key pathways related to protein homeostasis, apoptosis, mitochondrial dysfunction, insulin resistance and autophagy in skeletal muscle, including SIRT1/Forkhead Box O (FoxO), AMP-activated protein kinase (AMPK)/SIRT1/nuclear factor κB (NF-κB), SIRT1/p53, AMPK/SIRT1/peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and SIRT1/live kinase B1 (LKB1)/AMPK pathways. However, the specific mechanisms of these processes have not been fully illuminated. Currently, several SIRT1-mediated interventions on sarcopenia have been preliminarily developed, such as SIRT1 activator polyphenolic compounds, exercising and calorie restriction. In this review, we summarized the predominant mechanisms of SIRT1 involved in sarcopenia and therapeutic modalities targeting the SIRT1 signaling pathways for the prevention and prognosis of sarcopenia.
Collapse
Affiliation(s)
- Luning Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Di Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shide Jiang
- Department of Orthopedics, The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lin Chen
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Anko Elijah Essien
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Michael Opoku
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shinen Naranmandakh
- Department of chemistry, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - ShuGuang Liu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Qin Ru
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
3
|
Zhao W, Zhao B, Meng X, Li B, Wang Y, Yu F, Fu C, Yu X, Li X, Dai C, Wang J, Gao H, Cheng M. The regulation of MFG-E8 on the mitophagy in diabetic sarcopenia via the HSPA1L-Parkin pathway and the effect of D-pinitol. J Cachexia Sarcopenia Muscle 2024; 15:934-948. [PMID: 38553831 PMCID: PMC11154748 DOI: 10.1002/jcsm.13459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Diabetic sarcopenia is a disease-related skeletal muscle disorder that causes progressive symptoms. The complete understanding of its pathogenesis is yet to be unravelled, which makes it difficult to develop effective therapeutic strategies. This study investigates how MFG-E8 affects mitophagy and the protective role of D-pinitol (DP) in diabetic sarcopenia. METHODS In vivo, streptozotocin-induced diabetic SAM-R1 (STZ-R1) and SAM-P8 (STZ-P8) mice (16-week-old) were used, and STZ-P8 mice were administrated of DP (150 mg/kg per day) for 6 weeks. Gastrocnemius muscles were harvested for histological analysis including transmission electron microscopy. Proteins were evaluated via immunohistochemistry (IHC), immunofluorescence (IF), and western blotting (WB) assay. In vitro, advanced glycation end products (AGEs) induced diabetic and D-galactose (DG) induced senescent C2C12 models were established and received DP, MFG-E8 plasmid (Mover)/siRNA (MsiRNA), or 3-MA/Torin-1 intervention. Proteins were evaluated by IF and WB assay. Immunoprecipitation (IP) and co-immunoprecipitation (CO-IP) were used for hunting the interacted proteins of MFG-E8. RESULTS In vivo, sarcopenia, mitophagy deficiency, and up-regulated MFG-E8 were confirmed in the STZ-P8 group. DP exerted protective effects on sarcopenia and mitophagy (DP + STZ-P8 vs. STZ-P8; all P < 0.01), such as increased lean mass (8.47 ± 0.81 g vs. 7.08 ± 1.64 g), grip strength (208.62 ± 39.45 g vs. 160.87 ± 26.95 g), rotarod tests (109.7 ± 11.81 s vs. 59.3 ± 20.97 s), muscle cross-sectional area (CSA) (1912.17 ± 535.61 μm2 vs. 1557.19 ± 588.38 μm2), autophagosomes (0.07 ± 0.02 per μm2 vs. 0.02 ± 0.01 per μm2), and cytolysosome (0.07 ± 0.03 per μm2 vs. 0.03 ± 0.01 per μm2). DP down-regulated MFG-E8 in both serum (DP + STZ-P8: 253.19 ± 34.75 pg/mL vs. STZ-P8: 404.69 ± 78.97 pg/mL; P < 0.001) and gastrocnemius muscle (WB assay. DP + STZ-P8: 0.39 ± 0.04 vs. STZ-P8: 0.55 ± 0.08; P < 0.01). DP also up-regulated PINK1, Parkin and LC3B-II/I ratio, and down-regulated P62 in gastrocnemius muscles (all P < 0.01). In vitro, mitophagy deficiency and MFG-E8 up-regulation were confirmed in diabetic and senescent models (all P < 0.05). DP and MsiRNA down-regulated MFG-E8 and P62, and up-regulated PINK1, Parkin and LC3B-II/I ratio to promote mitophagy as Torin-1 does (all P < 0.05). HSPA1L was confirmed as an interacted protein of MFG-E8 in IP and CO-IP assay. Mover down-regulated the expression of Parkin via the HSPA1L-Parkin pathway, leading to mitophagy inhibition. MsiRNA up-regulated the expression of PINK1 via SGK1, FOXO1, and STAT3 phosphorylation pathways, leading to mitophagy stimulation. CONCLUSIONS MFG-E8 is a crucial target protein of DP and plays a distinct role in mitophagy regulation. DP down-regulates the expression of MFG-E8, reduces mitophagy deficiency, and alleviates the symptoms of diabetic sarcopenia, which could be considered a novel therapeutic strategy for diabetic sarcopenia.
Collapse
Affiliation(s)
- Wenqian Zhao
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Bin Zhao
- Postdoctoral Research StationShandong University of Traditional Chinese MedicineJinanChina
| | - Xinyue Meng
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Baoying Li
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Health Management Center (East Area)Qilu Hospital of Shandong UniversityJinanChina
| | - Yajuan Wang
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Fei Yu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Chunli Fu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Xin Yu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Xiaoli Li
- Department of PharmacyQilu Hospital of Shandong UniversityJinanChina
| | - Chaochao Dai
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Jie Wang
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Haiqing Gao
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| | - Mei Cheng
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Jinan Clinical Research Center for Geriatric Medicine (202132001)JinanChina
| |
Collapse
|
4
|
Chang CK, Kao SY, Wang CY. Beta-hydroxy-beta-methylbutyrate supplementation preserves fat-free mass in collegiate boxers during acute body mass loss. CHINESE J PHYSIOL 2023; 66:485-493. [PMID: 38149561 DOI: 10.4103/cjop.cjop-d-23-00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Acute body mass loss before competitions in combat sports usually leads to loss in fat-free mass. Beta-hydroxy-beta-methylbutyrate (HMB) has been shown to increase skeletal muscle mass and muscle strength in various muscle wasting conditions. This study investigated the effect of HMB supplementation on body composition and sport-specific performance in well-trained boxers consuming a hypocaloric diet. Twelve male college boxers were divided into the HMB and placebo (PLA) groups using a body weight-matched single-blind parallel design. The study comprised a 6-day weight loss period (days 1-6), followed by a 3-day competition period (days 7-9). The participants in both the groups consumed 16 kcal/kg/day, including 1.6-1.7 g/kg of carbohydrates, 1.2-1.3 g/kg of protein, and 0.45-0.5 g/kg of fat during the 9-day period. The HMB group consumed 3 g/day HMB. Body composition measurement, isometric mid-thigh pull (IMTP), and a simulated boxing match were performed at baseline and on days 7, 8, and 9. Fasting blood samples were collected on the day before day 1 and on days 7, 8, and 9. Body mass was significantly decreased after the 6-day weight loss period (HMB group: baseline: 69.4 ± 11.2 kg, day 7: 67.1 ± 11.2 kg; PLA group: baseline: 68.6 ± 12.1 kg, day 7: 65.7 ± 11.5 kg, P < 0.05) while it was unchanged on the 3-day competition period in both the groups. Fat-free mass in the HMB group was maintained throughout the 9-day period (baseline: 56.7 ± 9.3 kg, day 7: 56.3 ± 8.7 kg, day 9: 55.8 ± 9.5 kg) whereas it significantly decreased on days 7 and 9 compared to the baseline in the PLA group (baseline: 55.2 ± 6.4 kg, day 7: 54.1 ± 6.6 kg, day 9: 54.0 ± 6.6 kg, P < 0.05). In the PLA group, the average and maximal heart rates in round 1 and the average heart rate in round 2 on days 8 and 9 were significantly lower than those at baseline, while these parameters were unchanged in the HMB group. The maximal force and the rate of force development in the IMTP remained unchanged among the different timepoints in both the groups. The blood biochemical parameters were similar at any timepoint between the PLA and HMB groups. HMB supplementation during acute weight loss may preserve fat-free mass and maintain heart rate response in subsequent simulated matches in well-trained boxers. In addition, HMB supplementation had a nonsignificant effect on glucose, fat, and protein metabolism during energy restriction.
Collapse
Affiliation(s)
- Chen-Kang Chang
- Department of Sport Performance, National Taiwan University of Sport, Taichung, Taiwan
| | - Shih-Yen Kao
- Department of Sport Performance, National Taiwan University of Sport, Taichung, Taiwan
| | - Chung-Yuan Wang
- Department of Combat Sport, National Taiwan University of Sport, Taichung, Taiwan
| |
Collapse
|
5
|
Gorji AE, Ostaszewski P, Urbańska K, Sadkowski T. Does β-Hydroxy-β-Methylbutyrate Have Any Potential to Support the Treatment of Duchenne Muscular Dystrophy in Humans and Animals? Biomedicines 2023; 11:2329. [PMID: 37626825 PMCID: PMC10452677 DOI: 10.3390/biomedicines11082329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Skeletal muscle is the protein reservoir of our body and an important regulator of glucose and lipid homeostasis. The dystrophin gene is the largest gene and has a key role in skeletal muscle construction and function. Mutations in the dystrophin gene cause Duchenne and Becker muscular dystrophy in humans, mice, dogs, and cats. Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular condition causing progressive muscle weakness and premature death. β-hydroxy β-methylbutyrate (HMB) prevents deleterious muscle responses under pathological conditions, including tumor and chronic steroid therapy-related muscle losses. The use of HMB as a dietary supplement allows for increasing lean weight gain; has a positive immunostimulatory effect; is associated with decreased mortality; and attenuates sarcopenia in elderly animals and individuals. This study aimed to identify some genes, metabolic pathways, and biological processes which are common for DMD and HMB based on existing literature and then discuss the consequences of that interaction.
Collapse
Affiliation(s)
- Abdolvahab Ebrahimpour Gorji
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (A.E.G.); (P.O.)
| | - Piotr Ostaszewski
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (A.E.G.); (P.O.)
| | - Kaja Urbańska
- Department of Morphological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Tomasz Sadkowski
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (A.E.G.); (P.O.)
| |
Collapse
|
6
|
Duan G, Zheng C, Yu J, Zhang P, Wan M, Zheng J, Duan Y. β-Hydroxy-β-methyl Butyrate Regulates the Lipid Metabolism, Mitochondrial Function, and Fat Browning of Adipocytes. Nutrients 2023; 15:nu15112550. [PMID: 37299513 DOI: 10.3390/nu15112550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
A growing number of in vivo studies demonstrated that β-hydroxy-β-methyl butyrate (HMB) can serve as a lipid-lowering nutrient. Despite this interesting observation, the use of adipocytes as a model for research is yet to be explored. To ascertain the effects of HMB on the lipid metabolism of adipocytes and elucidate the underlying mechanisms, the 3T3-L1 cell line was employed. Firstly, serial doses of HMB were added to 3T3-L1 preadipocytes to evaluate the effects of HMB on cell proliferation. HMB (50 µM) significantly promoted the proliferation of preadipocytes. Next, we investigated whether HMB could attenuate fat accumulation in adipocytes. The results show that HMB treatment (50 µM) reduced the triglyceride (TG) content. Furthermore, HMB was found to inhibit lipid accumulation by suppressing the expression of lipogenic proteins (C/EBPα and PPARγ) and increasing the expression of lipolysis-related proteins (p-AMPK, p-Sirt1, HSL, and UCP3). We also determined the concentrations of several lipid metabolism-related enzymes and fatty acid composition in adipocytes. The HMB-treated cells showed reduced G6PD, LPL, and ATGL concentrations. Moreover, HMB improved the fatty acid composition in adipocytes, manifested by increases in the contents of n6 and n3 PUFAs. The enhancement of the mitochondrial respiratory function of 3T3-L1 adipocytes was confirmed via Seahorse metabolic assay, which showed that HMB treatment elevated basal mitochondrial respiration, ATP production, H+ leak, maximal respiration, and non-mitochondrial respiration. In addition, HMB enhanced fat browning of adipocytes, and this effect might be associated with the activation of the PRDM16/PGC-1α/UCP1 pathway. Taken together, HMB-induced changes in the lipid metabolism and mitochondrial function may contribute to preventing fat deposition and improving insulin sensitivity.
Collapse
Affiliation(s)
- Geyan Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changbing Zheng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jiayi Yu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiwen Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Mengliao Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jie Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Acevedo LM, Vidal Á, Aguilera-Tejero E, Rivero JLL. Muscle plasticity is influenced by renal function and caloric intake through the FGF23-vitamin D axis. Am J Physiol Cell Physiol 2023; 324:C14-C28. [PMID: 36409180 DOI: 10.1152/ajpcell.00306.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Skeletal muscle, the main metabolic engine in the body of vertebrates, is endowed with great plasticity. The association between skeletal muscle plasticity and two highly prevalent health problems: renal dysfunction and obesity, which share etiologic links as well as many comorbidities, is a subject of great relevance. It is important to know how these alterations impact on the structure and function of skeletal muscle because the changes in muscle phenotype have a major influence on the quality of life of the patients. This literature review aims to discuss the influence of a nontraditional axis involving kidney, bone, and muscle on skeletal muscle plasticity. In this axis, the kidneys play a role as the main site for vitamin D activation. Renal disease leads to a direct decrease in 1,25(OH)2-vitamin D, secondary to reduction in renal functional mass, and has an indirect effect, through phosphate retention, that contributes to stimulate fibroblast growth factor 23 (FGF23) secretion by bone cells. FGF23 downregulates the renal synthesis of 1,25(OH)2-vitamin D and upregulates its metabolism. Skeletal production of FGF23 is also regulated by caloric intake: it is increased in obesity and decreased by caloric restriction, and these changes impact on 1,25(OH)2-vitamin D concentrations, which are decreased in obesity and increased after caloric restriction. Thus, both phosphate retention, that develops secondary to renal failure, and caloric intake influence 1,25(OH)2-vitamin D that in turn plays a key role in muscle anabolism.
Collapse
Affiliation(s)
- Luz M Acevedo
- Department of Comparative Anatomy and Pathological Anatomy and Toxicology, Faculty of Veterinary Sciences, Laboratory of Muscular Biopathology, University of Cordoba, Spain.,Departamento de Ciencias Biomédicas, Facultad de Ciencias Veterinarias, Universidad Central de Venezuela, Maracay, Venezuela
| | - Ángela Vidal
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain
| | - Escolástico Aguilera-Tejero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain
| | - José-Luis L Rivero
- Department of Comparative Anatomy and Pathological Anatomy and Toxicology, Faculty of Veterinary Sciences, Laboratory of Muscular Biopathology, University of Cordoba, Spain
| |
Collapse
|
8
|
Zhao L, Mohammad M. Testosterone and cortisol responses to ß-hydroxy ß-methylbutryate consumption and exercise: A meta-analysis. Food Sci Nutr 2022; 10:2815-2824. [PMID: 36171789 PMCID: PMC9469850 DOI: 10.1002/fsn3.2887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/19/2022] [Accepted: 04/03/2022] [Indexed: 12/03/2022] Open
Abstract
Background β-hydroxy β-methylbutryate (HMB) is a metabolite of leucine amino acid and it has several ergogenic benefits. Previous studies also showed that it may affect beneficially the testosterone and cortisol concentration in athletes. Due to the contradiction results between studies, we aimed to conduct this meta-analysis to assess the HMB supplementation effect on testosterone and cortisol in trained athletes. Methods Scopus, Medline, and Google scholar were systematically searched up to August 2021. The Cochrane Collaboration tool for evaluating the risk of bias was applied for assessing the studies' quality. Random-effects model, weighted mean difference (WMD), and 95% confidence interval (CI) were used for estimating the overall effect. Between-study heterogeneity was evaluated applying the chi-squared and I2 statistic. Results Seven articles were included in the meta-analysis. Although the meta-analysis generally showed that HMB consumption did not have any effect on the cortisol and testosterone concentration (p > .05), subgroup analysis based on the exercise type showed a significant decrease in the cortisol concentration in resistance training exercises (WMD = -3.30; 95% CI: -5.50, -1.10; p = .003) and a significant increase in the testosterone concentration in aerobic and anaerobic combined sports (WMD = 1.56; 95% CI: 0.07, 3.05; p = .040). Conclusion The results indicate that HMB supplementation in athletes can reduce the concentration of cortisol in resistance exercises and increase the concentration of testosterone in aerobic and anaerobic combined exercises. Nevertheless, more studies are required to confirm these results.
Collapse
Affiliation(s)
- Li Zhao
- College of Physical EducationChengdu University of TCMChengduChina
| | - Mohamad Mohammad
- Shahid Sadoughi University of Medical Sciences and Health ServicesYazdIran
| |
Collapse
|
9
|
Lee PHU, Chung M, Ren Z, Mair DB, Kim DH. Factors mediating spaceflight-induced skeletal muscle atrophy. Am J Physiol Cell Physiol 2022; 322:C567-C580. [PMID: 35171699 DOI: 10.1152/ajpcell.00203.2021] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Skeletal muscle atrophy is a well-known consequence of spaceflight. Because of the potential significant impact of muscle atrophy and muscle dysfunction on astronauts and to their mission, a thorough understanding of the mechanisms of this atrophy and the development of effective countermeasures is critical. Spaceflight-induced muscle atrophy is similar to atrophy seen in many terrestrial conditions, and therefore our understanding of this form of atrophy may also contribute to the treatment of atrophy in humans on Earth. The unique environmental features humans encounter in space include the weightlessness of microgravity, space radiation, and the distinctive aspects of living in a spacecraft. The disuse and unloading of muscles in microgravity are likely the most significant factors that mediate spaceflight-induced muscle atrophy, and have been extensively studied and reviewed. However, there are numerous other direct and indirect effects on skeletal muscle that may be contributing factors to the muscle atrophy and dysfunction seen as a result of spaceflight. This review offers a novel perspective on the issue of muscle atrophy in space by providing a comprehensive overview of the unique aspects of the spaceflight environment and the various ways in which they can lead to muscle atrophy. We systematically review the potential contributions of these different mechanisms of spaceflight-induced atrophy and include findings from both actual spaceflight and ground-based models of spaceflight in humans, animals, and in vitro studies.
Collapse
Affiliation(s)
- Peter H U Lee
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, United States.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | | | - Zhanping Ren
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Devin B Mair
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
10
|
β-Hydroxy-β-Methylbutyrate Supplementation Promotes Antitumor Immunity in an Obesity Responsive Mouse Model of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13246359. [PMID: 34944981 PMCID: PMC8699071 DOI: 10.3390/cancers13246359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Pancreatic cancer (PDAC) is a deadly disease, exacerbated by obesity, which lacks effective therapeutic interventions. Most PDAC has a limited response to immune- and chemotherapy. Treating PDAC is made additionally challenging by the rapid emergence of muscle wasting and cachexia, which predict poor response to several therapies. We have found that dietary supplementation with β-hydroxy-β-methylbutyrate promotes immunosurveillance in PDAC tumors and protects muscle. This dietary supplement has the potential to be an important adjuvant in PDAC therapy, opening the doors to immunotherapy response. Abstract Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related deaths in the United States, and effective therapies for PDAC are currently lacking. Moreover, PDAC is promoted and exacerbated by obesity, while cachexia and sarcopenia are exceptionally common comorbidities that predict both poor survival and treatment response. Managing PDAC with immunotherapies has thus far proven ineffective, partly due to the metabolically hostile tumor microenvironment. β-hydroxy-β-methylbutyrate (HMB), a metabolite of leucine commonly used as a dietary supplement to boost muscle growth and immune function, may be an attractive candidate to augment PDAC therapy. We therefore sought to test the hypothesis that HMB would enhance antitumor immunity while protecting mouse muscle mass. Control and diet-induced obese C57BL/6 male mice bearing subcutaneously injected Panc02 tumors were supplemented with 1% HMB and treated with or without 50 mg/kg gemcitabine (n = 15/group). HMB was associated with reduced muscle inflammation and increased muscle fiber size. HMB also reduced tumor growth and promoted antitumor immunity in obese, but not lean, mice, independent of the gemcitabine treatment. Separately, in lean tumor-bearing mice, HMB supplementation promoted an anti-PD1 immunotherapy response (n = 15/group). Digital cytometry implicated the decreased abundance of M2-like macrophages in PDAC tumors, an effect that was enhanced by anti-PD1 immunotherapy. We confirmed that HMB augments M1-like macrophage (antitumor) polarization. These preclinical findings suggest that HMB has muscle-sparing and antitumor activities against PDAC in the context of obesity, and that it may sensitize otherwise nonresponsive PDAC to immunotherapy.
Collapse
|
11
|
Zheng J, Zheng C, Song B, Guo Q, Zhong Y, Zhang S, Zhang L, Duan G, Li F, Duan Y. HMB Improves Lipid Metabolism of Bama Xiang Mini-Pigs via Modulating the Bacteroidetes-Acetic Acid-AMPKα Axis. Front Microbiol 2021; 12:736997. [PMID: 34484171 PMCID: PMC8415715 DOI: 10.3389/fmicb.2021.736997] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/28/2021] [Indexed: 12/29/2022] Open
Abstract
Here, we used Bama Xiang mini-pigs to explore the effects of different dietary β-hydroxy-β-methylbutyrate (HMB) levels (0, 0.13, 0.64 or 1.28%) on lipid metabolism of adipose tissue. Results showed that HMB decreased the fat percentage of pigs (linearly, P < 0.05), and the lowest value was observed in the 0.13% HMB group. Moreover, the colonic acetic acid concentration and the relative Bacteroidetes abundance were increased in response to HMB supplementation (P < 0.05). Correlation analysis identified a positive correlation between the relative Bacteroidetes abundance and acetic acid production, and a negative correlation between fat percentage and the relative Bacteroidetes abundance or acetic acid production. HMB also upregulated the phosphorylation (p) of AMPKα, Sirt1, and FoxO1, and downregulated the p-mTOR expression. Collectively, these findings indicate that reduced fat percentage in Bama Xiang mini-pigs could be induced by HMB supplementation and the mechanism might be associated with the Bacteroidetes-acetic acid-AMPKα axis.
Collapse
Affiliation(s)
- Jie Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Changbing Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Bo Song
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiuping Guo
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yinzhao Zhong
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Shiyu Zhang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Lingyu Zhang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Geyan Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fengna Li
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
12
|
Niu M, Song S, Su Z, Wei L, Li L, Pu W, Zhao C, Ding Y, Wang J, Cao W, Gao Q, Wang H. Inhibition of heat shock protein (HSP) 90 reverses signal transducer and activator of transcription (STAT) 3-mediated muscle wasting in cancer cachexia mice. Br J Pharmacol 2021; 178:4485-4500. [PMID: 34265073 DOI: 10.1111/bph.15625] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Cancer cachexia is a common cause of death among cancer patients with no currently effective treatment available. In animal models, aberrant activation of STAT3 in skeletal muscle contributes to muscle wasting. However, clinically the factors regulating STAT3 activation and the molecular mechanisms involved remain incompletely understood. EXPERIMENTAL APPROACH The expression of HSP90 and the activation of STAT3 were detected in muscle from the patients with cancer cachexia or the tumour-bearing cachectic mice. HSP90 inhibitors, including 17DMAG (alvespimycin) and PU-H71, were administered to cachexic mice and cachexia parameters, weight loss, food intake, survival rate, body composition, serum metabolites, muscle wasting pathology and catabolic activation were analysed. The co-culture of C2C12 myotube cells with C26 conditioned media was performed to investigate the pathological mechanism involved in catabolic muscle wasting. The roles of HSP90, STAT3 and FOXO1 in myotube atrophy were explored via overexpression or knockdown. RESULTS An enhanced interaction between activated STAT3 and HSP90 in the skeletal muscle of cancer cachexia patients, is a crucial for the development of cachectic muscle wasting. HSP90 inhibitors 17DMAG and PU-H71 alleviated the muscle wasting in C26 and models or the myotube atrophy of C2C12 cells induced by C26 conditional medium. Prolonged STAT3 activation transactivated FOXO1 by binding directly to its promoter and triggered the muscle wasting in a FOXO1-dependent manner in muscle cells. CONCLUSION AND IMPLICATIONS The HSP90/STAT3/FOXO1 axis plays a critical role in cachectic muscle wasting, which might be a potential therapeutic target for the treatment of cancer cachexia.
Collapse
Affiliation(s)
- Mengyuan Niu
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Shiyu Song
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Zhonglan Su
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lulu Wei
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Li Li
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Wenyuan Pu
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Chen Zhao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yibing Ding
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Jinglin Wang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Wangsen Cao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Qian Gao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Hongwei Wang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
13
|
Niu M, Li L, Su Z, Wei L, Pu W, Zhao C, Ding Y, Wazir J, Cao W, Song S, Gao Q, Wang H. An integrative transcriptome study reveals Ddit4/Redd1 as a key regulator of cancer cachexia in rodent models. Cell Death Dis 2021; 12:652. [PMID: 34175899 PMCID: PMC8236061 DOI: 10.1038/s41419-021-03932-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022]
Abstract
Cancer cachexia is a multifactorial metabolic syndrome that causes up to 20% of cancer-related deaths. Muscle atrophy, the hallmark of cancer cachexia, strongly impairs the quality of life of cancer patients; however, the underlying pathological process is still poorly understood. Investigation of the disease pathogenesis largely relies on cachectic mouse models. In our study, the transcriptome of the cachectic gastrocnemius muscle in the C26 xenograft model was integrated and compared with that of 5 more different datasets. The bioinformatic analysis revealed pivotal gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of the disease, and the key genes were validated. Construction of the protein-protein interaction network and the comparison of pathways enriched in cancer cachexia with 5 other muscle atrophy models revealed Ddit4 (DNA damage-inducible transcript 4), as a key protein in cancer cachexia. The higher expression of Ddit4 in cachectic muscle was further validated in animal models and cachectic cancer patients. Further study revealed that p38 induced the expression of Ddit4, which in turn inhibited the mTOR pathway in atrophic cells.
Collapse
Affiliation(s)
- Mengyuan Niu
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, P. R. China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, P. R. China
| | - Li Li
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, P. R. China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, P. R. China
| | - Zhonglan Su
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Lulu Wei
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, P. R. China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, P. R. China
| | - Wenyuan Pu
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, P. R. China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, P. R. China
| | - Chen Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, P. R. China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, P. R. China
| | - Yibing Ding
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, P. R. China
| | - Junaid Wazir
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, P. R. China
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, P. R. China
| | - Wangsen Cao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, P. R. China
| | - Shiyu Song
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, P. R. China.
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, P. R. China.
| | - Qian Gao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, P. R. China.
| | - Hongwei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, P. R. China.
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, P. R. China.
| |
Collapse
|
14
|
Zheng J, Xiao H, Duan Y, Song B, Zheng C, Guo Q, Li F, Li T. Roles of amino acid derivatives in the regulation of obesity. Food Funct 2021; 12:6214-6225. [PMID: 34105579 DOI: 10.1039/d1fo00780g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity is an issue of great concern to people all over the world. It is accompanied by serious complications, leading to reduced quality of life and higher morbidity and mortality. Over the past few years, there has been an explosion in knowledge about the roles of potential therapeutic agents in obesity management. Among them, amino acid (AA) derivatives, such as taurine, glutathione (GSH), betaine, α-ketoglutarate (AKG), β-aminoisobutyric acid (BAIBA), and β-hydroxy-β-methylbutyrate (HMB), have recently gained popularity due to their beneficial effects on the promotion of weight loss and improvement in the lipid profile. The mechanisms of action of these derivatives mainly include inhibiting adipogenesis, increasing lipolysis, promoting brown/beige adipose tissue (BAT) development, and improving glucose metabolism. Therefore, this review summarizes these AA derivatives and the possible mechanisms responsible for their anti-obesity effects. Based on the current findings, these AA derivatives could be potential therapeutic agents for obesity and its related metabolic diseases.
Collapse
Affiliation(s)
- Jie Zheng
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Vidal A, Rios R, Pineda C, Lopez I, Raya AI, Aguilera-Tejero E, Rivero JLL. Increased 1,25(OH) 2-Vitamin D Concentrations after Energy Restriction Are Associated with Changes in Skeletal Muscle Phenotype. Nutrients 2021; 13:nu13020607. [PMID: 33673262 PMCID: PMC7918565 DOI: 10.3390/nu13020607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 01/22/2023] Open
Abstract
The influence of energy restriction (ER) on muscle is controversial, and the mechanisms are not well understood. To study the effect of ER on skeletal muscle phenotype and the influence of vitamin D, rats (n = 34) were fed a control diet or an ER diet. Muscle mass, muscle somatic index (MSI), fiber-type composition, fiber size, and metabolic activity were studied in tibialis cranialis (TC) and soleus (SOL) muscles. Plasma vitamin D metabolites and renal expression of enzymes involved in vitamin D metabolism were measured. In the ER group, muscle weight was unchanged in TC and decreased by 12% in SOL, but MSI increased in both muscles (p < 0.0001) by 55% and 36%, respectively. Histomorphometric studies showed 14% increase in the percentage of type IIA fibers and 13% reduction in type IIX fibers in TC of ER rats. Decreased size of type I fibers and reduced oxidative activity was identified in SOL of ER rats. An increase in plasma 1,25(OH)2-vitamin D (169.7 ± 6.8 vs. 85.4 ± 11.5 pg/mL, p < 0.0001) with kidney up-regulation of CYP27b1 and down-regulation of CYP24a1 was observed in ER rats. Plasma vitamin D correlated with MSI in both muscles (p < 0.001), with the percentages of type IIA and type IIX fibers in TC and with the oxidative profile in SOL. In conclusion, ER preserves skeletal muscle mass, improves contractile phenotype in phasic muscles (TC), and reduces energy expenditure in antigravity muscles (SOL). These beneficial effects are closely related to the increases in vitamin D secondary to ER.
Collapse
Affiliation(s)
- Angela Vidal
- Department of Animal Medicine and Surgery, University of Cordoba, 14071 Cordoba, Spain; (A.V.); (R.R.); (C.P.); (I.L.); (A.I.R.)
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
| | - Rafael Rios
- Department of Animal Medicine and Surgery, University of Cordoba, 14071 Cordoba, Spain; (A.V.); (R.R.); (C.P.); (I.L.); (A.I.R.)
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
| | - Carmen Pineda
- Department of Animal Medicine and Surgery, University of Cordoba, 14071 Cordoba, Spain; (A.V.); (R.R.); (C.P.); (I.L.); (A.I.R.)
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
| | - Ignacio Lopez
- Department of Animal Medicine and Surgery, University of Cordoba, 14071 Cordoba, Spain; (A.V.); (R.R.); (C.P.); (I.L.); (A.I.R.)
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
| | - Ana I. Raya
- Department of Animal Medicine and Surgery, University of Cordoba, 14071 Cordoba, Spain; (A.V.); (R.R.); (C.P.); (I.L.); (A.I.R.)
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
| | - Escolastico Aguilera-Tejero
- Department of Animal Medicine and Surgery, University of Cordoba, 14071 Cordoba, Spain; (A.V.); (R.R.); (C.P.); (I.L.); (A.I.R.)
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
- Correspondence: ; Tel.: +34-957-21-8714
| | - Jose-Luis L. Rivero
- Department of Comparative Anatomy, Pathological Anatomy, and Toxicology, University of Cordoba, 14071 Cordoba, Spain;
| |
Collapse
|
16
|
Gonzalez AM, Church DD, Townsend JR, Bagheri R. Emerging Nutritional Supplements for Strength and Hypertrophy: An Update of the Current Literature. Strength Cond J 2020. [DOI: 10.1519/ssc.0000000000000552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Wang J, Cui C, Chim YN, Yao H, Shi L, Xu J, Wang J, Wong RMY, Leung KS, Chow SKH, Cheung WH. Vibration and β-hydroxy-β-methylbutyrate treatment suppresses intramuscular fat infiltration and adipogenic differentiation in sarcopenic mice. J Cachexia Sarcopenia Muscle 2020; 11:564-577. [PMID: 31994349 PMCID: PMC7113529 DOI: 10.1002/jcsm.12535] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Sarcopenia is an aging-induced deterioration of skeletal muscle mass and function. Low-magnitude high-frequency vibration (LMHFV) was shown to improve muscle functions and β-hydroxy-β-methylbutyrate (HMB) to increase muscle mass and strength. Muscle-derived stem cells (MDSCs) are progenitor cells important for muscle regeneration. We hypothesized that LMHFV and HMB could retard sarcopenia by reducing fat infiltration through inhibiting adipogenesis in MDSCs. METHODS Senescence-accelerated mouse P8 male mice were randomized into control (CTL), HMB, LMHFV (VIB), and combined (COM) groups. Interventions started at age of month 7 and assessed at 1, 2, and 3 months post-intervention by densitometry, histology, and functional tests. In vitro, MDSCs isolated from gastrocnemius of senescence-accelerated mouse P8 mice were characterized, randomized into CTL, VIB, HMB, and COM groups, and assessed by oil red O staining, mRNA, and protein expression. RESULTS At 2 months post-intervention, percentage lean mass of HMB, VIB, and COM groups were significantly higher than CTL group. Twitch, tetanic, and specific tetanic forces of COM group were higher, while specific twitch force of both VIB and COM groups were higher. Grip strength of HMB, VIB, and COM groups were higher. Histologically, both VIB and COM groups presented lower oil red O area than CTL group. Type I muscle fibre in CTL group was higher than HMB, VIB, and COM groups. MDSC were detected in situ by immunofluorescence stain with stem cell antigen-1 signals confirmed with higher β-catenin expression in the COM group. The observations were also confirmed in vitro, MDSCs in the HMB, VIB, and COM groups presented lower adipogenesis vs. the CTL group. β-Catenin mRNA and protein expressions were lower in the CTL group while their relationship was further validated through β-catenin knock-down approach. CONCLUSIONS Our results showed that combined LMHFV and HMB interventions enhanced muscle strength and decreased percentage fat mass and intramuscular fat infiltration as compared with either treatment alone. Additive effect of LMHFV and HMB was demonstrated in β-catenin expression than either treatment in MDSCs and altered cell fate from adipogenesis to myogenesis, leading to inhibition of intramuscular lipid accumulation. Wnt/β-catenin signalling pathway was found to be the predominant regulatory mechanism through which LMHFV and HMB combined treatment suppressed MDSCs adipogenesis.
Collapse
Affiliation(s)
- Jinyu Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, The People's Republic of China
| | - Can Cui
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, The People's Republic of China
| | - Yu Ning Chim
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, The People's Republic of China
| | - Hao Yao
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, The People's Republic of China
| | - Liu Shi
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, The People's Republic of China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, The People's Republic of China
| | - Jiali Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, The People's Republic of China
| | - Ronald Man Yeung Wong
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, The People's Republic of China
| | - Kwok-Sui Leung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, The People's Republic of China
| | - Simon Kwoon-Ho Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, The People's Republic of China.,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, The People's Republic of China
| | - Wing Hoi Cheung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, The People's Republic of China.,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, The People's Republic of China
| |
Collapse
|
18
|
Effect of the Combination of Creatine Monohydrate Plus HMB Supplementation on Sports Performance, Body Composition, Markers of Muscle Damage and Hormone Status: A Systematic Review. Nutrients 2019; 11:nu11102528. [PMID: 31635165 PMCID: PMC6835217 DOI: 10.3390/nu11102528] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/22/2022] Open
Abstract
Although there are many studies showing the isolated effect of creatine monohydrate (CrM) and β-hydroxy β-methylbutyrate (HMB), it is not clear what effect they have when they are combined. The main purpose of this systematic review was to determine the efficacy of mixing CrM plus HMB in comparison with their isolated effects on sports performance, body composition, exercise induced markers of muscle damage, and anabolic-catabolic hormones. This systematic review was carried out in accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement guidelines and the PICOS model, for the definition of the inclusion criteria. Studies were found by searching PubMed/MEDLINE, Web of Science (WOS), and Scopus electronic databases from inception to July 3rd 2019. Methodological quality and risk of bias were assessed by two authors independently, and disagreements were resolved by third-party evaluation, in accordance with the Cochrane Collaboration Guidelines samples. The literature was examined regarding the effects of the combination of CrM plus HMB on sport performance using several outcome variables (athletic performance, body composition, markers of muscle damage, and hormone status). This systematic review included six articles that investigated the effects of CrM plus HMB on sport performance (two on strength performance, showing improvements in one of them; three on anaerobic performance, presenting enhancements in two of them; and one on aerobic performance, not presenting improvements), body composition (three on body mass, showing improvements in one of them; two on fat free mass, presenting increases in one of them; and two on fat mass, showing decreases in one of them) and markers of muscle damage and hormone status (four on markers of muscle damage and one on anabolic-catabolic hormones, not showing benefits in any of them). In summary, the combination of 3–10 g/day of CrM plus 3 g/day of HMB for 1–6 weeks could produce potential positive effects on sport performance (strength and anaerobic performance) and for 4 weeks on body composition (increasing fat free mass and decreasing fat mass). However, this combination seems to not show positive effects relating to markers of exercise-induced muscle damage and anabolic-catabolic hormones.
Collapse
|
19
|
Rathmacher JA. Authors' Response. J Strength Cond Res 2019; 32:e4-e6. [PMID: 29570161 DOI: 10.1519/jsc.0000000000002487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Gepner Y, Varanoske AN, Boffey D, Hoffman JR. Benefits of β-hydroxy-β-methylbutyrate supplementation in trained and untrained individuals. Res Sports Med 2018; 27:204-218. [PMID: 30348016 DOI: 10.1080/15438627.2018.1533470] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
β-Hydroxy-β-Methylbutyrate (HMB) is a metabolite of the branched-chain amino acid leucine and its ketoacid α-ketoisocaproate. HMB has been widely used as an ergogenic supplement to increase muscle strength, muscle hypertrophy and enhance recovery. The physiological mechanisms that underlie these benefits are related to HMB's ability to stimulate muscle protein synthesis and minimize muscle breakdown. Although evidence supporting the benefits of HMB supplementation is not conclusive, many of these studies have suffered from methodological flaws including different formulations, supplement duration and population studied. HMB in its free acid formulation is suggestive of having a greater potential for efficacy in both trained and untrained populations than its calcium-salt form. However, the evidence regarding HMB's role in limiting muscle degradation and increasing muscle protein synthesis has created an exciting interest in examining its efficacy among untrained individuals. Recent investigations examining intense training have demonstrated efficacy in maintaining muscle mass and attenuating the inflammatory response.
Collapse
Affiliation(s)
- Yftach Gepner
- a Institute of Exercise Physiology and Wellness, Sport and Exercise Science , University of Central Florida , Orlando , FL , USA
| | - Alyssa N Varanoske
- a Institute of Exercise Physiology and Wellness, Sport and Exercise Science , University of Central Florida , Orlando , FL , USA
| | - David Boffey
- a Institute of Exercise Physiology and Wellness, Sport and Exercise Science , University of Central Florida , Orlando , FL , USA
| | - Jay R Hoffman
- a Institute of Exercise Physiology and Wellness, Sport and Exercise Science , University of Central Florida , Orlando , FL , USA
| |
Collapse
|
21
|
Hong OK, Son JW, Kwon HS, Lee SS, Kim SR, Yoo SJ. Alpha-lipoic acid preserves skeletal muscle mass in type 2 diabetic OLETF rats. Nutr Metab (Lond) 2018; 15:66. [PMID: 30275871 PMCID: PMC6162899 DOI: 10.1186/s12986-018-0302-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/14/2018] [Indexed: 12/23/2022] Open
Abstract
Background Increased oxidative stress and impaired antioxidant defense are important mechanisms in the pathogenesis of diabetic myopathy. Alpha-lipoic acid (ALA) has been indicated as a weight-loss treatment in rodents and humans, but studies are limited. In the present study, we aimed to determine the influence of ALA, a potent biological antioxidant, on metabolic and growth processes in diabetic rat skeletal muscle. Methods Male 25-week-old type 2 diabetic rats (OLETF) were randomly divided into two groups, a control group (OLETF-C) and an ALA-treated group (OLETF-ALA) supplemented with 100 mg/kg ALA for 8 weeks. Age-matched, healthy, nondiabetic LETO (LETO-C) rats were used as controls. Results At 32 weeks of age, body weight was decreased by 6.8%, and the areas under the curve of IP-GTT, fasting glucose, and insulin were less in OLETF-ALA rats compared with OLETF-C rats. ALA significantly preserved muscle mass and enhanced muscle fiber cross-sectional area and fiber frequency percentage in the skeletal muscle of OLETF rats. Although the activation of myoD, myogenin, and myostatin in gastrocnemius muscle was significantly inhibited in OLETF-ALA rats relative to OLETF-C rats, there were no differences in the expression levels of muscle atrogin-1 and MuRF1 between the two groups. ALA treatment significantly increased the levels of phosphorylated 5'-AMPK, SIRT1, and PGC-1α, as well as the levels of phosphorylated AKT, mTOR, and p70S6 kinase in OLETF-ALA rats compared with OLETF-C rats. In contrast, the levels of phosphorylated p38 MAPK, IRS-1, and FOXO1 were decreased in OLETF-ALA rats compared with OLETF-C rats. Conclusions ALA treatment preserved mass in the gastrocnemius muscles of OLETF rats. ALA significantly upregulated the AMPK/SIRT1/PGC-1α and AKT/mTOR/p70S6K signaling pathways in OLETF rat skeletal muscle. Therefore, ALA may be a potential therapeutic intervention for skeletal muscle loss in animal models of insulin resistance.
Collapse
Affiliation(s)
- Oak-Kee Hong
- 1Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daro, Seocho-gu, Seoul, 06591 Republic of Korea
| | - Jang-Won Son
- 2Division of Endocrinology and Metabolism, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 327, Sosa-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14647 Republic of Korea
| | - Hyuk-Sang Kwon
- 3Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul, 07345 Republic of Korea
| | - Seong-Su Lee
- 2Division of Endocrinology and Metabolism, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 327, Sosa-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14647 Republic of Korea
| | - Sung-Rae Kim
- 2Division of Endocrinology and Metabolism, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 327, Sosa-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14647 Republic of Korea
| | - Soon Jib Yoo
- 2Division of Endocrinology and Metabolism, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 327, Sosa-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14647 Republic of Korea
| |
Collapse
|
22
|
Munroe M, Mahmassani ZS, Dvoretskiy S, Reid JJ, Miller BF, Hamilton K, Rhodes JS, Boppart MD. Cognitive function is preserved in aged mice following long-term β-hydroxy β-methylbutyrate supplementation. Nutr Neurosci 2018; 23:170-182. [PMID: 29914347 DOI: 10.1080/1028415x.2018.1483101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
β-hydroxy β-methylbutyrate (HMB) is a nutritional supplement purported to enhance skeletal muscle mass and strength, as well as cognitive function in older adults. The purpose of this study was to determine the potential for long-term HMB supplementation to preserve muscle function and cognition in aged mice, as well as provide evidence of a link between vessel-associated pericyte function and outcomes. Four- (Adult/Ad) and 17 month-old (Aged/Ag) C57BL/6J mice consumed chow containing 600 mg/kg BW/day of either Ca-HMB (Ad, n=16; Ag, n=17) or Ca-Lactate (Ad, n=16; Ag, n=17) for 6 months. HMB did not prevent age-related reductions in muscle mass, strength and coordination (Age main effect, P<0.05). The rate of muscle protein synthesis decreased within the mitochondrial fraction (age main effect, P<0.05), and this decline was not prevented with HMB. Despite no change in muscle mass or function, an age-dependent reduction in active avoidance learning was attenuated with HMB (Age and HMB main effects, P<0.05). Age detrimentally impacted muscle-resident pericyte gene expression with no recovery observed with HMB, whereas no changes in brain-resident pericyte quantity or function were observed with age or HMB. The findings from this study suggest that prolonged HMB supplementation starting in adulthood may preserve cognition with age.
Collapse
Affiliation(s)
- Michael Munroe
- Department of Kinesiology & Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ziad S Mahmassani
- Department of Kinesiology & Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Svyatoslav Dvoretskiy
- Department of Kinesiology & Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Justin J Reid
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Benjamin F Miller
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Karyn Hamilton
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Justin S Rhodes
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Marni D Boppart
- Department of Kinesiology & Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
23
|
Antunes L, Yamada AK, Pertille A. EFFECTS OF BETA-HYDROXY-BETA-METHYL BUTYRATE IN MUSCLE REGENERATION OF RATS. REV BRAS MED ESPORTE 2018. [DOI: 10.1590/1517-869220182402181184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Introduction: Studies have shown that beta-hydroxy-beta-methyl butyrate (HMB) supplementation increases muscle strength and mass. Objective: To evaluate the effect of HMB supplementation on the muscle regeneration process in young and sedentary rats. Methods: Twenty-four male Wistar rats two months old were divided into two groups: lesion (LE) and supplemented (S), and evaluated in two moments - seven days (LE7; S7, n=6) and 21 days (LE21; S21, n=6). The right tibialis anterior muscle was subjected to cryolesion in all animals. After the injury, the LE group remained in the vivarium without any intervention. Group S received HMB calcium supplementation diluted in water by gavage (320 mg/kg/weight per day). The injury tibialis anterior (ITA), the tibialis anterior (TA), and the left soleus (SOL) muscles were removed, weighted and divided transversally into two parts, one for the analysis of the cross-sectional area (CSA) and the area of inflammation/regeneration and the other part to measure the muscular glycogen concentration. Data were evaluated using the SAS program considering mean and standard deviation. For analysis of variance the ANOVA test was used followed by the Tukey-HSD test (p≤0.05). Results: The ITA muscle weight was higher in S21 compared to S7 (p<0.05). The groups LE21 and S21 presented greater CSA of muscle fibers area and smaller ITA regeneration/inflammation area (p<0.05) when compared with the LE7 and S7 groups. There was an increase in muscle glycogen levels in S7 group compared to LE7 and S21 groups for TA and SOL (p<0.01), as well as in S21 group compared to LE21 for SOL (p<0.05). Conclusion: HMB did not influence the muscle regeneration process and did not favor anabolic activity in the different muscular fibers of young sedentary rats. Level of Evidence II; Therapeutic studies - Investigation of treatment results.
Collapse
|
24
|
The Potential of β-Hydroxy-β-Methylbutyrate as a New Strategy for the Management of Sarcopenia and Sarcopenic Obesity. Drugs Aging 2017; 34:833-840. [DOI: 10.1007/s40266-017-0496-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Lee SR, Khamoui AV, Jo E, Zourdos MC, Panton LB, Ormsbee MJ, Kim JS. Effect of conjugated linoleic acids and omega-3 fatty acids with or without resistance training on muscle mass in high-fat diet-fed middle-aged mice. Exp Physiol 2017; 102:1500-1512. [PMID: 28795443 DOI: 10.1113/ep086317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/08/2017] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? This study examined the effects of 20 weeks of administration of conjugated linoleic acids/omega-3 fatty acids with or without programed resistance exercise training on body composition, skeletal muscle properties and functional capacity in middle-aged mice fed a high-fat diet. What is the main finding and its importance? Chronic daily administration of conjugated linoleic acids/omega-3 fatty acids with resistance exercise training can help to blunt fat gain, alleviate loss of myogenic capacity and sensorimotor function and lower tissue inflammation in middle-aged mice during chronic high-fat diet-induced catabolism. This study investigated the effects of 20 weeks of combined conjugated linoleic acid (CLA)/omega-3 fatty acid (n-3) administration independently or combined with resistance exercise training (RET) on skeletal muscle in middle-aged mice consuming a high-fat diet (HFD). Nine-month-old C57BL/6 mice were randomly assigned into four experimental groups (H, high-fat diet; HE, H + RET; HCN, H + CLA/n-3; and HECN, H + CLA/n3 + RET). Body composition and functional capacity were assessed pre- and post-intervention. Muscle tissues were collected at 14 months of age. ANOVA was used, with significance set at P ≤ 0.05. Fat mass significantly increased in H (+74%), HE (+142%) and HECN (+43%) but not in HCN. Muscle wet weights were significantly lower in H and HCN than in HE and HECN. Grip strength substantially declined in H (-15%) and HCN (-17%), whereas sensorimotor function significantly declined only in H (-11%). HECN exhibited improvement in strength (+22%) and sensorimotor coordination (+17%). In comparison to H, muscle tumour necrosis factor-α mRNA expression was significantly lower in HE (-39%), HCN (-24%) and HECN (-21%), respectively. Mean myofibre cross-sectional areas were markedly lower in H and HCN than in HE and HECN. H showed significantly lower satellite cell abundance and numbers of myonuclei than all other groups. Our findings suggest that long-term daily CLA/n-3 intake with resistance training improved sensorimotor function, ameliorated fat gain and prevented loss of myogenic capacity while lowering tumour necrosis factor-α expression during chronic HFD.
Collapse
Affiliation(s)
- Sang-Rok Lee
- Department of Kinesiology and Dance, New Mexico State University, Las Cruces, NM, USA.,Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Andy V Khamoui
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.,Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL, USA.,Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, USA
| | - Edward Jo
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.,Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL, USA.,Department of Kinesiology and Health Promotion, California State Polytechnic University, Pomona, CA, USA
| | - Michael C Zourdos
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.,Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, USA
| | - Lynn B Panton
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.,Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL, USA
| | - Michael J Ormsbee
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.,Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL, USA
| | - Jeong-Su Kim
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.,Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL, USA.,Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
26
|
Holeček M. Beta-hydroxy-beta-methylbutyrate supplementation and skeletal muscle in healthy and muscle-wasting conditions. J Cachexia Sarcopenia Muscle 2017; 8:529-541. [PMID: 28493406 PMCID: PMC5566641 DOI: 10.1002/jcsm.12208] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/08/2017] [Accepted: 03/20/2017] [Indexed: 12/21/2022] Open
Abstract
Beta-hydroxy-beta-methylbutyrate (HMB) is a metabolite of the essential amino acid leucine that has been reported to have anabolic effects on protein metabolism. The aims of this article were to summarize the results of studies of the effects of HMB on skeletal muscle and to examine the evidence for the rationale to use HMB as a nutritional supplement to exert beneficial effects on muscle mass and function in various conditions of health and disease. The data presented here indicate that the beneficial effects of HMB have been well characterized in strength-power and endurance exercise. HMB attenuates exercise-induced muscle damage and enhances muscle hypertrophy and strength, aerobic performance, resistance to fatigue, and regenerative capacity. HMB is particularly effective in untrained individuals who are exposed to strenuous exercise and in trained individuals who are exposed to periods of high physical stress. The low effectiveness of HMB in strength-trained athletes could be due to the suppression of the proteolysis that is induced by the adaptation to training, which may blunt the effects of HMB. Studies performed with older people have demonstrated that HMB can attenuate the development of sarcopenia in elderly subjects and that the optimal effects of HMB on muscle growth and strength occur when it is combined with exercise. Studies performed under in vitro conditions and in various animal models suggest that HMB may be effective in treatment of muscle wasting in various forms of cachexia. However, there are few clinical reports of the effects of HMB on muscle wasting in cachexia; in addition, most of these studies evaluated the therapeutic potential of combinations of various agents. Therefore, it has not been possible to determine whether HMB was effective or if there was a synergistic effect. Although most of the endogenous HMB is produced in the liver, there are no reports regarding the levels and the effects of HMB supplementation in subjects with liver disease. Several studies have suggested that anabolic effects of HMB supplementation on skeletal muscle do not occur in healthy, non-exercising subjects. It is concluded that (i) HMB may be applied to enhance increases in the mass and strength of skeletal muscles in subjects who exercise and in the elderly and (ii) studies examining the effects of HMB administered alone are needed to obtain conclusions regarding the specific effectiveness in attenuating muscle wasting in various muscle-wasting disorders.
Collapse
Affiliation(s)
- Milan Holeček
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
27
|
The Effect of a 12-Week Beta-hydroxy-beta-methylbutyrate (HMB) Supplementation on Highly-Trained Combat Sports Athletes: A Randomised, Double-Blind, Placebo-Controlled Crossover Study. Nutrients 2017; 9:nu9070753. [PMID: 28708126 PMCID: PMC5537867 DOI: 10.3390/nu9070753] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to verify the effect of beta-hydroxy-beta-methylbutyrate (HMB) supplementation on physical capacity, body composition and the value of biochemical parameters in highly-trained combat sports athletes. Forty-two males highly-trained in combat sports were subjected to 12 weeks of supplementation with HMB and a placebo in a randomized, placebo controlled, double-blind crossover manner. Over the course of the experiment, aerobic and anaerobic capacity was determined, while analyses were conducted on body composition and levels of creatine kinase, lactate dehydrogenase, testosterone, cortisol and lactate. Following HMB supplementation, fat-free mass increased (p = 0.049) with a simultaneous reduction of fat mass (p = 0.016) in comparison to placebo. In turn, after HMB supplementation, the following indicators increased significantly in comparison to the placebo: the time to reach ventilatory threshold (p < 0.0001), threshold load (p = 0.017) and the threshold HR (p < 0.0001), as well as anaerobic peak power (p = 0.005), average power (p = 0.029), maximum speed (p < 0.001) and post-exercise lactate concentrations (p < 0.0001). However, when compared to the placebo, no differences were observed in blood marker levels. The results indicate that supplying HMB promotes advantageous changes in body composition and stimulates an increase in aerobic and anaerobic capacity in combat sports athletes.
Collapse
|
28
|
Redd MJ, Hoffman JR, Gepner Y, Stout JR, Hoffman MW, Ben-Dov D, Funk S, Church DD, Avital G, Chen Y, Frankel H, Ostfeld I. The effect of HMB ingestion on the IGF-I and IGF binding protein response to high intensity military training. Growth Horm IGF Res 2017; 32:55-59. [PMID: 27726925 DOI: 10.1016/j.ghir.2016.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/07/2016] [Accepted: 10/04/2016] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Insulin-like growth factor-I (IGF-I) is a metabolic and anabolic biomarker that has been proposed to reflect physiological adaptations resulting from multistressor environments. The bioactivity of IGF-I is regulated by seven different insulin-like growth factor binding proteins (IGFBPs) which act not only as carriers of IGF-1, but also function as a modulator of IGF-I availability and activity. Supplementing with β-hydroxy-β-methylbutyrate (HMB) has been shown to enhance physiological outcomes associated with intense training, and has been reported to augment the IGF-1 response. The purpose of this study was to examine the effect of 23days of HMB supplementation on circulating levels of IGF-I and IGFBPs in combat soldiers during highly intense military training. METHODS Thirteen male soldiers from an elite infantry unit volunteered to participate in this double-blind, parallel design study. Soldiers were provided 3g·day-1 of either HMB (n=6) or placebo (PL; n=7). During the study soldiers performed advanced military training with periods of restricted sleep and severe environmental stressors. Blood samples were obtained prior to (PRE) and approximately 18h following the final supplement consumption (POST). RESULTS No significant differences were observed for circulating IGF-1 concentrations between HMB and PL (p=0.568). In addition, no differences were seen between the groups for IGFBP-1 (p=1.000), IGFBP-2 (p=0.855), IGFBP-3 (p=0.520), IGFBP-4 (p=0.103), IGFBP-5 (p=0.886), or IGFBP-6 (p=0.775). A significant difference was noted between HMB (169.9±23.0ng·ml-1) and PL (207.2±28.0ng·ml-1) for IGFBP-7 at POST (p=0.042). CONCLUSIONS Although the results of this study do not support the influence of HMB supplementation on circulating concentrations of IGF-1 or IGFBPs1-6 during high intensity military training, it does present initial evidence that it may lower circulating IGFBP-7 concentrations. This may provide some indication of a reduced stress response, but further investigation on the physiological role of IGFBP-7 and military training is needed.
Collapse
Affiliation(s)
- Michael J Redd
- Institute of Exercise Physiology and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL, United States
| | - Jay R Hoffman
- Institute of Exercise Physiology and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL, United States.
| | - Yftach Gepner
- Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jeffrey R Stout
- Institute of Exercise Physiology and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL, United States
| | - Mattan W Hoffman
- Institute of Exercise Physiology and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL, United States
| | - Daniel Ben-Dov
- Israel Defense Forces, Combat Fitness Branch, Netanya, Israel
| | - Shany Funk
- Israel Defense Forces, Combat Fitness Branch, Netanya, Israel
| | - David D Church
- Institute of Exercise Physiology and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL, United States
| | - Guy Avital
- Israel Defense Force, Medical Corps, Tel Hashomer, Israel
| | - Yacov Chen
- Israel Defense Force, Medical Corps, Tel Hashomer, Israel
| | - Hagai Frankel
- Israel Defense Force, Medical Corps, Tel Hashomer, Israel
| | - Ishay Ostfeld
- Israel Defense Force, Medical Corps, Tel Hashomer, Israel
| |
Collapse
|
29
|
Teixeira GR, Gobbo LA, Santos NJD, Araújo RGD, Santos CCD, Malheiro OCDM, Castoldi RC, Camargo-Filho JCS, Papoti M. The effect of β-hydroxy-β-methylbutyrate (HMB) on the morphology of skeletal muscle after concurrent training. MOTRIZ: REVISTA DE EDUCACAO FISICA 2016. [DOI: 10.1590/s1980-6574201600030010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
30
|
Bergouignan A, Stein TP, Habold C, Coxam V, O’ Gorman D, Blanc S. Towards human exploration of space: The THESEUS review series on nutrition and metabolism research priorities. NPJ Microgravity 2016; 2:16029. [PMID: 28725737 PMCID: PMC5515527 DOI: 10.1038/npjmgrav.2016.29] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/30/2016] [Accepted: 07/08/2016] [Indexed: 01/01/2023] Open
Abstract
Nutrition has multiple roles during space flight from providing sufficient nutrients to meet the metabolic needs of the body and to maintain good health, to the beneficial psychosocial aspects related to the meals. Nutrition is central to the functioning of the body; poor nutrition compromises all the physiological systems. Nutrition is therefore likely to have a key role in counteracting the negative effects of space flight (e.g., radiation, immune deficits, oxidative stress, and bone and muscle loss). As missions increase in duration, any dietary/nutritional deficiencies will become progressively more detrimental. Moreover, it has been recognized that the human diet contains, in addition to essential macronutrients, a complex array of naturally occurring bioactive micronutrients that may confer significant long-term health benefits. It is therefore critical that astronauts be adequately nourished during missions. Problems of nutritional origin are often treatable by simply providing the appropriate nutrients and adequate recommendations. This review highlights six key issues that have been identified as space research priorities in nutrition field: in-flight energy balance; altered feeding behavior; development of metabolic stress; micronutrient deficiency; alteration of gut microflora; and altered fluid and electrolytes balance. For each of these topics, relevance for space exploration, knowledge gaps and proposed investigations are described. Finally, the nutritional questions related to bioastronautics research are very relevant to multiple ground-based-related health issues. The potential spin-offs are both interesting scientifically and potentially of great clinical importance.
Collapse
Affiliation(s)
- Audrey Bergouignan
- Anschutz Health and Wellness Center, Division of Endocrinology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Université de Strasbourg, IPHC, Strasbourg, France
- CNRS, UMR7178, Strasbourg, France
| | - T Peter Stein
- Department of Surgery, Rowan University, Stratford, NJ, USA
| | - Caroline Habold
- Université de Strasbourg, IPHC, Strasbourg, France
- CNRS, UMR7178, Strasbourg, France
| | - Veronique Coxam
- Centre de Recherche en Nutrition Humaine d’Auvergne, Clermont-Ferrand, France
| | - Donal O’ Gorman
- Department of Health & Human Performance, Dublin City University, Dublin, Republic of Ireland
| | - Stéphane Blanc
- Université de Strasbourg, IPHC, Strasbourg, France
- CNRS, UMR7178, Strasbourg, France
| |
Collapse
|
31
|
β-Hydroxy-β-methylbutyrate attenuates cytokine response during sustained military training. Nutr Res 2016; 36:553-63. [DOI: 10.1016/j.nutres.2016.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 11/19/2022]
|
32
|
Khamoui AV, Park BS, Kim DH, Yeh MC, Oh SL, Elam ML, Jo E, Arjmandi BH, Salazar G, Grant SC, Contreras RJ, Lee WJ, Kim JS. Aerobic and resistance training dependent skeletal muscle plasticity in the colon-26 murine model of cancer cachexia. Metabolism 2016; 65:685-698. [PMID: 27085776 DOI: 10.1016/j.metabol.2016.01.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 01/14/2016] [Accepted: 01/29/2016] [Indexed: 12/20/2022]
Abstract
PURPOSE The appropriate mode of exercise training for cancer cachexia is not well-established. Using the colon-26 (C26) mouse model of cancer cachexia, we defined and compared the skeletal muscle responses to aerobic and resistance training. METHODS Twelve-month old Balb/c mice were initially assigned to control, aerobic training (AT; wheel running), or resistance training (RT; ladder climbing) (n=16-17/group). After 8weeks of training, half of each group was injected with C26 tumor cells, followed by 3 additional weeks of training. Body composition and neuromuscular function was evaluated pre- and post-training. Muscles were collected post-training and analyzed for fiber cross-sectional area (CSA), Akt-mTOR signaling, and expression of insulin-like growth factor-I (IGF-I) and myogenic regulatory factors. RESULTS Total body mass decreased (p<0.05) in C26 (-8%), AT+C26 (-18%), and RT+C26 (-15%) but not control. Sensorimotor function declined (p<0.05) in control (-16%), C26 (-13%), and RT+C26 (-23%) but not AT+C26. Similarly, strength/body weight decreased (p<0.05) in control (-7%), C26 (-21%), and RT+C26 (-10%) but not AT+C26. Gastrocnemius mass/body weight tended to be greater in AT+C26 vs. C26 (+6%, p=0.09). Enlargement of the spleen was partially corrected in AT+C26 (-27% vs. C26, p<0.05). Fiber CSA was lower in all C26 groups vs. control (-32% to 46%, p<0.05); however, the effect size calculated from C26 and AT+C26 was large (+24%, d=1.04). Phosphorylated levels of mTOR in AT+C26 exceeded C26 (+32%, p<0.05). RT+C26 showed greater mRNA expression (p<0.05) of IGF-IEa (+79%) and myogenin (+126%) with a strong tendency for greater IGF-IEb (+127%, p=0.069) vs. CONCLUSIONS Aerobic or resistance training was unable to prevent tumor-induced body weight loss. However, aerobic training may have preserved function, reduced the inflammatory response of the spleen, and marginally rescued muscle mass possibly through activation of mTOR. Aerobic training may therefore have therapeutic value for patients with cancer cachexia. In contrast, resistance training induced the expression of genes associated with muscle damage and repair. This gene response may be supportive of excessive stress generated by high resistance loading in a tumor-bearing state.
Collapse
Affiliation(s)
- Andy V Khamoui
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA; The Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL, USA
| | - Bong-Sup Park
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Do-Houn Kim
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA; The Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL, USA
| | - Ming-Chia Yeh
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA; The Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL, USA
| | - Seung-Lyul Oh
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Marcus L Elam
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA; The Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL, USA
| | - Edward Jo
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA; The Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL, USA; Department of Kinesiology and Health Promotion, California State Polytechnic University, Pomona, CA, USA
| | - Bahram H Arjmandi
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA; The Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL, USA
| | - Gloria Salazar
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Samuel C Grant
- The Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL, USA; Department of Chemical and Biomedical Engineering and The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Robert J Contreras
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Won Jun Lee
- Department of Exercise Science, Ewha Womans University, Seoul, Republic of Korea
| | - Jeong-Su Kim
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA; The Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
33
|
Sharples AP, Hughes DC, Deane CS, Saini A, Selman C, Stewart CE. Longevity and skeletal muscle mass: the role of IGF signalling, the sirtuins, dietary restriction and protein intake. Aging Cell 2015; 14:511-23. [PMID: 25866088 PMCID: PMC4531066 DOI: 10.1111/acel.12342] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2015] [Indexed: 12/11/2022] Open
Abstract
Advancing age is associated with a progressive loss of skeletal muscle (SkM) mass and function. Given the worldwide aging demographics, this is a major contributor to morbidity, escalating socio-economic costs and ultimately mortality. Previously, it has been established that a decrease in regenerative capacity in addition to SkM loss with age coincides with suppression of insulin/insulin-like growth factor signalling pathways. However, genetic or pharmacological modulations of these highly conserved pathways have been observed to significantly enhance life and healthspan in various species, including mammals. This therefore provides a controversial paradigm in which reduced regenerative capacity of skeletal muscle tissue with age potentially promotes longevity of the organism. This paradox will be assessed and considered in the light of the following: (i) the genetic knockout, overexpression and pharmacological models that induce lifespan extension (e.g. IRS-1/s6K KO, mTOR inhibition) versus the important role of these signalling pathways in SkM growth and adaptation; (ii) the role of the sirtuins (SIRTs) in longevity versus their emerging role in SkM regeneration and survival under catabolic stress; (iii) the role of dietary restriction and its impact on longevity versus skeletal muscle mass regulation; (iv) the crosstalk between cellular energy metabolism (AMPK/TSC2/SIRT1) and survival (FOXO) versus growth and repair of SkM (e.g. AMPK vs. mTOR); and (v) the impact of protein feeding in combination with dietary restriction will be discussed as a potential intervention to maintain SkM mass while increasing longevity and enabling healthy aging.
Collapse
Affiliation(s)
- Adam P. Sharples
- Stem Cells, Ageing & Molecular Physiology Unit; Research Institute for Sport and Exercise Sciences (RISES); Exercise Metabolism and Adaptation Research Group (EMARG); Liverpool John Moores University; Tom Reilly Building Liverpool L3 3AF UK
| | - David C. Hughes
- Stem Cells, Ageing & Molecular Physiology Unit; Research Institute for Sport and Exercise Sciences (RISES); Exercise Metabolism and Adaptation Research Group (EMARG); Liverpool John Moores University; Tom Reilly Building Liverpool L3 3AF UK
- Department of Neurobiology, Physiology and Behavior; University of California; Davis California CA 95616 USA
| | - Colleen S. Deane
- MRC/ARUK Centre of Excellence for Musculoskeletal Ageing Research; School of Medicine; University of Nottingham; Royal Derby Hospital; Derby DE22 3DT UK
- School of Health and Social Care; Bournemouth University; Bournemouth BH12 5BB UK
| | - Amarjit Saini
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm 171 77 Sweden
| | - Colin Selman
- Glasgow Ageing Research Network (GARNER); Institute of Biodiversity, Animal Health and Comparative Medicine; College of Medicine, Veterinary and Life Sciences; University of Glasgow; Glasgow G12 8QQ UK
| | - Claire E. Stewart
- Stem Cells, Ageing & Molecular Physiology Unit; Research Institute for Sport and Exercise Sciences (RISES); Exercise Metabolism and Adaptation Research Group (EMARG); Liverpool John Moores University; Tom Reilly Building Liverpool L3 3AF UK
| |
Collapse
|
34
|
Yao LH, Meng W, Song RF, Xiong QP, Sun W, Luo ZQ, Yan WW, Li YP, Li XP, Li HH, Xiao P. Modulation effects of cordycepin on the skeletal muscle contraction of toad gastrocnemius muscle. Eur J Pharmacol 2014; 726:9-15. [PMID: 24447979 DOI: 10.1016/j.ejphar.2014.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/20/2013] [Accepted: 01/09/2014] [Indexed: 11/15/2022]
Abstract
Isolated toad gastrocnemius muscle is a typical skeletal muscle tissue that is frequently used to study the motor system because it is an important component of the motor system. This study investigates the effects of cordycepin on the skeletal muscle contractile function of isolated toad gastrocnemius muscles by electrical field stimulation. Results showed that cordycepin (20 mg/l to 100 mg/l) significantly decreased the contractile responses in a concentration-dependent manner. Cordycepin (50 mg/l) also produced a rightward shift of the contractile amplitude-stimulation intensity relationship, as indicated by the increases in the threshold stimulation intensity and the saturation stimulation intensity. However, the most notable result was that the maximum amplitude of the muscle contractile force was significantly increased under cordycepin application (122±3.4% of control). This result suggests that the skeletal muscle contractile function and muscle physical fitness to the external stimulation were improved by the decreased response sensitivity in the presence of cordycepin. Moreover, cordycepin also prevented the repetitive stimulation-induced decrease in muscle contractile force and increased the recovery amplitude and recovery ratio of muscle contraction. However, these anti-fatigue effects of cordycepin on muscle contraction during long-lasting muscle activity were absent in Ca2+-free medium or in the presence of all Ca2+ channels blocker (0.4 mM CdCl2). These results suggest that cordycepin can positively affect muscle performance and provide ergogenic and prophylactic benefits in decreasing skeletal muscle fatigue. The mechanisms involving excitation-coupled Ca2+ influxes are strongly recommended.
Collapse
|
35
|
Ehling S, Reddy TM. Investigation of the presence of β-hydroxy-β-methylbutyric acid and α-hydroxyisocaproic acid in bovine whole milk and fermented dairy products by a validated liquid chromatography-mass spectrometry method. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:1506-1511. [PMID: 24495238 DOI: 10.1021/jf500026s] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A simple, rugged, quantitative, and confirmatory method based on liquid chromatography-mass spectrometry was developed and comprehensively validated for the analysis of the leucine metabolites β-hydroxy-β-methylbutyric acid (HMB) and α-hydroxyisocaproic acid (HICA) in bovine whole milk and yogurt. Mean accuracy (90-110% for HMB and 85-115% for HICA) and total precision (<10% RSD in most cases, except for <20% RSD for HMB at the limit of quantitation) at four concentration levels across three validation runs have been determined. Limits of quantitation for HMB and HICA in whole milk were 20 and 5 μg/L, respectively. Measured concentrations of HMB and HICA were <20-29 and 32-37 μg/L, respectively, in bovine whole milk and <5 and 3.0-15.2 mg/L, respectively, in yogurt. These concentrations are insufficient by large margins to deliver any musculoskeletal benefits, and fortification of milk and dairy products with HMB and/or HICA appears to be justified.
Collapse
Affiliation(s)
- Stefan Ehling
- Abbott Laboratories, 3300 Stelzer Road, Columbus, Ohio 43219, United States
| | | |
Collapse
|
36
|
Hasselgren PO. β-Hydroxy-β-methylbutyrate (HMB) and prevention of muscle wasting. Metabolism 2014; 63:5-8. [PMID: 24140096 DOI: 10.1016/j.metabol.2013.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 01/06/2023]
Affiliation(s)
- Per-Olof Hasselgren
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue ST 919, Boston, MA 02115.
| |
Collapse
|