1
|
Xiao M, Zhou N, Tian Z, Sun C. Endogenous metabolites in metabolic diseases: pathophysiological roles and therapeutic implications. J Nutr 2025:S0022-3166(25)00227-5. [PMID: 40250565 DOI: 10.1016/j.tjnut.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025] Open
Abstract
Breakthroughs in metabolomics technology have revealed the direct regulatory role of metabolites in physiology and disease. Recent data have highlighted the bioactive metabolites involved in the etiology and prevention, and treatment of metabolic diseases such as obesity, nonalcoholic fatty liver disease (NAFLD), type 2 diabetes mellitus (T2DM), and atherosclerosis. Numerous studies reveal that endogenous metabolites biosynthesized by host organisms or gut microflora regulate metabolic responses and disorders. Lipids, amino acids, and bile acids (BAs), as endogenous metabolic modulators, regulate energy metabolism, insulin sensitivity, and immune response through multiple pathways, such as insulin signaling cascade, chemical modifications, and metabolite-macromolecule interactions. Furthermore, the gut microbial metabolites short-chain fatty acids (SCFAs), as signaling regulators have a variety of beneficial impacts in regulating energy metabolic homeostasis. In this review, we will summarize information about the roles of bioactive metabolites in the pathogenesis of many metabolic diseases. Furthermore, we discuss the potential value of metabolites in the promising preventive and therapeutic perspectives of human metabolic diseases.
Collapse
Affiliation(s)
- Mengjie Xiao
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, P. R. China 150081; Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, 157 Baojian Road, Harbin, P. R. China 150081
| | - Ning Zhou
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, P. R. China 150081; Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, 157 Baojian Road, Harbin, P. R. China 150081
| | - Zhen Tian
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, P. R. China 150081; Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, 157 Baojian Road, Harbin, P. R. China 150081.
| | - Changhao Sun
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, P. R. China 150081; Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, 157 Baojian Road, Harbin, P. R. China 150081.
| |
Collapse
|
2
|
Varghese M, Thekkelnaycke R, Soni T, Zhang J, Maddipati K, Singer K. Sex differences in lipid profiles of visceral adipose tissue with obesity and gonadectomy. J Lipid Res 2025:100803. [PMID: 40245983 DOI: 10.1016/j.jlr.2025.100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/05/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025] Open
Abstract
In obesity, adipose tissue (AT) expansion is accompanied by chronic inflammation. Altered lipid composition in the visceral or gonadal white AT (GWAT) directly drive AT macrophage (ATM) accumulation and activation to a proinflammatory phenotype. Sex steroid hormones modulate visceral vs subcutaneous lipid accumulation that correlates with metabolic syndrome, especially in men and post-menopausal women who are more prone to abdominal obesity. Prior studies demonstrated sex differences in GWAT lipid species in HFD-fed mice, but the role of sex hormones is still unclear. We hypothesized that sex hormone alterations with gonadectomy (GX) would further impact lipid composition in the obese GWAT. Untargeted lipidomics of obese GWAT identified sex differences in phospholipids, sphingolipids, sterols, fatty acyls, saccharo-lipids and prenol-lipids. Males had significantly more precursor fatty acids (palmitic, oleic, linoleic and arachidonic acid) than females and GX mice. Targeted lipidomics for fatty acids and oxylipins in the HFD-fed male and female GWAT stromal vascular fraction (SVF) identified higher omega-6 to omega-3 free fatty acid profile in males and differences in polyunsaturated fatty acids (PUFAs)-derived prostaglandins, thromboxanes and leukotrienes. Both obese male and female GWAT SVF showed increased levels of arachidonic acid (AA) derived oxylipins compared to their lean counterparts. Bulk RNA sequencing of sorted GWAT ATMs highlighted sex and diet differences in PUFA and oxylipin metabolism genes. These findings of sexual dimorphism in both stored lipid species and PUFA derived mediators with diet and GX emphasize sex-differences in lipid metabolism pathways that drive inflammation responses and metabolic disease risk in obesity.
Collapse
Affiliation(s)
- Mita Varghese
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rajendiran Thekkelnaycke
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI, USA
| | - Tanu Soni
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI, USA
| | - Jiayu Zhang
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI, USA
| | | | - Kanakadurga Singer
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Du Y, Chen YL, Zhang Y, Zhao YL, Huang Z, Jin P, Ji S, Tang DQ. Bio-affinity ultrafiltration combined with UPLC Q-Exactive Plus Orbitrap HRMS to screen potential COX-2 and 5-LOX inhibitors in mulberry (Morus alba L.) leaf. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119325. [PMID: 39761838 DOI: 10.1016/j.jep.2025.119325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/10/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mulberry (Morus alba L.) leaf is a well-known herbal medicine in China for thousands of years. Mulberry leaf can regulate arachidonic acid (ARA) metabolism disorder in obesity and type 2 diabetes mellitus. However, the active ingredients involved in this process are still unclear. AIM OF STUDY To explore the potential active ingredients in mulberry leaf against ARA metabolism disorder. MATERIALS AND METHODS In this research, an efficient method combining affinity ultrafiltration, molecular docking, and network pharmacology was developed and applied to explore cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) inhibitors from mulberry leaf. RESULTS A total 17 potential inhibitors were screened by affinity ultrafiltration assay and identified by high resolution mass spectrometry. In addition, 8 bioactive ingredients were obtained after re-evaluated by molecular docking and network pharmacology, and their inhibitory activities on COX-2 and 5-LOX were confirmed by in vitro inhibitory assays. The results of cell experiments showed that the expressions of COX-2 and 5-LOX were significantly suppressed by neochlorogenic acid, rutin, isoquercetin, and (-)-syringaresinol-4-O-glucoside. CONCLUSION Neochlorogenic acid, rutin, isoquercetin, and (-)-syringaresinol-4-O-glucoside may be the potential material basis of mulberry leaf in the regulation of ARA metabolism of obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China; State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China
| | - Yu-Lang Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ying Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yan-Lin Zhao
- Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining, 221202, China
| | - Zhong Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Peng Jin
- Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining, 221202, China
| | - Shuai Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China; Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, 221204, China
| | - Dao-Quan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China; Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining, 221202, China; Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, 221204, China.
| |
Collapse
|
4
|
Ağagündüz D, Yeşildemir Ö, Koçyiğit E, Koçak T, Özen Ünaldı B, Ayakdaş G, Budán F. Oxylipins Derived from PUFAs in Cardiometabolic Diseases: Mechanism of Actions and Possible Nutritional Interactions. Nutrients 2024; 16:3812. [PMID: 39599599 PMCID: PMC11597274 DOI: 10.3390/nu16223812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Oxylipins are oxidized fatty acids, both saturated and unsaturated, formed through pathways that involve singlet oxygen or dioxygen-mediated oxygenation reactions and are primarily produced by enzyme families such as cyclooxygenases, lipoxygenases, and cytochrome P450. These lipid-based complex bioactive molecules are pivotal signal mediators, acting in a hormone-like manner in the pathophysiology of numerous diseases, especially cardiometabolic diseases via modulating plenty of mechanisms. It has been reported that omega-6 and omega-3 oxylipins are important novel biomarkers of cardiometabolic diseases. Moreover, collected literature has noted that diet and dietary components, especially fatty acids, can modulate these oxygenated lipid products since they are mainly derived from dietary omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) or linoleic acid and α-linolenic by elongation and desaturation pathways. This comprehensive review aims to examine their correlations to cardiometabolic diseases and how diets modulate oxylipins. Also, some aspects of developing new biomarkers and therapeutical utilization are detailed in this review.
Collapse
Affiliation(s)
- Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490 Ankara, Türkiye
| | - Özge Yeşildemir
- Department of Nutrition and Dietetics, Bursa Uludag University, Görükle Campus, 16059 Bursa, Türkiye;
| | - Emine Koçyiğit
- Department of Nutrition and Dietetics, Ordu University, Cumhuriyet Yerleşkesi, 52200 Ordu, Türkiye;
| | - Tevfik Koçak
- Department of Nutrition and Dietetics, Gümüşhane University, Gümüşhanevî Kampüsü, 29100 Gümüşhane, Türkiye;
| | - Buket Özen Ünaldı
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Afyonkarahisar Health Sciences University, 03030 Afyonkarahisar, Türkiye;
| | - Gamze Ayakdaş
- Department of Nutrition and Dietetics, Acıbadem University, Kerem Aydınlar Campus, 34752 İstanbul, Türkiye;
| | - Ferenc Budán
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
5
|
Alfadda AA, Abdel Rahman AM, Benabdelkamel H, AlMalki R, Alsuwayni B, Alhossan A, Aldhwayan MM, Abdeen GN, Miras AD, Masood A. Metabolomic Effects of Liraglutide Therapy on the Plasma Metabolomic Profile of Patients with Obesity. Metabolites 2024; 14:500. [PMID: 39330507 PMCID: PMC11433991 DOI: 10.3390/metabo14090500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Liraglutide, a long-acting glucagon-like peptide-1 receptor agonist (GLP1RA), is a well-established anti-diabetic drug, has also been approved for the treatment of obesity at a dose of 3 mg. There are a limited number of studies in the literature that have looked at changes in metabolite levels before and after liraglutide treatment in patients with obesity. To this end, in the present study we aimed to explore the changes in the plasma metabolomic profile, using liquid chromatography-high resolution mass spectrometry (LC-HRMS) in patients with obesity. METHODS A single-center prospective study was undertaken to evaluate the effectiveness of 3 mg liraglutide therapy in twenty-three patients (M/F: 8/15) with obesity, mean BMI 40.81 ± 5.04 kg/m2, and mean age of 36 ± 10.9 years, in two groups: at baseline (pre-treatment) and after 12 weeks of treatment (post-treatment). An untargeted metabolomic profiling was conducted in plasma from the pre-treatment and post-treatment groups using LC-HRMS, along with bioinformatics analysis using ingenuity pathway analysis (IPA). RESULTS The metabolomics analysis revealed a significant (FDR p-value ≤ 0.05, FC 1.5) dysregulation of 161 endogenous metabolites (97 upregulated and 64 downregulated) with distinct separation between the two groups. Among the significantly dysregulated metabolites, the majority of them were identified as belonging to the class of oxidized lipids (oxylipins) that includes arachidonic acid and its derivatives, phosphorglycerophosphates, N-acylated amino acids, steroid hormones, and bile acids. The biomarker analysis conducted using MetaboAnalyst showed PGP (a21:0/PG/F1alpha), an oxidized lipid, as the first metabolite among the list of the top 15 biomarkers, followed by cysteine and estrone. The IPA analysis showed that the dysregulated metabolites impacted the pathway related to cell signaling, free radical scavenging, and molecular transport, and were focused around the dysregulation of NF-κB, ERK, MAPK, PKc, VEGF, insulin, and pro-inflammatory cytokine signaling pathways. CONCLUSIONS The findings suggest that liraglutide treatment reduces inflammation and modulates lipid metabolism and oxidative stress. Our study contributes to a better understanding of the drug's multifaceted impact on overall metabolism in patients with obesity.
Collapse
Affiliation(s)
- Assim A. Alfadda
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (H.B.); (A.M.)
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
- Department of Medicine, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (A.M.A.R.); (R.A.)
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (H.B.); (A.M.)
| | - Reem AlMalki
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (A.M.A.R.); (R.A.)
| | - Bashayr Alsuwayni
- Corporate of Pharmacy Services, King Saud University Medical City, Riyadh 11461, Saudi Arabia;
| | - Abdulaziz Alhossan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11461, Saudi Arabia;
| | - Madhawi M. Aldhwayan
- Department of Community Health Science, Clinical Nutrition, College of Applied Medical Sciences, King Saud University, Riyadh 11461, Saudi Arabia; (M.M.A.); (G.N.A.)
| | - Ghalia N. Abdeen
- Department of Community Health Science, Clinical Nutrition, College of Applied Medical Sciences, King Saud University, Riyadh 11461, Saudi Arabia; (M.M.A.); (G.N.A.)
| | - Alexander Dimitri Miras
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolic Medicine, Hammersmith Hospital, Imperial College London, London SW7 2AZ, UK;
- School of Medicine, Ulster University, Derry BT1 6DN, UK
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (H.B.); (A.M.)
| |
Collapse
|
6
|
Helal SA, El-Sherbeni AA, El-Kadi AOS. 11-Hydroxyeicosatetraenoics induces cellular hypertrophy in an enantioselective manner. Front Pharmacol 2024; 15:1438567. [PMID: 39188949 PMCID: PMC11345585 DOI: 10.3389/fphar.2024.1438567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/08/2024] [Indexed: 08/28/2024] Open
Abstract
Background R/S enantiomers of 11-hydroxyeicosatertraenoic acid (11-HETE) are formed from arachidonic acid by enzymatic and non-enzymatic pathways. 11-HETE is predominately formed by the cytochrome P450 1B1 (CYP1B1). The role of CYP1B1 in the development of cardiovascular diseases is well established. Objectives This study aimed to assess the cellular hypertrophic effect of 11-HETE enantiomers in human RL-14 cardiomyocyte cell line and to examine their association with CYP1B1 levels. Methods Human fetal ventricular cardiomyocyte, RL-14 cells, were treated with 20 µM (R) or (S) 11-HETE for 24 h. Thereafter, cellular hypertrophic markers and cell size were then determined using real-time polymerase chain reaction (RT-PCR) and phase-contrast imaging, respectively. The mRNA and protein levels of selected CYPs were determined using RT-PCR and Western blot, respectively. In addition, we examined the effect of (R) and (S) 11-HETE on CYP1B1 catalytic activity using human recombinant CYP1B1 and human liver microsomes. Results Both (R) and (S) 11-HETE induced cellular hypertrophic markers and cell surface area in RL-14 cells. Both enantiomers significantly upregulated CYP1B1, CYP1A1, CYP4F2, and CYP4A11 at the mRNA and protein levels, however, the effect of the S-enantiomer was more pronounced. Furthermore, 11(S)-HETE increased the mRNA and protein levels of CYP2J and CYP4F2, whereas 11(R)-HETE increased only CYP4F2. Only 11(S)-HETE significantly increased the catalytic activity of CYP1B1 in recombinant human CYP1B1, suggesting allosteric activation in an enantioselective manner. Conclusion Our study provides the first evidence that 11-HETE can induce cellular hypertrophy in RL-14 cells via the increase in CYP1B1 mRNA, protein, and activity levels.
Collapse
Affiliation(s)
- Sara A. Helal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ahmed A. El-Sherbeni
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ayman O. S. El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Hu Y, Li W, Cheng X, Yang H, She ZG, Cai J, Li H, Zhang XJ. Emerging Roles and Therapeutic Applications of Arachidonic Acid Pathways in Cardiometabolic Diseases. Circ Res 2024; 135:222-260. [PMID: 38900855 DOI: 10.1161/circresaha.124.324383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Cardiometabolic disease has become a major health burden worldwide, with sharply increasing prevalence but highly limited therapeutic interventions. Emerging evidence has revealed that arachidonic acid derivatives and pathway factors link metabolic disorders to cardiovascular risks and intimately participate in the progression and severity of cardiometabolic diseases. In this review, we systemically summarized and updated the biological functions of arachidonic acid pathways in cardiometabolic diseases, mainly focusing on heart failure, hypertension, atherosclerosis, nonalcoholic fatty liver disease, obesity, and diabetes. We further discussed the cellular and molecular mechanisms of arachidonic acid pathway-mediated regulation of cardiometabolic diseases and highlighted the emerging clinical advances to improve these pathological conditions by targeting arachidonic acid metabolites and pathway factors.
Collapse
Affiliation(s)
- Yufeng Hu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Wei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Xu Cheng
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Hailong Yang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Zhi-Gang She
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Jingjing Cai
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China (J.C.)
| | - Hongliang Li
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China (H.L.)
| | - Xiao-Jing Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- School of Basic Medical Sciences, Wuhan University, China (X.-J.Z.)
| |
Collapse
|
8
|
Hateley C, Olona A, Halliday L, Edin ML, Ko JH, Forlano R, Terra X, Lih FB, Beltrán-Debón R, Manousou P, Purkayastha S, Moorthy K, Thursz MR, Zhang G, Goldin RD, Zeldin DC, Petretto E, Behmoaras J. Multi-tissue profiling of oxylipins reveal a conserved up-regulation of epoxide:diol ratio that associates with white adipose tissue inflammation and liver steatosis in obesity. EBioMedicine 2024; 103:105127. [PMID: 38677183 PMCID: PMC11061246 DOI: 10.1016/j.ebiom.2024.105127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Obesity drives maladaptive changes in the white adipose tissue (WAT) which can progressively cause insulin resistance, type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated liver disease (MASLD). Obesity-mediated loss of WAT homeostasis can trigger liver steatosis through dysregulated lipid pathways such as those related to polyunsaturated fatty acid (PUFA)-derived oxylipins. However, the exact relationship between oxylipins and metabolic syndrome remains elusive and cross-tissue dynamics of oxylipins are ill-defined. METHODS We quantified PUFA-related oxylipin species in the omental WAT, liver biopsies and plasma of 88 patients undergoing bariatric surgery (female N = 79) and 9 patients (female N = 4) undergoing upper gastrointestinal surgery, using UPLC-MS/MS. We integrated oxylipin abundance with WAT phenotypes (adipogenesis, adipocyte hypertrophy, macrophage infiltration, type I and VI collagen remodelling) and the severity of MASLD (steatosis, inflammation, fibrosis) quantified in each biopsy. The integrative analysis was subjected to (i) adjustment for known risk factors and, (ii) control for potential drug-effects through UPLC-MS/MS analysis of metformin-treated fat explants ex vivo. FINDINGS We reveal a generalized down-regulation of cytochrome P450 (CYP)-derived diols during obesity conserved between the WAT and plasma. Notably, epoxide:diol ratio, indicative of soluble epoxide hydrolyse (sEH) activity, increases with WAT inflammation/fibrosis, hepatic steatosis and T2DM. Increased 12,13-EpOME:DiHOME in WAT and liver is a marker of worsening metabolic syndrome in patients with obesity. INTERPRETATION These findings suggest a dampened sEH activity and a possible role of fatty acid diols during metabolic syndrome in major metabolic organs such as WAT and liver. They also have implications in view of the clinical trials based on sEH inhibition for metabolic syndrome. FUNDING Wellcome Trust (PS3431_WMIH); Duke-NUS (Intramural Goh Cardiovascular Research Award (Duke-NUS-GCR/2022/0020); National Medical Research Council (OFLCG22may-0011); National Institute of Environmental Health Sciences (Z01 ES025034); NIHR Imperial Biomedical Research Centre.
Collapse
Affiliation(s)
- Charlotte Hateley
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Antoni Olona
- Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Laura Halliday
- Department of Surgery and Cancer, Imperial College London, UK
| | - Matthew L Edin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Jeong-Hun Ko
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK
| | - Roberta Forlano
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Ximena Terra
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, MoBioFood Research Group, Tarragona, Spain
| | - Fred B Lih
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Raúl Beltrán-Debón
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, MoBioFood Research Group, Tarragona, Spain
| | - Penelopi Manousou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Sanjay Purkayastha
- Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK; University of Brunel, Kingston Lane, Uxbridge, London, UB8 3PH, UK
| | - Krishna Moorthy
- Department of Surgery and Cancer, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Mark R Thursz
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Guodong Zhang
- Department of Nutrition, College of Agriculture and Environmental Sciences, 3135 Meyer Hall, One Shields Avenue, UC Davis, Davis, CA, 95616, USA
| | - Robert D Goldin
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Darryl C Zeldin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Enrico Petretto
- Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore; Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University (CPU), Nanjing, China
| | - Jacques Behmoaras
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK; Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
9
|
Gong J. Oxylipins biosynthesis and the regulation of bovine postpartum inflammation. Prostaglandins Other Lipid Mediat 2024; 171:106814. [PMID: 38280540 DOI: 10.1016/j.prostaglandins.2024.106814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Uncontrolled or dysregulated inflammation has adverse effects on the reproduction, production and health of animals, and is a major pathological cause of increased incidence and severity of infectious and metabolic diseases. To achieve successful transition from a non-lactation pregnant state to a non-pregnant lactation state, drastic metabolic and endocrine alteration have taken place in dairy cows during the periparturient period. These physiological changes, coupled with decreased dry matter intake near calving and sudden change of diet composition after calving, have the potential to disrupt the delicate balance between pro- and anti-inflammation, resulting in a disordered or excessive inflammatory response. In addition to cytokines and other immunoregulatory factors, most oxylipins formed from polyunsaturated fatty acids (PUFAs) via enzymatic and nonenzymatic oxygenation pathways have pro- or anti-inflammatory properties and play a pivotal role in the onset, development and resolution of inflammation. However, little attention has been paid to the possibility that oxylipins could function as endogenous immunomodulating agents. This review will provide a detailed overview of the main oxylipins derived from different PUFAs and discuss the regulatory role that oxylipins play in the postpartum inflammatory response in dairy cows. Based on the current research, much remains to be illuminated in this emerging field. Understanding the role that oxylipins play in the control of postpartum inflammation and inflammatory-based disease may improve our ability to prevent transition disorders via Management, pharmacological, genetic selection and dietary intervention strategies.
Collapse
Affiliation(s)
- Jian Gong
- College of Life Science and Technology, Inner Mongolia Normal University, 81 Zhaowuda Road, Hohhot 010022, China.
| |
Collapse
|
10
|
Negroiu CE, Tudorașcu I, Bezna CM, Godeanu S, Diaconu M, Danoiu R, Danoiu S. Beyond the Cold: Activating Brown Adipose Tissue as an Approach to Combat Obesity. J Clin Med 2024; 13:1973. [PMID: 38610736 PMCID: PMC11012454 DOI: 10.3390/jcm13071973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
With a dramatic increase in the number of obese and overweight people, there is a great need for new anti-obesity therapies. With the discovery of the functionality of brown adipose tissue in adults and the observation of beige fat cells among white fat cells, scientists are looking for substances and methods to increase the activity of these cells. We aimed to describe how scientists have concluded that brown adipose tissue is also present and active in adults, to describe where in the human body these deposits of brown adipose tissue are, to summarize the origin of both brown fat cells and beige fat cells, and, last but not least, to list some of the substances and methods classified as BAT promotion agents with their benefits and side effects. We summarized these findings based on the original literature and reviews in the field, emphasizing the discovery, function, and origins of brown adipose tissue, BAT promotion agents, and batokines. Only studies written in English and with a satisfying rating were identified from electronic searches of PubMed.
Collapse
Affiliation(s)
- Cristina Elena Negroiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.M.B.); (S.D.)
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Iulia Tudorașcu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.M.B.); (S.D.)
| | - Cristina Maria Bezna
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.M.B.); (S.D.)
| | - Sanziana Godeanu
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Marina Diaconu
- Department of Radiology, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania;
| | - Raluca Danoiu
- Department of Social Sciences and Humanities, University of Craiova, 200585 Craiova, Romania;
| | - Suzana Danoiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.M.B.); (S.D.)
| |
Collapse
|
11
|
Sulaiman D, Wu D, Black LP, Williams KJ, Graim K, Datta S, Reddy ST, Guirgis FW. Lipidomic changes in a novel sepsis outcome-based analysis reveals potent pro-inflammatory and pro-resolving signaling lipids. Clin Transl Sci 2024; 17:e13745. [PMID: 38488489 PMCID: PMC10941572 DOI: 10.1111/cts.13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/20/2023] [Accepted: 01/21/2024] [Indexed: 03/18/2024] Open
Abstract
The purpose of this study was to investigate changes in the lipidome of patients with sepsis to identify signaling lipids associated with poor outcomes that could be linked to future therapies. Adult patients with sepsis were enrolled within 24h of sepsis recognition. Patients meeting Sepsis-3 criteria were enrolled from the emergency department or intensive care unit and blood samples were obtained. Clinical data were collected and outcomes of rapid recovery, chronic critical illness (CCI), or early death were adjudicated by clinicians. Lipidomic analysis was performed on two platforms, the Sciex™ 5500 device to perform a lipidomic screen of 1450 lipid species and a targeted signaling lipid panel using liquid-chromatography tandem mass spectrometry. For the lipidomic screen, there were 274 patients with sepsis: 192 with rapid recovery, 47 with CCI, and 35 with early deaths. CCI and early death patients were grouped together for analysis. Fatty acid (FA) 12:0 was decreased in CCI/early death, whereas FA 17:0 and 20:1 were elevated in CCI/early death, compared to rapid recovery patients. For the signaling lipid panel analysis, there were 262 patients with sepsis: 189 with rapid recovery, 45 with CCI, and 28 with early death. Pro-inflammatory signaling lipids from ω-6 poly-unsaturated fatty acids (PUFAs), including 15-hydroxyeicosatetraenoic (HETE), 12-HETE, and 11-HETE (oxidation products of arachidonic acid [AA]) were elevated in CCI/early death patients compared to rapid recovery. The pro-resolving lipid mediator from ω-3 PUFAs, 14(S)-hydroxy docosahexaenoic acid (14S-HDHA), was also elevated in CCI/early death compared to rapid recovery. Signaling lipids of the AA pathway were elevated in poor-outcome patients with sepsis and may serve as targets for future therapies.
Collapse
Affiliation(s)
- Dawoud Sulaiman
- Division of Cardiology, Department of MedicineDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Dongyuan Wu
- Department of BiostatisticsUniversity of FloridaGainesvilleFloridaUSA
| | | | - Kevin J. Williams
- Department of Biological ChemistryDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
- UCLA Lipidomics LabLos AngelesCaliforniaUSA
| | - Kiley Graim
- Computer and Information Science and EngineeringUniversity of FloridaGainesvilleFloridaUSA
| | - Susmita Datta
- Department of BiostatisticsUniversity of FloridaGainesvilleFloridaUSA
| | - Srinivasa T. Reddy
- Division of Cardiology, Department of MedicineDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Faheem W. Guirgis
- Department of Emergency MedicineUniversity of Florida College of MedicineGainesvilleFloridaUSA
| |
Collapse
|
12
|
Su L, Wang F, Qin C, Wang Z, Yang X, Ye J. Association between energy-adjusted dietary inflammatory index and total immunoglobulin E: A cross-sectional study. Food Sci Nutr 2024; 12:1627-1634. [PMID: 38455225 PMCID: PMC10916634 DOI: 10.1002/fsn3.3854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 03/09/2024] Open
Abstract
The relationship between a pro-inflammatory diet, assessed by the dietary inflammatory index (DII), and allergic diseases has attracted attention. However, the association between DII and immunoglobulin E (IgE) remains uncertain. We aim to investigate the association between energy-adjusted DII (E-DII) and total IgE. We analyzed data from the 2005 to 2006 National Health and Nutrition Examination Survey. The relationship between E-DII and total IgE was assessed using linear regression and logistic regression analysis. Meanwhile, we conducted a subgroup analysis stratified by body mass index (BMI) and analyzed the mediating role of BMI. We included 3614 adult participants. After controlling for confounding factors, there was no statistical association between E-DII and total IgE (β 0.023, 95% CI -0.01 to 0.057, p = .173) and the risk of high total IgE (OR 1.036, 95% CI 0.977 to 1.099, p = .233). We conducted subgroup analysis stratified by BMI. After controlling for confounding factors, only in overweight groups, E-DII was statistically associated with total IgE (β 0.076, 95% CI 0.017 to 0.135, p = .012) and the risk of high total IgE (OR 1.124, 95% CI 1.015 to 1.246, p = .025). Generalized additive models and smooth curve fittings showed a positive linear relationship between E-DII and total IgE in overweight participants. No statistical association was noted for the mediation effect of BMI on the association between E-DII and total IgE in the overweight group (p = .23). Overweight participants with higher E-DII were potentially at risk of elevated total IgE.
Collapse
Affiliation(s)
- Liang Su
- Department of DermatologyThe First Affiliated Hospital of Yunnan University of Chinese MedicineKunmingChina
- Department of DermatologyYunnan Provincial Hospital of Traditional Chinese MedicineKunmingChina
| | - Fang Wang
- The First Clinical School of Yunnan University of Chinese MedicineKunmingChina
| | - Cheng Qin
- The First Clinical School of Yunnan University of Chinese MedicineKunmingChina
| | - Zhimin Wang
- The First Clinical School of Yunnan University of Chinese MedicineKunmingChina
| | - Xuesong Yang
- Department of DermatologyThe First Affiliated Hospital of Yunnan University of Chinese MedicineKunmingChina
- Department of DermatologyYunnan Provincial Hospital of Traditional Chinese MedicineKunmingChina
| | - Jianzhou Ye
- Department of DermatologyThe First Affiliated Hospital of Yunnan University of Chinese MedicineKunmingChina
- Department of DermatologyYunnan Provincial Hospital of Traditional Chinese MedicineKunmingChina
| |
Collapse
|
13
|
Helal SA, Gerges SH, El-Kadi AOS. Enantioselectivity in some physiological and pathophysiological roles of hydroxyeicosatetraenoic acids. Drug Metab Rev 2024; 56:31-45. [PMID: 38358327 DOI: 10.1080/03602532.2023.2284110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/12/2023] [Indexed: 02/16/2024]
Abstract
The phenomenon of chirality has been shown to greatly impact drug activities and effects. Different enantiomers may exhibit different effects in a certain biological condition or disease state. Cytochrome P450 (CYP) enzymes metabolize arachidonic acid (AA) into a large variety of metabolites with a wide range of activities. Hydroxylation of AA by CYP hydroxylases produces hydroxyeicosatetraenoic acids (HETEs), which are classified into mid-chain (5, 8, 9, 11, 12, and 15-HETE), subterminal (16-, 17-, 18- and 19-HETE) and terminal (20-HETE) HETEs. Except for 20-HETE, these metabolites exist as a racemic mixture of R and S enantiomers in the physiological system. The two enantiomers could have different degrees of activity or sometimes opposing effects. In this review article, we aimed to discuss the role of mid-chain and subterminal HETEs in different organs, importantly the heart and the kidneys. Moreover, we summarized their effects in some conditions such as neutrophil migration, inflammation, angiogenesis, and tumorigenesis, with a focus on the reported enantiospecific effects. We also reported some studies using genetically modified models to investigate the roles of HETEs in different conditions.
Collapse
Affiliation(s)
- Sara A Helal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
14
|
Guo B, Xue M, Zhang T, Gan H, Lin R, Liu M, Liao Y, Lyu J, Zheng P, Sun B. Correlation between immune-related Tryptophan-Kynurenine pathway and severity of severe pneumonia and inflammation-related polyunsaturated fatty acids. Immun Inflamm Dis 2023; 11:e1088. [PMID: 38018595 PMCID: PMC10659755 DOI: 10.1002/iid3.1088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Immune dysfunction and oxidative stress caused by severe pneumonia can lead to multiple organ dysfunction and even death, causing a significant impact on health and the economy. Currently, great progress has been made in the diagnosis and treatment of this disease, but the mortality rate remains high (approximately 50%). Therefore, there is still potential for further exploration of the immune response mechanisms against severe pneumonia. OBJECTIVE This study analyzed the difference in serum metabolic profiles between patients with severe pneumonia and health individuals through metabolomics, aiming to uncover the correlation between the Tryptophan-Kynurenine pathway and the severity of severe pneumonia, as well as N-3/N-6 polyunsaturated fatty acids (PUFAs). METHODS In this study, 44 patients with severe pneumonia and 37 health controls were selected. According to the changes in the disease symptoms within the 7 days of admission, the patients were divided into aggravation (n = 22) and remission (n = 22) groups. Targeted metabolomics techniques were performed to quantify serum metabolites and analyze changes between groups. RESULTS Metabolomics analysis showed that serum kynurenine and kynurenine/tryptophan (K/T) were significantly increased and tryptophan was significantly decreased in patients with severe pneumonia; HETE and HEPE in lipids increased significantly, while eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), docosahexaenoic acid (DHA), α-linolenic acid (linolenic acid, α-LNA), arachidonic acid (ARA), Dihomo-γ-linolenic acid (DGLA), and 13(s)-hydroperoxylinoleic acid (HPODE) decreased significantly. Additionally, the longitudinal comparison revealed that Linolenic acid, DPA, and Tryptophan increased significantly in the remission group, while and kynurenine and K/T decreased significantly. In the aggravation group, Kynurenine and K/T increased significantly, while ARA, 8(S)-hydroxyeicosatetraenoic acid (HETE), 11(S)-HETE, and Tryptophan decreased significantly. The correlation analysis matrix demonstrated that Tryptophan was positively correlated with DGLA, 12(S)-hydroxyeicosapentaenoic acid (HEPE), ARA, EPA, α-LNA, DHA, and DPA. Kynurenine was positively correlated with 8(S)-HETE and negatively correlated with DHA. Additionally, K/T was negatively correlated with DGLA, ARA, EPA, α-LNA, DHA, and DPA. CONCLUSION This study revealed that during severe pneumonia, the Tryptophan-Kynurenine pathway was activated and was positively correlated with the disease progression. On the other hand, the activation of the Tryptophan-Kynurenine pathway was negatively correlated with N-3/N-6 PUFAs.
Collapse
Affiliation(s)
- Baojun Guo
- Department of Clinical LaboratoryNational Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University (The Key Laboratory of Advanced Interdisciplinary Studies Center, Advanced Interdisciplinary Studies Center)GuangzhouChina
- School of MedicineHenan UniversityKaifengHenanChina
| | - Mingshan Xue
- Department of Clinical LaboratoryNational Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University (The Key Laboratory of Advanced Interdisciplinary Studies Center, Advanced Interdisciplinary Studies Center)GuangzhouChina
| | - Teng Zhang
- China Institute for Radiation ProtectionTaiyuanChina
| | - Hui Gan
- Department of Clinical LaboratoryNational Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University (The Key Laboratory of Advanced Interdisciplinary Studies Center, Advanced Interdisciplinary Studies Center)GuangzhouChina
| | - Runpei Lin
- Department of Clinical LaboratoryNational Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University (The Key Laboratory of Advanced Interdisciplinary Studies Center, Advanced Interdisciplinary Studies Center)GuangzhouChina
| | - Mingtao Liu
- Department of Clinical LaboratoryNational Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University (The Key Laboratory of Advanced Interdisciplinary Studies Center, Advanced Interdisciplinary Studies Center)GuangzhouChina
| | - Yuhong Liao
- Department of Clinical LaboratoryNational Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University (The Key Laboratory of Advanced Interdisciplinary Studies Center, Advanced Interdisciplinary Studies Center)GuangzhouChina
| | - Jiali Lyu
- Department of Clinical LaboratoryNational Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University (The Key Laboratory of Advanced Interdisciplinary Studies Center, Advanced Interdisciplinary Studies Center)GuangzhouChina
| | - Peiyan Zheng
- Department of Clinical LaboratoryNational Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University (The Key Laboratory of Advanced Interdisciplinary Studies Center, Advanced Interdisciplinary Studies Center)GuangzhouChina
| | - Baoqing Sun
- Department of Clinical LaboratoryNational Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University (The Key Laboratory of Advanced Interdisciplinary Studies Center, Advanced Interdisciplinary Studies Center)GuangzhouChina
| |
Collapse
|
15
|
Xiao Y, Pietzner A, Rohwer N, Jung A, Rothe M, Weylandt KH, Elbelt U. Bioactive oxylipins in type 2 diabetes mellitus patients with and without hypertriglyceridemia. Front Endocrinol (Lausanne) 2023; 14:1195247. [PMID: 37664847 PMCID: PMC10472135 DOI: 10.3389/fendo.2023.1195247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/20/2023] [Indexed: 09/05/2023] Open
Abstract
Objective Dyslipidemia, in particular elevated triglycerides (TGs) contribute to increased cardiovascular risk in type 2 diabetes mellitus (T2DM). In this pilot study we aimed to assess how increased TGs affect hepatic fat as well as polyunsaturated fatty acid (PUFA) metabolism and oxylipin formation in T2DM patients. Methods 40 patients with T2DM were characterized analyzing routine lipid blood parameters, as well as medical history and clinical characteristics. Patients were divided into a hypertriglyceridemia (HTG) group (TG ≥ 1.7mmol/l) and a normal TG group with TGs within the reference range (TG < 1.7mmol/l). Profiles of PUFAs and their oxylipins in plasma were measured by gas chromatography and liquid chromatography/tandem mass spectrometry. Transient elastography (TE) was used to assess hepatic fat content measured as controlled attenuation parameter (CAP) (in dB/m) and the degree of liver fibrosis measured as stiffness (in kPa). Results Mean value of hepatic fat content measured as CAP as well as body mass index (BMI) were significantly higher in patients with high TGs as compared to those with normal TGs, and correlation analysis showed higher concentrations of TGs with increasing CAP and BMI scores in patients with T2DM. There were profound differences in plasma oxylipin levels between these two groups. Cytochrome P450 (CYP) and lipoxygenase (LOX) metabolites were generally more abundant in the HTG group, especially those derived from arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), γ-linolenic acid (γ-LA), and α-linolenic acid (α-LA), and a strong correlation between TG levels and plasma metabolites from different pathways was observed. Conclusions In adult patients with T2DM, elevated TGs were associated with increased liver fat and BMI. Furthermore, these patients also had significantly higher plasma levels of CYP- and LOX- oxylipins, which could be a novel indicator of increased inflammatory pathway activity, as well as a novel target to dampen this activity.
Collapse
Affiliation(s)
- Yanan Xiao
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany
- Medical Department, Division of Psychosomatic Medicine, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anne Pietzner
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Brandenburg Medical School and University of Potsdam, Potsdam, Germany
| | - Nadine Rohwer
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Brandenburg Medical School and University of Potsdam, Potsdam, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Adelheid Jung
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany
| | | | - Karsten H. Weylandt
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Brandenburg Medical School and University of Potsdam, Potsdam, Germany
| | - Ulf Elbelt
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany
- Medical Department, Division of Psychosomatic Medicine, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
16
|
Wang M, Qin Y, Liu Y, Yang H, Wang J, Ru S, Cui P. Short-term exposure to enrofloxacin causes hepatic metabolism disorder associated with intestinal flora dysbiosis in adult marine medaka (Oryzias melastigma). MARINE POLLUTION BULLETIN 2023; 192:114966. [PMID: 37178644 DOI: 10.1016/j.marpolbul.2023.114966] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 05/15/2023]
Abstract
Enrofloxacin (ENR) is a widely used fluoroquinolone antibiotic that is frequently detected in the environment. Our study assessed the impact of short-term ENR exposure on the intestinal and liver health of marine medaka (Oryzias melastigma) using gut metagenomic shotgun sequencing and liver metabolomics. We found that ENR exposure resulted in imbalances of Vibrio and Flavobacteria and enrichments of multiple antibiotic resistance genes. Additionally, we found a potential link between the host's response to ENR exposure and the intestinal microbiota disorder. Liver metabolites, including phosphatidylcholine, lysophosphatidylcholine, taurocholic acid, and cholic acid, in addition to several metabolic pathways in the liver that are closely linked to the imbalance of intestinal flora were severely maladjusted. These findings suggest that ENR exposure has the potential to negatively affect the gut-liver axis as the primary toxicological mechanism. Our findings provide evidence regarding the negative physiological impacts of antibiotics on marine fish.
Collapse
Affiliation(s)
- Meiru Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, China
| | - Yifan Qin
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, China
| | - Yifan Liu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, China
| | - Hui Yang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, China
| | - Pengfei Cui
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, China.
| |
Collapse
|
17
|
Csader S, Ismaiah MJ, Kuningas T, Heinäniemi M, Suhonen J, Männistö V, Pentikäinen H, Savonen K, Tauriainen MM, Galano JM, Lee JCY, Rintamäki R, Karisola P, El-Nezami H, Schwab U. Twelve Weeks of High-Intensity Interval Training Alters Adipose Tissue Gene Expression but Not Oxylipin Levels in People with Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24108509. [PMID: 37239856 DOI: 10.3390/ijms24108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Lifestyle modifications, including increased physical activity and exercise, are recommended for non-alcoholic fatty liver disease (NAFLD). Inflamed adipose tissue (AT) contributes to the progression and development of NAFLD and oxylipins such as hydroxyeicosatetraenoic acids (HETE), hydroxydocosahexanenoic acids (HDHA), prostaglandins (PEG2), and isoprostanoids (IsoP), which all may play a role in AT homeostasis and inflammation. To investigate the role of exercise without weight loss on AT and plasma oxylipin concentrations in NAFLD subjects, we conducted a 12-week randomized controlled exercise intervention. Plasma samples from 39 subjects and abdominal subcutaneous AT biopsy samples from 19 subjects were collected both at the beginning and the end of the exercise intervention. In the AT of women, a significant reduction of gene expression of hemoglobin subunits (HBB, HBA1, HBA2) was observed within the intervention group during the 12-week intervention. Their expression levels were negatively associated with VO2max and maxW. In addition, pathways involved in adipocyte morphology alterations significantly increased, whereas pathways in fat metabolism, branched-chain amino acids degradation, and oxidative phosphorylation were suppressed in the intervention group (p < 0.05). Compared to the control group, in the intervention group, the ribosome pathway was activated, but lysosome, oxidative phosphorylation, and pathways of AT modification were suppressed (p < 0.05). Most of the oxylipins (HETE, HDHA, PEG2, and IsoP) in plasma did not change during the intervention compared to the control group. 15-F2t-IsoP significantly increased in the intervention group compared to the control group (p = 0.014). However, this oxylipin could not be detected in all samples. Exercise intervention without weight loss may influence the AT morphology and fat metabolism at the gene expression level in female NAFLD subjects.
Collapse
Affiliation(s)
- Susanne Csader
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, FI-70200 Kuopio, Finland
| | - Marsena Jasiel Ismaiah
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Tiina Kuningas
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, FI-70210 Kuopio, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, FI-70210 Kuopio, Finland
| | - Janne Suhonen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, FI-70210 Kuopio, Finland
| | - Ville Männistö
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, FI-70210 Kuopio, Finland
| | - Heikki Pentikäinen
- Kuopio Research Institute of Exercise Medicine, FI-70210 Kuopio, Finland
| | - Kai Savonen
- Kuopio Research Institute of Exercise Medicine, FI-70210 Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, FI-70210 Kuopio, Finland
| | - Milla-Maria Tauriainen
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, FI-70200 Kuopio, Finland
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, FI-70210 Kuopio, Finland
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, F-34093 Montpellier, France
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Reeta Rintamäki
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, FI-70210 Kuopio, Finland
| | - Piia Karisola
- Faculty of Medicine, Human Microbiome Research Program, University of Helsinki, FI-00100 Helsinki, Finland
| | - Hani El-Nezami
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, FI-70200 Kuopio, Finland
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Ursula Schwab
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, FI-70200 Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, FI-70210 Kuopio, Finland
| |
Collapse
|
18
|
Wang A, Wan X, Zhuang P, Jia W, Ao Y, Liu X, Tian Y, Zhu L, Huang Y, Yao J, Wang B, Wu Y, Xu Z, Wang J, Yao W, Jiao J, Zhang Y. High fried food consumption impacts anxiety and depression due to lipid metabolism disturbance and neuroinflammation. Proc Natl Acad Sci U S A 2023; 120:e2221097120. [PMID: 37094155 PMCID: PMC10160962 DOI: 10.1073/pnas.2221097120] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/20/2023] [Indexed: 04/26/2023] Open
Abstract
Western dietary patterns have been unfavorably linked with mental health. However, the long-term effects of habitual fried food consumption on anxiety and depression and underlying mechanisms remain unclear. Our population-based study with 140,728 people revealed that frequent fried food consumption, especially fried potato consumption, is strongly associated with 12% and 7% higher risk of anxiety and depression, respectively. The associations were more pronounced among male and younger consumers. Consistently, long-term exposure to acrylamide, a representative food processing contaminant in fried products, exacerbates scototaxis and thigmotaxis, and further impairs exploration ability and sociality of adult zebrafish, showing anxiety- and depressive-like behaviors. Moreover, treatment with acrylamide significantly down-regulates the gene expression of tjp2a related to the permeability of blood-brain barrier. Multiomics analysis showed that chronic exposure to acrylamide induces cerebral lipid metabolism disturbance and neuroinflammation. PPAR signaling pathway mediates acrylamide-induced lipid metabolism disorder in the brain of zebrafish. Especially, chronic exposure to acrylamide dysregulates sphingolipid and phospholipid metabolism, which plays important roles in the development of anxiety and depression symptoms. In addition, acrylamide promotes lipid peroxidation and oxidation stress, which participate in cerebral neuroinflammation. Acrylamide dramatically increases the markers of lipid peroxidation, including (±)5-HETE, 11(S)-HETE, 5-oxoETE, and up-regulates the expression of proinflammatory lipid mediators such as (±)12-HETE and 14(S)-HDHA, indicating elevated cerebral inflammatory status after chronic exposure to acrylamide. Together, these results both epidemiologically and mechanistically provide strong evidence to unravel the mechanism of acrylamide-triggered anxiety and depression, and highlight the significance of reducing fried food consumption for mental health.
Collapse
Affiliation(s)
- Anli Wang
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang310058, China
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| | - Xuzhi Wan
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang310058, China
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| | - Pan Zhuang
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang310058, China
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| | - Wei Jia
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang310058, China
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| | - Yang Ao
- Department of Nutrition, School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310009, China
| | - Xiaohui Liu
- Department of Nutrition, School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310009, China
| | - Yimei Tian
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang310058, China
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| | - Li Zhu
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang310058, China
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| | - Yingyu Huang
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang310058, China
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| | - Jianxin Yao
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang310058, China
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| | - Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang310053, China
| | - Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang310053, China
| | - Zhongshi Xu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang310053, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang310053, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang310053, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310009, China
| | - Yu Zhang
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang310058, China
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| |
Collapse
|
19
|
Jurado-Fasoli L, Osuna-Prieto FJ, Yang W, Kohler I, Di X, Rensen PCN, Castillo MJ, Martinez-Tellez B, Amaro-Gahete FJ. High omega-6/omega-3 fatty acid and oxylipin ratio in plasma is linked to an adverse cardiometabolic profile in middle-aged adults. J Nutr Biochem 2023; 117:109331. [PMID: 36967095 DOI: 10.1016/j.jnutbio.2023.109331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/09/2022] [Accepted: 03/18/2023] [Indexed: 04/16/2023]
Abstract
Omega-6 and omega-3 oxylipins may be surrogate markers of systemic inflammation, which is one of the triggers for the development of cardiometabolic disorders. In the current study, we investigated the relationship between plasma levels of omega-6 and omega-3 oxylipins with body composition and cardiometabolic risk factors in middle-aged adults. Seventy-two 72 middle-aged adults (39 women; 53.6±5.1 years old; 26.7±3.8 kg/m2) were included in this cross-sectional study. Plasma levels of omega-6 and omega-3 fatty acids and oxylipins were determined using targeted lipidomic. Body composition, dietary intake, and cardiometabolic risk factors were assessed with standard methods. The plasma levels of the omega-6 fatty acids and derived oxylipins, the hydroxyeicosatetraenoic acids (HETEs; arachidonic acid (AA)-derived oxylipins) and dihydroxy-eicosatrienoic acids (DiHETrEs; AA-derived oxylipins), were positively associated with glucose metabolism parameters (i.e., insulin levels and homeostatic model assessment of insulin resistance index (HOMA); all r≥0.21, P<.05). In contrast, plasma levels of omega-3 fatty acids and derived oxylipins, specifically hydroxyeicosapentaenoic acids (HEPEs; eicosapentaenoic acid-derived oxylipins), as well as series-3 prostaglandins, were negatively associated with plasma glucose metabolism parameters (i.e., insulin levels, HOMA; all r≤0.20, P<.05). The plasma levels of omega-6 fatty acids and derived oxylipins, HETEs and DiHETrEs were also positively correlated with liver function parameters (i.e., glutamic pyruvic transaminase, gamma-glutamyl transferase (GGT), and fatty liver index; all r≥0.22 and P<.05). In addition, individuals with higher omega-6/omega-3 fatty acid and oxylipin ratio showed higher levels of HOMA, total cholesterol, low-density lipoprotein-cholesterol, triglycerides, and GGT (on average +36%), as well as lower levels of high-density lipoprotein cholesterol (-13%) (all P<.05). In conclusion, the omega-6/omega-3 fatty acid and oxylipin ratio, as well as specific omega-6 and omega-3 oxylipins plasma levels, reflect an adverse cardiometabolic profile in terms of higher insulin resistance and impaired liver function in middle-aged adults.
Collapse
Affiliation(s)
- Lucas Jurado-Fasoli
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Department of Physical Education and Sports, Faculty of Sport Sciences, PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain.
| | - Francisco J Osuna-Prieto
- Department of Physical Education and Sports, Faculty of Sport Sciences, PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain; Department of Analytical Chemistry, University of Granada, Granada, Spain
| | - Wei Yang
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Isabelle Kohler
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Center for Analytical Sciences Amsterdam, Amsterdam, the Netherlands
| | - Xinyu Di
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Manuel J Castillo
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Borja Martinez-Tellez
- Department of Physical Education and Sports, Faculty of Sport Sciences, PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain; Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands; Department of Education, Faculty of Education Sciences and SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almería, Almería, Spain
| | - Francisco J Amaro-Gahete
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Department of Physical Education and Sports, Faculty of Sport Sciences, PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| |
Collapse
|
20
|
Pickens CA, Courtney E, Isenberg SL, Cuthbert C, Petritis K. Multiplexing Homocysteine into First-Tier Newborn Screening Mass Spectrometry Assays Using Selective Thiol Derivatization. Clin Chem 2023; 69:470-481. [PMID: 36920064 DOI: 10.1093/clinchem/hvad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/09/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Classical homocystinuria (HCU) results from deficient cystathionine β-synthase activity, causing elevated levels of Met and homocysteine (Hcy). Newborn screening (NBS) aims to identify HCU in pre-symptomatic newborns by assessing Met concentrations in first-tier screening. However, unlike Hcy, Met testing leads to a high number of false-positive and -negative results. Therefore, screening for Hcy directly in first-tier screening would be a better biomarker for use in NBS. METHODS Dried blood spot (DBS) quality control and residual clinical specimens were used in analyses. Several reducing and maleimide reagents were investigated to aid in quantification of total Hcy (tHcy). The assay which was developed and validated was performed by flow injection analysis-tandem mass spectrometry (FIA-MS/MS). RESULTS Interferents of tHcy measurement were identified, so selective derivatization of Hcy was employed. Using N-ethylmaleimide (NEM) to selectively derivatize Hcy allowed interferent-free quantification of tHcy by FIA-MS/MS in first-tier NBS. The combination of tris(2-carboxyethyl)phosphine (TCEP) and NEM yielded significantly less matrix effects compared to dithiothreitol (DTT) and NEM. Analysis of clinical specimens demonstrated that the method could distinguish between HCU-positive, presumptive normal newborns, and newborns receiving total parenteral nutrition. CONCLUSIONS Here we present the first known validated method capable of screening tHcy in DBS during FIA-MS/S first-tier NBS.
Collapse
Affiliation(s)
- C Austin Pickens
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Elya Courtney
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Samantha L Isenberg
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Carla Cuthbert
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Konstantinos Petritis
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
21
|
Lipid mediators generated by the cytochrome P450—Epoxide hydrolase pathway. ADVANCES IN PHARMACOLOGY 2023; 97:327-373. [DOI: 10.1016/bs.apha.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
22
|
Tian Y, Zhang J, Li M, Shang J, Bai X, Zhang H, Wang Y, Chen H, Song X. Serum fatty acid profiles associated with metabolic risk in women with polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1077590. [PMID: 37065734 PMCID: PMC10102484 DOI: 10.3389/fendo.2023.1077590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/10/2023] [Indexed: 04/18/2023] Open
Abstract
PURPOSE Dyslipidemia is a feature of polycystic ovary syndrome (PCOS) that may augment metabolic disturbances. Serum fatty acids are important biomedical indicators of dyslipidemia. The aim of this study was to determine the distinct serum fatty acids in various PCOS subtypes and their association with metabolic risk in women with PCOS. METHODS Fatty acids in the serum of 202 women with PCOS were measured using gas chromatography-mass spectrometry. Fatty acids were compared between PCOS subtypes and correlated with glycemic parameters, adipokines, homocysteine, sex hormones, and sex hormone-binding globulin (SHBG). RESULTS The levels of total monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) in the reproductive subtype of PCOS were lower than those in the metabolic subtype. Docosahexaenoic acid, a PUFA, was associated with higher SHBG after correction for multiple comparisons. Eighteen species of fatty acids emerged as potential biomarkers associated with the metabolic risk factors measured, independent of body mass index (BMI). Among them, myristic acid (C14:0), palmitoleic acid (C16:1), oleic acid (C18:1n-9C), cis-vaccenic acid (C18:1n-7), and homo-gamma-linolenic acid (C20:3n-6) were the strongest lipid species that were consistently associated with metabolic risk factors, particularly insulin-related parameters in women with PCOS. As for adipokines, 16 fatty acids were positively associated with serum leptin. Among them, C16:1 and C20:3n-6were significantly associated with leptin levels. CONCLUSION Our data demonstrated that a distinct fatty acid profile comprising high C14:0, C16:1, C18:1n-9C, C18:1n-7, and C20:3n-6levels is associated with metabolic risk in women with PCOS, independent of BMI.
Collapse
Affiliation(s)
- Ye Tian
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingjing Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Mingyue Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Shang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaohong Bai
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Huijuan Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanxia Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Haitao Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Xueru Song
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
23
|
Influence of Dietary Inulin on Fecal Microbiota, Cardiometabolic Risk Factors, Eicosanoids, and Oxidative Stress in Rats Fed a High-Fat Diet. Foods 2022; 11:foods11244072. [PMID: 36553814 PMCID: PMC9778385 DOI: 10.3390/foods11244072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The present study examined the influence of inulin on fecal microbiota, cardiometabolic risk factors, eicosanoids, and oxidative stress in rats on a high-fat (HF) diet. Thirty-six male Wistar-Kyoto rats were divided into three dietary groups: standard diet, HF diet, and HF diet + Inulin diet. After 10 weeks, the HF + Inulin diet promoted high dominance of a few bacterial genera including Blautia and Olsenella in feces while reducing richness, diversity, and rarity compared to the HF diet. These changes in fecal microbiota were accompanied by an increased amount of propionic acid in feces. The HF + Inulin diet decreased cardiometabolic risk factors, decreased the amount of the eicosanoids 11(12)-EET and 15-HETrE in the liver, and decreased oxidative stress in blood compared to the HF diet. In conclusion, increasing consumption of inulin may be a useful nutritional strategy to protect against the onset of obesity and its associated metabolic abnormalities by means of modulation of gut microbiota.
Collapse
|
24
|
Dong L, Wang H, Chen K, Li Y. Roles of hydroxyeicosatetraenoic acids in diabetes (HETEs and diabetes). Biomed Pharmacother 2022; 156:113981. [DOI: 10.1016/j.biopha.2022.113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
|
25
|
Benatzy Y, Palmer MA, Brüne B. Arachidonate 15-lipoxygenase type B: Regulation, function, and its role in pathophysiology. Front Pharmacol 2022; 13:1042420. [PMID: 36438817 PMCID: PMC9682198 DOI: 10.3389/fphar.2022.1042420] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/26/2022] [Indexed: 10/30/2023] Open
Abstract
As a lipoxygenase (LOX), arachidonate 15-lipoxygenase type B (ALOX15B) peroxidizes polyenoic fatty acids (PUFAs) including arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and linoleic acid (LA) to their corresponding fatty acid hydroperoxides. Distinctive to ALOX15B, fatty acid oxygenation occurs with positional specificity, catalyzed by the non-heme iron containing active site, and in addition to free PUFAs, membrane-esterified fatty acids serve as substrates for ALOX15B. Like other LOX enzymes, ALOX15B is linked to the formation of specialized pro-resolving lipid mediators (SPMs), and altered expression is apparent in various inflammatory diseases such as asthma, psoriasis, and atherosclerosis. In primary human macrophages, ALOX15B expression is associated with cellular cholesterol homeostasis and is induced by hypoxia. Like in inflammation, the role of ALOX15B in cancer is inconclusive. In prostate and breast carcinomas, ALOX15B is attributed a tumor-suppressive role, whereas in colorectal cancer, ALOX15B expression is associated with a poorer prognosis. As the biological function of ALOX15B remains an open question, this review aims to provide a comprehensive overview of the current state of research related to ALOX15B.
Collapse
Affiliation(s)
- Yvonne Benatzy
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Megan A. Palmer
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| |
Collapse
|
26
|
Dai J, Boghossian NS, Sarzynski MA, Luo F, Sun X, Li J, Fiehn O, Liu J, Chen L. Metabolome-Wide Associations of Gestational Weight Gain in Pregnant Women with Overweight and Obesity. Metabolites 2022; 12:960. [PMID: 36295862 PMCID: PMC9609233 DOI: 10.3390/metabo12100960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/24/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Excessive gestational weight gain (GWG) is associated with adverse pregnancy outcomes. This metabolome-wide association study aimed to identify metabolomic markers for GWG. This longitudinal study included 39 Black and White pregnant women with a prepregnancy body mass index (BMI) of ≥ 25 kg/m2. Untargeted metabolomic profiling was performed using fasting plasma samples collected at baseline (mean: 12.1 weeks) and 32 weeks of gestation. The associations of metabolites at each time point and changes between the two time points with GWG were examined by linear and least absolute shrinkage and selection operator (LASSO) regression analyses. Pearson correlations between the identified metabolites and cardiometabolic biomarkers were examined. Of the 769 annotated metabolites, 88 metabolites at 32 weeks were individually associated with GWG, with four (phosphatidylcholine (PC) 34:4, triacylglycerol (TAG) 52:6, arachidonic acid, isoleucine) jointly associated with GWG (area under the receiver operating characteristic curve (AUC) for excessive GWG: 0.80, 95% CI: 0.67, 0.93). No correlations were observed between the 88 metabolites and insulin, C-peptide, and high-sensitivity C-reactive protein at 32 weeks. Twelve metabolites at baseline (AUC for excessive GWG: 0.80, 95% CI: 0.62, 0.99) and three metabolite changes (AUC for excessive GWG: 0.73, 95% CI: 0.44, 1.00) were jointly associated with GWG. We identified novel metabolites in the first and third trimesters associated with GWG, which may shed light on the pathophysiology of GWG.
Collapse
Affiliation(s)
- Jin Dai
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA
| | - Nansi S. Boghossian
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Mark A. Sarzynski
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Feng Luo
- School of Computing, Clemson University, Clemson, SC 29634, USA
| | - Xiaoqian Sun
- Department of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634, USA
| | - Jian Li
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA
- School of Nursing, University of California, Los Angeles, CA 90095, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, CA 95616, USA
| | - Jihong Liu
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Liwei Chen
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
27
|
Kahn D, Macias E, Zarini S, Garfield A, Zemski Berry K, Gerszten R, Schoen J, Cree‐Green M, Bergman BC. Quantifying the inflammatory secretome of human intermuscular adipose tissue. Physiol Rep 2022; 10:e15424. [PMID: 35980018 PMCID: PMC9387112 DOI: 10.14814/phy2.15424] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/23/2022] [Indexed: 11/24/2022] Open
Abstract
Adipose tissue secretes an abundance of lipid and protein mediators, and this secretome is depot-specific, with local and systemic effects on metabolic regulation. Intermuscular adipose tissue (IMAT) accumulates within the skeletal muscle compartment in obesity, and is associated with insulin resistance and metabolic disease. While the human IMAT secretome decreases insulin sensitivity in vitro, its composition is entirely unknown. The current study was conducted to investigate the composition of the human IMAT secretome, compared to that of the subcutaneous (SAT) and visceral adipose tissue (VAT) depots. IMAT, SAT, and VAT explants from individuals with obesity were used to generate conditioned media. Proteomics analysis of conditioned media was performed using multiplex proximity extension assays, and eicosanoid analysis using liquid chromatography-tandem mass spectrometry. Compared to SAT and/or VAT, IMAT secreted significantly more cytokines (IL2, IL5, IL10, IL13, IL27, FGF23, IFNγ and CSF1) and chemokines (MCP1, IL8, CCL11, CCL20, CCL25 and CCL27). Adipokines hepatocyte growth factor and resistin were secreted significantly more by IMAT than SAT or VAT. IMAT secreted significantly more eicosanoids (PGE2, TXB2 , 5-HETE, and 12-HETE) compared to SAT and/or VAT. In the context of obesity, IMAT is a distinct adipose tissue with a highly immunogenic and inflammatory secretome, and given its proximity to skeletal muscle, may be critical to glucose regulation and insulin resistance.
Collapse
Affiliation(s)
- Darcy Kahn
- Division of Endocrinology, Diabetes, and MetabolismUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Emily Macias
- Division of Endocrinology, Diabetes, and MetabolismUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Simona Zarini
- Division of Endocrinology, Diabetes, and MetabolismUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Amanda Garfield
- Division of Endocrinology, Diabetes, and MetabolismUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Karin Zemski Berry
- Division of Endocrinology, Diabetes, and MetabolismUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Robert Gerszten
- The Cardiovascular Research Center and Cardiology DivisionMassachusetts General Hospital, Harvard Medical SchoolBostonUSA
| | - Jonathan Schoen
- Department of SurgeryUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Melanie Cree‐Green
- Division of Pediatric EndocrinologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Bryan C. Bergman
- Division of Endocrinology, Diabetes, and MetabolismUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| |
Collapse
|
28
|
Al-Shaer AE, Regan J, Buddenbaum N, Tharwani S, Drawdy C, Behee M, Sergin S, Fenton JI, Maddipati KR, Kane S, Butler E, Shaikh SR. Enriched Marine Oil Supplement Increases Specific Plasma Specialized Pro-Resolving Mediators in Adults with Obesity. J Nutr 2022; 152:1783-1791. [PMID: 35349683 PMCID: PMC9258560 DOI: 10.1093/jn/nxac075] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/13/2022] [Accepted: 03/18/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Specialized pro-resolving mediators (SPMs), synthesized from PUFAs, resolve inflammation and return damaged tissue to homeostasis. Thus, increasing metabolites of the SPM biosynthetic pathway may have potential health benefits for select clinical populations, such as subjects with obesity who display dysregulation of SPM metabolism. However, the concentrations of SPMs and their metabolic intermediates in humans with obesity remains unclear. OBJECTIVES The primary objective of this study was to determine if a marine oil supplement increased specific metabolites of the SPM biosynthetic pathway in adults with obesity. The second objective was to determine if the supplement changed the relative abundance of key immune cell populations. Finally, given the critical role of antibodies in inflammation, we determined if ex vivo CD19 + B-cell antibody production was modified by marine oil intervention. METHODS Twenty-three subjects [median age: 56 y; BMI (in kg/m2): 33.1] consumed 2 g/d of a marine oil supplement for 28-30 d. The supplement was particularly enriched with 18-hydroxyeicosapentaenoic (HEPE), 14-hydroxydocosahexaenoic acid (14-HDHA), and 17-HDHA. Blood was collected pre- and postsupplementation for plasma mass spectrometry oxylipin and fatty acid analyses, flow cytometry, and B-cell isolation. Paired t-tests and Wilcoxon tests were used for statistical analyses. RESULTS Relative to preintervention, the supplement increased 6 different HEPEs and HDHAs accompanied by changes in plasma PUFAs. Resolvin E1 and docosapentaenoic acid-derived maresin 1 concentrations were increased 3.5- and 4.7-fold upon intervention, respectively. The supplement did not increase the concentration of D-series resolvins and had no effect on the abundance of immune cells. Ex vivo B-cell IgG but not IgM concentrations were lowered postsupplementation. CONCLUSIONS A marine oil supplement increased select SPMs and their metabolic intermediates in adults with obesity. Additional studies are needed to determine if increased concentrations of specific SPMs control the resolution of inflammation in humans with obesity. This trial was registered at clinicaltrials.gov as NCT04701138.
Collapse
Affiliation(s)
- Abrar E Al-Shaer
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer Regan
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicole Buddenbaum
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sonum Tharwani
- The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Catie Drawdy
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Madeline Behee
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Selin Sergin
- Department of Food Science and Human Nutrition, College of Agriculture and Natural Resources and College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, College of Agriculture and Natural Resources and College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Krishna Rao Maddipati
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University, Detroit, MI, USA
| | - Shawn Kane
- The University of North Carolina at Chapel Hill Family Medicine Center, Chapel Hill, NC, USA
| | - Erik Butler
- The University of North Carolina at Chapel Hill Family Medicine Center, Chapel Hill, NC, USA
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
29
|
Du Y, Li DX, Lu DY, Zhang R, Zhao YL, Zhong QQ, Ji S, Wang L, Tang DQ. Lipid metabolism disorders and lipid mediator changes of mice in response to long-term exposure to high-fat and high sucrose diets and ameliorative effects of mulberry leaves. Food Funct 2022; 13:4576-4591. [PMID: 35355025 DOI: 10.1039/d1fo04146k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mulberry leaves exhibit anti-lipogenic and lipid-lowering effects. However, the lipid biomarkers and underlying mechanisms for the improvement of the action of mulberry leaves on obesity and lipid metabolism disorders have not been sufficiently investigated yet. Herein, biochemical analysis combined with metabolomics targeting serum lipid mediators (oxylipins) were used to explore the efficacy and underlying mechanisms of mulberry leaf water extract (MLWE) in high-fat and high-sucrose diet (HFHSD)-fed mice. Our results showed that MLWE supplementation not only decreased body weight gain, serum total triglycerides, low-density lipoprotein cholesterol, alanine transaminase and aspartate transaminase levels, but also increased the serum level of high-density lipoprotein cholesterol. In addition, MLWE supplementation also ameliorated hepatic steatosis and lipid accumulation. These beneficial effects were associated with down-regulating genes involved in oxidative stress, inflammation, and lipogenesis such as acetyl-CoA carboxylase and fatty acid synthase, and up-regulating genes related to lipolysis that encoded peroxisome proliferator-activated receptor α, adiponectin (ADPN), adiponectin receptor (AdipoR) 1, AdipoR2, adenosine monophosphate-activated protein kinase (AMPK) and hormone-sensitive lipase. Moreover, a total of 54 serum lipid mediators were differentially changed in HFHSD-fed mice, among which 11 lipid mediators from n-3 polyunsaturated fatty acids (PUFAs) were apparently reversed by MLWE. These findings indicated that the ADPN/AMPK pathway, anti-inflammation, anti-oxidation, and n-3 PUFA metabolism played important roles in anti-obesity and improvement of lipid metabolism disorders modulated by MLWE supplementation.
Collapse
Affiliation(s)
- Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Ding-Xiang Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Dong-Yu Lu
- Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining 221202, China
| | - Ran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Yan-Lin Zhao
- Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining 221202, China
| | - Qiao-Qiao Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Shuai Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China. .,Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou 221204, China
| | - Liang Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China. .,Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou 221204, China
| | - Dao-Quan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China. .,Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining 221202, China.,Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou 221204, China
| |
Collapse
|
30
|
Du Y, Li DX, Lu DY, Zhang R, Zhong QQ, Zhao YL, Zheng XX, Ji S, Wang L, Tang DQ. Amelioration of lipid accumulations and metabolism disorders in differentiation and development of 3T3-L1 adipocytes through mulberry leaf water extract. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153959. [PMID: 35134622 DOI: 10.1016/j.phymed.2022.153959] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Obesity is a worldwide problem that resulted from the excessive fat accumulation in adipose tissue, leading to the impairment of individual health. Mulberry leaf is an important traditional Chinese medicine and has been used to alleviate obesity for a long term. However, its underlying molecular mechanisms have not been fully elucidated yet. PURPOSE In this study, we aimed to investigate the inhibition effects of mulberry leaf water extract (MLWE) on lipid accumulation during the process of differentiation of 3T3-L1 preadipocytes and development of mature adipocytes through the combination of molecular biology assays and metabolomic analysis. METHODS The quality consistency and main chemical ingredients of MLWE were analyzed by high performance liquid chromatography and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), respectively. Oil red O staining was used to mirror lipid accumulation. Lipogenesis-, lipolysis- and inflammation-related genes were evaluated by real-time PCR and western blot, respectively. Untargeted metabolomics were performed by LC-MS/MS. RESULTS Prepared method and quality of MLWE were stable and reliable. A total of 34 compounds were identified and 14 of them were undoubtedly confirmed. MLWE supplementation could dose-dependently inhibit the aggregation of lipid droplets, and the expressions of sterol regulatory element-binding protein (SREBP)-1c, peroxisome proliferator-activated receptor (PPAR) γ, acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), tumor necrosis factor (TNF)-α and interleukin (IL)-6, and increase the expressions of adenosine monophosphate-activated protein kinase (AMPK), hormone-sensitive lipase (HSL) and IL-10 in the differentiation of preadipocytes. Furthermore, MLWE treatment could dose-dependently decrease the level of triglycerides and the expressions of ACC, FAS, TNF-α, and IL-6, and up-regulate the level of glycerol and the expressions of PPARα, adiponectin (ADPN), adiponectin receptor (AdipoR) 1, AdipoR2, AMPK, HSL, and IL-10 in the development of mature adipocytes. Untargeted metabolomics showed that a total of 5 and 18 differential metabolites were reversed by MLWE intervention in the differentiation of preadipocytes and the development of mature adipocytes, respectively, which involved in the biosynthesis of unsaturated fatty acids, arachidonic acid metabolism and glycerophospholipids metabolism. CONCLUSION Taken together, this study firstly verified that MLWE could effectively alleviate lipid accumulation and inflammation by regulating ADPN/AMPK-mediated signaling pathways and relevant metabolic disturbances including biosynthesis of unsaturated fatty acids, arachidonic acid metabolism and glycerophospholipids metabolism.
Collapse
Affiliation(s)
- Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Ding-Xiang Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Dong-Yu Lu
- Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining 221202, China
| | - Ran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Qiao-Qiao Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yan-Lin Zhao
- Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining 221202, China
| | - Xiao-Xiao Zheng
- Department of Pharmacy, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou 221002, China
| | - Shuai Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China; Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou 221204, China
| | - Liang Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China; Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou 2212004, China
| | - Dao-Quan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China; Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining 221202, China; Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou 221204, China.
| |
Collapse
|
31
|
Yang X, Yi X, Zhang F, Li F, Lang L, Ling M, Lai X, Chen L, Quan L, Fu Y, Feng S, Shu G, Wang L, Zhu X, Gao P, Jiang Q, Wang S. Cytochrome P450 epoxygenase-derived EPA and DHA oxylipins 17,18-epoxyeicosatetraenoic acid and 19,20-epoxydocosapentaenoic acid promote BAT thermogenesis and WAT browning through the GPR120-AMPKα signaling pathway. Food Funct 2022; 13:1232-1245. [PMID: 35019933 DOI: 10.1039/d1fo02608a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mechanisms whereby fish oil rich in EPA and DHA promotes BAT thermogenesis and WAT browning are not fully understood. Thus, this study aimed to investigate the effects of cytochrome P450 (CYP) epoxygenase-derived EPA and DHA oxylipins 17,18-EpETE and 19,20-EpDPE on BAT thermogenesis and WAT browning and explore the underlying mechanism. Stromal vascular cells (SVCs) were subjected to 17,18-EpETE or 19,20-EpDPE treatment and mice were treated with the CYP epoxygenase inhibitor, the thermogenic marker genes were detected and the involvement of GPR120 and AMPKα were assessed. The in vitro results indicated that 17,18-EpETE and 19,20-EpDPE induced brown and beige adipocyte thermogenesis, with increased expression of thermogenic marker gene UCP1 in differentiated SVCs. Meanwhile, the expression of GPR120 and phosphorylation of AMPKα were increased in response to these two oxylipins. However, the inhibition of GPR120 and AMPKα inhibited the promotion of adipocyte thermogenesis. In addition, in the presence of CYP epoxygenase inhibitor MS-PPOH, EPA and DHA had no effect on increasing UCP1 expression in differentiated SVCs. Consistent with the in vitro results, the in vivo findings demonstrated that fish oil had no body fat-lowering effects and no effects on enhancing energy metabolism, iBAT thermogenesis and iWAT browning in mice fed HFD after intraperitoneal injection of CYP epoxygenase inhibitor SKF-525A. Moreover, fish oil had no effect on the elevation of GPR120 expression and activation of AMPKα in iBAT and iWAT in mice fed HFD after intraperitoneal injection of SKF-525A. In summary, our results showed that CYP epoxygenase-derived EPA and DHA oxylipins 17,18-EpETE and 19,20-EpDPE promoted BAT thermogenesis and WAT browning through the GPR120-AMPKα signaling pathway, which might contribute to the thermogenic and anti-obesity effects of fish oil.
Collapse
Affiliation(s)
- Xiaohua Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xin Yi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Fenglin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Fan Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Limin Lang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Mingfa Ling
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xumin Lai
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Lulu Quan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Yiming Fu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Shengchun Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| |
Collapse
|
32
|
Garcia-Irigoyen O, Bovenga F, Piglionica M, Piccinin E, Cariello M, Arconzo M, Peres C, Corsetto PA, Rizzo AM, Ballanti M, Menghini R, Mingrone G, Lefebvre P, Staels B, Shirasawa T, Sabbà C, Villani G, Federici M, Moschetta A. Enterocyte superoxide dismutase 2 deletion drives obesity. iScience 2022; 25:103707. [PMID: 35036884 PMCID: PMC8753186 DOI: 10.1016/j.isci.2021.103707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 10/19/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
Compelling evidence support an involvement of oxidative stress and intestinal inflammation as early events in the predisposition and development of obesity and its related comorbidities. Here, we show that deficiency of the major mitochondrial antioxidant enzyme superoxide dismutase 2 (SOD2) in the gastrointestinal tract drives spontaneous obesity. Intestinal epithelium-specific Sod2 ablation in mice induced adiposity and inflammation via phospholipase A2 (PLA2) activation and increased release of omega-6 polyunsaturated fatty acid arachidonic acid. Remarkably, this obese phenotype was rescued when fed an essential fatty acid-deficient diet, which abrogates de novo biosynthesis of arachidonic acid. Data from clinical samples revealed that the negative correlation between intestinal Sod2 mRNA levels and obesity features appears to be conserved between mice and humans. Collectively, our findings suggest a role of intestinal Sod2 levels, PLA2 activity, and arachidonic acid in obesity presenting new potential targets of therapeutic interest in the context of this metabolic disorder.
Collapse
Affiliation(s)
- Oihane Garcia-Irigoyen
- Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Fabiola Bovenga
- Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Marilidia Piglionica
- Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Elena Piccinin
- Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy.,Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Marica Cariello
- Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Maria Arconzo
- Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Claudia Peres
- Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Paola Antonia Corsetto
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via D. Trentacoste 2, 20133 Milan, Italy
| | - Angela Maria Rizzo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via D. Trentacoste 2, 20133 Milan, Italy
| | - Marta Ballanti
- Center for Atherosclerosis, Policlinico Tor Vergata, 00133 Rome, Italy
| | - Rossella Menghini
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Geltrude Mingrone
- Department of Internal Medicine, Catholic University, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Diabetes and Nutritional Sciences, Hodgkin Building, Guy's Campus, King's College London, London, UK
| | - Philippe Lefebvre
- Université Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Bart Staels
- Université Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Takuji Shirasawa
- Department of Molecular Gerontology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Carlo Sabbà
- Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Gaetano Villani
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Massimo Federici
- Center for Atherosclerosis, Policlinico Tor Vergata, 00133 Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Antonio Moschetta
- Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy.,IRCCS Istituto Tumori "Giovanni Paolo II", Viale O. Flacco 65, 70124 Bari, Italy
| |
Collapse
|
33
|
Petersen N, Greiner TU, Torz L, Bookout A, Gerstenberg MK, Castorena CM, Kuhre RE. Targeting the Gut in Obesity: Signals from the Inner Surface. Metabolites 2022; 12:metabo12010039. [PMID: 35050161 PMCID: PMC8778595 DOI: 10.3390/metabo12010039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/26/2021] [Accepted: 12/31/2021] [Indexed: 12/17/2022] Open
Abstract
Obesity is caused by prolonged energy surplus. Current anti-obesity medications are mostly centralized around the energy input part of the energy balance equation by increasing satiety and reducing appetite. Our gastrointestinal tract is a key organ for regulation of food intake and supplies a tremendous number of circulating signals that modulate the activity of appetite-regulating areas of the brain by either direct interaction or through the vagus nerve. Intestinally derived messengers are manifold and include absorbed nutrients, microbial metabolites, gut hormones and other enterokines, collectively comprising a fine-tuned signalling system to the brain. After a meal, nutrients directly interact with appetite-inhibiting areas of the brain and induce satiety. However, overall feeding behaviour also depends on secretion of gut hormones produced by highly specialized and sensitive enteroendocrine cells. Moreover, circulating microbial metabolites and their interactions with enteroendocrine cells further contribute to the regulation of feeding patterns. Current therapies exploiting the appetite-regulating properties of the gut are based on chemically modified versions of the gut hormone, glucagon-like peptide-1 (GLP-1) or on inhibitors of the primary GLP-1 inactivating enzyme, dipeptidyl peptidase-4 (DPP-4). The effectiveness of these approaches shows that that the gut is a promising target for therapeutic interventions to achieve significant weigh loss. We believe that increasing understanding of the functionality of the intestinal epithelium and new delivery systems will help develop selective and safe gut-based therapeutic strategies for improved obesity treatment in the future. Here, we provide an overview of the major homeostatic appetite-regulating signals generated by the intestinal epithelial cells and how these signals may be harnessed to treat obesity by pharmacological means.
Collapse
Affiliation(s)
- Natalia Petersen
- Global Obesity and Liver Disease Research, Global Drug Discovery, Novo Nordisk A/S, Novo Park 1, 2670 Måløv, Denmark; (L.T.); (M.K.G.); (R.E.K.)
- Correspondence:
| | - Thomas U. Greiner
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden;
| | - Lola Torz
- Global Obesity and Liver Disease Research, Global Drug Discovery, Novo Nordisk A/S, Novo Park 1, 2670 Måløv, Denmark; (L.T.); (M.K.G.); (R.E.K.)
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Angie Bookout
- Global Obesity and Liver Disease Research, Global Drug Discovery, Novo Nordisk Research Center, Seattle, WA 98109, USA; (A.B.); (C.M.C.)
| | - Marina Kjærgaard Gerstenberg
- Global Obesity and Liver Disease Research, Global Drug Discovery, Novo Nordisk A/S, Novo Park 1, 2670 Måløv, Denmark; (L.T.); (M.K.G.); (R.E.K.)
| | - Carlos M. Castorena
- Global Obesity and Liver Disease Research, Global Drug Discovery, Novo Nordisk Research Center, Seattle, WA 98109, USA; (A.B.); (C.M.C.)
| | - Rune Ehrenreich Kuhre
- Global Obesity and Liver Disease Research, Global Drug Discovery, Novo Nordisk A/S, Novo Park 1, 2670 Måløv, Denmark; (L.T.); (M.K.G.); (R.E.K.)
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
34
|
Liakh I, Janczy A, Pakiet A, Korczynska J, Proczko-Stepaniak M, Kaska L, Sledzinski T, Mika A. One-anastomosis gastric bypass modulates the serum levels of pro- and anti-inflammatory oxylipins, which may contribute to the resolution of inflammation. Int J Obes (Lond) 2021; 46:408-416. [PMID: 34732836 DOI: 10.1038/s41366-021-01013-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND/OBJECTIVES Oxylipins are polyunsaturated fatty acid derivatives involved in the regulation of various processes, including chronic inflammation, insulin resistance and hepatic steatosis. They can be synthesized in various tissues, including adipose tissue. There is some evidence that obesity is associated with the deregulation of serum oxylipin levels. The aim of this study was to evaluate the effect of bariatric surgery (one-anastomosis gastric bypass) on the serum levels of selected oxylipins and their fatty acid precursors and to verify the hypothesis that their changes after surgery can contribute to the resolution of inflammation. Moreover, we compared the oxylipin levels (prostaglandin E2, 13-HODE, maresin 1 and resolvin E1), fatty acids and the expression of enzymes that synthesize oxylipins in adipose tissue of lean controls and subjects with severe obesity. SUBJECTS/METHODS The study included 50 patients with severe obesity that underwent bariatric surgery and 41 subjects in lean, control group. Fatty acid content was analyzed by GC-MS, oxylipin concentrations were measured with immunoenzymatic assay kits and real-time PCR analysis was used to assess mRNA levels in adipose tissue. RESULTS Our results show increased expression of some enzymes that synthesize oxylipins in adipose tissue and alterations in the levels of oxylipins in both adipose tissue and serum of subjects with obesity. After bariatric surgery, the levels of anti-inflammatory oxylipins increased, whereas pro-inflammatory oxylipins decreased. CONCLUSIONS In patients with obesity, the metabolism of oxylipins is deregulated in adipose tissue, and their concentrations in serum are altered. Bariatric surgery modulates the serum levels of pro- and anti-inflammatory oxylipins, which may contribute to the resolution of inflammation.
Collapse
Affiliation(s)
- Ivan Liakh
- Department of Toxicology, Medical University of Gdansk, Gdansk, Poland
| | - Agata Janczy
- Department of Clinical Nutrition, Medical University of Gdansk, Gdansk, Poland
| | - Alicja Pakiet
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Justyna Korczynska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Monika Proczko-Stepaniak
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Lukasz Kaska
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
35
|
Trusov NV, Apryatin SA, Shipelin VA, Shumakova AA, Gmoshinski IV, Nikityuk DB, Tutelyan VA. Effect of Administration of Carnitine, Resveratrol, and Aromatic Amino Acids with High-Fat-High-Fructose Diet on Gene Expression in Liver of Rats: Full Transcriptome Analysis. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Yang L, Chen C, Lv B, Gao Y, Li G. Epoxyeicosatrienoic acids prevent cardiomyocytes against sepsis by A 2AR-induced activation of PI3K and PPARγ. Prostaglandins Other Lipid Mediat 2021; 157:106595. [PMID: 34597782 DOI: 10.1016/j.prostaglandins.2021.106595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/14/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
Although epoxyeicosatrienoic acids (EETs) have multiple protective effects against different diseases, whether they can improve the pathogenesis of lipopolysaccharide (LPS)-induced septic cardiac dysfunction remains unknown. We investigated the effects of EETs on the LPS-induced inflammatory response in myocardial dysfunction mice and H9c2 cardiac myocytes. Cardiac-specific CYP2J2 transgenic mice (Tr) showed improved cardiac function and reduced inflammation response after administration with LPS, while the protective effects were not observed in A2A adenosine receptor (A2AR/ADORA2A)-deficient mice (knockout/KO). In vitro, EETs prevented LPS-induced inflammation and apoptosis in the cardiomyocytes via A2AR activation. Moreover, ZM241385 (A2AR inhibitor) attenuated the cardioprotective properties of EETs. Further investigation demonstrated that A2AR signal pathway activation partly regulated phosphatidylinositol 3-kinase (PI3K) and peroxisome proliferator-activated receptor-γ (PPARγ) expression. This is the first report on EETs exerting cardioprotective effects against LPS-induced cardiomyocyte injury via A2AR activation.
Collapse
Affiliation(s)
- Lei Yang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Chen Chen
- Departments of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Bingya Lv
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Yi Gao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China.
| |
Collapse
|
37
|
Metabolomics Reveals Process of Allergic Rhinitis Patients with Single- and Double-Species Mite Subcutaneous Immunotherapy. Metabolites 2021; 11:metabo11090613. [PMID: 34564431 PMCID: PMC8471092 DOI: 10.3390/metabo11090613] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 01/08/2023] Open
Abstract
Allergen immunotherapy (AIT) is the only treatment that can change the course of allergic diseases. However, there has not been any research on metabolic reactions in relation to AIT with single or mixed allergens. In this study, patients with allergic rhinitis caused by Dermatophagoides pteronyssinus (Der p) and Dermatophagoides farinae (Der f) were treated with single-mite (Der p) and double-mite (Der p:Der f = 1:1) subcutaneous immunotherapy (SCIT), respectively. To compare the efficacy and the dynamic changes of inflammation-related single- and double-species mite subcutaneous immunotherapy (SM-SCIT and DM-SCIT), we performed visual analogue scale (VAS) score, rhinoconjunctivitis quality of life questionnaire (RQLQ) score and serum metabolomics in allergic rhinitis patients during SCIT. VAS and RQLQ score showed no significant difference in efficacy between the two treatments. A total of 57 metabolites were identified, among which downstream metabolites (5(S)-HETE (Hydroxyeicosatetraenoic acid), 8(S)-HETE, 11(S)-HETE, 15(S)-HETE and 11-hydro TXB2) in the ω-6-related arachidonic acid and linoleic acid pathway showed significant differences after approximately one year of treatment in SM-SCIT or DM-SCIT, and the changes of the above serum metabolic components were correlated with the magnitude of RQLQ improvement, respectively. Notably, 11(S)-HETE decreased more with SM-SCIT, and thus it could be used as a potential biomarker to distinguish the two treatment schemes. Both SM-SCIT and DM-SCIT have therapeutic effects on patients with allergic rhinitis, but there is no significant difference in efficacy between them. The reduction of inflammation-related metabolites proved the therapeutic effect, and potential biomarkers (arachidonic acid and its downstream metabolites) may distinguish the options of SCIT.
Collapse
|
38
|
Zhu K, Browne RW, Blair RH, Bonner MR, Tian M, Niu Z, Deng F, Farhat Z, Mu L. Changes in arachidonic acid (AA)- and linoleic acid (LA)-derived hydroxy metabolites and their interplay with inflammatory biomarkers in response to drastic changes in air pollution exposure. ENVIRONMENTAL RESEARCH 2021; 200:111401. [PMID: 34089746 PMCID: PMC11483949 DOI: 10.1016/j.envres.2021.111401] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/20/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Untargeted metabolomics analyses have indicated that fatty acids and their hydroxy derivatives may be important metabolites in the mechanism through which air pollution potentiates diseases. This study aimed to use targeted analysis to investigate how metabolites in arachidonic acid (AA) and linoleic acid (LA) pathways respond to short-term changes in air pollution exposure. We further explored how they might interact with markers of antioxidant enzymes and systemic inflammation. METHODS This study included a subset of participants (n = 53) from the Beijing Olympics Air Pollution (BoaP) study in which blood samples were collected before, during, and after the Beijing Olympics. Hydroxy fatty acids were measured by liquid chromatography/mass spectrometry (LC/MS). Native total fatty acids were measured as fatty acid methyl esters (FAMEs) using gas chromatography. A set of chemokines were measured by ELISA-based chemiluminescent assay and antioxidant enzyme activities were analyzed by kinetic enzyme assays. Changes in levels of metabolites over the three time points were examined using linear mixed-effects models, adjusting for age, sex, body mass index (BMI), and smoking status. Pearson correlation and repeated measures correlation coefficients were calculated to explore the relationships of metabolites with levels of serum chemokines and antioxidant enzymes. RESULTS 12-hydroxyeicosatetraenoic acid (12-HETE) decreased by 50.5% (95% CI: -66.5, -34.5; p < 0.0001) when air pollution dropped during the Olympics and increased by 119.4% (95% CI: 36.4, 202.3; p < 0.0001) when air pollution returned to high levels after the Olympics. In contrast, 13-hydroxyoctadecadienoic acid (13-HODE) elevated significantly (p = 0.023) during the Olympics and decreased nonsignificantly after the games (p = 0.104). Interleukin 8 (IL-8) correlated with 12-HETE (r = 0.399, BH-adjusted p = 0.004) and 13-HODE (r = 0.342, BH-adjusted p = 0.014) over the three points; it presented a positive and moderate correlation with 12-HETE during the Olympics (r = 0.583, BH-adjusted p = 0.002) and with 13-HODE before the Olympics (r = 0.543, BH-adjusted p = 0.008). CONCLUSION AA- and LA-derived hydroxy metabolites are associated with air pollution and might interact with systemic inflammation in response to air pollution exposure.
Collapse
Affiliation(s)
- Kexin Zhu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Richard W Browne
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Rachael Hageman Blair
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Matthew R Bonner
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Mingmei Tian
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Zhongzheng Niu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Furong Deng
- Department of Occupational and Environmental Health, School of Public Health, Peking University, Beijing, China
| | - Zeinab Farhat
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Lina Mu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| |
Collapse
|
39
|
Osuna-Prieto FJ, Martinez-Tellez B, Ortiz-Alvarez L, Di X, Jurado-Fasoli L, Xu H, Ceperuelo-Mallafré V, Núñez-Roa C, Kohler I, Segura-Carretero A, García-Lario JV, Gil A, Aguilera CM, Llamas-Elvira JM, Rensen PCN, Vendrell J, Ruiz JR, Fernández-Veledo S. Elevated plasma succinate levels are linked to higher cardiovascular disease risk factors in young adults. Cardiovasc Diabetol 2021; 20:151. [PMID: 34315463 PMCID: PMC8314524 DOI: 10.1186/s12933-021-01333-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Succinate is produced by both host and microbiota, with a key role in the interplay of immunity and metabolism and an emerging role as a biomarker for inflammatory and metabolic disorders in middle-aged adults. The relationship between plasma succinate levels and cardiovascular disease (CVD) risk in young adults is unknown. METHODS Cross-sectional study in 100 (65% women) individuals aged 18-25 years from the ACTIvating Brown Adipose Tissue through Exercise (ACTIBATE) study cohort. CVD risk factors, body composition, dietary intake, basal metabolic rate, and cardiorespiratory fitness were assessed by routine methods. Plasma succinate was measured with an enzyme-based assay. Brown adipose tissue (BAT) was evaluated by positron emission tomography, and circulating oxylipins were assessed by targeted metabolomics. Fecal microbiota composition was analyzed in a sub-sample. RESULTS Individuals with higher succinate levels had higher levels of visceral adipose tissue (VAT) mass (+ 42.5%), triglycerides (+ 63.9%), C-reactive protein (+ 124.2%), diastolic blood pressure (+ 5.5%), and pro-inflammatory omega-6 oxylipins than individuals with lower succinate levels. Succinate levels were also higher in metabolically unhealthy individuals than in healthy overweight/obese peers. Succinate levels were not associated with BAT volume or activity or with fecal microbiota composition and diversity. CONCLUSIONS Plasma succinate levels are linked to a specific pro-inflammatory omega-6 signature pattern and higher VAT levels, and seem to reflect the cardiovascular status of young adults.
Collapse
Affiliation(s)
- Francisco J Osuna-Prieto
- PROFITH (PROmoting FITness and Health Through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Analytical Chemistry, University of Granada, Granada, Spain
- Research and Development of Functional Food Center (CIDAF), Granada, Spain
| | - Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health Through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lourdes Ortiz-Alvarez
- PROFITH (PROmoting FITness and Health Through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Xinyu Di
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Lucas Jurado-Fasoli
- PROFITH (PROmoting FITness and Health Through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Huiwen Xu
- PROFITH (PROmoting FITness and Health Through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Victoria Ceperuelo-Mallafré
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII-Institut d ́Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Rovira i Virgili University, Tarragona, Spain
| | - Catalina Núñez-Roa
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII-Institut d ́Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
| | - Isabelle Kohler
- Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam, The Netherlands
- Center for Analytical Sciences Amsterdam, Amsterdam, The Netherlands
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, Granada, Spain
- Research and Development of Functional Food Center (CIDAF), Granada, Spain
| | | | - Angel Gil
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain
- Biohealth Research Institute in Granada (Ibs, GRANADA), Granada, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Concepción M Aguilera
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain
- Biohealth Research Institute in Granada (Ibs, GRANADA), Granada, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Jose M Llamas-Elvira
- Nuclear Medicine Service, Virgen de las Nieves University Hospital, Biohealth Research Institute in Granada (Ibs. GRANADA), Granada, Spain
| | - Patrick C N Rensen
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Joan Vendrell
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII-Institut d ́Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Rovira i Virgili University, Tarragona, Spain
| | - Jonatan R Ruiz
- PROFITH (PROmoting FITness and Health Through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.
| | - Sonia Fernández-Veledo
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII-Institut d ́Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
40
|
Effect of n-3 long-chain polyunsaturated fatty acid intake on the eicosanoid profile in individuals with obesity and overweight: a systematic review and meta-analysis of clinical trials. J Nutr Sci 2021; 10:e53. [PMID: 34367628 PMCID: PMC8327393 DOI: 10.1017/jns.2021.46] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022] Open
Abstract
Dietary n-3 polyunsaturated fatty acids (PUFAs) present beneficial effects on counteracting inflammation status, displaying a critical anti-inflammatory role and maintaining physiological homeostasis in obesity. The primary objective of this systematic review was to evaluate the effect of n-3 PUFAs intake on the eicosanoid profile of people with obesity and overweight. The search strategy on Embase, Scopus, PubMed, Web of Science, Cochrane Library, Google Scholar and ProQuest was undertaken until November 2019 and updated January 2021. The effect size of n-3 PUFAs on prostaglandins was estimated by Glass's, type 1 in a random-effect model for the meta-analysis. Seven clinical trials met the eligible criteria and a total of 610 subjects were included in this systematic review, and four of seven studies were included in meta-analysis. The intake of n-3 PUFAs promoted an overall reduction in serum pro-inflammatory eicosanoids. Additionally, n-3 PUFAs intake significantly decreased the arachidonic acid COX-derived PG eicosanoid group levels (Glass's Δ -0⋅35; CI -0⋅62, -0⋅07, I 2 31⋅48). Subgroup analyses showed a higher effect on periods up to 8 weeks (Glass's Δ -0⋅51; CI -0⋅76, -0⋅27) and doses higher than 0⋅5 g of n-3 PUFAs (Glass's Δ -0⋅46; CI -0⋅72, -0⋅27). Dietary n-3 PUFAs intake contributes to reduce pro-inflammatory eicosanoids of people with obesity and overweight. Subgroup's analysis showed that n-3 PUFAs can reduce the overall arachidonic acid COX-derived PG when adequate dose and period are matched.
Collapse
|
41
|
Pakiet A, Haliński ŁP, Rostkowska O, Kaska Ł, Proczko-Stepaniak M, Śledziński T, Mika A. The Effects of One-Anastomosis Gastric Bypass on Fatty Acids in the Serum of Patients with Morbid Obesity. Obes Surg 2021; 31:4264-4271. [PMID: 34255274 PMCID: PMC8458202 DOI: 10.1007/s11695-021-05531-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 12/22/2022]
Abstract
Purpose Obesity is associated with alterations in serum fatty acid profiles. One-anastomosis gastric bypass is a type of bariatric surgery used in the treatment of morbid obesity. The aim of this study was to establish if, between 6 and 9 months after this procedure, the fatty acid composition in the serum of patients normalizes to values similar to the healthy, lean population. Materials/Methods The study included 46 patients that underwent surgical treatment for obesity with one-anastomosis gastric bypass. The serum fatty acid composition was determined using gas chromatography-mass spectrometry. Principal component analysis was conducted to detect the differences between fatty acid profiles in patients pre- and post-surgery, and in 29 control nonobese subjects. Results Patients with morbid obesity were characterized by lowered levels of beneficial odd- and branched-chain fatty acids and polyunsaturated fatty acids. While the odd- and branched-chain fatty acid amounts normalized 6–9 months after bariatric treatment, the polyunsaturated fatty acid levels did not. Moreover, the total fatty acid profiles of patients pre- and post-bariatric surgery were still markedly different than those of lean, healthy controls. Conclusion Following one-anastomosis gastric bypass, there are some beneficial changes in serum fatty acids in treated patients, possibly due to weight loss and dietary regimen changes. However, they may be insufficient to restore the proper levels of other fatty acids, which may need to be additionally supplemented. Graphical abstract ![]()
Collapse
Affiliation(s)
- Alicja Pakiet
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-309, Gdańsk, Poland
| | - Łukasz P Haliński
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-309, Gdańsk, Poland
| | - Olga Rostkowska
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdańsk, Smoluchowskiego 17, 80-214, Gdańsk, Poland
| | - Łukasz Kaska
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdańsk, Smoluchowskiego 17, 80-214, Gdańsk, Poland
| | - Monika Proczko-Stepaniak
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdańsk, Smoluchowskiego 17, 80-214, Gdańsk, Poland
| | - Tomasz Śledziński
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdańsk, Debinki 1, 80-211, Gdańsk, Poland
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdańsk, Debinki 1, 80-211, Gdańsk, Poland.
| |
Collapse
|
42
|
Chen M, Li G, Zhang L, Ning K, Yang B, Jiang JX, Wang DE, Xu H. Primary Osteocyte Supernatants Metabolomic Profiling of Two Transgenic Mice With Connexin43 Dominant Negative Mutants. Front Endocrinol (Lausanne) 2021; 12:649994. [PMID: 34093433 PMCID: PMC8169970 DOI: 10.3389/fendo.2021.649994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Osteocytes could release some small molecules (≤ 1 kDa) through gap junctions and hemichannels to extracellular environment, such as prostaglandin E2 (PGE2), nitric oxide (NO) and adenosine triphosphate (ATP), which play key roles in transferring signals between bone cells and other tissue cells. Connexin (Cx) 43 is the most abundant connexin in osteocytes. To further discover molecules released by osteocytes through Cx43 channels and better understand the regulatory function of Cx43 channels in osteocytes, we performed non-targeted global metabolomics analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) on conditioned medium collected from osteocytes isolated from two transgenic mouse models with Cx43 dominant negative mutants driven by a 10 kb-DMP1 promoter: R76W (gap junctions are blocked, whereas hemichannels are promoted) and Δ130-136 (both gap junctions and hemichannels are blocked). The results revealed that several new categories of molecules, such as "fatty acyls" and "carboxylic acids and derivatives", could be released through osteocytic Cx43 channels. In addition, alteration of Cx43 channel function affected the release of metabolites related to inflammatory reaction and oxidative stress. Pathway analysis further showed that citric acid cycle was the most differential metabolic pathway regulated by Cx43 channels. In sum, these results isolated new potential metabolites released by osteocytes through Cx43 channels, and offered a novel perspective to understand the regulatory mechanisms of osteocytes on themselves and other cells as well.
Collapse
Affiliation(s)
- Meng Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Guobin Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Lan Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Kaiting Ning
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Baoqiang Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Dong-En Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Huiyun Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
43
|
Moon SH, Dilthey BG, Liu X, Guan S, Sims HF, Gross RW. High-fat diet activates liver iPLA 2γ generating eicosanoids that mediate metabolic stress. J Lipid Res 2021; 62:100052. [PMID: 33636162 PMCID: PMC8010217 DOI: 10.1016/j.jlr.2021.100052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
High-fat (HF) diet-induced obesity precipitates multiple metabolic disorders including insulin resistance, glucose intolerance, oxidative stress, and inflammation, resulting in the initiation of cell death programs. Previously, we demonstrated murine germline knockout of calcium-independent phospholipase A2γ (iPLA2γ) prevented HF diet-induced weight gain, attenuated insulin resistance, and decreased mitochondrial permeability transition pore (mPTP) opening leading to alterations in bioenergetics. To gain insight into the specific roles of hepatic iPLA2γ in mitochondrial function and cell death under metabolic stress, we generated a hepatocyte-specific iPLA2γ-knockout (HEPiPLA2γKO). Using this model, we compared the effects of an HF diet on wild-type versus HEPiPLA2γKO mice in eicosanoid production and mitochondrial bioenergetics. HEPiPLA2γKO mice exhibited higher glucose clearance rates than WT controls. Importantly, HF-diet induced the accumulation of 12-hydroxyeicosatetraenoic acid (12-HETE) in WT liver which was decreased in HEPiPLA2γKO. Furthermore, HF-feeding markedly increased Ca2+ sensitivity and resistance to ADP-mediated inhibition of mPTP opening in WT mice. In contrast, ablation of iPLA2γ prevented the HF-induced hypersensitivity of mPTP opening to calcium and maintained ADP-mediated resistance to mPTP opening. Respirometry revealed that ADP-stimulated mitochondrial respiration was significantly reduced by exogenous 12-HETE. Finally, HEPiPLA2γKO hepatocytes were resistant to calcium ionophore-induced lipoxygenase-mediated lactate dehydrogenase release. Collectively, these results demonstrate that an HF diet increases iPLA2γ-mediated hepatic 12-HETE production leading to mitochondrial dysfunction and hepatic cell death.
Collapse
Affiliation(s)
- Sung Ho Moon
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Beverly Gibson Dilthey
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Xinping Liu
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Shaoping Guan
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Harold F Sims
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Richard W Gross
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA; Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA; Department of Chemistry, Washington University, Saint Louis, MO, USA.
| |
Collapse
|
44
|
Rojas IY, Moyer BJ, Ringelberg CS, Wilkins OM, Pooler DB, Ness DB, Coker S, Tosteson TD, Lewis LD, Chamberlin MD, Tomlinson CR. Kynurenine-Induced Aryl Hydrocarbon Receptor Signaling in Mice Causes Body Mass Gain, Liver Steatosis, and Hyperglycemia. Obesity (Silver Spring) 2021; 29:337-349. [PMID: 33491319 PMCID: PMC10782555 DOI: 10.1002/oby.23065] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The aryl hydrocarbon receptor (AHR) plays a key role in obesity. In vitro studies revealed that the tryptophan metabolite kynurenine (Kyn) activates AHR signaling in cultured hepatocytes. The objective of this study was to determine whether Kyn activated the AHR in mice to induce obesity. METHODS Mice were fed a low-fat diet and the same diet supplemented with Kyn. Body mass, liver status, and the expression of identified relevant genes were determined. RESULTS Kyn caused mice to gain significant body mass, develop fatty liver and hyperglycemia, and increase expression levels of cytochrome P450 1B1 and stearoyl-CoA desaturase 1. The hyperglycemia was accompanied with decreased insulin levels, which may have been due to the repression of genes involved in insulin secretion. Kyn plasma concentrations and BMI were measured in female patients, and a significant association was observed between Kyn and age in patients with obesity but not in patients who were lean. CONCLUSIONS Results show that (1) Kyn or a metabolite thereof is a ligand responsible for inducing AHR-based obesity, fatty liver, and hyperglycemia in mice; (2) plasma Kyn levels increase with age in women with obesity but not in lean women; and (3) an activated AHR is necessary but not sufficient to attain obesity, a status that also requires fat in the diet.
Collapse
Affiliation(s)
- Itzel Y. Rojas
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Benjamin J. Moyer
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Carol S. Ringelberg
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Owen M. Wilkins
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Darcy B. Pooler
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
- Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Dylan B. Ness
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
- Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Shodeinde Coker
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
- Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
- Department of Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Tor D. Tosteson
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
- Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
- Department of Biomedical Data Science, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Lionel D. Lewis
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
- Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
- Department of Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Mary D. Chamberlin
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
- Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
- Department of Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Craig R. Tomlinson
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
- Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
- Department of Molecular & Systems Biology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
| |
Collapse
|
45
|
Guimarães RC, Gonçalves TT, Leiria LO. Exploiting oxidized lipids and the lipid-binding GPCRs against cardiometabolic diseases. Br J Pharmacol 2020; 178:531-549. [PMID: 33169375 DOI: 10.1111/bph.15321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022] Open
Abstract
Lipids govern vital cellular processes and drive physiological changes in response to different pathological or environmental cues. Lipid species can be roughly divided into structural and signalling lipids. The former is essential for membrane composition, while the latter are usually oxidized lipids. These mediators provide beneficial effects against cardiometabolic diseases (CMDs), including fatty-liver diseases, atherosclerosis, thrombosis, obesity, and Type 2 diabetes. For instance, several oxylipins were recently found to improve glucose homeostasis, increase insulin secretion, and inhibit platelet aggregation, while specialized pro-resolving mediators (SPMs) are able to ameliorate CMD by shaping the immune system. These lipids act mainly by stimulating GPCRs. In this review, we provide an updated and comprehensive overview of the current state of the literature on signalling lipids in the context of CMD. We also highlight the network encompassing the lipid-modifying enzymes and the lipid-binding GPCRs, as well as their interactions in health and disease.
Collapse
Affiliation(s)
| | - Tiago T Gonçalves
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Luiz O Leiria
- Obesity and Comorbidities Research Center, Campinas, Brazil.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
46
|
Chistyakov DV, Astakhova AA, Goriainov SV, Sergeeva MG. Comparison of PPAR Ligands as Modulators of Resolution of Inflammation, via Their Influence on Cytokines and Oxylipins Release in Astrocytes. Int J Mol Sci 2020; 21:ijms21249577. [PMID: 33339154 PMCID: PMC7765666 DOI: 10.3390/ijms21249577] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation is a key process of many neurodegenerative diseases and other brain disturbances, and astrocytes play an essential role in neuroinflammation. Therefore, the regulation of astrocyte responses for inflammatory stimuli, using small molecules, is a potential therapeutic strategy. We investigated the potency of peroxisome proliferator-activated receptor (PPAR) ligands to modulate the stimulating effect of lipopolysaccharide (LPS) in the primary rat astrocytes on (1) polyunsaturated fatty acid (PUFAs) derivative (oxylipins) synthesis; (2) cytokines TNFα and interleukin-10 (IL-10) release; (3) p38, JNK, ERK mitogen-activated protein kinase (MAPKs) phosphorylation. Astrocytes were exposed to LPS alone or in combination with the PPAR ligands: PPARα (fenofibrate, GW6471); PPARβ (GW501516, GSK0660); PPARγ (rosiglitazone, GW9662). We detected 28 oxylipins with mass spectrometry (UPLC-MS/MS), classified according to their metabolic pathways: cyclooxygenase (COX), cytochrome P450 monooxygenases (CYP), lipoxygenase (LOX) and PUFAs: arachidonic (AA), docosahexaenoic (DHA), eicosapentaenoic (EPA). All tested PPAR ligands decrease COX-derived oxylipins; both PPARβ ligands possessed the strongest effect. The PPARβ agonist, GW501516 is a strong inducer of pro-resolution substances, derivatives of DHA: 4-HDoHE, 11-HDoHE, 17-HDoHE. All tested PPAR ligands decreased the release of the proinflammatory cytokine, TNFα. The PPARβ agonist GW501516 and the PPARγ agonist, rosiglitazone induced the IL-10 release of the anti-inflammatory cytokine, IL-10; the cytokine index, (IL-10/TNFα) was more for GW501516. The PPARβ ligands, GW501516 and GSK0660, are also the strongest inhibitors of LPS-induced phosphorylation of p38, JNK, ERK MAPKs. Overall, our data revealed that the PPARβ ligands are a potential pro-resolution and anti-inflammatory drug for targeting glia-mediated neuroinflammation.
Collapse
Affiliation(s)
- Dmitry V. Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.A.); (M.G.S.)
- SREC PFUR, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
- Correspondence: ; Tel.: +7-49-5939-4332
| | - Alina A. Astakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.A.); (M.G.S.)
| | - Sergei V. Goriainov
- SREC PFUR, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
| | - Marina G. Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.A.); (M.G.S.)
| |
Collapse
|
47
|
Riederer M, Wallner M, Schweighofer N, Fuchs-Neuhold B, Rath A, Berghold A, Eberhard K, Groselj-Strele A, Staubmann W, Peterseil M, Waldner I, Mayr JA, Rothe M, Holasek S, Maunz S, Pail E, van der Kleyn M. Distinct maternal amino acids and oxylipins predict infant fat mass and fat-free mass indices. Arch Physiol Biochem 2020; 129:563-574. [PMID: 33283558 DOI: 10.1080/13813455.2020.1846204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Interested in maternal determinants of infant fat mass index (FMI) and fat-free mass index (FFMI), considered as predictors for later development of obesity, we analysed amino acids (AA) and oxylipins in maternal serum and breast milk (BM). FMI and FFMI were calculated in 47 term infants aged 4 months (T4). Serum AA were analysed in pregnancy (T1, T2) and 6-8 weeks postpartum (T3). At T3, AA and oxylipins were analysed in BM. Biomarker-index-associations were identified by regression analysis. Infant FMI (4.1 ± 1.31 kg/m2; MW ± SD) was predicted by T2 proline (R2 adj.: 7.6%, p = .036) and T3 BM 11-hydroxy-eicosatetraenoic-acid (11-HETE) and 13-hydroxy-docosahexaenoic-acid (13-HDHA; together:35.5% R2 adj., p < .001). Maternal peripartum antibiotics (AB) emerged as confounders (+AB: 23.5% higher FMI; p = .025). Infant FFMI (12.1 ± 1.19 kg/m2; MW ± SD) was predicted by histidine (R2 adj.: 14.5%, p < .001) and 17-HDHA (BM, R2 adj.:19.3%, p < .001), determined at T3. Confirmed in a larger cohort, the parameters could elucidate connections between maternal metabolic status, nutrition, and infant body development.
Collapse
Affiliation(s)
- Monika Riederer
- Institute of Biomedical Science, University of Applied Sciences JOANNEUM, Graz, Austria
| | - Marlies Wallner
- Institute of Dietetics and Nutrition, Health Perception Lab, University of Applied Sciences JOANNEUM, Graz, Austria
| | | | - Bianca Fuchs-Neuhold
- Institute of Dietetics and Nutrition, Health Perception Lab, University of Applied Sciences JOANNEUM, Graz, Austria
| | - Anna Rath
- Institute of Midwifery, University of Applied Sciences JOANNEUM, Graz, Austria
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Graz, Austria
| | - Katharina Eberhard
- Core Facility Computational Bioanalytics, Center for Medical Research (ZMF), Medical University of Graz, Graz, Austria
| | - Andrea Groselj-Strele
- Core Facility Computational Bioanalytics, Center for Medical Research (ZMF), Medical University of Graz, Graz, Austria
| | - Wolfgang Staubmann
- Institute of Dietetics and Nutrition, Health Perception Lab, University of Applied Sciences JOANNEUM, Graz, Austria
| | - Marie Peterseil
- Institute of Dietetics and Nutrition, Health Perception Lab, University of Applied Sciences JOANNEUM, Graz, Austria
| | - Irmgard Waldner
- Institute of Midwifery, University of Applied Sciences JOANNEUM, Graz, Austria
| | - Johannes A Mayr
- University Clinic for Pediatrics and Adolescent Medicine Salzburg, Salzburg, Austria
| | | | - Sandra Holasek
- Department of Pathophysiology, Medical University Graz, Graz, Austria
| | - Susanne Maunz
- Institute of Dietetics and Nutrition, Health Perception Lab, University of Applied Sciences JOANNEUM, Graz, Austria
| | - Elisabeth Pail
- Institute of Dietetics and Nutrition, Health Perception Lab, University of Applied Sciences JOANNEUM, Graz, Austria
| | | |
Collapse
|
48
|
Hildreth K, Kodani SD, Hammock BD, Zhao L. Cytochrome P450-derived linoleic acid metabolites EpOMEs and DiHOMEs: a review of recent studies. J Nutr Biochem 2020; 86:108484. [PMID: 32827665 PMCID: PMC7606796 DOI: 10.1016/j.jnutbio.2020.108484] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/24/2020] [Accepted: 08/13/2020] [Indexed: 12/29/2022]
Abstract
Linoleic acid (LA) is the most abundant polyunsaturated fatty acid found in the Western diet. Cytochrome P450-derived LA metabolites 9,10-epoxyoctadecenoic acid (9,10-EpOME), 12,13-epoxyoctadecenoic acid (12,13-EpOME), 9,10-dihydroxy-12Z-octadecenoic acid (9,10-DiHOME) and 12,13-dihydroxy-9Z-octadecenoic acid (12,13-DiHOME) have been studied for their association with various disease states and biological functions. Previous studies of the EpOMEs and DiHOMEs have focused on their roles in cytotoxic processes, primarily in the inhibition of the neutrophil respiratory burst. More recent research has suggested the DiHOMEs may be important lipid mediators in pain perception, altered immune response and brown adipose tissue activation by cold and exercise. The purpose of this review is to summarize the current understanding of the physiological and pathophysiological roles and modes of action of the EpOMEs and DiHOMEs in health and disease.
Collapse
Affiliation(s)
- Kelsey Hildreth
- Department of Nutrition, University of Tennessee, Knoxville, TN
| | - Sean D Kodani
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA
| | - Ling Zhao
- Department of Nutrition, University of Tennessee, Knoxville, TN.
| |
Collapse
|
49
|
Liakh I, Sledzinski T, Kaska L, Mozolewska P, Mika A. Sample Preparation Methods for Lipidomics Approaches Used in Studies of Obesity. Molecules 2020; 25:E5307. [PMID: 33203044 PMCID: PMC7696154 DOI: 10.3390/molecules25225307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity is associated with alterations in the composition and amounts of lipids. Lipids have over 1.7 million representatives. Most lipid groups differ in composition, properties and chemical structure. These small molecules control various metabolic pathways, determine the metabolism of other compounds and are substrates for the syntheses of different derivatives. Recently, lipidomics has become an important branch of medical/clinical sciences similar to proteomics and genomics. Due to the much higher lipid accumulation in obese patients and many alterations in the compositions of various groups of lipids, the methods used for sample preparations for lipidomic studies of samples from obese subjects sometimes have to be modified. Appropriate sample preparation methods allow for the identification of a wide range of analytes by advanced analytical methods, including mass spectrometry. This is especially the case in studies with obese subjects, as the amounts of some lipids are much higher, others are present in trace amounts, and obese subjects have some specific alterations of the lipid profile. As a result, it is best to use a method previously tested on samples from obese subjects. However, most of these methods can be also used in healthy, nonobese subjects or patients with other dyslipidemias. This review is an overview of sample preparation methods for analysis as one of the major critical steps in the overall analytical procedure.
Collapse
Affiliation(s)
- Ivan Liakh
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.); (P.M.)
- Department of Toxicology, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.); (P.M.)
| | - Lukasz Kaska
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland;
| | - Paulina Mozolewska
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.); (P.M.)
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.); (P.M.)
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
50
|
Zhang J, Tu M, Liu Z, Zhang G. Soluble epoxide hydrolase as a therapeutic target for obesity-induced disorders: roles of gut barrier function involved. Prostaglandins Leukot Essent Fatty Acids 2020; 162:102180. [PMID: 33038829 PMCID: PMC7669660 DOI: 10.1016/j.plefa.2020.102180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/10/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
Abstract
Emerging research supports that soluble epoxide hydrolase (sEH), an enzyme involved in eicosanoid metabolism, could be a promising target for obesity-associated disorders. The sEH enzyme is overexpressed in many tissues of obese animals. Genetic ablation or pharmacological inhibition of sEH attenuates the development of a wide range of obesity-induced disorders, including endoplasmic reticulum stress, metabolic syndrome, kidney diseases, insulin resistance, fatty liver, hepatic steatosis, inflammation, and endothelial dysfunction. Furthermore, our recent research showed that genetic ablation or inhibition of sEH attenuated obesity-induced intestinal barrier dysfunction and its resulted bacterial translocation, which is widely regarded to be a central mechanism for the pathogenesis of various obesity-induced disorders. Together, these results support that targeting sEH could be a promising strategy to reduce risks of obesity-induced disorders, at least in part through blocking obesity-induced leaky gut syndrome.
Collapse
Affiliation(s)
- Jianan Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Maolin Tu
- Department of Food Science, University of Massachusetts, Amherst, MA, United States; Department of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Zhenhua Liu
- Nutrition and Cancer Prevention Laboratory, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, United States; Vitamins and Carcinogenesis Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, United States
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, United States; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, United States.
| |
Collapse
|