1
|
Xu HJ, Su Y. Potential of Berberine for Rheumatoid Arthritis Prevention and Treatment. Chin J Integr Med 2025:10.1007/s11655-025-4217-y. [PMID: 40366564 DOI: 10.1007/s11655-025-4217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 05/15/2025]
Affiliation(s)
- Hao-Jie Xu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, 100044, China
| | - Yin Su
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, 100044, China.
- Department of Rheumatology and Immunology, Peking University People's Hospital, Qingdao, Shandong Province, 266111, China.
| |
Collapse
|
2
|
Lu T, Qiu M, Zhang Y, Song J, Han X, Ke X, Lin J, Han L, Chen Z, Tian Y, Liu Q, Zhang D. Carrageenan-xanthan gum composite gel achieves the elimination of bitterness and easy swallowability of Coptis chinensis based on electrostatic induction and interpenetrating network interaction. Int J Biol Macromol 2025; 309:142873. [PMID: 40188921 DOI: 10.1016/j.ijbiomac.2025.142873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/24/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Natural polysaccharides possess the potential function of masking bitterness due to their three-dimensional network structures. However, they also have relatively high mechanical strength, which is not conducive to swallowing. Taking Coptis chinensis as an example, this study developed a composite gel composed of 0.17 % iota-carrageenan, 0.13 % lambda-carrageenan and 0.17 % xanthan gum. This composite gel can eliminate the bitterness and achieve good swallowability. Compared with the Coptis chinensis decoction, the bitterness of this gel is reduced by 60 %. Its hardness and crispness are only 1 % and 0.7 % of those of iota-carrageenan used alone. In addition, 60 % of the berberine in the composite gel can be released in artificial gastric juice within 10 min, and it has no significant impact on the hypoglycemic effects of Coptis chinensis. Further mechanism studies revealed that the sulfate group of iota-carrageenan disperses the electron cloud density of the bitter group of alkaloids through electrostatic induction, thus realizing the masking of bitterness. Meanwhile, the formation of an interpenetrating network structure between xanthan gum and carrageenan improves the swallowability. This study has developed a Coptis chinensis composite gel with excellent taste and easy swallowability, providing evidence for expanding the new applications of polysaccharides in masking taste.
Collapse
Affiliation(s)
- Tai Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Min Qiu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yifan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiao Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xue Han
- Chengdu Medical College, Chengdu 610500, China
| | - Xiumei Ke
- College of Pharmacy, Chongqing Medical University, 400016, China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhencai Chen
- Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yin Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Qian Liu
- Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Tianfu TCM Innovation Harbour, Chengdu University of Traditional Chinese Medicine, Chengdu 611930, China.
| |
Collapse
|
3
|
Kong Y, Yang H, Nie R, Zhang X, Zuo F, Zhang H, Nian X. Obesity: pathophysiology and therapeutic interventions. MOLECULAR BIOMEDICINE 2025; 6:25. [PMID: 40278960 PMCID: PMC12031720 DOI: 10.1186/s43556-025-00264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/15/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Over the past few decades, obesity has transitioned from a localized health concern to a pressing global public health crisis affecting over 650 million adults globally, as documented by WHO epidemiological surveys. As a chronic metabolic disorder characterized by pathological adipose tissue expansion, chronic inflammation, and neuroendocrine dysregulation that disrupts systemic homeostasis and impairs physiological functions, obesity is rarely an isolated condition; rather, it is frequently complicated by severe comorbidities that collectively elevate mortality risks. Despite advances in nutritional science and public health initiatives, sustained weight management success rates and prevention in obesity remain limited, underscoring its recognition as a multifactorial disease influenced by genetic, environmental, and behavioral determinants. Notably, the escalating prevalence of obesity and its earlier onset in younger populations have intensified the urgency to develop novel therapeutic agents that simultaneously ensure efficacy and safety. This review aims to elucidate the pathophysiological mechanisms underlying obesity, analyze its major complications-including type 2 diabetes mellitus (T2DM), cardiovascular diseases (CVD), non-alcoholic fatty liver disease (NAFLD), obesity-related respiratory disorders, obesity-related nephropathy (ORN), musculoskeletal impairments, malignancies, and psychological comorbidities-and critically evaluate current anti-obesity strategies. Particular emphasis is placed on emerging pharmacological interventions, exemplified by plant-derived natural compounds such as berberine (BBR), with a focus on their molecular mechanisms, clinical efficacy, and therapeutic advantages. By integrating mechanistic insights with clinical evidence, this review seeks to provide innovative perspectives for developing safe, accessible, and effective obesity treatments.
Collapse
Affiliation(s)
- Yue Kong
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | | | - Rong Nie
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuxiang Zhang
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fan Zuo
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | | | - Xin Nian
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
4
|
Xu H, Feng R, Ye M, Hu J, Lu J, Wang J, Zuo H, Zhao Y, Song J, Jiang J, Zhou Y, Wang Y. Multiple Enzymes Expressed by the Gut Microbiota Can Transform Typhaneoside and Are Associated with Improving Hyperlipidemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411770. [PMID: 39840606 PMCID: PMC11904961 DOI: 10.1002/advs.202411770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/10/2024] [Indexed: 01/23/2025]
Abstract
The mechanism of multiple enzymes mediated drug metabolism in gut microbiota is still unclear. This study explores multiple enzyme interaction process of typhactyloside (TYP) with gut microbiota and its lipid-lowering pharmacological activity. TYP, with bioavailability of only 2.78%, is an active component of Typha angustifolia L. and Pushen capsules which is clinically treated for hyperlipidemia. The metabolic process of TYP is identified, and key enzymes involved in TYP metabolism are validated through gene knockout and overexpression techniques. Through overexpressing α-rhamnosidase (Rha) in Escherichia coli, TYP is verified to metabolize into isorhamnetin-3-O-neohesperidin (M1) and isorhamnetin-3-O-glucoside (M2) after removing rhamnose through Rha. Besides, knockout of β-glucosidase (Glu) confirms that TYP generates M3 through Glu after removing glucose. Combined with molecular docking, M3 is transformed to generate 3,4-dihydroxyphenylacetic acid (M4), protocatechuic acid (M5), and 3-hydroxyphenylacetic acid (M6) through flavonoid reductase (Flr) and chalcone isomerase (Chi). In conclusion, multiple enzymes involved in TYP metabolism (Rha/Glu→Flr→Chi) are identified. Through in vivo experiments, combined use of M3 and M5 also shows excellent anti-hyperlipidemia efficacy. This is the first study on complex metabolism mechanism and pharmacological activity of natural flavonoids mediated by multiple enzymes, which provide insight to investigate analogous natural products.
Collapse
Affiliation(s)
- Hui Xu
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Ru Feng
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Meng‐Liang Ye
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Jia‐Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Jin‐Yue Lu
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Jing‐Yue Wang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Heng‐Tong Zuo
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Yi Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Jian‐Ye Song
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Jian‐Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Yun‐Zhi Zhou
- Emergency General HospitalNational Research Center for Emergency MedicineBeijing100028China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| |
Collapse
|
5
|
Gao C, Wang H, Xue X, Qi L, Lin Y, Wang L. The Potential Role of Intestinal Microbiota on the Intestine-Protective and Lipid-Lowering Effects of Berberine in Zebrafish ( Danio rerio) Under High-Lipid Stress. Metabolites 2025; 15:118. [PMID: 39997743 PMCID: PMC11857631 DOI: 10.3390/metabo15020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/24/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Berberine has extremely low oral bioavailability, but shows a potent lipid-lowering effect, indicating its potential role in regulating intestinal microbiota, which has not been investigated. Methods: In the present study, five experimental diets, a control diet (Con), a high-lipid diet (HL), and high-lipid·diets·supplemented with an antibiotic cocktail (HLA), berberine (HLB), or both (HLAB) were fed to zebrafish (Danio rerio) for 30 days. Results: The HLB group showed significantly greater weight gain and feed intake than the HLA and other groups, respectively (p < 0.05). Hepatic triglyceride (TG) and total cholesterol (TC) levels, lipogenesis, and proinflammatory cytokine gene expression were significantly upregulated by the high-lipid diet, but significantly downregulated by berberine supplementation. Conversely, the expression levels of intestinal and/or hepatic farnesoid X receptor (fxr), Takeda G protein-coupled receptor 5 (tgr5), lipolysis genes, and zonula occludens 1 (zo1) exhibited the opposite trend. Compared with the HLB group, the HLAB group displayed significantly greater hepatic TG content and proinflammatory cytokine expression, but significantly lower intestinal bile salt hydrolase (BSH) activity and intestinal and/or hepatic fxr and tgr5 expression levels. The HL treatment decreased the abundance of certain probiotic bacteria (e.g., Microbacterium, Cetobacterium, and Gemmobacter) and significantly increased the pathways involved in cytochrome P450, p53 signaling, and ATP-binding cassette (ABC) transporters. The HLB group increased some probiotic bacteria abundance, particularly BSH-producing bacteria (e.g., Escherichia Shigella). Compared with the HLB group, the abundance of BSH-producing bacteria (e.g., Bifidobacterium and Enterococcus) and pathways related to Notch signaling and Wnt signaling were reduced in the HLAB group. Conclusions: This study revealed that berberine's lipid-lowering and intestine-protective effects are closely related to the intestinal microbiota, especially BSH-producing bacteria.
Collapse
Affiliation(s)
- Chang Gao
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; (C.G.); (H.W.); (X.X.); (L.Q.)
| | - Heng Wang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; (C.G.); (H.W.); (X.X.); (L.Q.)
| | - Xuan Xue
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; (C.G.); (H.W.); (X.X.); (L.Q.)
| | - Lishun Qi
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; (C.G.); (H.W.); (X.X.); (L.Q.)
| | - Yanfeng Lin
- Fishery Bureau of Xiuning County, Huangshan 245400, China
| | - Lei Wang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; (C.G.); (H.W.); (X.X.); (L.Q.)
- Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu 241002, China
| |
Collapse
|
6
|
Shou J, Ma J, Wang X, Li X, Chen S, Kang B, Shaw P. Free Cholesterol-Induced Liver Injury in Non-Alcoholic Fatty Liver Disease: Mechanisms and a Therapeutic Intervention Using Dihydrotanshinone I. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406191. [PMID: 39558866 PMCID: PMC11727260 DOI: 10.1002/advs.202406191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Indexed: 11/20/2024]
Abstract
Build-up of free cholesterol (FC) substantially contributes to the development and severity of non-alcoholic fatty liver disease (NAFLD). Here, we investigate the specific mechanism by which FC induces liver injury in NAFLD and propose a novel therapeutic approach using dihydrotanshinone I (DhT). Rather than cholesterol ester (CE), we observed elevated levels of total cholesterol, FC, and alanine transaminase (ALT) in NAFLD patients and high-cholesterol diet-induced NAFLD mice compared to those in healthy controls. The FC level demonstrated a positive correlation with the ALT level in both patients and mice. Mechanistic studies revealed that FC elevated reactive oxygen species level, impaired the function of lysosomes, and disrupted lipophagy process, consequently inducing cell apoptosis. We then found that DhT protected mice on an HCD diet, independent of gut microbiota. DhT functioned as a potent ligand for peroxisome proliferator-activated receptor α (PPARα), stimulating its transcriptional function and enhancing catalase expression to lower reactive oxygen species (ROS) level. Notably, the protective effect of DhT was nullified in mice with hepatic PPARα knockdown. Thus, these findings are the first to report the detrimental role of FC in NAFLD, which could lead to the development of new treatment strategies for NAFLD by leveraging the therapeutic potential of DhT and PPARα pathway.
Collapse
Affiliation(s)
- Jia‐Wen Shou
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese MedicineThe Chinese University of Hong KongHong Kong852852China
| | - Juncai Ma
- Centre for Cell and Developmental BiologyState Key Laboratory for AgrobiotechnologySchool of Life SciencesThe Chinese University of Hong KongHong Kong852852China
| | - Xuchu Wang
- Department of Laboratory Medicinethe Second Affiliated Hospital of Zhejiang UniversityHangzhou310000China
| | - Xiao‐Xiao Li
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese MedicineThe Chinese University of Hong KongHong Kong852852China
- Research Center for Chinese Medicine InnovationThe Hong Kong Polytechnic UniversityHong Kong852852China
| | - Shu‐Cheng Chen
- School of NursingThe Hong Kong Polytechnic UniversityHong Kong852852China
| | - Byung‐Ho Kang
- Centre for Cell and Developmental BiologyState Key Laboratory for AgrobiotechnologySchool of Life SciencesThe Chinese University of Hong KongHong Kong852852China
| | - Pang‐Chui Shaw
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese MedicineThe Chinese University of Hong KongHong Kong852852China
- School of Life SciencesThe Chinese University of Hong KongHong Kong852852China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants and Institute of Chinese MedicineThe Chinese University of Hong KongHong Kong852852China
| |
Collapse
|
7
|
Huang X, Geng H, Liang C, Xiong X, Du X, Zhuan Q, Liu Z, Meng L, Zhou D, Zhang L, Fu X, Qi X, Hou Y. Leonurine restrains granulosa cell ferroptosis through SLC7A11/GPX4 axis to promote the treatment of polycystic ovary syndrome. Free Radic Biol Med 2025; 226:330-347. [PMID: 39547522 DOI: 10.1016/j.freeradbiomed.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder marked by ovarian dysfunction and metabolic abnormality. This study explores the therapeutic potential of leonurine (SCM-198) in PCOS. Our results show that SCM-198 treatment significantly improved ovarian function, hormone disorders and insulin resistance while reducing granulosa cell ferroptosis. This study provides the first evidence that SCM-198 modulates the gut microbiota composition, increases the abundance of Christensenella minuta, and boosts butyrate levels. Transcriptomic and metabolomic analyses revealed that PCOS patients exhibit granulosa cell ferroptosis and decreased butyrate levels in follicular fluid. Butyrate was shown to alleviate ferroptosis in granulosa cells via the SLC7A11/TXNRD1/GPX4 pathway, as confirmed in vitro with KGN cells. The therapeutic mechanism of SCM-198 in the management of PCOS via the gut microbiota-ovary axis involves the enhancement of gut microbiota and its metabolites. This intervention improves ovarian function and alleviates PCOS symptoms by targeting ferroptosis in granulosa cells.
Collapse
Affiliation(s)
- Xiaohan Huang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hucheng Geng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chunxiao Liang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xianglei Xiong
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Xingzhu Du
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qingrui Zhuan
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhiqiang Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lin Meng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dan Zhou
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Luyao Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xinyu Qi
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
| | - Yunpeng Hou
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
8
|
Joshi DD, Deb L, Kaul K, Somkuwar BG, Rana VS, Singh R. Relevance of Indian Traditional Herbal Brews for Gut Microbiota Balance. Indian J Microbiol 2024; 64:1425-1444. [PMID: 39678955 PMCID: PMC11645388 DOI: 10.1007/s12088-024-01251-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/02/2024] [Indexed: 12/17/2024] Open
Abstract
The considerable changes in lifestyle patterns primarily affect the human gut microbiota and result in obesity, diabetes, dyslipidemia, renal complications, etc. though there are few traditional safeguards such as herbal brews to maintain the ecological stability under intestinal dysbiosis. The present article is designed to collect all the scientific facts in a place to decipher the role of the Indian traditional herbal brews used to balance gut health for centuries. Computerized databases, commercial search engines, research papers, articles, and books were used to search by using different keywords to select the most appropriate published articles from 2000 onward to September 2023. A total of 1907 articles were scrutinized, 46 articles were finally selected from the 254 screened, and targeted information was compiled. Interaction of herbal brews to the gut microflora and resulting metabolites act as prebiotics due to antimicrobial, anti-inflammatory, and antioxidant properties, and modulate the pH of the gut. The effect of brews on gut microbiota has a drastic impact on various gut-related diseases and has gained popularity as an alternative to antibiotics against bacteria, fungi, viruses, parasites, and boosting the immune system and strengthening the intestinal barrier. Berberine, kaempferol, piperine, and quercetin have been found in more than one brew discussed in the present article. Practically, these brews balance the gut microbiota, prevent chronic and degenerative diseases, and reduce organ inflammation, though, there is a knowledge gap on the molecular mechanism to explain their efficacy. Indian traditional herbal brews used to reboot and heal the gut microbiota since centuries-old practice with successful history without toxicity. The systematic consumption of these brews under specific dietary prescriptions has a hope of arrays for a healthy human gut microbiome in the present hasty lifestyle with overall health and well-being. Graphical Abstract
Collapse
Affiliation(s)
- Devi Datt Joshi
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida, Sector-125, J-1 Block, Noida, UP 201313 India
| | - Lokesh Deb
- Institute of Bioresources and Sustainable Development (IBSD)-Regional Centre, Sikkim, 5th Mile, Tadong, Gangtok, Sikkim 737102 India
| | - Kanak Kaul
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Sector-125, E-2 Block, Noida, UP 201313 India
| | - Bharat G. Somkuwar
- Institute of Bioresources and Sustainable Development (IBSD), Node Mizoram, A-1, C/O P. Lalthangzauva Building, Chawnga Road, Nursery Veng, Aizawl, Mizoram 796005 India
| | - Virendra Singh Rana
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute (IARI), Pusa Campus, New Delhi, 110 012 India
| | - Rajni Singh
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Sector-125, E-2 Block, Noida, UP 201313 India
| |
Collapse
|
9
|
Yao L, Yang Y, Yang X, Rezaei MJ. The Interaction Between Nutraceuticals and Gut Microbiota: a Novel Therapeutic Approach to Prevent and Treatment Parkinson's Disease. Mol Neurobiol 2024; 61:9078-9109. [PMID: 38587699 DOI: 10.1007/s12035-024-04151-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons, leading to motor and non-motor symptoms. Emerging research has shed light on the role of gut microbiota in the pathogenesis and progression of PD. Nutraceuticals such as curcumin, berberine, phytoestrogens, polyphenols (e.g., resveratrol, EGCG, and fisetin), dietary fibers have been shown to influence gut microbiota composition and function, restoring microbial balance and enhancing the gut-brain axis. The mechanisms underlying these benefits involve microbial metabolite production, restoration of gut barrier integrity, and modulation of neuroinflammatory pathways. Additionally, probiotics and prebiotics have shown potential in promoting gut health, influencing the gut microbiome, and alleviating PD symptoms. They can enhance the gut's antioxidant capacity of the gut, reduce inflammation, and maintain immune homeostasis, contributing to a neuroprotective environment. This paper provides an overview of the current state of knowledge regarding the potential of nutraceuticals and gut microbiota modulation in the prevention and management of Parkinson's disease, emphasizing the need for further research and clinical trials to validate their effectiveness and safety. The findings suggest that a multifaceted approach involving nutraceuticals and gut microbiota may open new avenues for addressing the challenges of PD and improving the quality of life for affected individuals.
Collapse
Affiliation(s)
- Liyan Yao
- School of Public Health, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yong Yang
- School of Public Health, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xiaowei Yang
- School of Public Health, Mudanjiang Medical University, Mudanjiang, 157011, China.
| | - Mohammad J Rezaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Wu C, Yang J, Ye C, Wu H, Shu W, Li R, Wang S, Lu Y, Chen H, Zhang Z, Yao Q. Berberine attenuates 5-fluorouracil-induced intestinal mucosal injury by modulating the gut microbiota without compromising its anti-tumor efficacy. Heliyon 2024; 10:e34528. [PMID: 39114045 PMCID: PMC11305238 DOI: 10.1016/j.heliyon.2024.e34528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Background 5-Fluorouracil (5-Fu), a prominent chemotherapeutic agent for colorectal cancer (CRC) treatment, is often associated with gastrointestinal toxicities, particularly diarrhea. Our previous study demonstrated that berberine (BBR) ameliorates 5-Fu-induced intestinal mucosal injury by modulating the gut microbiota in rats. Nevertheless, the precise molecular mechanism underlying BBR's protective effect on intestinal mucosa remains elusive, and its impact on the anti-tumor efficacy of 5-Fu warrants further investigation. Methods The effect of BBR on 5-Fu-induced intestinal mucosal injury was investigated using a tumor-bearing murine model, employing H&E staining, 16 S rDNA sequencing, transcriptome sequencing, Western blot analysis, cell experiments and constructing a pseudo-germ-free tumor xenograft model. Result Our findings demonstrate that BBR alleviates intestinal mucosal damage, reduces the levels of inflammatory factors (IL-6, TNF-α, and IL-1β), and inhibits epithelial cell apoptosis in 5-Fu-treated mice without compromising 5-Fu's anti-tumor efficacy. Moreover, 16 S rDNA sequencing indicated that BBR significantly increases the abundance of Akkermansia and decreases the abundance of pathogenic bacteria Escherichia/Shigella at the genus level. Mechanistically, transcriptome sequencing and Western blot analysis confirmed that BBR upregulates PI3K/AKT/mTOR expression in the intestinal mucosa. However, this effect was not observed in tumor tissues. Notably, BBR did not demonstrate a direct protective effect on 5-Fu-treated CCD841 and SW480 cells. Additionally, BBR had no effect on the PI3K/AKT/mTOR pathway in the intestinal tissue of the 5-Fu-treated mouse model with a depleted gut microbiota. Conclusion This study indicates that BBR alleviates 5-Fu-induced intestinal mucosal injury by modulating the gut microbiota and regulating the PI3K/AKT/mTOR signaling pathway without compromising the anti-tumor efficacy of 5-Fu.
Collapse
Affiliation(s)
- Changhong Wu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jie Yang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chenxiao Ye
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hui Wu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Wenxi Shu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Rongrong Li
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310012, China
| | - Sihan Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Lu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Department of Clinical Nutrition, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Haitao Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Integrated Traditional Chinese and Western Medicine Oncology Laboratory, Key Laboratory of Traditional Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, 310022, China
| | - Zewei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
| | - Qinghua Yao
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310005, China
| |
Collapse
|
11
|
Zhou Y, Zhang D, Cheng H, Wu J, Liu J, Feng W, Peng C. Repairing gut barrier by traditional Chinese medicine: roles of gut microbiota. Front Cell Infect Microbiol 2024; 14:1389925. [PMID: 39027133 PMCID: PMC11254640 DOI: 10.3389/fcimb.2024.1389925] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Gut barrier is not only part of the digestive organ but also an important immunological organ for the hosts. The disruption of gut barrier can lead to various diseases such as obesity and colitis. In recent years, traditional Chinese medicine (TCM) has gained much attention for its rich clinical experiences enriched in thousands of years. After orally taken, TCM can interplay with gut microbiota. On one hand, TCM can modulate the composition and function of gut microbiota. On the other hand, gut microbiota can transform TCM compounds. The gut microbiota metabolites produced during the actions of these interplays exert noticeable pharmacological effects on the host especially gut barrier. Recently, a large number of studies have investigated the repairing and fortifying effects of TCM on gut barriers from the perspective of gut microbiota and its metabolites. However, no review has summarized the mechanism behand this beneficiary effects of TCM. In this review, we first briefly introduce the unique structure and specific function of gut barrier. Then, we summarize the interactions and relationship amidst gut microbiota, gut microbiota metabolites and TCM. Further, we summarize the regulative effects and mechanisms of TCM on gut barrier including physical barrier, chemical barrier, immunological barrier, and microbial barrier. At last, we discuss the effects of TCM on diseases that are associated gut barrier destruction such as ulcerative colitis and type 2 diabetes. Our review can provide insights into TCM, gut barrier and gut microbiota.
Collapse
Affiliation(s)
- Yaochuan Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlu Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Yang H, Liu Q, Liu H, Kang X, Tian H, Kang Y, Li L, Yang X, Ren P, Kuang X, Wang X, Guo L, Tong M, Ma J, Fan W. Berberine alleviates concanavalin A-induced autoimmune hepatitis in mice by modulating the gut microbiota. Hepatol Commun 2024; 8:e0381. [PMID: 38466881 PMCID: PMC10932532 DOI: 10.1097/hc9.0000000000000381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/14/2023] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Autoimmune hepatitis (AIH) is an immune-mediated liver disease of unknown etiology accompanied by intestinal dysbiosis and a damaged intestinal barrier. Berberine (BBR) is a traditional antibacterial medicine that has a variety of pharmacological properties. It has been reported that BBR alleviates AIH, but relevant mechanisms remain to be fully explored. METHODS BBR was orally administered at doses of 100 mg⋅kg-1⋅d-1 for 7 days to mice before concanavalin A-induced AIH model establishment. Histopathological, immunohistochemical, immunofluorescence, western blotting, ELISA, 16S rRNA analysis, flow cytometry, real-time quantitative PCR, and fecal microbiota transplantation studies were performed to ascertain BBR effects and mechanisms in AIH mice. RESULTS We found that liver necrosis and apoptosis were decreased upon BBR administration; the levels of serum transaminase, serum lipopolysaccharide, liver proinflammatory factors TNF-α, interferon-γ, IL-1β, and IL-17A, and the proportion of Th17 cells in spleen cells were all reduced, while the anti-inflammatory factor IL-10 and regulatory T cell proportions were increased. Moreover, BBR treatment increased beneficial and reduced harmful bacteria in the gut. BBR also strengthened ileal barrier function by increasing the expression of the tight junction proteins zonula occludens-1 and occludin, thereby blocking lipopolysaccharide translocation, preventing lipopolysaccharide/toll-like receptor 4 (TLR4)/ NF-κB pathway activation, and inhibiting inflammatory factor production in the liver. Fecal microbiota transplantation from BBR to model mice also showed that BBR potentially alleviated AIH by altering the gut microbiota. CONCLUSIONS BBR alleviated concanavalin A-induced AIH by modulating the gut microbiota and related immune regulation. These results shed more light on potential BBR therapeutic strategies for AIH.
Collapse
Affiliation(s)
- Hao Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, China
| | - Qingqing Liu
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, China
| | - Haixia Liu
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, China
| | - Xing Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, China
| | - Haixia Tian
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, China
| | - Yongbo Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan, China
| | - Lin Li
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan, China
| | - Xiaodan Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, China
| | - Peng Ren
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, China
| | - Xiaoyu Kuang
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, China
| | - Xiaohui Wang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan, China
- Laboratory of Morphology, Shanxi Medical University, Jinzhong 030619, China
| | - Linzhi Guo
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan, China
- Laboratory of Morphology, Shanxi Medical University, Jinzhong 030619, China
| | - Mingwei Tong
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan, China
| | - Jieqiong Ma
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan, China
| | - Weiping Fan
- Department of Microbiology and Immunology, Shanxi Medical University, Jinzhong, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan, China
| |
Collapse
|
13
|
Dural AŞ, Ergün C, Urhan M. Investigation of the Relationship Between Serum Low-Density Lipoprotein Cholesterol Levels with Genetic Polymorphisms, Gut Microbiota, and Nutrition. Metab Syndr Relat Disord 2024; 22:133-140. [PMID: 37971853 DOI: 10.1089/met.2023.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Background: To prevent cardiovascular disease (CVD), it is important to determine the factors that are associated with its development. High serum low-density lipoprotein (LDL) cholesterol (LDL-C) levels are a modifiable prevention and treatment target known to contribute to the development of CVD, but the factors affecting blood cholesterol levels, including LDL-C, remain controversial. Objective: In this study, the factors (genetic, nutritional, and gut microbiota) thought to be effective on serum LDL-C levels were discussed from a holistic perspective, and the effects of the relationship between these factors on LDL-C levels were examined. Methods: The study was carried out with 609 adults (48% male) who applied to a private health institution between 2016 and 2022. Results: It was observed that serum LDL-C levels were positively correlated with body mass index (BMI) (P = 0.000) and different ApoE alleles had significant effects on LDL-C levels. It was observed that the highest LDL-C levels were in the ɛ4+ group, followed by ɛ3+ and ɛ2+ groups, respectively (P = 0.000). Results showed that dietary cholesterol and fiber consumption did not significantly affect serum LDL-C levels (P = 0.705 and P = 0.722, respectively). It was also observed that enterotypes and the butyrate synthesis potential of intestinal microbiota did not cause significant changes in serum LDL-C levels (P = 0.369 and P = 975, respectively). Conclusion: Serum LDL-C levels are affected by modifiable factors such as BMI and nonmodifiable factors such as APOE genotype. By identifying these factors and conducting further studies on them, new ways to improve serum LDL-C levels, which is an important factor in the development of CVD, can be identified. In addition, no significant effect of gene-nutrient or microbiota-nutrient interactions on serum LDL-C levels was detected. Further research is needed, especially on the relationship between intestinal microbiota and serum LDL levels.
Collapse
Affiliation(s)
- Asu Şevval Dural
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bahçeşehir University, İstanbul, Turkey
| | - Can Ergün
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bahçeşehir University, İstanbul, Turkey
| | - Murat Urhan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ege University, Karşıyaka, Turkey
| |
Collapse
|
14
|
Huang H, Zhao H, Wenqing L, Xu F, Wang X, Yao Y, Huang Y. Prospect of research on anti-atherosclerosis effect of main components of traditional Chinese medicine Yiqi Huoxue Huatan recipe through gut microbiota: A review. Medicine (Baltimore) 2024; 103:e37104. [PMID: 38306512 PMCID: PMC10843552 DOI: 10.1097/md.0000000000037104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024] Open
Abstract
The incidence and mortality rates of cardiovascular diseases are on the rise globally, posing a severe threat to human health. Atherosclerosis (AS) is considered a multi-factorial inflammatory disease and the main pathological basis of cardiovascular and cerebrovascular diseases, as well as the leading cause of death. Dysbiosis of the gut microbiota can induce and exacerbate inflammatory reactions, accelerate metabolic disorders and immune function decline, and affect the progression and prognosis of AS-related diseases. The Chinese herbal medicine clinicians frequently utilize Yiqi Huoxue Huatan recipe, an effective therapeutic approach for the management of AS. This article reviews the correlation between the main components of Yiqi Huoxue Huatan recipe and the gut microbiota and AS to provide new directions and a theoretical basis for the prevention and treatment of AS.
Collapse
Affiliation(s)
- Hongtao Huang
- Department of Cardiology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, China
| | - Hanjun Zhao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lv Wenqing
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feiyue Xu
- Shanghai Pudong New District Pudong Hospital, Shanghai, China
| | - Xiaolong Wang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yili Yao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Huang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
15
|
Zhang Q, Wang S, Yin M, Li Z, Bi S, Yin Z, Song L, Xu Y, Xu W, Wang P, Shi B. Clinical Study on the Treatment of Non-isotropic Cervical Spondylosis by Neck Pain Granules Combined with Tuina. Comb Chem High Throughput Screen 2024; 27:2295-2300. [PMID: 38013444 DOI: 10.2174/0113862073264710231107051811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/03/2023] [Accepted: 10/04/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Cervical spondylotic radiculopathy is a common form of cervical spondylosis caused by degeneration of the cervical spine. Currently, non-surgical treatment is the preferred treatment method, and Chinese medicine is widely used. OBJECTIVE To investigate the effect of radiculopathy spondylosis by tuina spinning and lifting technique. METHODS Experimental Design: We conducted a 12-week, open-label, analyst-blinded, randomized clinical trial (2 weeks of intervention plus 10 weeks of observational follow-up). A total of 25 patients with radiculopathy were collected, and data was analyzed during the treatment and recovery period. INTERVENTIONS Neck pain granules group: a package of oral neck pain granules after meals, three times a day, treatment for 2 weeks; neck pain granules combined with massage lifting technique, treatment group: use, massage lifting technique treatment, once every two days, normal take neck pain granules, treatment for 2 weeks. All cases were followed up for 2.5 months. Main Monitoring Indicators: Visual Analog Scale, Neck Dysfunction Index score, and Tanaka jiu (Tanaka Yasuhisa Cervical Spondylosis Symptom Scale) were recorded on time, and statistical statistics were made. RESULT The scores of VAS and NDI were significantly more effective in the neck pain granules combined with the tuina group than in the neck pain granules group, while the Tanaka Yasuhisa Cervical Spondylosis Symptom Scale was not significantly different between the two groups. CONCLUSION The treatment effect of neck pain granules combined with tuina was significantly better than that of traditional Chinese medicine alone.
Collapse
Affiliation(s)
- Qinghao Zhang
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Shiguan Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Meng Yin
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Ziteng Li
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shihao Bi
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zuozhen Yin
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Litao Song
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yuntai Xu
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenchang Xu
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ping Wang
- Orthopedics Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Shi
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
16
|
Li H, Wang XK, Tang M, Lei L, Li JR, Sun H, Jiang J, Dong B, Li HY, Jiang JD, Peng ZG. Bacteroides thetaiotaomicron ameliorates mouse hepatic steatosis through regulating gut microbial composition, gut-liver folate and unsaturated fatty acids metabolism. Gut Microbes 2024; 16:2304159. [PMID: 38277137 PMCID: PMC10824146 DOI: 10.1080/19490976.2024.2304159] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
Gut microbiota plays an essential role in the progression of nonalcoholic fatty liver disease (NAFLD), making the gut-liver axis a potential therapeutic strategy. Bacteroides genus, the enriched gut symbionts, has shown promise in treating fatty liver. However, further investigation is needed to identify specific beneficial Bacteroides strains for metabolic disorders in NAFLD and elucidate their underlying mechanisms. In this study, we observed a positive correlation between the abundance of Bacteroides thetaiotaomicron (B. theta) and the alleviation of metabolic syndrome in the early and end stages of NAFLD. Administration of B. theta to HFD-fed mice for 12 weeks reduced body weight and fat accumulation, decreased hyperlipidemia and insulin resistance, and prevented hepatic steatohepatitis and liver injury. Notably, B. theta did not affect these indicators in low-fat diet (LFD)-fed mice and exhibited good safety. Mechanistically, B. theta regulated gut microbial composition, characterized by a decreased Firmicutes/Bacteroidetes ratio in HFD-Fed mice. It also increased gut-liver folate levels and hepatic metabolites, alleviating metabolic dysfunction. Additionally, treatment with B. theta increased the proportion of polyunsaturated fatty acid in the mouse liver, offering a widely reported benefit for NAFLD improvement. In conclusion, this study provides evidence that B. theta ameliorates NAFLD by regulating gut microbial composition, enhancing gut-liver folate and unsaturated fatty acid metabolism, highlighting the therapeutic role of B. theta as a potential probiotic for NAFLD.
Collapse
Affiliation(s)
- Hu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xue-Kai Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mei Tang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lei Lei
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jian-Rui Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Han Sun
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jing Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Biao Dong
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hong-Ying Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jian-Dong Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zong-Gen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Cai Y, Yang Q, Yu Y, Yang F, Bai R, Fan X. Efficacy and underlying mechanisms of berberine against lipid metabolic diseases: a review. Front Pharmacol 2023; 14:1283784. [PMID: 38034996 PMCID: PMC10684937 DOI: 10.3389/fphar.2023.1283784] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
Lipid-lowering therapy is an important tool for the treatment of lipid metabolic diseases, which are increasing in prevalence. However, the failure of conventional lipid-lowering drugs to achieve the desired efficacy in some patients, and the side-effects of these drug regimens, highlight the urgent need for novel lipid-lowering drugs. The liver and intestine are important in the production and removal of endogenous and exogenous lipids, respectively, and have an important impact on circulating lipid levels. Elevated circulating lipids predisposes an individual to lipid deposition in the vascular wall, affecting vascular function. Berberine (BBR) modulates liver lipid production and clearance by regulating cellular targets such as cluster of differentiation 36 (CD36), acetyl-CoA carboxylase (ACC), microsomal triglyceride transfer protein (MTTP), scavenger receptor class B type 1 (SR-BI), low-density lipoprotein receptor (LDLR), and ATP-binding cassette transporter A1 (ABCA1). It influences intestinal lipid synthesis and metabolism by modulating gut microbiota composition and metabolism. Finally, BBR maintains vascular function by targeting proteins such as endothelial nitric oxide synthase (eNOS) and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). This paper elucidates and summarizes the pharmacological mechanisms of berberine in lipid metabolic diseases from a multi-organ (liver, intestine, and vascular system) and multi-target perspective.
Collapse
Affiliation(s)
- Yajie Cai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaoning Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China
| | - Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Furong Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaodi Fan
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, China
| |
Collapse
|
18
|
Zhu TW, Li XL. Berberine interacts with gut microbiota and its potential therapy for polycystic ovary syndrome. Clin Exp Pharmacol Physiol 2023; 50:835-843. [PMID: 37604463 DOI: 10.1111/1440-1681.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/03/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023]
Abstract
Berberine (BBR) is an isoquinoline alkaloid extracted from Chinese medicinal plants showing a tight correlation with gut microbiota. Polycystic ovary syndrome (PCOS) is a prevalent reproductive and endocrine disorder syndrome among women of childbearing age. Dysbiosis, the imbalance of intestinal microorganisms, is a potential factor that takes part in the pathogenesis of PCOS. Recent evidence indicates that berberine offers promise for treating PCOS. Here, we review the recent research on the interaction between berberine and intestinal microorganisms, including the changes in the structure of gut bacteria, the intestinal metabolites after BBR treatment, and the effect of gut microbiota on the bioavailability of BBR. We also discuss the therapeutic effect of BBR on PCOS in terms of gut microbiota and its potential mechanisms.
Collapse
Affiliation(s)
- Ting-Wei Zhu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
- Shanghai Clinical Research Center for Gynecological Diseases (22MC1940200), Shanghai Urogenital System Diseases Research Center (2022ZZ01012), Shanghai, People's Republic of China
| | - Xue-Lian Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
- Shanghai Clinical Research Center for Gynecological Diseases (22MC1940200), Shanghai Urogenital System Diseases Research Center (2022ZZ01012), Shanghai, People's Republic of China
| |
Collapse
|
19
|
Ou BR, Hsu MH, Haung LY, Lin CJ, Kuo LL, Tsai YT, Chang YC, Lin WY, Huang TC, Wu YC, Yeh JY, Liang YC. Systematic Myostatin Expression Screening Platform for Identification and Evaluation of Myogenesis-Related Phytogenic in Pigs. Bioengineering (Basel) 2023; 10:1113. [PMID: 37892843 PMCID: PMC10604025 DOI: 10.3390/bioengineering10101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Skeletal muscle growth in livestock impacts meat quantity and quality. Concerns arise because certain feed additives, like beta-agonists, may affect food safety. Skeletal muscle is a specialized tissue consisting of nondividing and multinucleated muscle fibers. Myostatin (MSTN), a protein specific to skeletal muscle, is secreted and functions as a negative regulator of muscle mass by inhibiting the proliferation and differentiation of myoblasts. To enhance livestock muscle growth, phytogenic feed additives could be an alternative as they inhibit MSTN activity. The objective of this study was to establish a systematic screening platform using MSTN activity to evaluate phytogenics, providing scientific evidence of their assessment and potency. In this study, we established a screening platform to monitor myostatin promoter activity in rat L8 myoblasts. Extract of Glycyrrhiza uralensis (GUE), an oriental herbal medicine, was identified through this screening platform, and the active fractions of GUE were identified using a process-scale liquid column chromatography system. For in vivo study, GUE as a feed additive was investigated in growth-finishing pigs. The results showed that GUE significantly increased body weight, carcass weight, and lean content in pigs. Microbiota analysis indicated that GUE did not affect the composition of gut microbiota in pigs. In summary, this established rodent myoblast screening platform was used to identify a myogenesis-related phytogenic, GUE, and further demonstrated that the active fractions and compounds inhibited MSTN expression. These findings suggest a novel application for GUE in growth performance enhancement through modulation of MSTN expression. Moreover, this well-established screening platform holds significant potential for identifying and assessing a diverse range of phytogenics that contribute to the process of myogenesis.
Collapse
Affiliation(s)
- Bor-Rung Ou
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407, Taiwan; (B.-R.O.); (L.-Y.H.); (T.-C.H.)
| | - Ming-Hua Hsu
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan;
| | - Ling-Ya Haung
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407, Taiwan; (B.-R.O.); (L.-Y.H.); (T.-C.H.)
| | - Chuan-Ju Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-J.L.)
| | - Li-Li Kuo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-J.L.)
| | - Yu-Ting Tsai
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407, Taiwan; (B.-R.O.); (L.-Y.H.); (T.-C.H.)
| | - Yu-Chia Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-J.L.)
| | - Wen-Yuh Lin
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407, Taiwan; (B.-R.O.); (L.-Y.H.); (T.-C.H.)
| | - Tsung-Chien Huang
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407, Taiwan; (B.-R.O.); (L.-Y.H.); (T.-C.H.)
| | - Yun-Chu Wu
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407, Taiwan; (B.-R.O.); (L.-Y.H.); (T.-C.H.)
| | - Jan-Ying Yeh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413, Taiwan
| | - Yu-Chuan Liang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-J.L.)
- College of Agriculture and Health, Tunghai University, Taichung 407, Taiwan
| |
Collapse
|
20
|
Yu H, Xu H, Yang X, Zhang Z, Hu J, Lu J, Fu J, Bu M, Zhang H, Zhai Z, Wang J, Jiang J, Wang Y. Gut microbiota-based pharmacokinetic-pharmacodynamic study and molecular mechanism of specnuezhenide in the treatment of colorectal cancer targeting carboxylesterase. J Pharm Anal 2023; 13:1024-1040. [PMID: 37842660 PMCID: PMC10568112 DOI: 10.1016/j.jpha.2023.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/15/2023] [Accepted: 06/25/2023] [Indexed: 10/17/2023] Open
Abstract
Specnuezhenide (SNZ) is among the main components of Fructus Ligustri Lucidi, which has anti-inflammation, anti-oxidation, and anti-tumor effect. The low bioavailability makes it difficult to explain the mechanism of pharmacological effect of SNZ. In this study, the role of the gut microbiota in the metabolism and pharmacokinetics characteristics of SNZ as well as the pharmacological meaning were explored. SNZ can be rapidly metabolized by the gut microbiome, and two intestinal bacterial metabolites of SNZ, salidroside and tyrosol, were discovered. In addition, carboxylesterase may be the main intestinal bacterial enzyme that mediates its metabolism. At the same time, no metabolism was found in the incubation system of SNZ with liver microsomes or liver homogenate, indicating that the gut microbiota is the main part involved in the metabolism of SNZ. In addition, pharmacokinetic studies showed that salidroside and tyrosol can be detected in plasma in the presence of gut microbiota. Interestingly, tumor development was inhibited in a colorectal tumor mice model administered orally with SNZ, which indicated that SNZ exhibited potential to inhibit tumor growth, and tissue distribution studies showed that salidroside and tyrosol could be distributed in tumor tissues. At the same time, SNZ modulated the structure of gut microbiota and fungal group, which may be the mechanism governing the antitumoral activity of SNZ. Furthermore, SNZ stimulates the secretion of short-chain fatty acids by intestinal flora in vitro and in vivo. In the future, targeting gut microbes and the interaction between natural products and gut microbes could lead to the discovery and development of new drugs.
Collapse
Affiliation(s)
| | | | - Xinyu Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Zhengwei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Jiachun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Jinyue Lu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Mengmeng Bu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Haojian Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Zhao Zhai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Jingyue Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
21
|
Gu YY, Cui XB, Jiang J, Zhang YX, Liu MH, Cheng SB, Li YY, Liu LL, Liao RX, Zhao P, Jin W, Jia YH, Wang J, Zhou FH. Dingxin recipe Ⅲ ameliorates hyperlipidemia injury in SD rats by improving the gut barrier, particularly the SCFAs/GPR43 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116483. [PMID: 37059245 DOI: 10.1016/j.jep.2023.116483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dingxin Recipe Ⅲ (DXR Ⅲ) is a traditional Chinese medicine compound used for hyperlipidemia treatment in clinical practice. However, its curative effects and pharmacological mechanisms in hyperlipidemia have not been clarified to date. AIM OF THE STUDY Studies have demonstrated that gut barrier was strongly implicated in lipid deposition. Based on gut barrier and lipid metabolism, this study examined the effects and molecular mechanisms of DXR Ⅲ in hyperlipidemia. MATERIALS AND METHODS The bioactive compounds of DXR Ⅲ were detected by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry, and its effects were evaluated in high-fat diet-fed rats. Specifically, the serum levels of lipids and hepatic enzymes were measured using the appropriate kits; colon and liver sections were obtained for histological analyses; gut microbiota and metabolites were analyzed by 16S rDNA sequencing and liquid chromatography-MS/MS; and the expression of genes and proteins was determined by real-time quantitative polymerase chain reaction and western blotting and immunohistochemistry, respectively. The pharmacological mechanisms of DXR Ⅲ were further explored by fecal microbiota transplantation and short-chain fatty acid (SCFAs)-based interventions. RESULTS DXR Ⅲ treatment significantly downregulated serum lipid levels, mitigated hepatocyte steatosis and improved lipid metabolism. Moreover, DXR Ⅲ improved the gut barrier, specifically by improving the physical barrier in the colon, causing part composition changes in the gut microbiota, and increasing the serum SCFAs level. DXR Ⅲ also upregulated the expression of colon GPR43/GPR109A. Fecal microbiota transplantation from rats treated with DXR Ⅲ downregulated part hyperlipidemia-related phenotypes, while the SCFAs intervention significantly improved most of the hyperlipidemia-related phenotypes and upregulated the expression of GPR43. Moreover, both DXR Ⅲ and SCFAs upregulated the expression of colon ABCA1. CONCLUSION DXR Ⅲ protects against hyperlipidemia by improving the gut barrier, particularly the SCFAs/GPR43 pathway.
Collapse
Affiliation(s)
- Yu-Yan Gu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Bing Cui
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Cardiology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Jing Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Ya-Xin Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Meng-Hua Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sai-Bo Cheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yu-Ye Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Lin-Ling Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Rong-Xin Liao
- Center of TCM Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Peng Zhao
- Center of TCM Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Wen Jin
- Department of Cardiac Intensive Care Unit, Cardiovascular Hospital, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Yu-Hua Jia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Jing Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Feng-Hua Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Center of TCM Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China.
| |
Collapse
|
22
|
Sun Y, Zhou Q, Chen F, Gao X, Yang L, Jin X, Wink M, Sharopov FS, Sethi G. Berberine inhibits breast carcinoma proliferation and metastasis under hypoxic microenvironment involving gut microbiota and endogenous metabolites. Pharmacol Res 2023:106817. [PMID: 37315824 DOI: 10.1016/j.phrs.2023.106817] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
A potential role of berberine, a benzyl isoquinoline alkaloid, in cancer therapy is apparent. Its underlying mechanisms of berberine against breast carcinoma under hypoxia have not been elucidated. We focused on the doubt how berberine restrains breast carcinoma under hypoxia in vitro and in vivo. A molecular analysis of the microbiome via 16S rDNA gene sequencing of DNA from mouse faeces confirmed that the abundances and diversity of gut microbiota were significantly altered in 4T1/Luc mice with higher survival rate following berberine treatment. A metabolome analysis liquid chromatography-mass spectrometer/mass spectrometer (LC-MS/MS) revealed that berberine regulated various endogenous metabolites, especially L-palmitoylcarnitine. Furthermore, the cytotoxicity of berberine was investigated in MDA-MB-231, MCF-7, and 4T1 cells. In vitro to simulate under hypoxic environment, MTT assay showed that berberine inhibited the proliferation of MDA-MB-231, MCF-7, and 4T1 cells with IC50 values of 4.14 ± 0.35μM, 26.53 ± 3.12μM and 11.62 ± 1.44μM, respectively. Wound healing and trans-well invasion studies revealed that berberine inhibited the invasion and migration of breast cancer cells. RT-qPCR analysis shed light that berberine reduced the expression of hypoxia-inducible factor-1α (HIF-1α) gene. Immunofluorescence and western blot demonstrated that berberine decreased the expression of E-cadherin and HIF-1α protein. Taken together, these results provide evidence that berberine efficiently suppresses breast carcinoma growth and metastasis in a hypoxic microenvironment, highlighting the potential of berberine as a promising anti-neoplastic agent to combat breast carcinoma.
Collapse
Affiliation(s)
- Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - QianQian Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fangming Chen
- Animal Research Center, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaoyan Gao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Linjun Yang
- Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou 318000, China
| | - Xiaoyan Jin
- Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou 318000, China
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| | - Farukh S Sharopov
- Research Institution "Chinese-Tajik Innovation Center for Natural Products", National Academy of Sciences of Tajikistan, Rudaki Avenue 33, 734025 Dushanbe, Tajikistan
| | - Gautam Sethi
- Department of Pharmacology, National University of Singapore, Building MD3, 117600 Medical Drive, Singapore.
| |
Collapse
|
23
|
Li S, Wang Y, Wang S, Xie J, Fu T, Li S. In situ gelling hydrogel loaded with berberine liposome for the treatment of biofilm-infected wounds. Front Bioeng Biotechnol 2023; 11:1189010. [PMID: 37324421 PMCID: PMC10266532 DOI: 10.3389/fbioe.2023.1189010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Background: In recent years, the impact of bacterial biofilms on traumatic wounds and the means to combat them have become a major research topic in the field of medicine. The eradication of biofilms formed by bacterial infections in wounds has always been a huge challenge. Herein, we developed a hydrogel with the active ingredient berberine hydrochloride liposomes to disrupt the biofilm and thereby accelerate the healing of infected wounds in mice. Methods: We determined the ability of berberine hydrochloride liposomes to eradicate the biofilm by means of studies such as crystalline violet staining, measuring the inhibition circle, and dilution coating plate method. Encouraged by the in vitro efficacy, we chose to coat the berberine hydrochloride liposomes on the Poloxamer range of in-situ thermosensitive hydrogels to allow fuller contact with the wound surface and sustained efficacy. Eventually, relevant pathological and immunological analyses were carried out on wound tissue from mice treated for 14 days. Results: The final results show that the number of wound tissue biofilms decreases abruptly after treatment and that the various inflammatory factors in them are significantly reduced within a short period. In the meantime, the number of collagen fibers in the treated wound tissue, as well as the proteins involved in healing in the wound tissue, showed significant differences compared to the model group. Conclusion: From the results, we found that berberine liposome gel can accelerate wound healing in Staphylococcus aureus infections by inhibiting the inflammatory response and promoting re-epithelialization as well as vascular regeneration. Our work exemplifies the efficacy of liposomal isolation of toxins. This innovative antimicrobial strategy opens up new perspectives for tackling drug resistance and fighting wound infections.
Collapse
Affiliation(s)
- Sipan Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yongan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Siting Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianjun Xie
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingming Fu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shaoguang Li
- Microsurgery Department of Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
24
|
Shou JW, Shaw PC. Berberine activates PPARδ and promotes gut microbiota-derived butyric acid to suppress hepatocellular carcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154842. [PMID: 37148713 DOI: 10.1016/j.phymed.2023.154842] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Peroxisome proliferator-activated receptors (PPARs) are a family of ligand-inducible transcription factors that govern various essential metabolic activities in the liver and other organs. Recently, berberine (BBR) has been characterized as a modulator of PPARs; however, the matter of whether PPARs are involved in the inhibitory effect of BBR on hepatocellular carcinoma (HCC) is not well understood. PURPOSE This study aimed to investigate the role of PPARs in the suppressive effect of BBR on HCC and to elucidate the relative mechanism. METHODS We studied the role of PPARs in the anti-HCC effects of BBR both in vitro and in vivo. The mechanism whereby BBR regulated PPARs was studied using real-time PCR, immunoblotting, immunostaining, luciferase, and a chromatin immunoprecipitation coupled PCR assay. Additionally, we used adeno-associated virus (AAV)-mediated gene knockdown to address the effect of BBR more effectively. RESULTS We demonstrated that PPARδ played an active role in the anti-HCC effect of BBR, rather than PPARα or PPARγ. Following a PPARδ-dependent manner, BBR increased BAX, cleaved Caspase 3, and decreased BCL2 expression to trigger apoptotic death, thereby suppressing HCC development both in vitro and in vivo. It was noted that the interactions between PPARδ and the apoptotic pathway resulted from the BBR-induced upregulation of the PPARδ transcriptional function; that is, the BBR-induced activation of PPARδ could mediate the binding with the promoters of apoptotic genes such as Caspase 3, BAX, and BCL2. Moreover, gut microbiota also contributed to the suppressive effect of BBR on HCC. We found that BBR treatment restored the dysregulated gut microbiota induced by the liver tumor burden, and a functional gut microbial metabolite, butyric acid (BA), acted as a messenger in the gut microbiota-liver axis. Unlike BBR, the effects of BA suppressing HCC and activating PPARδ were not potent. However, BA was able to enhance the efficacy of BBR by reducing PPARδ degradation through a mechanism to inhibit the proteasome ubiquitin system. Additionally, we found that the anti-HCC effect of BBR or a combination of BBR and BA was much weaker in mice with AAV-mediated PPARδ knockdown than those in the control mice, suggesting the critical role of PPARδ. CONCLUSION In summary, this study is the first to report that a liver-gut microbiota-PPARδ trilogy contributes to the anti-HCC effect of BBR. BBR not only directly activated PPARδ to trigger apoptotic death but also promoted gut microbiota-derived BA production, which could reduce PPARδ degradation to enhance the efficacy of BBR.
Collapse
Affiliation(s)
- Jia-Wen Shou
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Pang-Chui Shaw
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants and Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
25
|
Xu H, Yu H, Fu J, Zhang ZW, Hu JC, Lu JY, Yang XY, Bu MM, Jiang JD, Wang Y. Metabolites analysis of plantamajoside based on gut microbiota-drug interaction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154841. [PMID: 37196513 DOI: 10.1016/j.phymed.2023.154841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Plantaginis Herba (Plantago asiatica L.) has the effects of clearing heat and diuresis, oozing wet and drenching. As the main active components of Plantaginis Herba (Plantago asiatica L.), plantamajoside have a wide range of antitumor activities but very low bioavailability. The process of interacting between plantamajoside and gut microbiota remains unclear. PURPOSE To illustrate the process of interacting between plantamajoside and gut microbiota based on high-resolution mass spectrometry and targeted metabolomics methods. STUDY DESIGN AND METHODS This experiment was divided into two parts. First, metabolites produced from plantamajoside by gut microbiota were identified and quantified based on high-resolution mass spectrometry and LC-MS/MS. Additionally, stimulation of plantamajoside on gut microbiota-derived metabolites was determined by targeted metabolomics and gas chromatography. RESULTS We first found that plantamajoside was rapidly metabolized by gut microbiota. Then, we identified metabolites of plantamajoside by high-resolution mass spectrometry and speculated that plantamajoside was metabolized into five metabolites including calceolarioside A, dopaol glucoside, hydroxytyrosol, 3-(3-hydroxyphenyl) propionic acid (3-HPP) and caffeic acid. Among them, we quantitatively analyzed four possible metabolites based on LC‒MS/MS and found that hydroxytyrosol and 3-HPP were final products by the gut microbiota. In addition, we studied whether plantamajoside could affect the short-chain fatty acid (SCFA) and amino acid metabolites. We found that plantamajoside could inhibit the acetic acid, kynurenic acid (KYNA) and kynurenine (KN) produced by intestinal bacteria and promote the indole propionic acid (IPA) and indole formaldehyde (IALD) produced by intestinal bacteria. CONCLUSION An interaction between plantamajoside and gut microbiota was revealed in this study. Unlike the traditional metabolic system, the special metabolic characteristics of plantamajoside in gut microbiota was found. Plantamajoside was metabolized into the following active metabolites: calceolarioside A, dopaol glucoside, hydroxytyrosol, caffeic acid and 3-HPP. Besides, plantamajoside could affect SCFA and tryptophan metabolism by gut microbiota. Especially, the exogenous metabolites hydroxytyrosol, caffeic acid and endogenous metabolites IPA may have potential association with the antitumor activity of plantamajoside.
Collapse
Affiliation(s)
- Hui Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Zheng-Wei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jia-Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jin-Yue Lu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Xin-Yu Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Meng-Meng Bu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China.
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
26
|
Zhang ZW, Han P, Fu J, Yu H, Xu H, Hu JC, Lu JY, Yang XY, Zhang HJ, Bu MM, Jiang JD, Wang Y. Gut microbiota-based metabolites of Xiaoyao Pills (a typical Traditional Chinese medicine) ameliorate depression by inhibiting fatty acid amide hydrolase levels in brain. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116555. [PMID: 37100263 DOI: 10.1016/j.jep.2023.116555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicines (TCMs) are often prepared in oral dosage forms, making TCMs interact with gut microbiota after oral administration, which could affect the therapeutic effect of TCM. Xiaoyao Pills (XYPs) are a commonly used TCM in China to treat depression. The biological underpinnings, however, are still in its infancy due to its complex chemical composition. AIM OF THE STUDY The study aims to explore XYPs' underlying antidepressant mechanism from both in vivo and in vitro. MATERIALS AND METHODS XYPs were composed of 8 herbs, including the root of Bupleurum chinense DC., the root of Angelica sinensis (Oliv.) Diels, the root of Paeonia lactiflora Pall., the sclerotia of Poria cocos (Schw.) Wolf, the rhizome of Glycyrrhiza uralensis Fisch., the leaves of Mentha haplocalyx Briq., the rhizome of Atractylis lancea var. chinensis (Bunge) Kitam., and the rhizome of Zingiber officinale Roscoe, in a ratio of 5:5:5:5:4:1:5:5. The chronic unpredictable mild stress (CUMS) rat models were established. After that, the sucrose preference test (SPT) was carried out to evaluate if the rats were depressed. After 28 days of treatment, the forced swimming test and SPT were carried out to evaluate the antidepressant efficacy of XYPs. The feces, brain and plasma were taken out for 16SrRNA gene sequencing analysis, untargeted metabolomics and gut microbiota transformation analysis. RESULTS The results revealed multiple pathways affected by XYPs. Among them, the hydrolysis of fatty acids amide in brain decreased most significant via XYPs treatment. Moreover, the XYPs' metabolites which mainly derived from gut microbiota (benzoic acid, liquiritigenin, glycyrrhetinic acid and saikogenin D) were found in plasma and brain of CUMS rats and could inhibit the levels of FAAH in brain, which contributed to XYPs' antidepressant effect. CONCLUSIONS The potential antidepressant mechanism of XYPs by untargeted metabolomics combined with gut microbiota-transformation analysis was revealed, which further support the theory of gut-brain axis and provide valuable evidence of the drug discovery.
Collapse
Affiliation(s)
- Zheng-Wei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Pei Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Hui Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Jia-Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Jin-Yue Lu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Xin-Yu Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Hao-Jian Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Meng-Meng Bu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
27
|
Zhang L, Zhang R, Li L. Effects of Probiotic Supplementation on Exercise and the Underlying Mechanisms. Foods 2023; 12:foods12091787. [PMID: 37174325 PMCID: PMC10178086 DOI: 10.3390/foods12091787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Long-term, high-intensity exercise can trigger stress response pathways in multiple organs, including the heart and lungs, gastrointestinal tract, skeletal muscle, and neuroendocrine system, thus affecting their material and energy metabolism, immunity, oxidative stress, and endocrine function, and reducing exercise function. As a natural, safe, and convenient nutritional supplement, probiotics have been a hot research topic in the field of biomedical health in recent years. Numerous studies have shown that probiotic supplementation improves the health of the body through the gut-brain axis and the gut-muscle axis, and probiotic supplementation may also improve the stress response and motor function of the body. This paper reviews the progress of research on the role of probiotic supplementation in material and energy metabolism, intestinal barrier function, immunity, oxidative stress, neuroendocrine function, and the health status of the body, as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China
| | - Ruhao Zhang
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China
| | - Lu Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
28
|
Karim MR, Iqbal S, Mohammad S, Lee JH, Jung D, Mathiyalagan R, Yang DC, Yang DU, Kang SC. A review on Impact of dietary interventions, drugs, and traditional herbal supplements on the gut microbiome. Microbiol Res 2023; 271:127346. [PMID: 36921399 DOI: 10.1016/j.micres.2023.127346] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/11/2023]
Abstract
The gut microbiome is the community of healthy, and infectious organisms in the gut and its interaction in the host gut intestine (GI) environment. The balance of microbial richness with beneficial microbes is very important to perform healthy body functions like digesting food, controlling metabolism, and precise immune function. Alternately, this microbial dysbiosis occurs due to changes in the physiochemical condition, substrate avidity, and drugs. Moreover, various categories of diet such as "plant-based", "animal-based", "western", "mediterranean", and various drugs (antibiotic and common drugs) also contribute to maintaining microbial flora inside the gut. The imbalance (dysbiosis) in the microbiota of the GI tract can cause several disorders (such as diabetes, obesity, cancer, inflammation, and so on). Recently, the major interest is to use prebiotic, probiotic, postbiotic, and herbal supplements to balance such microbial community in the GI tract. But, there has still a large gap in understanding the microbiome function, and its relation to the host diet, drugs, and herbal supplements to maintain the healthy life of the host. So, the present review is about the updates on the microbiome concerns related to diet, drug, and herbal supplements, and also gives research evidence to improve our daily habits regarding diet, drugs, and herbal supplements. Because our regular dietary plan and traditional herbal supplements can improve our health by balancing the bacteria in our gut.
Collapse
Affiliation(s)
- Md Rezaul Karim
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea; Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Safia Iqbal
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea; Department of Microbiology, Varendra Institute of Biosciences, Affiliated by Rajshahi University, Natore, Rajshahi, Bangladesh; Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Shahnawaz Mohammad
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Jung Hyeok Lee
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Daehyo Jung
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Deok-Chun Yang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea; Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Dong Uk Yang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea; Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Se Chan Kang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea; Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| |
Collapse
|
29
|
Rizzo M, Colletti A, Penson PE, Katsiki N, Mikhailidis DP, Toth PP, Gouni-Berthold I, Mancini J, Marais D, Moriarty P, Ruscica M, Sahebkar A, Vinereanu D, Cicero AFG, Banach M, Al-Khnifsawi M, Alnouri F, Amar F, Atanasov AG, Bajraktari G, Banach M, Gouni-Berthold I, Bhaskar S, Bielecka-Dąbrowa A, Bjelakovic B, Bruckert E, Bytyçi I, Cafferata A, Ceska R, Cicero AF, Chlebus K, Collet X, Daccord M, Descamps O, Djuric D, Durst R, Ezhov MV, Fras Z, Gaita D, Gouni-Berthold I, Hernandez AV, Jones SR, Jozwiak J, Kakauridze N, Kallel A, Katsiki N, Khera A, Kostner K, Kubilius R, Latkovskis G, John Mancini G, David Marais A, Martin SS, Martinez JA, Mazidi M, Mikhailidis DP, Mirrakhimov E, Miserez AR, Mitchenko O, Mitkovskaya NP, Moriarty PM, Mohammad Nabavi S, Nair D, Panagiotakos DB, Paragh G, Pella D, Penson PE, Petrulioniene Z, Pirro M, Postadzhiyan A, Puri R, Reda A, Reiner Ž, Radenkovic D, Rakowski M, Riadh J, Richter D, Rizzo M, Ruscica M, Sahebkar A, Serban MC, Shehab AM, Shek AB, Sirtori CR, Stefanutti C, Tomasik T, Toth PP, Viigimaa M, Valdivielso P, Vinereanu D, Vohnout B, von Haehling S, Vrablik M, Wong ND, Yeh HI, Zhisheng J, Zirlik A. Nutraceutical approaches to non-alcoholic fatty liver disease (NAFLD): A position paper from the International Lipid Expert Panel (ILEP). Pharmacol Res 2023; 189:106679. [PMID: 36764041 DOI: 10.1016/j.phrs.2023.106679] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023]
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is a common condition affecting around 10-25% of the general adult population, 15% of children, and even > 50% of individuals who have type 2 diabetes mellitus. It is a major cause of liver-related morbidity, and cardiovascular (CV) mortality is a common cause of death. In addition to being the initial step of irreversible alterations of the liver parenchyma causing cirrhosis, about 1/6 of those who develop NASH are at risk also developing CV disease (CVD). More recently the acronym MAFLD (Metabolic Associated Fatty Liver Disease) has been preferred by many European and US specialists, providing a clearer message on the metabolic etiology of the disease. The suggestions for the management of NAFLD are like those recommended by guidelines for CVD prevention. In this context, the general approach is to prescribe physical activity and dietary changes the effect weight loss. Lifestyle change in the NAFLD patient has been supplemented in some by the use of nutraceuticals, but the evidence based for these remains uncertain. The aim of this Position Paper was to summarize the clinical evidence relating to the effect of nutraceuticals on NAFLD-related parameters. Our reading of the data is that whilst many nutraceuticals have been studied in relation to NAFLD, none have sufficient evidence to recommend their routine use; robust trials are required to appropriately address efficacy and safety.
Collapse
Affiliation(s)
- Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Via del Vespro 141, 90127 Palermo, Italy.
| | - Alessandro Colletti
- Department of Science and Drug Technology, University of Turin, Turin, Italy
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK; Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece; School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, Medical School, University College London (UCL), London, UK
| | - Peter P Toth
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA; Preventive Cardiology, CGH Medical Center, Sterling, IL, USA
| | - Ioanna Gouni-Berthold
- Department of Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Germany
| | - John Mancini
- Department of Medicine, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Marais
- Chemical Pathology Division of the Department of Pathology, University of Cape Town Health Science Faculty, Cape Town, South Africa
| | - Patrick Moriarty
- Division of Clinical Pharmacology, Division of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dragos Vinereanu
- Cardiology Department, University and Emergency Hospital, Bucharest, Romania, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Arrigo Francesco Giuseppe Cicero
- Hypertension and Cardiovascular disease risk research center, Medical and Surgical Sciences Department, University of Bologna, Bologna, Italy; IRCCS Policlinico S. Orsola-Malpighi, Bologna, Italy
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
A High Dose of Dietary Berberine Improves Gut Wall Morphology, Despite an Expansion of Enterobacteriaceae and a Reduction in Beneficial Microbiota in Broiler Chickens. mSystems 2023; 8:e0123922. [PMID: 36719211 PMCID: PMC9948737 DOI: 10.1128/msystems.01239-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Phytogenic products are embraced as alternatives to antimicrobials, and some are known to mitigate intestinal inflammation and ensure optimal gut health and performance in broiler chickens. Dietary inclusion of berberine, a benzylisoquinoline alkaloid found in plants, is believed to exert gut health-promoting effects through modulation of the gut microbiota; however, there are only a few studies investigating its effects in chickens. The aim of this study was to investigate the interplay between dietary supplementation of a high concentration of berberine, the gastrointestinal microbiota, and histomorphological parameters in the gut. Berberine was shown to increase villus length and decrease crypt depth and CD3+ T-lymphocyte infiltration in the gut tissue of chickens at different ages. Berberine affected the diversity of the gut microbiota from the jejunum to the colon, both at a compositional and functional level, with larger effects observed in the large intestine. A high concentration of berberine enriched members of the Enterobacteriaceae family and depleted members of the Ruminococcaceae, Lachnospiraceae, and Peptostreptococcaceae families, as well as tended to reduce butyrate production in the cecum. In vivo results were confirmed by in vitro growth experiments, where increasing concentrations of berberine inhibited the growth of several butyrate-producing strains while not affecting that of Enterobacteriaceae strains. Positive correlations were found between berberine levels in plasma and villus length or villus-to-crypt ratio in the jejunum. Our study showed that berberine supplementation at a high concentration improves chicken gut morphology toward decreased inflammation, which is likely not mediated by the induced gut microbiota shifts. IMPORTANCE Dietary additives are widely used to reduce intestinal inflammation and enteritis, a growing problem in the broiler industry. Berberine, with anti-inflammatory, antioxidant, and antimicrobial activity, would be an interesting feed additive in this regard. This study investigates for the first time the impact of berberine supplementation on the chicken gastrointestinal microbiota, as a potential mechanism to improve gut health, together with histological effects in the small intestine. This study identified a dose-effect of berberine on the gut microbiota, indicating the importance of finding an optimal dose to be used as a dietary additive.
Collapse
|
31
|
Wang T, Liu L, Deng J, Jiang Y, Yan X, Liu W. Analysis of the mechanism of action of quercetin in the treatment of hyperlipidemia based on metabolomics and intestinal flora. Food Funct 2023; 14:2112-2127. [PMID: 36740912 DOI: 10.1039/d2fo03509j] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hyperlipidemia (HLP) is one of the main factors leading to cardiovascular diseases. Quercetin (QUE) is a naturally occurring polyhydroxy flavonoid compound that has a wide range of pharmacological effects. However, the potential mechanism for treating HLP remains unclear. Thus, the study aimed to investigate the role of QUE in HLP development and its underlying mechanisms in HLP rats based on the analysis of gut microbiota and plasma metabolomics. Following the establishment of an HLP model in rats, QUE was orally administered. Plasma samples and fecal samples were collected from HLP rats for microbiome 16S rDNA sequencing and metabolic UPLC-Q-Exactive-MS analysis. The results suggested that QUE could regulate dyslipidemia and inhibit the levels of TC, TG, and LDL-c. Additionally, histopathological findings revealed that QUE could reduce lipid deposition, ameliorate hepatic injury and steatosis in HFD-induced rats, and have a protective effect on the liver. The analysis and identification of plasma metabolomics showed that the intervention effect of QUE on HLP rats was related to 60 differential metabolites and signal pathways such as lactosamine, 11b-hydroxyprogesterone, arachidonic acid, glycerophospholipid, sphingolipid, glycerolipid, and linoleic acid metabolism. Combined with fecal microbiological analysis, it was found that QUE could significantly change the composition of intestinal flora in HLP rats, increase beneficial bacteria, and reduce the composition of harmful bacteria, attenuating the Firmicutes/Bacteroidetes ratio. The results of correlation analysis showed that the relative abundance level of Firmicutes, Deironobacterium, Fusobacterium, Bacteroides, and Escherichia coli was closely related to the change of differential metabolites. In summary, combined with metabolomics and gut microbiota studies, it is found that QUE can reduce lipid levels and improve liver function. The potential mechanism may be the regulation of metabolism and intestinal flora that play a role in reducing lipid levels, to achieve the purpose of treatment of HLP.
Collapse
Affiliation(s)
- Tongtong Wang
- Department of Pharmacy, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha, Hunan, 410000, P. R. China.
| | - Ling Liu
- Department of Pharmacy, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha, Hunan, 410000, P. R. China.
| | - Jun Deng
- Department of Pharmacy, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha, Hunan, 410000, P. R. China.
| | - Yu Jiang
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabolomics, Changsha, Hunan, 410000, P. R. China
| | - Xiao Yan
- Department of Pharmacy, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha, Hunan, 410000, P. R. China.
| | - Wen Liu
- Department of Pharmacy, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha, Hunan, 410000, P. R. China.
| |
Collapse
|
32
|
Li Y, Ge X. Role of Berberine as a Potential Efflux Pump Inhibitor against MdfA from Escherichia coli: In Vitro and In Silico Studies. Microbiol Spectr 2023; 11:e0332422. [PMID: 36786641 PMCID: PMC10100983 DOI: 10.1128/spectrum.03324-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Infections by Gram-negative pathogens are usually difficult to manage due to the drug export by efflux pumps. With the evolution and horizontal transfer of efflux pumps, there is an urgent need to discover safe and effective efflux pump inhibitors. Here, we found that the natural compound berberine (BBR), a traditional medicine for intestinal infection, is an inhibitor against the major facilitator superfamily (MFS) efflux pump MdfA in Escherichia coli. The impact of BBR on MdfA was evaluated in a recombinant E. coli reporter strain. We demonstrated that low levels of BBR significantly increased intracellular ciprofloxacin concentrations and restored antibiotic susceptibility of the reporter strain. At the same time, we conducted molecular dynamics simulations to investigate the mechanisms of BBR's effect on MdfA. Our data indicated that BBR can aggregate to the periplasmic and cytoplasmic sides of MdfA in both of its inward and outward conformations. Protein rigidities were affected to different degrees. More importantly, two major driving forces for the conformational transition, salt bridges and hydrophilic interactions with water, were changed by BBR's aggregation to MdfA, which affected its conformational transition. In summary, our data provide evidence for the extended application of BBR as an efflux pump inhibitor at a clinically meaningful level. We also reveal the mechanisms and provide insights into BBR's effect on the reciprocal motion of MdfA. IMPORTANCE In this work, we evaluated the role of berberine (BBR) as an inhibitor of the MFS efflux pump MdfA from E. coli. We demonstrated that low levels of BBR significantly increased intracellular ciprofloxacin concentrations and restored antibiotic susceptibility of the reporter strain. Molecular dynamics simulations revealed the effect of BBR on the conformational transition of MdfA. Our data suggested that driving forces for MdfA's conformational transition were affected by BBR and provided evidence for BBR's extended application as an effective inhibitor of MdfA.
Collapse
Affiliation(s)
- Ying Li
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Xizhen Ge
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| |
Collapse
|
33
|
Wang L, Yan C, Wang L, Ai C, Wang S, Shen C, Tong Y, Song S. Ascophyllum nodosum polysaccharide regulates gut microbiota metabolites to protect against colonic inflammation in mice. Food Funct 2023; 14:810-821. [PMID: 36617886 DOI: 10.1039/d2fo02964b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ascophyllum nodosum polysaccharide (ANP) can protect against colonic inflammation but the underlying mechanism is still unclear. This study has determined the metabolites of gut microbiota regulated by ANP to reveal the mechanism of the anti-inflammation effect of ANP. Using an in vitro colonic fermentation model, the results indicate that gut microbiota could utilize a proportion of ANP to increase the concentrations of short-chain fatty acids (SCFAs) and decrease ammonia content. Metabolomics revealed that 46 differential metabolites, such as betaine, L-carnitine, and aminoimidazole carboxamide ribonucleotide (AICAR), could be altered by ANP. Metabolic pathway analysis showed that ANP mainly up-regulated the phenylalanine, tyrosine, and tryptophan biosynthesis and aminoacyl-tRNA biosynthesis, which were negatively correlated with inflammation progression. Interestingly, these metabolites associated with inflammation were also up-regulated by ANP in colitis mice, including betaine, L-carnitine, AICAR, N-acetyl-glutamine, tryptophan, and valine, which were mainly associated with amino acid metabolism and aminoacyl-tRNA biosynthesis. Furthermore, the metabolites modulated by ANP were associated with the relative abundances of Akkermansia, Bacteroides, Blautia, Coprobacillus, Enterobacter, and Klebsiella. Additionally, based on VIP values, betaine is a key metabolite after the ANP supplement in vitro and in vivo. As indicated by these findings, ANP can up-regulate the production of SCFAs, betaine, L-carnitine, and AICAR and aminoacyl-tRNA biosynthesis to protect against colonic inflammation and maintain intestinal health.
Collapse
Affiliation(s)
- Lilong Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Chunhong Yan
- National Engineering Research Center of Seafood, School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Linlin Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Chunqing Ai
- National Engineering Research Center of Seafood, School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Songtao Wang
- National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan 646000, China
| | - Caihong Shen
- National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan 646000, China
| | - Yuqin Tong
- National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan 646000, China
| | - Shuang Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| |
Collapse
|
34
|
Li D, Feng G, Li Y, Pan H, Luo P, Liu B, Ding T, Wang X, Xu H, Zhao Y, Zhang C. Benefits of Huang Lian mediated by gut microbiota on HFD/STZ-induced type 2 diabetes mellitus in mice. Front Endocrinol (Lausanne) 2023; 14:1120221. [PMID: 36742405 PMCID: PMC9889990 DOI: 10.3389/fendo.2023.1120221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Huang Lian (HL), one of the traditional Chinese medicines (TCMs) that contains multiple active components including berberine (BBR), has been used to treat symptoms associated with diabetes for thousands of years. Compared to the monomer of BBR, HL exerts a better glucose-lowering activity and plays different roles in regulating gut microbiota. However, it remains unclear what role the gut microbiota plays in the anti-diabetic activity of HL. METHODS In this study, a type 2 diabetes mellitus (T2DM) mouse model was induced with a six-week high-fat diet (HFD) and a one-time injection of streptozotocin (STZ, 75 mg/kg). One group of these mice was administrated HL (50 mg/kg) through oral gavage two weeks after HFD feeding commenced and continued for four weeks; the other mice were given distilled water as disease control. Comprehensive analyses of physiological indices related to glycolipid metabolism, gut microbiota, untargeted metabolome, and hepatic genes expression, function prediction by PICRUSt2 were performed to identify potential mechanism. RESULTS We found that HL, in addition to decreasing body fat accumulation, effectively improved insulin resistance by stimulating the hepatic insulin-mediated signaling pathway. In comparison with the control group, HL treatment constructed a distinct gut microbiota and bile acid (BA) profile. The HL-treated microbiota was dominated by bacteria belonging to Bacteroides and the Clostridium innocuum group, which were associated with BA metabolism. Based on the correlation analysis, the altered BAs were closely correlated with the improvement of T2DM-related markers. CONCLUSION These results indicated that the anti-diabetic activity of HL was achieved, at least partly, by regulating the structure of the gut microbiota and the composition of BAs.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Guangli Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Han Pan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Pei Luo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Liu
- Pharmacodynamics and Toxicology Evaluation Center, Jilin Provincial Academy of Traditional Chinese Medicine, Jilin, China
| | - Tao Ding
- Pharmacodynamics and Toxicology Evaluation Center, Jilin Provincial Academy of Traditional Chinese Medicine, Jilin, China
| | - Xin Wang
- Pharmacodynamics and Toxicology Evaluation Center, Jilin Provincial Academy of Traditional Chinese Medicine, Jilin, China
| | - Huibo Xu
- Pharmacodynamics and Toxicology Evaluation Center, Jilin Provincial Academy of Traditional Chinese Medicine, Jilin, China
| | - Yufeng Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
35
|
Pan H, Huo L, Shen W, Dai Z, Bao Y, Ji C, Zhang J. Study on the protective effect of berberine treatment on sepsis based on gut microbiota and metabolomic analysis. Front Nutr 2022; 9:1049106. [PMID: 36601077 PMCID: PMC9806126 DOI: 10.3389/fnut.2022.1049106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Sepsis, an infection with multiorgan dysfunction, is a serious burden on human health. Berberine (BBR), a bioactive component, has a protective effect on sepsis and the effect may be related to gut microbiota. However, studies on the role of BBR with gut microbiota in sepsis are lacking. Therefore, this study investigated the ameliorative effects and the underlying mechanisms of BBR on cecal ligature and puncture (CLP) rats. Methods This study has observed the effect of BBR on pathological injury, Inflammation, intestinal barrier function, gut microbiota, and metabolite change in CLP rats by Hematoxylin-eosin staining, enzyme-linked immunosorbent assays, flow cytometry, 16S rDNA, and metabolomics analyses. Results The inhibition effects of BBR treatment on the histological damage of the lung, kidney, and ileum, the interleukin (IL)-1b, IL-6, IL-17A, and monocyte chemokine-1 levels in serum in CLP rats were proved. Also, the BBR inhibited the diamine-oxidase and fluorescein isothiocyanate-dextran 40 levels, suggesting it can improve intestinal barrier function disorders. The cluster of differentiation (CD) 4+, CD8+, and CD25+ Forkhead box protein P3 (Foxp3) + T lymphocytes in splenocytes were up-regulated by BBR, while the IL-17A+CD4+ cell level was decreased. The abundance of gut microbiota in CLP rats was significantly different from that of the sham and BBR treatment rats. The significantly changed metabolites in the serum mainly included carbohydrates, phenols, benzoic acids, alcohols, vitamins et al. Additionally, this study predicted that the biological mechanism of BBR to ameliorate sepsis involves glycolysis-, nucleotide-, and amino acid-related metabolic pathways. Discussion This study proved the strong correlation between the improvement effect of BBR on sepsis and gut microbiota and analyzed by metabolomics that gut microbiota may improve CLP rats through metabolites, providing a scientific basis for BBR to improve sepsis and a new direction for the study of the biological mechanism.
Collapse
Affiliation(s)
- Huibin Pan
- Emergency Intensive Care Unit, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Lixia Huo
- Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Weiyun Shen
- Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Zhuquan Dai
- Emergency Intensive Care Unit, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Ying Bao
- Department of Surgery, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Chaohui Ji
- Emergency Intensive Care Unit, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China,*Correspondence: Jie Zhang
| | - Jie Zhang
- Emergency Intensive Care Unit, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China,Chaohui Ji
| |
Collapse
|
36
|
Integrated metabolomics and molecular docking reveal berberrubine inhibits thrombosis by regulating the vitamin K catalytic cycle in mice. Eur J Pharmacol 2022; 938:175436. [PMID: 36481237 DOI: 10.1016/j.ejphar.2022.175436] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Natural product berberine was reported to inhibit platelet activation and thrombosis by suppressing the class Ⅰ PI3Kβ/Rasa3/Rap1 pathway. This study aims to investigate the effects and mechanisms of berberrubine, a main metabolite of berberine, to inhibit thrombus formation. METHODS Carrageenan-induced mouse tail thrombosis model was used to evaluate the effects of berberrubine hydrochloride (BBB) on thrombus formation in vivo. Non-targeted metabolomics was performed with UPLC-Q-TOF/MS to explore the potential mechanisms of BBB in inhibiting thrombosis. The effects of BBB on bleeding risk and prothrombin time were determined. And molecular docking was used to identify the possible target of BBB. RESULTS After oral administration, BBB significantly inhibited carrageenan-induced thrombosis in mice without prolonging bleeding time. The results of non-targeted metabolomics showed that oral BBB could regulate 'Phenylalanine, tyrosine and tryptophan biosynthesis' and 'Ubiquinone and other terpenoid-quinone biosynthesis', which is closely related to the vitamin K catalytic cycle. Molecular docking revealed BBB could combine and interact with vitamin K epoxide reductase (VKOR) and γ-Glutamyl carboxylase (GGCX), which was mutually confirmed with the experimental results that oral BBB could significantly prolong prothrombin time. CONCLUSIONS Integrated metabolomics and molecular docking reveal BBB inhibited thrombosis by regulating the vitamin K catalytic cycle. Our research is helpful in deeply understanding the antithrombotic material basis of oral berberine, and also could provide scientific evidence for developing new antithrombotic drugs based on BBB in the future.
Collapse
|
37
|
Bertoncini-Silva C, Zingg JM, Fassini PG, Suen VMM. Bioactive dietary components-Anti-obesity effects related to energy metabolism and inflammation. Biofactors 2022; 49:297-321. [PMID: 36468445 DOI: 10.1002/biof.1921] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/18/2022] [Indexed: 12/10/2022]
Abstract
Obesity is the result of the long-term energy imbalance between the excess calories consumed and the few calories expended. Reducing the intake of energy dense foods (fats, sugars), and strategies such as fasting and caloric restriction can promote body weight loss. Not only energy in terms of calories, but also the specific composition of the diet can affect the way the food is absorbed and how its energy is stored, used or dissipated. Recent research has shown that bioactive components of food, such as polyphenols and vitamins, can influence obesity and its pathologic complications such as insulin resistance, inflammation and metabolic syndrome. Individual micronutrients can influence lipid turnover but for long-term effects on weight stability, dietary patterns containing several micronutrients may be required. At the molecular level, these molecules modulate signaling and the expression of genes that are involved in the regulation of energy intake, lipid metabolism, adipogenesis into white, beige and brown adipose tissue, thermogenesis, lipotoxicity, adipo/cytokine synthesis, and inflammation. Higher concentrations of these molecules can be reached in the intestine, where they can modulate the composition and action of the microbiome. In this review, the molecular mechanisms by which bioactive compounds and vitamins modulate energy metabolism, inflammation and obesity are discussed.
Collapse
Affiliation(s)
- Caroline Bertoncini-Silva
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Priscila Giacomo Fassini
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Vivian Marques Miguel Suen
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
38
|
Polyzos SA, Hill MA, Fuleihan GEH, Gnudi L, Kim YB, Larsson SC, Masuzaki H, Matarese G, Sanoudou D, Tena-Sempere M, Mantzoros CS. Metabolism, Clinical and Experimental: seventy years young and growing. Metabolism 2022; 137:155333. [PMID: 36244415 DOI: 10.1016/j.metabol.2022.155333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Stergios A Polyzos
- First Laboratory of Pharmacology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Michael A Hill
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Ghada El-Hajj Fuleihan
- Division of Endocrinology, Calcium Metabolism and Osteoporosis Program, World Health Organization Collaborating Center for Metabolic Bone Disorders, Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Luigi Gnudi
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College, London, UK
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Susanna C Larsson
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hiroaki Masuzaki
- Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology, Second Department of Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy; Laboratorio di Immunogenetica dei Trapianti & Registro Regionale dei Trapianti di Midollo, AOU "Federico II", Naples, Italy; Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Berberine ameliorates chronic kidney disease through inhibiting the production of gut-derived uremic toxins in the gut microbiota. Acta Pharm Sin B 2022; 13:1537-1553. [PMID: 37139409 PMCID: PMC10149897 DOI: 10.1016/j.apsb.2022.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
At present, clinical interventions for chronic kidney disease are very limited, and most patients rely on dialysis to sustain their lives for a long time. However, studies on the gut-kidney axis have shown that the gut microbiota is a potentially effective target for correcting or controlling chronic kidney disease. This study showed that berberine, a natural drug with low oral availability, significantly ameliorated chronic kidney disease by altering the composition of the gut microbiota and inhibiting the production of gut-derived uremic toxins, including p-cresol. Furthermore, berberine reduced the content of p-cresol sulfate in plasma mainly by lowering the abundance of g_Clostridium_sensu_stricto_1 and inhibiting the tyrosine-p-cresol pathway of the intestinal flora. Meanwhile, berberine increased the butyric acid producing bacteria and the butyric acid content in feces, while decreased the renal toxic trimethylamine N-oxide. These findings suggest that berberine may be a therapeutic drug with significant potential to ameliorate chronic kidney disease through the gut-kidney axis.
Collapse
|
40
|
Yang YN, Wang QC, Xu W, Yu J, Zhang H, Wu C. The berberine-enriched gut commensal Blautia producta ameliorates high-fat diet (HFD)-induced hyperlipidemia and stimulates liver LDLR expression. Biomed Pharmacother 2022; 155:113749. [PMID: 36174380 DOI: 10.1016/j.biopha.2022.113749] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/02/2022] Open
Abstract
Berberine (BBR) is an effective cholesterol-lowering drug. Although gut microbiota has been implicated in the pharmacological activities of BBR, little evidence exists on the specific species of gut microbiota involved in its therapeutic effects, nor on linking gut bacteria to its recognized hypercholesterolemia-alleviating mechanism-upregulation of the low-density lipoprotein receptor (LDLR) in the liver. The present study was performed to identify the specific species of gut microbiota involved in the anti-hyperlipdemic effect of BBR, and interpret its mechanism through linking the gut microbiota and LDLR. The BBR-enriched gut bacterial species were identified by whole genome shotgun sequencing. Pure cultured B. producta was orally administered to C57BL/6 mice to evaluate its anti-hyperlipdemic effect. The LDLR-upregulating effect of B. producta was evaluated both in vitro and in vivo. Orally administration of BBR (200 mg/kg) decreased serum and liver lipid levels in HFD-induced hyperlipidemic mice. Microbiome analysis indicated that Blautia was closely associated with BBR's lipid-modulating activities. Further analysis revealed that BBR selectively promoted the growth of Blautia producta. Orally treatment of HFD mice with live B. producta reduced obesity and alleviated hyperlipidemia. Notably, the B. producta significantly increased LDLR expression in the liver, and its spent culture supernatant upregulated the LDLR level and promoted LDL uptake by HepG2 cells. Simultaneously, B. producta also linked butyrate-producing and bile salt hydrolase (BSH)-inhibiting effect of BBR. The gut microbiota, especially B. producta, may confers the hypercholesterolemia-alleviating effects of berberine. B. producta represents a novel probiotic that may be used for the treatment of dyslipidemia.
Collapse
Affiliation(s)
- Ya-Nan Yang
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Qing-Chun Wang
- Scientific Research Department, Inner Mongolia Hospital of International Mongolian Medicine, Inner Mongolia 010065, China.
| | - Wenyi Xu
- Beijing QuantiHealth Technology Co. Ltd., Beijing 100070, China.
| | - Jiaqi Yu
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Huricha Zhang
- Inner Mongolia Hospital of International Mongolian Medicine, Inner Mongolia 010065, China.
| | - Chongming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
41
|
Yang S, Hao S, Wang Q, Lou Y, Jia L, Chen D. The interactions between traditional Chinese medicine and gut microbiota: Global research status and trends. Front Cell Infect Microbiol 2022; 12:1005730. [PMID: 36171760 PMCID: PMC9510645 DOI: 10.3389/fcimb.2022.1005730] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
Background There is a crosstalk between traditional Chinese medicine (TCM) and gut microbiota (GM), many articles have studied and discussed the relationship between the two. The purpose of this study is to use bibliometric analysis to explore the research status and development trends of the TCM/GM research, identify and analyze the highly cited papers relating to the TCM/GM. Methods A literature search regarding TCM/GM publications from 2004 to 2021 was undertaken on August 13, 2022. The main information (full record and cited references) of publications was extracted from the Science Citation Index Expanded (SCI-E) of Web of Science Core Collection (WoSCC). The Bibliometrix of R package, CiteSpace and VOSviewer were used for bibliometric analysis. Results A total of 830 papers were included. The publication years of papers were from 2004 to 2021. The number of papers had increased rapidly since 2018. China had the most publications and made most contributions to this field. Nanjing University of Chinese Medicine and Beijing University of Chinese Medicine were in the leading productive position in TCM/GM research, Chinese Academy of Chinese Medical Sciences had the highest total citations (TC). Duan Jin-ao from Nanjing University of Chinese Medicine had the largest number of publications, and Tong Xiao-lin from China Academy of Chinese Medical Sciences had the most TC. The Journal of Ethnopharmacology had the most published papers and the most TC. The main themes in TCM/GM included the role of GM in TCM treatment of glucolipid metabolism diseases and lower gastrointestinal diseases; the mechanism of interactions between GM and TCM to treat diseases; the links between TCM/GM and metabolism; and the relationship between GM and oral bioavailability of TCM. Conclusion This study gained insight into the research status, hotspots and trends of global TCM/GM research, identified the most cited articles in TCM/GM and analyzed their characteristics, which may inform clinical researchers and practitioners’ future directions.
Collapse
Affiliation(s)
- Shanshan Yang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Shaodong Hao
- Sixth Clinical School of Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qin Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yanni Lou
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Liqun Jia
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Liqun Jia, ; Dongmei Chen,
| | - Dongmei Chen
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Liqun Jia, ; Dongmei Chen,
| |
Collapse
|
42
|
Huang YH, Wu YH, Tang HY, Chen ST, Wang CC, Ho WJ, Lin YH, Liu GH, Lin PY, Lo CJ, Yeh YM, Cheng ML. Gut Microbiota and Bile Acids Mediate the Clinical Benefits of YH1 in Male Patients with Type 2 Diabetes Mellitus: A Pilot Observational Study. Pharmaceutics 2022; 14:pharmaceutics14091857. [PMID: 36145605 PMCID: PMC9505101 DOI: 10.3390/pharmaceutics14091857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Our previous clinical trial showed that a novel concentrated herbal extract formula, YH1 (Rhizoma coptidis and Shen-Ling-Bai-Zhu-San), improved blood glucose and lipid control. This pilot observational study investigated whether YH1 affects microbiota, plasma, and fecal bile acid (BA) compositions in ten untreated male patients with type 2 diabetes (T2D), hyperlipidemia, and a body mass index ≥ 23 kg/m2. Stool and plasma samples were collected for microbiome, BA, and biochemical analyses before and after 4 weeks of YH1 therapy. As previous studies found, the glycated albumin, 2-h postprandial glucose, triglycerides, total cholesterol, and low-density lipoprotein cholesterol levels were significantly improved after YH1 treatment. Gut microbiota revealed an increased abundance of the short-chain fatty acid-producing bacteria Anaerostipes and Escherichia/Shigella. Furthermore, YH1 inhibited specific phylotypes of bile salt hydrolase-expressing bacteria, including Parabacteroides, Bifidobacterium, and Bacteroides caccae. Stool tauro-conjugated BA levels increased after YH1 treatment. Plasma total BAs and 7α-hydroxy-4-cholesten-3-one (C4), a BA synthesis indicator, were elevated. The reduced deconjugation of BAs and increased plasma conjugated BAs, especially tauro-conjugated BAs, led to a decreased glyco- to tauro-conjugated BA ratio and reduced unconjugated secondary BAs. These results suggest that YH1 ameliorates T2D and hyperlipidemia by modulating microbiota constituents that alter fecal and plasma BA compositions and promote liver cholesterol-to-BA conversion and glucose homeostasis.
Collapse
Affiliation(s)
- Yueh-Hsiang Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 333, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yi-Hong Wu
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 333, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hsiang-Yu Tang
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Szu-Tah Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Chih-Ching Wang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Wan-Jing Ho
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Yi-Hsuan Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Geng-Hao Liu
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 333, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Pei-Yeh Lin
- Department of Medical Nutrition Therapy, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chi-Jen Lo
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Yuan-Ming Yeh
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Correspondence: (Y.-M.Y.); (M.-L.C.)
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: (Y.-M.Y.); (M.-L.C.)
| |
Collapse
|
43
|
Wang H, Zhang H, Gao Z, Zhang Q, Gu C. The mechanism of berberine alleviating metabolic disorder based on gut microbiome. Front Cell Infect Microbiol 2022; 12:854885. [PMID: 36093200 PMCID: PMC9452888 DOI: 10.3389/fcimb.2022.854885] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
With socioeconomic advances and improved living standards, metabolic syndrome has increasingly come into the attention. In recent decades, a growing number of studies have shown that the gut microbiome and its metabolites are closely related to the occurrence and development of many metabolic diseases, and play an important role that cannot be ignored, for instance, obesity, type 2 diabetes (T2DM), non-alcoholic fatty liver disease (NAFLD), cardiovascular disease and others. The correlation between gut microbiota and metabolic disorder has been widely recognized. Metabolic disorder could cause imbalance in gut microbiota, and disturbance of gut microbiota could aggravate metabolic disorder as well. Berberine (BBR), as a natural ingredient, plays an important role in the treatment of metabolic disorder. Studies have shown that BBR can alleviate the pathological conditions of metabolic disorders, and the mechanism is related to the regulation of gut microbiota: gut microbiota could regulate the absorption and utilization of berberine in the body; meanwhile, the structure and function of gut microbiota also changed after intervention by berberine. Therefore, we summarize relevant mechanism research, including the expressions of nitroreductases-producing bacteria to promote the absorption and utilization of berberine, strengthening intestinal barrier function, ameliorating inflammation regulating bile acid signal pathway and axis of bacteria-gut-brain. The aim of our study is to clarify the therapeutic characteristics of berberine further and provide the theoretical basis for the regulation of metabolic disorder from the perspective of gut microbiota.
Collapse
Affiliation(s)
- Han Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyu Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zezheng Gao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiqi Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chengjuan Gu
- Shenzhen Hospital (Futian), Guangzhou University of Chinese Medicine, Shenzhen, China
- *Correspondence: Chengjuan Gu,
| |
Collapse
|
44
|
Berberine in Non-Alcoholic Fatty Liver Disease—A Review. Nutrients 2022; 14:nu14173459. [PMID: 36079717 PMCID: PMC9459907 DOI: 10.3390/nu14173459] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
The incidence of Non-Alcoholic Fatty Liver Disease (NAFLD) has been rapidly increasing during the last decade. It is a relevant health problem that affects 25% of the general population. NAFLD involves an extensive array of clinical conditions. So far, no approved pharmacological therapy for NAFLD has been developed. Multiple bioactive compounds have been proposed to treat NAFLD. One of the most promising is Berberine (BBR). Its pleiotropic effect positively impacts various cardiometabolic aspects. In this review, we summarize NAFLD, its metabolic and cardiovascular complications, the hepatoprotective effects of BBR due to its broad spectrum of pharmacological effects, and the potential role of BBR in NAFLD therapy. BBR ameliorates NAFLD by affecting numerous abnormalities. It inhibits lipogenesis and gluconeogenesis, improves insulin resistance and lipid profile, and modulates gut microbiota. The exact mechanism underlying these effects is not yet entirely explained. A growing amount of evidence confirming the positive effects of BBR on multiple metabolic pathways, such as lipids and glucose metabolism, energy homeostasis, or gut microbiota modulation, allows us to speculate about the importance of this natural bioactive substance for NAFLD therapy.
Collapse
|
45
|
Gao Y, Wang JB. Commentary: Indirect action pattern: A remote and cross-organ pharmacological mechanism for drug innovation. Acta Pharm Sin B 2022; 12:3448-3450. [PMID: 35967286 PMCID: PMC9366289 DOI: 10.1016/j.apsb.2022.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
- Yuan Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Jia-bo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| |
Collapse
|
46
|
Cheng H, Liu J, Tan Y, Feng W, Peng C. Interactions between gut microbiota and berberine, a necessary procedure to understand the mechanisms of berberine. J Pharm Anal 2022; 12:541-555. [PMID: 36105164 PMCID: PMC9463479 DOI: 10.1016/j.jpha.2021.10.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/23/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid, has been found in many plants, such as Coptis chinensis Franch and Phellodendron chinense Schneid. Although BBR has a wide spectrum of pharmacological effects, its oral bioavailability is extremely low. In recent years, gut microbiota has emerged as a cynosure to understand the mechanisms of action of herbal compounds. Numerous studies have demonstrated that due to its low bioavailability, BBR can interact with the gut microbiota, thereby exhibiting altered pharmacological effects. However, no systematic and comprehensive review has summarized these interactions and their corresponding influences on pharmacological effects. Here, we describe the direct interactive relationships between BBR and gut microbiota, including regulation of gut microbiota composition and metabolism by BBR and metabolization of BBR by gut microbiota. In addition, the complex interactions between gut microbiota and BBR as well as the side effects and personalized use of BBR are discussed. Furthermore, we provide our viewpoint on future research directions regarding BBR and gut microbiota. This review not only helps to explain the mechanisms underlying BBR activity but also provides support for the rational use of BBR in clinical practice.
Collapse
Affiliation(s)
| | | | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
47
|
Dadgostar E, Moghanlou M, Parvaresh M, Mohammadi S, Khandan M, Aschner M, Mirzaei H, Tamtaji OR. Can Berberine Serve as a New Therapy for Parkinson's Disease? Neurotox Res 2022; 40:1096-1102. [PMID: 35666433 DOI: 10.1007/s12640-022-00526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic neurodegeneration and deposition of alpha-synuclein. Mechanisms associated with PD etiology include oxidative stress, apoptosis, autophagy, and abnormalities in neurotransmission, to name a few. Drugs used to treat PD have shown significant limitations in their efficacy. Therefore, recent focus has been placed on the potential of active plant ingredients as alternative, complementary, and efficient treatments. Berberine is an isoquinoline alkaloid that has shown promise as a pharmacological treatment in PD, given its ability to modulate several molecular pathway associated with the disease. Here, we review contemporary knowledge supporting the need to further characterize berberine as a potential treatment for PD.
Collapse
Affiliation(s)
- Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Moghanlou
- Department of Psychiatry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Parvaresh
- Department of Physical Medicine and Rehabilitation, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Salimeh Mohammadi
- Anatomical Science Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadali Khandan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran. .,Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
48
|
Lv XC, Wu Q, Yuan YJ, Li L, Guo WL, Lin XB, Huang ZR, Rao PF, Ai LZ, Ni L. Organic chromium derived from the chelation of Ganoderma lucidum polysaccharide and chromium (III) alleviates metabolic syndromes and intestinal microbiota dysbiosis induced by high-fat and high-fructose diet. Int J Biol Macromol 2022; 219:964-979. [DOI: 10.1016/j.ijbiomac.2022.07.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/10/2022] [Accepted: 07/26/2022] [Indexed: 11/05/2022]
|
49
|
Ma SR, Tong Q, Lin Y, Pan LB, Fu J, Peng R, Zhang XF, Zhao ZX, Li Y, Yu JB, Cong L, Han P, Zhang ZW, Yu H, Wang Y, Jiang JD. Berberine treats atherosclerosis via a vitamine-like effect down-regulating Choline-TMA-TMAO production pathway in gut microbiota. Signal Transduct Target Ther 2022; 7:207. [PMID: 35794102 PMCID: PMC9259588 DOI: 10.1038/s41392-022-01027-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Trimethylamine-N-oxide (TMAO) derived from the gut microbiota is an atherogenic metabolite. This study investigates whether or not berberine (BBR) could reduce TMAO production in the gut microbiota and treat atherosclerosis. Effects of BBR on TMAO production in the gut microbiota, as well as on plaque development in atherosclerosis were investigated in the culture of animal intestinal bacterial, HFD-fed animals and atherosclerotic patients, respectively. We found that oral BBR in animals lowers TMAO biosynthesis in intestine through interacting with the enzyme/co-enzyme of choline-trimethylamine lyase (CutC) and flavin-containing monooxygenase (FMO) in the gut microbiota. This action was performed by BBR’s metabolite dihydroberberine (a reductive BBR by nitroreductase in the gut microbiota), via a vitamine-like effect down-regulating Choline-TMA-TMAO production pathway. Oral BBR decreased TMAO production in animal intestine, lowered blood TMAO and interrupted plaque formation in blood vessels in the HFD-fed hamsters. Moreover, 21 patients with atherosclerosis exhibited the average decrease of plaque score by 3.2% after oral BBR (0.5 g, bid) for 4 months (*P < 0.05, n = 21); whereas the plaque score in patients treated with rosuvastatin plus aspirin, or clopidogrel sulfate or ticagrelor (4 months, n = 12) increased by 1.9%. TMA and TMAO in patients decreased by 38 and 29% in faeces (*P < 0.05; *P < 0.05), and 37 and 35% in plasma (***P < 0.001; *P < 0.05), after 4 months on BBR. BBR might treat atherosclerotic plaque at least partially through decreasing TMAO in a mode of action similar to that of vitamins.
Collapse
Affiliation(s)
- Shu-Rong Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Qian Tong
- The First Hospital of Jilin University, Changchun, China
| | - Yuan Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Li-Bin Pan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Ran Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | | | - Zhen-Xiong Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Yang Li
- The First Hospital of Jilin University, Changchun, China
| | - Jin-Bo Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Lin Cong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Pei Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Zheng-Wei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.
| |
Collapse
|
50
|
Chu S, Zhang F, Wang H, Xie L, Chen Z, Zeng W, Zhou Z, Hu F. Aqueous Extract of Guava ( Psidium guajava L.) Leaf Ameliorates Hyperglycemia by Promoting Hepatic Glycogen Synthesis and Modulating Gut Microbiota. Front Pharmacol 2022; 13:907702. [PMID: 35721172 PMCID: PMC9198539 DOI: 10.3389/fphar.2022.907702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/17/2022] [Indexed: 12/18/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a major global health concern. Psidium guajava L. (guava) is widely used for food as well as a folk medicine. Previous studies have shown its anti-diabetic and anti-inflammatory properties. However, the underlying mechanisms remains to be elusive. In this study, we assessed the potential therapeutic effects of aqueous extract of guava leaves (GvAEx) on T2DM and explored their potential mechanisms in vivo and in vitro. GvAEx was gavage administered for 12 weeks in diabetic db/db mice. Our results have demonstrated that GvAEx significantly lowered fasting plasma glucose levels (p < 0.01) and improved glucose tolerance and insulin sensitivity (p < 0.01, p < 0.05, respectively). Additionally, GvAEx increased hepatic glycogen accumulation, glucose uptake and decreased the mRNA expression levels of gluconeogenic genes. Furthermore, GvAEx-treatment caused higher glucose transporter 2 (GLUT2) expression in the membrane in hepatocytes. Notably, for the first time, we have elaborated the possible mechanism of the hypoglycemic effect of GvAEx from the perspective of intestinal microbiota. GvAEx has significantly changed the composition of microbiota and increased short chain fatty acid (SCFA) -producing Lachnospiraceae family and Akkermansia genus in the gut. Taken together, GvAEx could alleviate hyperglycemia and insulin resistance of T2DM by regulating glucose metabolism in the liver and restoring the gut microbiota. Thus, GvAEx has the potential for drug development against T2DM.
Collapse
Affiliation(s)
- Shuzhou Chu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Metabolic Syndrome Research Center, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Metabolic Syndrome Research Center, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huiying Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Metabolic Syndrome Research Center, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lijun Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Metabolic Syndrome Research Center, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhinan Chen
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Metabolic Syndrome Research Center, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Weimin Zeng
- Key Laboratory of Biometallurgy, School of Minerals Processing and Bioengineering, Ministry of Education, Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Metabolic Syndrome Research Center, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fang Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Metabolic Syndrome Research Center, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|