1
|
Zhang Z, Wang X, Zhao C, Zhu H, Liao X, Tsai HI. STING and metabolism-related diseases: Roles, mechanisms, and applications. Cell Signal 2025; 132:111833. [PMID: 40294833 DOI: 10.1016/j.cellsig.2025.111833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/08/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
The stimulator of interferon genes (STING) pathway plays a critical role in innate immunity, acting as a central mediator that links cytosolic DNA sensing to inflammatory signaling. STING not only responds to cellular metabolic states but also actively regulates key metabolic processes, including glycolysis, lipid metabolism, and redox balance. This bidirectional interaction underscores the existence of a dynamic feedback mechanism between STING signaling and metabolic pathways, which is essential for maintaining cellular homeostasis. This review provides a comprehensive analysis, beginning with an in-depth overview of the classical STING signaling pathway, followed by a detailed examination of its reciprocal regulation of various metabolic pathways. Additionally, it explores the role and mechanisms of STING signaling in metabolic disorders, including obesity, diabetes, and atherosclerosis. By integrating these insights into the mutual regulation between STING and its metabolism, novel therapeutic strategies targeting this pathway in metabolic diseases have been proposed.
Collapse
Affiliation(s)
- Zhengyang Zhang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xirui Wang
- Department of Biomedical Engineering, School of Medical Imaging, Xuzhou Medical University, Xuzhou 221000, China
| | - Chuangchuang Zhao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Xiang Liao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China.
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
2
|
Huang FQ, Wang HF, Yang T, Yang D, Liu P, Alolga RN, Ma G, Liu B, Pan A, Liu SJ, Qi LW. Ceramides increase mitochondrial permeabilization to trigger mtDNA-dependent inflammation in astrocytes during brain ischemia. Metabolism 2025; 166:156161. [PMID: 39956315 DOI: 10.1016/j.metabol.2025.156161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
The brain is rich in lipids, and disorders or abnormalities in lipid metabolism can induce neurotoxicity. Ceramides are the central intermediates of sphingolipid metabolism. This study was designed to investigate the potential lipotoxicity of ceramides in brain ischemia. First, a pseudo-targeted lipidomics analysis of plasma samples from stroke patients found significantly elevated levels of long-chain ceramides. A similar observation was made in mice subjected to permanent middle cerebral artery occlusion (pMCAO) surgery. In cultured cells, it was found that the altered ceramides were mainly derived from astrocytes via de novo pathway, and SPTLC2 was a key regulator because Sptlc2 knockdown largely blocked ceramide production. Ceramides induced astrocyte activation and triggered oxidative stress to impair mitochondrial homeostasis by increasing mitochondrial permeabilization. Moreover, ceramides triggered the formation of voltage-dependent anion channel (VDAC) oligomers in the mitochondrial outer membrane, through which mtDNA was released into the cytoplasm. Similar to oxygen and glucose depletion treatment, ceramides also increased cGAS activity and STING protein expression. However, this activity was diminished in the presence of the mitochondrial ROS scavenger SKQ1, indicating the involvement of oxidative stress in ceramide action. By facilitating cGAS/STING signaling cascades, ceramides resultantly induced interferon response to aggravate inflammatory damage in the ischemic brain. To address the impact of ceramides on brain ischemic injury in vivo, ceramide generation was blocked in the brain by injection of AAV9-Sptlc2 shRNA in pMCAO mice. Sptlc2 knockdown in the brain reduced ceramide generation and attenuated brain ischemic damage with astrocyte inactivation. As expected, Sptlc2 deficiency effectively blocked cGAS/STING pathway-dependent interferon responses. Together, these findings suggest a new therapeutic strategy for pharmacological intervention to attenuate neuroinflammation.
Collapse
Affiliation(s)
- Feng-Qing Huang
- Department of Cardiology, Pukou Hospital of Chinese Medicine Affiliated to China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Hong-Fei Wang
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Tong Yang
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Dai Yang
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Peian Liu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Raphael N Alolga
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Gaoxiang Ma
- Department of Cardiology, Pukou Hospital of Chinese Medicine Affiliated to China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Baolin Liu
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - An Pan
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Shi-Jia Liu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China.
| | - Lian-Wen Qi
- Department of Cardiology, Pukou Hospital of Chinese Medicine Affiliated to China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
3
|
Zhang M, Ji Y, Liu M, Dai Y, Zhang H, Tong S, Cai Y, Liu M, Qu N. Nano-delivery of STING agonists: Unraveling the potential of immunotherapy. Acta Biomater 2025; 197:104-120. [PMID: 40164370 DOI: 10.1016/j.actbio.2025.03.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/10/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
The cyclic GMP-AMP synthetase-interferon gene stimulator (cGAS-STING) pathway possesses tremendous potential in immune responses, viral defense, and anti-tumor treatment. Currently, an increasing number of nanocarriers are being engineered to convey STING agonists, with the goal of booSTING the conveying capacity of cGAS-STING agonists and augment the therapeutic potency of STING agonists. In this review, we explore the mechanisms of cGAS-STING activators, the application of different nanocarriers in the STING pathway, and the application of nanocarriers in anti-tumor therapy, antiviral therapy and autoimmune diseases. Additionally, we also discuss the adverse effects of STING pathway activation and the challenges encountered in nano delivery, we hope that future research will delve into the development of new nanocarriers and the clinical translation of nanocarriers in STING-mediated immunotherapy. STATEMENT OF SIGNIFICANCE: The cyclic GMP-AMP synthetase-interferon gene stimulator (cGAS-STING) pathway possesses tremendous potential in immune responses, viral defense, and anti-tumor treatment. In this review, we first explore the activation mechanism of cGAS-STING signal pathway and the diverse array of nanocarriers that have been employed in the context of the STING pathway, such as natural carrier, lipid nanoparticles, polymeric nanoparticles, and inorganic nanoparticles, highlighting their unique properties and the challenges they present in clinical applications. Furthermore, we discuss the research progress regarding nanocarriers in STING-mediated immunotherapy, such as the application of nanocarriers in anti-tumor therapy, antiviral therapy and autoimmune diseases therapy. Finally, the side effects of STING pathway activation and the issues encountered in nano delivery will be discussed, hoping that future research will delve into the development of new nanocarriers and the clinical translation of nanocarriers in STING-mediated immunotherapy.
Collapse
Affiliation(s)
- Meng Zhang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China
| | - Yating Ji
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China
| | - Mingxia Liu
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China
| | - Yixin Dai
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China
| | - Hongxia Zhang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China
| | - Shiyu Tong
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China
| | - Yuqing Cai
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China
| | - Mengjiao Liu
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Forckenbeckstrasse 55, Aachen 52074, Germany
| | - Na Qu
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China.
| |
Collapse
|
4
|
Li X, Zhang H, Yu F, Xie S, Wang T, Zhang R, Xu G, Wang L, Huang Y, Hu C. IRF8 aggravates nonalcoholic fatty liver disease via BMAL1/PPARγ axis. Genes Dis 2025; 12:101333. [PMID: 40083324 PMCID: PMC11905893 DOI: 10.1016/j.gendis.2024.101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/20/2024] [Accepted: 03/31/2024] [Indexed: 03/16/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a hepatic metabolic syndrome arising from lipid metabolic imbalance, with its prevalence increasing globally. In this study, we observed a significant up-regulation of interferon regulatory factor 8 (IRF8) in the liver of NAFLD model mice and patients. Overexpression of IRF8 induced lipid accumulation in the mouse primary hepatocytes. Mice with adeno-associated virus-mediated IRF8 overexpression exhibited hepatic steatosis due to up-regulated peroxisome proliferator-activated receptor γ (PPARγ) expression and increased fatty acid uptake and lipogenesis. In vitro, small interfering RNA-mediated IRF8 knockdown attenuated triglyceride accumulation by dampening PPARγ expression through transcriptional inhibition of brain and muscle ARNT-like 1. The PPARγ-specific antagonist GW9662 abolished the effect of IRF8 overexpression. Furthermore, adeno-associated virus-mediated IRF8 knockdown in the mouse liver markedly alleviated hepatic steatosis and obesity-related metabolic syndrome. These findings indicate that IRF8 plays a vital role in modulating hepatic lipid metabolism in a PPARγ-dependent manner and provide a previously unknown insight into NAFLD therapeutic strategies.
Collapse
Affiliation(s)
- Xinyue Li
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Fan Yu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Shuting Xie
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Tongyu Wang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Guangzhong Xu
- Surgery Centre of Diabetes Mellitus, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing 100038, China
| | - Liang Wang
- Surgery Centre of Diabetes Mellitus, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing 100038, China
| | - Yeping Huang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201406, China
| |
Collapse
|
5
|
Wang S, Qin L, Liu F, Zhang Z. Unveiling the crossroads of STING signaling pathway and metabolic reprogramming: the multifaceted role of the STING in the TME and new prospects in cancer therapies. Cell Commun Signal 2025; 23:171. [PMID: 40197235 PMCID: PMC11977922 DOI: 10.1186/s12964-025-02169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/23/2025] [Indexed: 04/10/2025] Open
Abstract
The cGAS-STING signaling pathway serves as a critical link between DNA sensing and innate immunity, and has tremendous potential to improve anti-tumor immunity by generating type I interferons. However, STING agonists have shown decreasing biotherapeutic efficacy in clinical trials. Tumor metabolism, characterized by aberrant nutrient utilization and energy production, is a fundamental hallmark of tumorigenesis. And modulating metabolic pathways in tumor cells has been discovered as a therapeutic strategy for tumors. As research concerning STING progressed, emerging evidence highlights its role in metabolic reprogramming, independent its immune function, indicating metabolic targets as a strategy for STING activation in cancers. In this review, we delve into the interplay between STING and multiple metabolic pathways. We also synthesize current knowledge on the antitumor functions of STING, and the metabolic targets within the tumor microenvironment (TME) that could be exploited for STING activation. This review highlights the necessity for future research to dissect the complex metabolic interactions with STING in various cancer types, emphasizing the potential for personalized therapeutic strategies based on metabolic profiling.
Collapse
Affiliation(s)
- Siwei Wang
- Hepatic Surgery Center, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Lu Qin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Ministry of Education, Huazhong University of Science and Technology), Wuhan, China
| | - Furong Liu
- Hepatic Surgery Center, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Zhanguo Zhang
- Hepatic Surgery Center, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
6
|
Huang J, Bao C, Yang C, Qu Y. Dual-tDCS Ameliorates Cerebral Injury and Promotes Motor Function Recovery via cGAS-STING Signaling Pathway in a Rat Model of Ischemic Stroke. Mol Neurobiol 2025; 62:4484-4498. [PMID: 39455539 DOI: 10.1007/s12035-024-04574-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Ischemic stroke is one of the leading causes of death and disability. Dual transcranial direct current stimulation (dual-tDCS) is a promising intervention to treat ischemic stroke, but its efficacy and underlying mechanism remain to be verified. Cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has recently emerged as a key mediator in cerebral injury. However, little is known about the effect of cGAS-STING on neuronal damage in ischemic stroke, and it remains to be studied whether the cGAS-STING pathway is involved in tDCS intervention for ischemic stroke. Therefore, we aimed to investigate whether dual-tDCS can alleviate ischemic brain injury in a rat model of ischemic stroke and if so, whether via cGAS-STING pathway. Middle cerebral artery occlusion (MCAO) was employed to induce a rat model of ischemic stroke. Male SD rats weighing 250-280 g were randomly assigned to the Sham, MCAO, Dual-tDCS, Dual-tDCS + RU.521, and Dual-tDCS + 2'3'-cGAMP groups, with 10 rats in each group completing the experiment. Behavioral, morphological, MRI, and molecular biological methods were performed. We found that the cGAS-STING pathway was activated and expressed in neurons after MCAO. Dual-tDCS improved motor function and infarct volume, inhibited neuronal apoptosis, promoted the expression of neurotrophins (BDNF and NGF), CD31, and VEGF, and suppressed inflammation reaction after MCAO via the cGAS-STING pathway. Taken together, dual-tDCS may improve MCAO-induced brain injury and promote the recovery of motor function, resulting from the inhibition of neuronal apoptosis and inflammation reaction, as well as promotion of the expression of nerve plasticity- and angiogenesis-related proteins, via cGAS-STING pathway.
Collapse
Affiliation(s)
- Jiapeng Huang
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuncha Bao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chunlan Yang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yun Qu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Wang J, Guo Y, Hu J, Peng J. STING Activation in Various Cell Types in Metabolic Dysfunction-Associated Steatotic Liver Disease. Liver Int 2025; 45:e70063. [PMID: 40116753 DOI: 10.1111/liv.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/07/2025] [Accepted: 02/28/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND During the hepatic histological progression in metabolic dysfunction-associated steatotic liver disease (MASLD), the immunological mechanisms play a the pivotal role, especially when progressing to metabolic dysfunction-associated steatohepatitis (MASH). The discovery of the stimulator of interferon genes (STING) marked a significant advancement in understanding the immune system. METHODS We searched literature on STING involved in MASLD in PubMed to summarise the role of intrahepatic or extrahepatic STING signal pathways and the potential agonists or inhibitors of STING in MASLD. RESULTS Besides inflammation and type I interferon response induced by STING activation in the intrahepatic or extrahepatic immune cells, STING activation in hepatocytes leads to protein aggregates and lipid deposition. STING activation in hepatic macrophages inhibits autophagy in hepatocytes and promotes hepatic stellate cells (HSCs) activation. STING activation in HSCs promotes HSC activation and exacerbates liver sinusoidal endothelial cells (LSECs) impairment. However, it was also reported that STING activation in hepatic macrophages promotes lipophagy in hepatocytes and STING activation in HSCs leads to HSC senescence. STING activation in LSEC, inhibits angiogenesis. For extrahepatic tissue, STING signalling participates in the regulation of the intestinal permeability, intestinal microecology and insulin action in adipocytes, which were all involved in the pathogenesis of MASLD. CONCLUSION There're plenty of STING ligands in MASLD. How STING activation affects the intercellular conversation in MASLD deserves thorough investigation.
Collapse
Affiliation(s)
- JingJing Wang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Guo
- Department of Nephropathy, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Hu
- Department of Nephropathy, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinghua Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| |
Collapse
|
8
|
Li H, Zhang Y, Peh HY. Interferon regulatory factor 3 beyond innate immunity: Regulation in obesity and metabolic disorders. Semin Immunol 2025; 78:101948. [PMID: 40156960 DOI: 10.1016/j.smim.2025.101948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Interferon regulatory factor 3 (IRF3) is a transcription factor known primarily for its role in antiviral immunity via regulation of type I interferons (IFNs). Recent research has broadened its significance to encompass metabolic disorders, particularly obesity and diabetes. Obesity is characterized by chronic low-grade inflammation, insulin resistance, and metabolic dysfunction, all of which are increasingly found to be associated with immune signaling pathways. IRF3 has emerged as an important regulator in the development of obesity and type 2 diabetes (T2D), predominantly through its regulation of inflammatory cytokines production in various cells in adipose tissue. In obese individuals, IRF3 is activated in the adipocytes and adipose tissue macrophages, to promote the expression of inflammatory cytokines, thereby contributing to chronic inflammation and exacerbating insulin resistance. Moreover, IRF3 has been linked to mitochondrial dysfunction in hepatic disorders, further amplifying metabolic stress and imbalances associated with obesity. The growing evidence suggests that IRF3 is an important mediator in both immune and metabolic pathways, highlighting its potential as a target for the development of therapeutic interventions for obesity-related inflammation and metabolic dysfunction.
Collapse
Affiliation(s)
- Heng Li
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore; NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore; NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.
| | - Hong Yong Peh
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Singapore Lipidomics Incubator, Life Science Institute, National University of Singapore, Singapore 117456, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| |
Collapse
|
9
|
Chen M, Li Y, Zhu JY, Mu WJ, Luo HY, Yan LJ, Li S, Li RY, Yin MT, Li X, Chen HM, Guo L. Exercise-induced adipokine Nrg4 alleviates MASLD by disrupting hepatic cGAS-STING signaling. Cell Rep 2025; 44:115251. [PMID: 39891907 DOI: 10.1016/j.celrep.2025.115251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/15/2024] [Accepted: 01/10/2025] [Indexed: 02/03/2025] Open
Abstract
Exercise is an effective non-pharmacological strategy for ameliorating metabolic dysfunction-associated steatotic liver disease (MASLD). Neuregulin-4 (Nrg4) is an adipokine with a potential role in metabolic homeostasis. Previous findings have shown that Nrg4 is upregulated by exercise and that Nrg4 reduces hepatic steatosis, but the underlying mechanism is not fully understood. Here, we show that adipose Nrg4 is transactivated by Pparγ in response to exercise in mice. Adeno-associated virus (AAV)-mediated knockdown of adipose Nrg4 as well as hepatocyte-specific knockout of Erbb4 (Nrg4 receptor) impair exercise-mediated alleviation of MASLD in mice. Conversely, AAV-mediated overexpression of adipose Nrg4 mitigates MASLD in mice in synergy with exercise. Mechanistically, Nrg4/Erbb4/AKT signaling promotes cyclic guanosine monophosphate-AMP synthase (cGAS) phosphorylation to blunt its enzyme activity, thereby inhibiting cGAS-STING pathway-mediated inflammation and steatosis in hepatocytes. Thus, Nrg4 functions as an exercise-induced adipokine that participates in adipose-liver tissue communication to counteract MASLD.
Collapse
Affiliation(s)
- Min Chen
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Yang Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Jie-Ying Zhu
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Wang-Jing Mu
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Hong-Yang Luo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Lin-Jing Yan
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Shan Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Ruo-Ying Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Meng-Ting Yin
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Xin Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Hu-Min Chen
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Liang Guo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
10
|
Jiang W, Zeng Q, Liu CH, Wang Y, Wang S, Chen E, Wang M, Zhou T, Bai L, Wu D, Tang H. Huc-MSCs-derived exosomes alleviate non-alcoholic steatohepatitis by regulating macrophages polarization through miR-24-3p/STING axis. Stem Cell Res Ther 2025; 16:74. [PMID: 39984996 PMCID: PMC11846240 DOI: 10.1186/s13287-025-04197-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/29/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND There's a scarcity of drugs effective against nonalcoholic steatohepatitis (NASH). Exosomes from Human umbilical cord mesenchymal stem cells (huc-MSCs) show potential in managing glycolipid metabolism and the immune response. Therefore, further investigations are required to explore their application in NASH and the underlying mechanisms. METHODS C57BL/6J mice were fed with a western diet for 12 weeks to induce NASH, and huc-MSCs exosomes (MSCs-exo) were administered during the feeding period. The effect of MSCs-exo was evaluated by monitoring changes in body weight, fat distribution, blood glucose, and insulin levels, and analyzing pathological alterations in liver tissue. Mechanism investigations were carried out using flow cytometry, immunofluorescence staining, and other experimental techniques. RESULTS MSCs-exo could reduce liver fat, inflammation, fibrosis, and improved metabolism to alleviate the progression of NASH. Besides, MSCs-exo could decrease macrophage accumulation in the liver, encouraging M2 over M1 macrophage polarization. Furthermore, our study found that MSCs-exo had a high expression of miR-24-3p, which may regulate macrophage polarization by targeting the interferon-stimulated genes (STING) gene in macrophages, with its overexpression amplifying MSCs-exo's NASH benefits. CONCLUSIONS These findings suggest that the therapeutic effect of MSCs-exo on NASH may be attributed to the regulation of macrophage M2 polarization through miR-24-3p targeting STING. This provides a scientific basis for future clinical application.
Collapse
Affiliation(s)
- Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Qingmin Zeng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yonghong Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Shisheng Wang
- Liver Surgery and Liver Transplant Center, Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Enqiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Taoyou Zhou
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Dongbo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Han C, Wang J, Zhou X, Li W, Yang Y, Zhang C, Cao C. TFAP4 regulates the progression of liver fibrosis through the STING signaling pathway. Int Immunopharmacol 2025; 148:114094. [PMID: 39827671 DOI: 10.1016/j.intimp.2025.114094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
To investigate the mechanism by which the transcription factor TFAP4 promotes the progression of liver fibrosis through the STING signaling pathway. The expression of STING and TFAP4 in liver fibrosis mouse tissue was upregulated, AAV8-TFAP4 promoted the activation of the STING signaling pathway, and promoted the progression of liver fibrosis and tissue inflammation. In STING-KO mice, AAV8-TFAP4 could not further increase the level of liver fibrosis and tissue inflammation. Luciferase reporter gene experiments showed that there is an interactive relationship between TFAP4 and STING.TFAP4 can act as a transcription factor for STING, promote the activation of the STING signaling pathway, thereby exacerbating the progression of liver fibrosis and tissue inflammation in mice.
Collapse
Affiliation(s)
- Chenyang Han
- The Second Affiliated Hospital of Jiaxing University 314001 China
| | - Jin Wang
- The Second Affiliated Hospital of Jiaxing University 314001 China
| | - Xiaohong Zhou
- The Second Affiliated Hospital of Jiaxing University 314001 China
| | - Wenyan Li
- The Second Affiliated Hospital of Jiaxing University 314001 China
| | - Yi Yang
- The Second Affiliated Hospital of Jiaxing University 314001 China
| | - Caiqun Zhang
- The Second Affiliated Hospital of Jiaxing University 314001 China
| | - Chenxi Cao
- The Second Affiliated Hospital of Jiaxing University 314001 China.
| |
Collapse
|
12
|
Guo X, Li H, Zhu B, Wang X, Xu Q, Aquino E, Koo M, Li Q, Cai J, Glaser S, Wu C. HFD feeding for seven months abolishes STING disruption-driven but not female sex-based protection against hepatic steatosis and inflammation in mice. J Nutr Biochem 2025; 135:109770. [PMID: 39284534 PMCID: PMC11620956 DOI: 10.1016/j.jnutbio.2024.109770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024]
Abstract
Stimulator of interferon genes (STING) is positively correlated with the degrees of liver inflammation in human metabolic dysfunction-associated steatotic liver disease (MASLD). In addition, STING disruption alleviates MASLD in mice fed a high-fat diet (HFD) for 3 months (3-m-HFD). Here we investigated the role of the duration of dietary feeding in regulating MASLD in mice and explored the involvement of STING in sex differences in MASLD. Both male and female STING-disrupted (STINGgt) and wild-type C57BL/6J mice were fed an HFD for 3 or 7 months (7-m-HFD). Additionally, female STINGgt mice upon ovariectomy (OVX) and 3-m-HFD were analyzed for MASLD. Upon 3-m-HFD, STINGgt mice exhibited decreased severity of MASLD compared to control. However, upon 7-m-HFD, STINGgt mice were comparable with wild-type mice in body weight, fat mass, and MASLD. Regarding regulating the liver RNA transcriptome, 7-m-HFD increased the expression of genes indicating proinflammatory activation of various liver cells. Interestingly, the severity of MASLD in female mice was much lighter than in male mice, regardless of STING disruption. Upon OVX, female STINGgt mice showed significantly increased severity of MASLD relative to sham control but were comparable with male STINGgt mice. Upon treatment with 17-beta estradiol (E2), hepatocytes revealed decreased fat deposition while macrophages displayed decreases in lipopolysaccharide-induced phosphorylation of Nfkb p65 and Jnk p46 independent of STING. These results suggest that 7-m-HFD, without altering female sex-based protection, abolishes STING disruption-driven protection of MASLD, likely through causing proinflammatory activation of multiple types of liver cells to offset the effect of STING disruption.
Collapse
Affiliation(s)
- Xinlei Guo
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Honggui Li
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Bilian Zhu
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Xiaoxiao Wang
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Qian Xu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Eduardo Aquino
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Minji Koo
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - James Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Byran, Texas, USA.
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
13
|
Kwak H, Lee E, Karki R. DNA sensors in metabolic and cardiovascular diseases: Molecular mechanisms and therapeutic prospects. Immunol Rev 2025; 329:e13382. [PMID: 39158380 PMCID: PMC11744256 DOI: 10.1111/imr.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
DNA sensors generally initiate innate immune responses through the production of type I interferons. While extensively studied for host defense against invading pathogens, emerging evidence highlights the involvement of DNA sensors in metabolic and cardiovascular diseases. Elevated levels of modified, damaged, or ectopically localized self-DNA and non-self-DNA have been observed in patients and animal models with obesity, diabetes, fatty liver disease, and cardiovascular disease. The accumulation of cytosolic DNA aberrantly activates DNA signaling pathways, driving the pathological progression of these disorders. This review highlights the roles of specific DNA sensors, such as cyclic AMP-GMP synthase and stimulator of interferon genes (cGAS-STING), absent in melanoma 2 (AIM2), toll-like receptor 9 (TLR9), interferon gamma-inducible protein 16 (IFI16), DNA-dependent protein kinase (DNA-PK), and DEAD-box helicase 41 (DDX41) in various metabolic disorders. We explore how DNA signaling pathways in both immune and non-immune cells contribute to the development of these diseases. Furthermore, we discuss the intricate interplay between metabolic stress and immune responses, offering insights into potential therapeutic targets for managing metabolic and cardiovascular disorders. Understanding the mechanisms of DNA sensor signaling in these contexts provides a foundation for developing novel interventions aimed at mitigating the impact of these pervasive health issues.
Collapse
Affiliation(s)
- Hyosang Kwak
- Department of Biological Sciences, College of Natural ScienceSeoul National UniversitySeoulSouth Korea
| | - Ein Lee
- Department of Biomedical Sciences, College of MedicineSeoul National UniversitySeoulSouth Korea
| | - Rajendra Karki
- Department of Biological Sciences, College of Natural ScienceSeoul National UniversitySeoulSouth Korea
- Nexus Institute of Research and Innovation (NIRI)KathmanduNepal
| |
Collapse
|
14
|
Niu QQ, Xi YT, Zhang CR, Li XY, Li CZ, Wang HD, Li P, Yin YL. Potential mechanism of perillaldehyde in the treatment of nonalcoholic fatty liver disease based on network pharmacology and molecular docking. Eur J Pharmacol 2024; 985:177092. [PMID: 39510336 DOI: 10.1016/j.ejphar.2024.177092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/08/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic metabolic liver diseases worldwide. Perillaldehyde (4-propyl-1-en-2-ylcyclohexene-1-aldehyde, PA) is a terpenoid compound extracted from Perilla, which has effective pharmacological activities such as anti-inflammatory, antidepressant, and anticancer. This study aimed to explore the pharmacological effects of PA in intervening with NAFLD and reveal its potential mechanisms. Firstly, we identified the core targets of PA intervention therapy for NAFLD through network pharmacology and molecular docking techniques. After that, in vitro animal experiments such as H&E and Masson staining, immunofluorescence, immunohistochemistry, and Western blot were conducted to validate the results network effectively pharmacology predicted. Network pharmacology analysis suggested that PPAR-α may be the core target of PA intervention in NAFLD. H&E and Masson staining showed that after low-dose (50 mg/kg) PA administration, there was a noticeable improvement in fat deposition in the livers of NAFLD mice, and liver tissue fibrosis was alleviated. Immunohistochemical and immunofluorescence analysis showed that low dose (50 mg/kg) PA could reduce hepatocyte apoptosis, decrease the content of pro-apoptosis protein Bax, and increase the expression of anti-apoptosis protein Bcl-2 in NAFLD mice. Western blot results confirmed that low-dose (50 mg/kg) PA could increase the expression of PPAR-α and inhibit the expression of NF-κB in NAFLD mice. Our study indicated that PA could enhance the activity of PPAR-α and reduce the level of NF-κB in NAFLD mice, which may positively affect the prevention of NAFLD.
Collapse
Affiliation(s)
- Qian-Qian Niu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, 13200, Malaysia
| | - Yu-Ting Xi
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Chun-Rui Zhang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Xi-Yue Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Cheng-Zhi Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Hui-Dan Wang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Peng Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China.
| | - Ya-Ling Yin
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
15
|
Su J, Cheng F, Yuan W. Unraveling the cGAS/STING signaling mechanism: impact on glycerolipid metabolism and diseases. Front Med (Lausanne) 2024; 11:1512916. [PMID: 39669992 PMCID: PMC11634591 DOI: 10.3389/fmed.2024.1512916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
The cyclic GMP-AMP synthase (cGAS) and its downstream effector, the stimulator of interferon genes (STING), are crucial components of the innate immune response, traditionally recognized for their role in detecting cytosolic DNA from pathogens and damaged host cells. However, recent research indicates that the cGAS-STING pathway also significantly impacts metabolic processes, particularly glycerolipid metabolism. Glycerolipids are essential for energy storage and cellular membrane integrity, and their dysregulation is linked to metabolic disorders such as obesity, insulin resistance, and non-alcoholic fatty liver disease (NAFLD). Both cGAS and STING are expressed in various metabolic tissues, suggesting a potential role in lipid homeostasis. Chronic activation of the cGAS-STING pathway may promote inflammatory states that exacerbate insulin resistance and lipid accumulation, forming a feedback loop of metabolic dysfunction. This review explores the emerging relationship between cGAS/STING signaling and glycerolipid metabolism, discussing the mechanisms through which this pathway influences lipid regulation and the potential for therapeutic interventions. By integrating insights from immunology and metabolism, we aim to provide a comprehensive understanding of how the cGAS-STING axis may serve as a novel target for addressing metabolic disorders and enhancing metabolic health outcomes.
Collapse
Affiliation(s)
- Jie Su
- Department of Cardiology, Hospital of Jiangsu University, Zhenjiang, China
- The British Heart Foundation Centre of Excellence, St Thomas’ Hospital, School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, The Rayne Institute, London, United Kingdom
| | - Fuyu Cheng
- Department of Cardiology, Hospital of Jiangsu University, Zhenjiang, China
- School of Engineering and Material Sciences, Digital Environment Research Institute, Queen Mary University of London, London, United Kingdom
| | - Wei Yuan
- Department of Cardiology, Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
16
|
Wang K, Cunha E Rocha K, Qin H, Zeng Z, Ying W. Host metabolic inflammation fueled by bacterial DNA. Trends Endocrinol Metab 2024:S1043-2760(24)00294-7. [PMID: 39609222 DOI: 10.1016/j.tem.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024]
Abstract
Metabolic diseases, characterized by chronic low-grade inflammation, exhibit a compromised gut barrier allowing the translocation of bacteria-derived products to bloodstream and distant metabolic organs. Bacterial DNA can be detected in metabolic tissues during the onset of these diseases, highlighting its role in the development of metabolic diseases. Extracellular vesicles (EVs) are involved in the delivery of bacterial DNA to the local tissues, and its sensing by the host triggers local and system inflammation. Understanding bacterial DNA translocation and its induced inflammation is crucial in deciphering metabolic disease pathways. Here, we delve into the mechanisms dictating the interaction between host physiology and bacterial DNA, focusing on its origin and delivery, host immune responses against it, and its roles in metabolic disorders.
Collapse
Affiliation(s)
- Ke Wang
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Karina Cunha E Rocha
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Houji Qin
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Zixuan Zeng
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Wei Ying
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
17
|
Li J, Ge Y, Chai Y, Kou C, Sun TT, Liu J, Zhang H. THSR Mediated MiR374b Targeting C/ EBP β/ FOXO1 to Accelerate Thyroid Stimulating Hormone-Induced Hepatic Steatosis. Hepat Med 2024; 16:91-104. [PMID: 39583015 PMCID: PMC11583786 DOI: 10.2147/hmer.s481687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose Thyroid-stimulating hormone (TSH) has been identified as an independent risk factor for non-alcoholic fatty liver disease (NAFLD), TSH binds to the TSH receptor (TSHR) to exert its function. However, the underlying mechanisms by which TSHR influences NAFLD development remain unclear. This study investigates the role of miR374b in NAFLD progression. Methods Firstly, a rat model of non-alcoholic fatty liver was constructed and divided into a normal group and a model group. The liver tissue pathology and fat accumulation were detected by Oil Red O staining and hematoxylin-eosin staining. Western blot and Real time PCR were used to detect for the impact of TSHR/miR-374b/C/EBP β/ FoxO1 pathway in the NAFLD model, and the expression of relevant inflammatory factors in each group was detected by ELISA assay. A NAFLD cell model was constructed using HepG2 cells, TSHR overexpression and interference, combined with miR-374b inhibitor and mimics, were transfected simultaneously to demonstrate TSHR/miR-374b/C/EBP β/ The mechanism of FoxO1 adipogenesis in vitro. Results TSHR stimulates miR374b secretion in human liver cancer cells (HepG2) and promotes lipid accumulation in the liver. Deficiency of miR374b in HepG2 cells attenuated NAFLD progression. Mechanistically, TSH increases miR374b expression, which then suppresses the transcription of its target genes, CCAAT/enhancer binding protein-b (C/EBP β) and Forkhead Box Protein O1 (FOXO1). This suppression influences the expression of downstream lipid metabolism proteins, including PPARγ, SREBP2, and SREBP1c. Additionally, miR374b directly targets the 3'UTR of C/EBP β and FOXO1, establishing a negative feedback loop in lipid metabolism. Conclusion These findings suggest that TSHR-induced upregulation of miR374b accelerates NAFLD progression by modulating lipid metabolism pathways through C/EBP β and FOXO1.
Collapse
Affiliation(s)
- Juyi Li
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, 250021, People’s Republic of China
- Department of Endocrinology, Geriatrics Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230031, People’s Republic of China
| | - Yang Ge
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Yuwei Chai
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, 250021, People’s Republic of China
| | - Chunjia Kou
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, 250021, People’s Republic of China
| | - Tian Tian Sun
- Department of Infectious Diseases, Jinan People’s Hospital, Jinan, Shandong, 271100, People’s Republic of China
| | - Jia Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| | - Haiqing Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, 250021, People’s Republic of China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| |
Collapse
|
18
|
Wang HF, He YQ, Ke Z, Liang ZW, Zhou JH, Ni K, Zhang Y, Li RF, Xue JF, Zhou CC, Xu JS. STING signaling contributes to methotrexate-induced liver injury by regulating ferroptosis in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117306. [PMID: 39547058 DOI: 10.1016/j.ecoenv.2024.117306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Methotrexate (MTX), an anti-metabolite agent, is a widely used chemotherapeutic anticancer drug, but its hepatotoxicity severely limits its clinical application. Nevertheless, the precise mechanisms of MTX-caused liver damage are extremely intricate and still need to be fully clarified. In the current study, we investigated the role of the STING-ERS-ferroptosis axis in MTX-triggered hepatic toxicity in vivo and in vitro models. Male C57BL/6 J mice exposed to a single dose of MTX (0, 2, 5, and 20 mg/kg) for 3 days exhibited severe liver damage and overactivated STING signaling. Moreover, we found that ferroptosis was also involved in MTX-mediated liver damage. Interestingly, STING deficiency alleviated liver damage, inhibited liver inflammation, as well as suppressed hepatic lipid peroxidation and ferroptosis in MTX-treated mice. Consistently, STING inhibitor (C-176) pretreatment also alleviated MTX-induced STING signaling activation, ROS overproduction and ferroptosis in AML12 cells. Finally, we verified that ER stress was responsible for the MTX-induced liver injury and ferroptosis caused by STING activation. Taken together, our study uncovered a novel link between STING signaling and ferroptosis in MTX-triggered hepatic damages, and suggested that targeting the STING-ER stress-ferroptosis axis might be a promising and effective therapeutic approach against MTX-induced liver damage.
Collapse
Affiliation(s)
- Hong-Fei Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yu-Qiong He
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Zong Ke
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi-Wei Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia-Hao Zhou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ke Ni
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ren-Feng Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian-Feng Xue
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200040, China.
| | - Jia-Shuang Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
19
|
Zhang Y, Zou M, Wu H, Zhu J, Jin T. The cGAS-STING pathway drives neuroinflammation and neurodegeneration via cellular and molecular mechanisms in neurodegenerative diseases. Neurobiol Dis 2024; 202:106710. [PMID: 39490400 DOI: 10.1016/j.nbd.2024.106710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a type of common chronic progressive disorders characterized by progressive damage to specific cell populations in the nervous system, ultimately leading to disability or death. Effective treatments for these diseases are still lacking, due to a limited understanding of their pathogeneses, which involve multiple cellular and molecular pathways. The triggering of an immune response is a common feature in neurodegenerative disorders. A critical challenge is the intricate interplay between neuroinflammation, neurodegeneration, and immune responses, which are not yet fully characterized. In recent years, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) pathway, a crucial immune response for intracellular DNA sensing, has gradually gained attention. However, the specific roles of this pathway within cellular types such as immune cells, glial and neuronal cells, and its contribution to ND pathogenesis, remain not fully elucidated. In this review, we systematically explore how the cGAS-STING signaling links various cell types with related cellular effector pathways under the context of NDs for multifaceted therapeutic directions. We emphasize the discovery of condition-dependent cellular heterogeneity in the cGAS-STING pathway, which is integral for understanding the diverse cellular responses and potential therapeutic targets. Additionally, we review the pathogenic role of cGAS-STING activation in Parkinson's disease, ataxia-telangiectasia, and amyotrophic lateral sclerosis. We focus on the complex bidirectional roles of the cGAS-STING pathway in Alzheimer's disease, Huntington's disease, and multiple sclerosis, revealing their double-edged nature in disease progression. The objective of this review is to elucidate the pivotal role of the cGAS-STING pathway in ND pathogenesis and catalyze new insights for facilitating the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Meijuan Zou
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hao Wu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences & Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
20
|
Jiang T, Zhu F, Gao X, Wu X, Zhu W, Guo C. Naringenin loaded fucoidan/polyvinylpyrrolidone nanoparticles protect against folic acid induced acute kidney injury in vitro and in vivo. Colloids Surf B Biointerfaces 2024; 245:114343. [PMID: 39486374 DOI: 10.1016/j.colsurfb.2024.114343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/18/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Acute kidney injury (AKI) is a common clinical problem with no effective treatment. Excessive folic acid (FA) induced kidney tubular injury is characterized by oxidative stress and inflammation, and is a common model of AKI. The excellent pharmacological activity of naringenin (NAR) makes it a potential agent for treating AKI, but its poor solubility limits its application. This study prepared NAR loaded nanoparticles (FU/PVP-NAR) using fucoidan (FU) and polyvinylpyrrolidone (PVP) as carriers, with a particle size of 23.96 ± 2.77 nm. In vitro studies showed that FU/PVP-NAR inhibited excessive FA induced proliferation inhibition, accumulation of reactive oxygen species (ROS), and disruption of mitochondrial membrane potential (MMP) of HK-2 cells. Further confirmed that FU/PVP-NAR inhibited FA induced DNA damage and Cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) activation. In vivo studies showed that excessive FA induced AKI features in mice, such as elevated serum creatinine (SCr) and blood urea nitrogen (BUN) levels, accompanied by pathological damage to kidney tissues. The above AKI characteristics induced by FA were alleviated by FU/PVP-NAR. FU/PVP-NAR also inhibited the decrease in antioxidant enzyme levels in kidney tissues induced by FA. Furthermore, in vivo mechanism studies indicated that FU/PVP-NAR inhibited the release of inflammatory factors by inhibiting DNA damage-cGAS-STING pathway. In summary, this study provided the possibility for FU/PVP-NAR as a potential candidate drug for treating FA induced AKI.
Collapse
Affiliation(s)
- Tao Jiang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Feikai Zhu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xintao Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaochen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenyong Zhu
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China.
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
21
|
Fan MW, Tian JL, Chen T, Zhang C, Liu XR, Zhao ZJ, Zhang SH, Chen Y. Role of cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes pathway in diabetes and its complications. World J Diabetes 2024; 15:2041-2057. [PMID: 39493568 PMCID: PMC11525733 DOI: 10.4239/wjd.v15.i10.2041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Diabetes mellitus (DM) is one of the major causes of mortality worldwide, with inflammation being an important factor in its onset and development. This review summarizes the specific mechanisms of the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway in mediating inflammatory responses. Furthermore, it comprehensively presents related research progress and the subsequent involvement of this pathway in the pathogenesis of early-stage DM, diabetic gastroenteropathy, diabetic cardiomyopathy, non-alcoholic fatty liver disease, and other complications. Additionally, the role of cGAS-STING in autonomic dysfunction and intestinal dysregulation, which can lead to digestive complications, has been discussed. Altogether, this study provides a comprehensive analysis of the research advances regarding the cGAS-STING pathway-targeted therapeutic agents and the prospects for their application in the precision treatment of DM.
Collapse
Affiliation(s)
- Ming-Wei Fan
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Jin-Lan Tian
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Tan Chen
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Can Zhang
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Xin-Ru Liu
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Zi-Jian Zhao
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Shu-Hui Zhang
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| | - Yan Chen
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
| |
Collapse
|
22
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
23
|
Ahmad Z, Kahloan W, Rosen ED. Transcriptional control of metabolism by interferon regulatory factors. Nat Rev Endocrinol 2024; 20:573-587. [PMID: 38769435 PMCID: PMC11392651 DOI: 10.1038/s41574-024-00990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 05/22/2024]
Abstract
Interferon regulatory factors (IRFs) comprise a family of nine transcription factors in mammals. IRFs exert broad effects on almost all aspects of immunity but are best known for their role in the antiviral response. Over the past two decades, IRFs have been implicated in metabolic physiology and pathophysiology, partly as a result of their known functions in immune cells, but also because of direct actions in adipocytes, hepatocytes, myocytes and neurons. This Review focuses predominantly on IRF3 and IRF4, which have been the subject of the most intense investigation in this area. IRF3 is located in the cytosol and undergoes activation and nuclear translocation in response to various signals, including stimulation of Toll-like receptors, RIG-I-like receptors and the cGAS-STING pathways. IRF3 promotes weight gain, primarily by inhibiting adipose thermogenesis, and also induces inflammation and insulin resistance using both weight-dependent and weight-independent mechanisms. IRF4, meanwhile, is generally pro-thermogenic and anti-inflammatory and has profound effects on lipogenesis and lipolysis. Finally, new data are emerging on the role of other IRF family members in metabolic homeostasis. Taken together, data indicate that IRFs serve as critical yet underappreciated integrators of metabolic and inflammatory stress.
Collapse
Affiliation(s)
- Zunair Ahmad
- School of Medicine, Royal College of Surgeons in Ireland, Medical University of Bahrain, Busaiteen, Bahrain
| | - Wahab Kahloan
- AdventHealth Orlando Family Medicine, Orlando, FL, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Saad M, Ibrahim W, Hasanin AH, Elyamany AM, Matboli M. Evaluating the therapeutic potential of genetically engineered probiotic Zbiotics (ZB183) for non-alcoholic steatohepatitis (NASH) management via modulation of the cGAS-STING pathway. RSC Med Chem 2024:d4md00477a. [PMID: 39290381 PMCID: PMC11403872 DOI: 10.1039/d4md00477a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
NAFLD/NASH has emerged as a global health concern with no FDA-approved treatment, necessitating the exploration of novel therapeutic elements for NASH. Probiotics are known as an important adjunct therapy in NASH. Zbiotics (ZB183) is the first commercially available genetically engineered probiotic. Herein, we aimed to evaluate the potential therapeutic effects of Zbiotics administration on NASH management by modulating the cGAS-STING-signaling pathway-related RNA network. In silico data analysis was performed and three DEGs (MAPK3/EDN1/TNF) were selected with their epigenetic modulators (miR-6888-5p miRNA, and lncRNA RABGAP1L-DT-206). The experimental design included NASH induction with an HSHF diet in Wistar rats and Zbiotics administration in NASH rats in comparison to statin treatment. Liver functions and lipid profile were assessed. Additionally, the expression levels of the constructed molecular network were assessed using RT-PCR. Moreover, the Zbiotics effects in NASH were further validated with histopathological examination of liver and colon samples. Also, immunohistochemistry staining of hepatic TNF-α and colonic occludin was assessed. Oral administration of Zbiotics for four weeks downregulated the expression of the cGAS-STING-related network (MAPK3/EDN1/TNF/miR-6888-5p miRNA/lncRNA RABGAP1L-DT-206) in NASH models. Zbiotics also ameliorated hepatic inflammation and steatosis, as evidenced by a notable improvement in NAS score and decreased hepatic TNF-α levels. Furthermore, Zbiotics exhibited favorable effects on colon health, including increased crypt length, reduced inflammatory cell infiltration, and restoration of colonic mucosa occludin expression. In conclusion, our findings suggest that Zbiotics has potential therapeutic effects on NASH via modulating the gut-liver axis and the cGAS-STING signaling pathway.
Collapse
Affiliation(s)
- Maha Saad
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Modern University for Technology and Information Cairo Egypt
- Biomedical Research Department, Faculty of Medicine, Modern University for technology and information Cairo Egypt
- Medical Biochemistry and Molecular Biology, Faculty of Medicine Cairo University Cairo Egypt
| | - Walaa Ibrahim
- Medical Biochemistry and Molecular Biology, Faculty of Medicine Cairo University Cairo Egypt
| | - Amany Helmy Hasanin
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| | - Aya Magdy Elyamany
- Anatomic Pathology Department, Faculty of Medicine, Cairo University Cairo Egypt
| | - Marwa Matboli
- Departement of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| |
Collapse
|
25
|
Wang J, Zang J, Yu Y, Liu Y, Cao H, Guo R, Zhang L, Liu M, Zhang Z, Li X, Kong L. Lingguizhugan oral solution alleviates MASLD by regulating bile acids metabolism and the gut microbiota through activating FXR/TGR5 signaling pathways. Front Pharmacol 2024; 15:1426049. [PMID: 39211777 PMCID: PMC11358101 DOI: 10.3389/fphar.2024.1426049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Background The preservation of the Lingguizhugan (LGZG) decoction and patient compliance issue often limit the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD). Hence, herein, an LGZG oral solution was developed for alleviating MASLD. Additionally, the potential mechanisms underlying LGZG-mediated MASLD mitigation were explored. Methods A MASLD mouse model was constructed using oleic and palmitic acid-induced LO2 cells and a high-fat diet. The apoptosis, lipid deposition, and mouse liver function were analyzed to assess the therapeutic effects of the LGZG oral solution on MASLD. Serum untargeted metabolomics, gut microbiota, bile acid (BA) metabolism, immunohistochemistry, and Western blotting analyses were performed to investigate the potential mechanism of action of LGZG oral solution on MASLD. Results The LGZG oral solution ameliorated lipid deposition, oxidative stress, inflammation, and pathological damage. Serum untargeted metabolomics results revealed the LGZG-mediated regulation of the primary BA biosynthetic pathway. The 16S ribosomal RNA sequencing of the fecal microbiota showed that LGZG oral solution increased the relative abundance of the BA metabolism-associated Bacteroides, Akkermansia, and decreased that of Lactobacillus. Additionally, the BA metabolism analysis results revealed a decrease in the total taurine-α/β-muricholic acid levels, whereas those of deoxycholic acid were increased, which activated specific receptors in the liver and ileum, including farnesoid X receptor (FXR) and takeda G protein-coupled receptor 5 (TGR5). Activation of FXR resulted in an increase in short heterodimer partner and subsequent inhibition of cholesterol 7α-hydroxylase and sterol regulatory element-binding protein-1c expression, and activation of FXR also results in the upregulation of fibroblast growth factor 15/19 expression, and consequently inhibition of cholesterol 7α-hydroxylase, which correlated with hepatic BA synthesis and lipogenesis, ultimately attenuating lipid deposition and bile acid stasis, thereby improving MASLD. Conclusion Altogether, the findings of this study suggest that modulating microbiota-BA-FXR/TGR5 signaling pathway may be a potential mechanism of action of LGZG oral solution for the treatment of MASLD.
Collapse
Affiliation(s)
- Jiahua Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Juan Zang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Yang Yu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Yang Liu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Huimin Cao
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Ruibo Guo
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Lu Zhang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Mo Liu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Zixu Zhang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xuetao Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Liang Kong
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| |
Collapse
|
26
|
Wang L, Zhang Z, Zhang H, Zhou M, Huang C, Xia W, Li J, You H. The effects of cGAS-STING inhibition in liver disease, kidney disease, and cellular senescence. Front Immunol 2024; 15:1346446. [PMID: 39114669 PMCID: PMC11303230 DOI: 10.3389/fimmu.2024.1346446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway is one of the fundamental mechanisms of the body's defense, which responds to the abnormal presence of double-stranded DNA in the cytoplasm to establish an effective natural immune response. In addition to detecting microbial infections, the cGAS pathway may be triggered by any cytoplasmic DNA, which is absent from the normal cytoplasm, and only conditions such as senescence and mitochondrial stress can lead to its leakage and cause sterile inflammation. A growing body of research has shown that the cGAS-STING pathway is strongly associated with sterile inflammation. In this study, we reviewed the regulatory mechanisms and biological functions of the cGAS-STING pathway through its involvement in aseptic inflammation in liver disease, kidney disease, and cellular senescence.
Collapse
Affiliation(s)
- Ling Wang
- Department of Pharmacy, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Zhengwei Zhang
- Department of Pharmacy, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Haichao Zhang
- Department of Pharmacy, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Minmin Zhou
- Department of Pharmacy, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wenjiang Xia
- Department of Pharmacy, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hongmei You
- Department of Pharmacy, Hangzhou Women’s Hospital, Hangzhou, China
| |
Collapse
|
27
|
Xu Q, Xing J, Wang S, Peng H, Liu Y. The role of the cGAS-STING pathway in metabolic diseases. Heliyon 2024; 10:e33093. [PMID: 38988528 PMCID: PMC11234105 DOI: 10.1016/j.heliyon.2024.e33093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is a critical innate immune pathway primarily due to its vital DNA sensing mechanism in pathogen defence. Recent research advances have shown that excessive activation or damage to the cGAS-STING pathway can exacerbate chronic inflammatory responses, playing a significant role in metabolic dysfunction and aging, leading to the development of related diseases such as obesity, osteoporosis, and neurodegenerative diseases. This article reviews the structure and biological functions of the cGAS-STING signaling pathway and discusses in detail how this pathway regulates the occurrence and development of metabolic and age-related diseases. Additionally, this article introduces potential small molecule drugs targeting cGAS and STING, aiming to provide new research perspectives for studying the pathogenesis and treatment of metabolic-related diseases.
Collapse
Affiliation(s)
- Qian Xu
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, 212002, China
| | - Jie Xing
- Department of Laboratory Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, 212002, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, 212002, China
| | - Huiyong Peng
- Department of Laboratory Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, 212002, China
| | - Yingzhao Liu
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, 212002, China
| |
Collapse
|
28
|
Zeng C, Zhu X, Li H, Huang Z, Chen M. The Role of Interferon Regulatory Factors in Liver Diseases. Int J Mol Sci 2024; 25:6874. [PMID: 38999981 PMCID: PMC11241258 DOI: 10.3390/ijms25136874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The interferon regulatory factors (IRFs) family comprises 11 members that are involved in various biological processes such as antiviral defense, cell proliferation regulation, differentiation, and apoptosis. Recent studies have highlighted the roles of IRF1-9 in a range of liver diseases, including hepatic ischemia-reperfusion injury (IRI), alcohol-induced liver injury, Con A-induced liver injury, nonalcoholic fatty liver disease (NAFLD), cirrhosis, and hepatocellular carcinoma (HCC). IRF1 is involved in the progression of hepatic IRI through signaling pathways such as PIAS1/NFATc1/HDAC1/IRF1/p38 MAPK and IRF1/JNK. The regulation of downstream IL-12, IL-15, p21, p38, HMGB1, JNK, Beclin1, β-catenin, caspase 3, caspase 8, IFN-γ, IFN-β and other genes are involved in the progression of hepatic IRI, and in the development of HCC through the regulation of PD-L1, IL-6, IL-8, CXCL1, CXCL10, and CXCR3. In addition, IRF3-PPP2R1B and IRF4-FSTL1-DIP2A/CD14 pathways are involved in the development of NAFLD. Other members of the IRF family also play moderately important functions in different liver diseases. Therefore, given the significance of IRFs in liver diseases and the lack of a comprehensive compilation of their molecular mechanisms in different liver diseases, this review is dedicated to exploring the molecular mechanisms of IRFs in various liver diseases.
Collapse
Affiliation(s)
| | | | | | | | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China; (C.Z.); (X.Z.); (H.L.); (Z.H.)
| |
Collapse
|
29
|
Ali HS, Al-Amodi HS, Hamady S, Roushdy MMS, Helmy Hasanin A, Ellithy G, Elmansy RA, Ahmed HHT, Ahmed EME, Elzoghby DMA, Kamel HFM, Hassan G, ELsawi HA, Farid LM, Abouelkhair MB, Habib EK, Elesawi M, Fikry H, Saleh LA, Matboli M. Rosavin improves insulin resistance and alleviates hepatic and kidney damage via modulating the cGAS-STING pathway and autophagy signaling in HFD/STZ-induced T2DM animals. RSC Med Chem 2024; 15:2098-2113. [PMID: 38911169 PMCID: PMC11187545 DOI: 10.1039/d4md00023d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/14/2024] [Indexed: 06/25/2024] Open
Abstract
Background: Inflammation-mediated insulin resistance in type 2 diabetes mellitus (T2DM) increases complications, necessitating investigation of its mechanism to find new safe therapies. This study investigated the effect of rosavin on the autophagy and the cGAS-STING pathway-related signatures (ZBP1, STING1, DDX58, LC3B, TNF-α) and on their epigenetic modifiers (miR-1976 and lncRNA AC074117.2) that were identified from in silico analysis in T2DM animals. Methods: A T2DM rat model was established by combining a high-fat diet (HFD) and streptozotocin (STZ). After four weeks from T2DM induction, HFD/STZ-induced T2DM rats were subdivided into an untreated group (T2DM group) and three treated groups which received 10, 20, or 30 mg per kg of R. rosea daily for 4 weeks. Results: The study found that rosavin can affect the cGAS-STING pathway-related RNA signatures by decreasing the expressions of ZBP1, STING1, DDX58, and miR-1976 while increasing the lncRNA AC074117.2 level in the liver, kidney, and adipose tissues. Rosavin prevented further weight loss, reduced serum insulin and glucose, improved insulin resistance and the lipid panel, and mitigated liver and kidney damage compared to the untreated T2DM group. The treatment also resulted in reduced inflammation levels and improved autophagy manifested by decreased immunostaining of TNF-α and increased immunostaining of LC3B in the liver and kidneys of the treated T2DM rats. Conclusion: Rosavin has shown potential in attenuating T2DM, inhibiting inflammation in the liver and kidneys, and improving metabolic disturbances in a T2DM animal model. The observed effect was linked to the activation of autophagy and suppression of the cGAS-STING pathway.
Collapse
Affiliation(s)
- Hebatallah S Ali
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| | - Hiba S Al-Amodi
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Shaimaa Hamady
- Biochemistry Department, Faculty of Science, Ain Shams University Cairo Egypt
| | - Marian M S Roushdy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| | - Amany Helmy Hasanin
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University Cairo Egypt
| | - Ghada Ellithy
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University Cairo Egypt
| | - Rasha A Elmansy
- Anatomy Unit, Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University Buraydah Saudi Arabia
- Department of Anatomy and Cell Biology, Faculty of Medicine, Ain Shams University Egypt
| | - Hagir H T Ahmed
- Anatomy Unit, Department of Basic Medical Sciences, College of Medicine and Medical Sciences, AlNeelain University Sudan
| | - Enshrah M E Ahmed
- Pathology unit, Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Gassim University Saudi Arabia
| | | | - Hala F M Kamel
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Ghida Hassan
- Physiology Department, Faculty of Medicine, Ain Shams University Egypt
| | - Hind A ELsawi
- Department of Internal Medicine, Badr University in Cairo Badr City Egypt
| | - Laila M Farid
- Pathology Department Faculty of Medicine, Ain Shams University Egypt
| | | | - Eman K Habib
- Department of Anatomy and Cell Biology, Faculty of Medicine, Ain Shams University Egypt
- Department of Anatomy and Cell Biology, Faculty of Medicine, Galala University Egypt
| | - Mohamed Elesawi
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| | - Heba Fikry
- Department of Histology, Faculty of Medicine, Ain Shams University Cairo Egypt
| | - Lobna A Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University Cairo Egypt
| | - Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| |
Collapse
|
30
|
Wang S, Liu B, He H, Huang J, He F, He Y, Tao A. Cell-in-cell-mediated intercellular communication exacerbates the pro-inflammatory progression in asthma. Biochem Cell Biol 2024; 102:262-274. [PMID: 38567768 DOI: 10.1139/bcb-2023-0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024] Open
Abstract
Cell-in-cell (CIC) structures have been suggested to mediate intracellular substance transport between cells and have been found widely in inflammatory lung tissue of asthma. The aim of this study was to investigate the significance of CIC structures in inflammatory progress of asthma. CIC structures and related inflammatory pathways were analyzed in asthmatic lung tissue and normal lung tissue of mouse model. In vitro, the activation of inflammatory pathways by CIC-mediated intercellular communication was analyzed by RNA-Seq and verified by Western blotting and immunofluorescence. Results showed that CIC structures of lymphocytes and alveolar epithelial cells in asthmatic lung tissue mediated intercellular substance (such as mitochondria) transfer and promoted pro-inflammation in two phases. At early phase, internal lymphocytes triggered inflammasome-dependent pro-inflammation and cell death of itself. Then, degraded lymphocytes released cellular contents such as mitochondria inside alveolar epithelial cells, further activated multi-pattern-recognition receptors and NF-kappa B signaling pathways of alveolar epithelial cells, and thereby amplified pro-inflammatory response in asthma. Our work supplements the mechanism of asthma pro-inflammation progression from the perspective of CIC structure of lymphocytes and alveolar epithelial cells, and provides a new idea for anti-inflammatory therapy of asthma.
Collapse
Affiliation(s)
- Shan Wang
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| | - Bowen Liu
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| | - Huiru He
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| | - Jiahao Huang
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| | - Fangping He
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| | - Ying He
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| | - Ailin Tao
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| |
Collapse
|
31
|
Fan JQ, Hong QM, Liu LS, Chen Q, Chen YH. Study of the antivirus function mediated by STING in Micropterus salmoides. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109528. [PMID: 38570119 DOI: 10.1016/j.fsi.2024.109528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
Stimulator of interferon genes (STING) has been demonstrated as a critical mediator in the innate immune response to cytosolic DNA and RNA derived from different pathogens. While the role of Micropterus salmoides STING (MsSTING) in largemouth bass virus is still unknown. In this study, RT-qPCR assay and Western-blot assay showed that the expression levels of MsSTING and its downstream genes were up-regulated after LMBV infection. Pull down experiment proved that a small peptide called Fusion peptide (FP) that previously reported to target to marine and human STING as a selective inhibitor also interacted with MsSTING in vitro. Comparing with the RNA-seq of Largemouth bass infected with LMBV singly, 326 genes were significantly up-regulated and 379 genes were significantly down-regulated in the FP plus LMBV group in which Largemouth bass was treatment with FP before LMBV-challenged. KEGG analysis indicated that the differentially expressed genes (DEGs) were mainly related to signaling transduction, infectious disease viral, immune system and endocrine system. Besides, the survival rate of LMBV-infected largemouth bass was highly decreased following FP treatment. Taken together, our study showed that MsSTING played an important role in immune response against LMBV infection.
Collapse
Affiliation(s)
- Jin-Quan Fan
- Institute of Modern Aquaculture Science and Engineering (IMASE), Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Qian-Ming Hong
- Institute of Modern Aquaculture Science and Engineering (IMASE), Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Li-Shi Liu
- Institute of Modern Aquaculture Science and Engineering (IMASE), Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Qi Chen
- Institute of Modern Aquaculture Science and Engineering (IMASE), Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Yi-Hong Chen
- Institute of Modern Aquaculture Science and Engineering (IMASE), Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
32
|
Yu L, Gao F, Li Y, Su D, Han L, Li Y, Zhang X, Feng Z. Role of pattern recognition receptors in the development of MASLD and potential therapeutic applications. Biomed Pharmacother 2024; 175:116724. [PMID: 38761424 DOI: 10.1016/j.biopha.2024.116724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become one of the most prevalent liver diseases worldwide, and its occurrence is strongly associated with obesity, insulin resistance (IR), genetics, and metabolic stress. Ranging from simple fatty liver to metabolic dysfunction-associated steatohepatitis (MASH), even to severe complications such as liver fibrosis and advanced cirrhosis or hepatocellular carcinoma, the underlying mechanisms of MASLD progression are complex and involve multiple cellular mediators and related signaling pathways. Pattern recognition receptors (PRRs) from the innate immune system, including Toll-like receptors (TLRs), C-type lectin receptors (CLRs), NOD-like receptors (NLRs), RIG-like receptors (RLRs), and DNA receptors, have been demonstrated to potentially contribute to the pathogenesis for MASLD. Their signaling pathways can induce inflammation, mediate oxidative stress, and affect the gut microbiota balance, ultimately resulting in hepatic steatosis, inflammatory injury and fibrosis. Here we review the available literature regarding the involvement of PRR-associated signals in the pathogenic and clinical features of MASLD, in vitro and in animal models of MASLD. We also discuss the emerging targets from PRRs for drug developments that involved agent therapies intended to arrest or reverse disease progression, thus enabling the refinement of therapeutic targets that can accelerate drug development.
Collapse
Affiliation(s)
- Lili Yu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Feifei Gao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Yaoxin Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Dan Su
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Liping Han
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yueming Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Xuehan Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China.
| |
Collapse
|
33
|
Li XJY, Qu JR, Zhang YH, Liu RP. The dual function of cGAS-STING signaling axis in liver diseases. Acta Pharmacol Sin 2024; 45:1115-1129. [PMID: 38233527 PMCID: PMC11130165 DOI: 10.1038/s41401-023-01220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/17/2023] [Indexed: 01/19/2024]
Abstract
Numerous liver diseases, such as nonalcoholic fatty liver disease, hepatitis, hepatocellular carcinoma, and hepatic ischemia-reperfusion injury, have been increasingly prevalent, posing significant threats to global health. In recent decades, there has been increasing evidence linking the dysregulation of cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING)-related immune signaling to liver disorders. Both hyperactivation and deletion of STING can disrupt the immune microenvironment dysfunction, exacerbating liver disorders. Consequently, there has been a surge in research investigating medical agents or mediators targeting cGAS-STING signaling. Interestingly, therapeutic manipulation of the cGAS-STING pathway has yielded inconsistent and even contradictory effects on different liver diseases due to the distinct physiological characteristics of intrahepatic cells that express and respond to STING. In this review, we comprehensively summarize recent advancements in understanding the dual roles of the STING pathway, highlighting that the benefits of targeting STING signaling depend on the specific types of target cells and stages of liver injury. Additionally, we offer a novel perspective on the suitability of STING agonists and antagonists for clinical assessment. In conclusion, STING signaling remains a highly promising therapeutic target, and the development of STING pathway modulators holds great potential for the treatment of liver diseases.
Collapse
Affiliation(s)
- Xiao-Jiao-Yang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| | - Jiao-Rong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Yin-Hao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Run-Ping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| |
Collapse
|
34
|
Ednacot EMQ, Nabhani A, Dinh DM, Morehouse BR. Pharmacological potential of cyclic nucleotide signaling in immunity. Pharmacol Ther 2024; 258:108653. [PMID: 38679204 DOI: 10.1016/j.pharmthera.2024.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/16/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Cyclic nucleotides are important signaling molecules that play many critical physiological roles including controlling cell fate and development, regulation of metabolic processes, and responding to changes in the environment. Cyclic nucleotides are also pivotal regulators in immune signaling, orchestrating intricate processes that maintain homeostasis and defend against pathogenic threats. This review provides a comprehensive examination of the pharmacological potential of cyclic nucleotide signaling pathways within the realm of immunity. Beginning with an overview of the fundamental roles of cAMP and cGMP as ubiquitous second messengers, this review delves into the complexities of their involvement in immune responses. Special attention is given to the challenges associated with modulating these signaling pathways for therapeutic purposes, emphasizing the necessity for achieving cell-type specificity to avert unintended consequences. A major focus of the review is on the recent paradigm-shifting discoveries regarding specialized cyclic nucleotide signals in the innate immune system, notably the cGAS-STING pathway. The significance of cyclic dinucleotides, exemplified by 2'3'-cGAMP, in controlling immune responses against pathogens and cancer, is explored. The evolutionarily conserved nature of cyclic dinucleotides as antiviral agents, spanning across diverse organisms, underscores their potential as targets for innovative immunotherapies. Findings from the last several years have revealed a striking diversity of novel bacterial cyclic nucleotide second messengers which are involved in antiviral responses. Knowledge of the existence and precise identity of these molecules coupled with accurate descriptions of their associated immune defense pathways will be essential to the future development of novel antibacterial therapeutic strategies. The insights presented herein may help researchers navigate the evolving landscape of immunopharmacology as it pertains to cyclic nucleotides and point toward new avenues or lines of thinking about development of therapeutics against the pathways they regulate.
Collapse
Affiliation(s)
- Eirene Marie Q Ednacot
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Ali Nabhani
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - David M Dinh
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Benjamin R Morehouse
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
35
|
Zhang F, Lo EKK, Chen J, Wang K, Felicianna, Ismaiah MJ, Leung HKM, Zhao D, Lee JCY, El-Nezami H. Probiotic Mixture Ameliorates a Diet-Induced MASLD/MASH Murine Model through the Regulation of Hepatic Lipid Metabolism and the Gut Microbiome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8536-8549. [PMID: 38575146 PMCID: PMC11037262 DOI: 10.1021/acs.jafc.3c08910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/06/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent metabolic disease that has no effective treatment. Our proprietary probiotic mixture, Prohep, has been proven in a previous study to be helpful in reducing hepatocellular carcinoma (HCC) in vivo. However, its prospective benefits on the treatment of other liver diseases such as MASLD, which is one of the major risk factors in the development of HCC, are unclear. To investigate the potential of Prohep in modulating the development and progression of MASLD, we first explored the effect of Prohep supplementation via voluntary intake in a high-fat diet (HFD)-induced MASLD/metabolic dysfunction-associated steatohepatitis (MASH) murine model. Our results indicated that Prohep alleviated HFD-induced liver steatosis and reduced excessive hepatic lipid accumulation and improved the plasma lipid profile when compared with HFD-fed control mice through suppressing hepatic de novo lipogenesis and cholesterol biosynthesis gene expressions. In addition, Prohep was able to modulate the gut microbiome, modify the bile acid (BA) profile, and elevate fecal short-chain fatty acid (SCFA) levels. Next, in a prolonged HFD-feeding MASLD/MASH model, we observed the effectiveness of Prohep in preventing the transition from MASLD to MASH via amelioration in hepatic steatosis, inflammation, and fibrosis. Taken together, Prohep could ameliorate HFD-induced MASLD and control the MASLD-to-MASH progression in mice. Our findings provide distinctive insights into the development of novel microbial therapy for the management of MASLD and MASH.
Collapse
Affiliation(s)
- Fangfei Zhang
- School
of Biological Sciences, University of Hong
Kong, Pokfulam, Hong Kong 000, S.A.R., China
| | - Emily Kwun Kwan Lo
- School
of Biological Sciences, University of Hong
Kong, Pokfulam, Hong Kong 000, S.A.R., China
| | - Jiarui Chen
- State
Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong
Kong 000, S.A.R., China
- Department
of Medicine, The University of Hong Kong, Hong Kong 000, S.A.R., China
- Leibniz
Institute for Natural Product Research and Infection Biology, Hans
Knöll Institute-Microbiome Dynamics, Jena D-07745, Germany
| | - Ke Wang
- Department
of Food Science and Nutrition, The Hong
Kong Polytechnic University, Hong
Kong 000, S.A.R., China
- Research
Institute for Future Food, The Hong Kong
Polytechnic University, Hong Kong 000, S.A.R., China
| | - Felicianna
- School
of Biological Sciences, University of Hong
Kong, Pokfulam, Hong Kong 000, S.A.R., China
| | - Marsena Jasiel Ismaiah
- School
of Biological Sciences, University of Hong
Kong, Pokfulam, Hong Kong 000, S.A.R., China
| | - Hoi Kit Matthew Leung
- School
of Biological Sciences, University of Hong
Kong, Pokfulam, Hong Kong 000, S.A.R., China
| | - Danyue Zhao
- Department
of Food Science and Nutrition, The Hong
Kong Polytechnic University, Hong
Kong 000, S.A.R., China
- Research
Institute for Future Food, The Hong Kong
Polytechnic University, Hong Kong 000, S.A.R., China
| | - Jetty Chung-Yung Lee
- School
of Biological Sciences, University of Hong
Kong, Pokfulam, Hong Kong 000, S.A.R., China
| | - Hani El-Nezami
- School
of Biological Sciences, University of Hong
Kong, Pokfulam, Hong Kong 000, S.A.R., China
- Institute
of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio FI-70211, Finland
| |
Collapse
|
36
|
Morse J, Wang D, Mei S, Whitham D, Hladun C, Darie CC, Sintim HO, Wang M, Leung K. Chloride Homeostasis Regulates cGAS-STING Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588475. [PMID: 38645072 PMCID: PMC11030317 DOI: 10.1101/2024.04.08.588475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The cGAS-STING signaling pathway has emerged as a key mediator of inflammation. However, the roles of chloride homeostasis on this pathway are unclear. Here, we uncovered a correlation between chloride homeostasis and cGAS-STING signaling. We found that dysregulation of chloride homeostasis attenuates cGAS-STING signaling in a lysosome-independent manner. Treating immune cells with chloride channel inhibitors attenuated 2'3'-cGAMP production by cGAS and also suppressed STING polymerization, leading to reduced cytokine production. We also demonstrate that non-selective chloride channel blockers can suppress the NPC1 deficiency-induced, hyper-activated STING signaling in skin fibroblasts derived from Niemann Pick disease type C (NPC) patients. Our findings reveal that chloride homeostasis majorly affects cGAS-STING pathway and suggest a provocative strategy to dampen STING-mediated inflammation via targeting chloride channels.
Collapse
Affiliation(s)
- Jared Morse
- Department of Chemistry & Biomolecular Science, Clarkson University, NY, 13676, United States
| | - Danna Wang
- Department of Chemistry & Biomolecular Science, Clarkson University, NY, 13676, United States
| | - Serena Mei
- Department of Chemistry & Biomolecular Science, Clarkson University, NY, 13676, United States
| | - Danielle Whitham
- Department of Chemistry & Biomolecular Science, Clarkson University, NY, 13676, United States
| | - Colby Hladun
- Department of Chemistry & Biomolecular Science, Clarkson University, NY, 13676, United States
| | - Costel C. Darie
- Department of Chemistry & Biomolecular Science, Clarkson University, NY, 13676, United States
| | - Herman O. Sintim
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Modi Wang
- Department of Chemistry & Biomolecular Science, Clarkson University, NY, 13676, United States
| | - KaHo Leung
- Department of Chemistry & Biomolecular Science, Clarkson University, NY, 13676, United States
| |
Collapse
|
37
|
He X, Wedn A, Wang J, Gu Y, Liu H, Zhang J, Lin Z, Zhou R, Pang X, Cui Y. IUPHAR ECR review: The cGAS-STING pathway: Novel functions beyond innate immune and emerging therapeutic opportunities. Pharmacol Res 2024; 201:107063. [PMID: 38216006 DOI: 10.1016/j.phrs.2024.107063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Stimulator of interferon genes (STING) is a crucial innate immune sensor responsible for distinguishing pathogens and cytosolic DNA, mediating innate immune signaling pathways to defend the host. Recent studies have revealed additional regulatory functions of STING beyond its innate immune-related activities, including the regulation of cellular metabolism, DNA repair, cellular senescence, autophagy and various cell deaths. These findings highlight the broader implications of STING in cellular physiology beyond its role in innate immunity. Currently, approximately 10 STING agonists have entered the clinical stage. Unlike inhibitors, which have a maximum inhibition limit, agonists have the potential for infinite amplification. STING signaling is a complex process that requires precise regulation of STING to ensure balanced immune responses and prevent detrimental autoinflammation. Recent research on the structural mechanism of STING autoinhibition and its negative regulation by adaptor protein complex 1 (AP-1) provides valuable insights into its different effects under physiological and pathological conditions, offering a new perspective for developing immune regulatory drugs. Herein, we present a comprehensive overview of the regulatory functions and molecular mechanisms of STING beyond innate immune regulation, along with updated details of its structural mechanisms. We discuss the implications of these complex regulations in various diseases, emphasizing the importance and feasibility of targeting the immunity-dependent or immunity-independent functions of STING. Moreover, we highlight the current trend in drug development and key points for clinical research, basic research, and translational research related to STING.
Collapse
Affiliation(s)
- Xu He
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing 100191, China; Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing 100034, China
| | - Abdalla Wedn
- School of Medicine, University of Pittsburgh, 5051 Centre Avenue, Pittsburgh, PA, USA
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yanlun Gu
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing 100191, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing 100191, China
| | - Hongjin Liu
- Department of General Surgery, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing 100034, China
| | - Juqi Zhang
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing 100191, China; Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing 100034, China
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, China
| | - Renpeng Zhou
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Anhui 230601, China; Department of Orthopedics and Rehabilitation, Yale University School of Medicine, New Haven CT06519, USA.
| | - Xiaocong Pang
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing 100191, China; Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing 100034, China.
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing 100191, China; Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing 100034, China.
| |
Collapse
|
38
|
He W, Mu X, Wu X, Liu Y, Deng J, Liu Y, Han F, Nie X. The cGAS-STING pathway: a therapeutic target in diabetes and its complications. BURNS & TRAUMA 2024; 12:tkad050. [PMID: 38312740 PMCID: PMC10838060 DOI: 10.1093/burnst/tkad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/22/2023] [Accepted: 10/09/2023] [Indexed: 02/06/2024]
Abstract
Diabetic wound healing (DWH) represents a major complication of diabetes where inflammation is a key impediment to proper healing. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has emerged as a central mediator of inflammatory responses to cell stress and damage. However, the contribution of cGAS-STING activation to impaired healing in DWH remains understudied. In this review, we examine the evidence that cGAS-STING-driven inflammation is a critical factor underlying defective DWH. We summarize studies revealing upregulation of the cGAS-STING pathway in diabetic wounds and discuss how this exacerbates inflammation and senescence and disrupts cellular metabolism to block healing. Partial pharmaceutical inhibition of cGAS-STING has shown promise in damping inflammation and improving DWH in preclinical models. We highlight key knowledge gaps regarding cGAS-STING in DWH, including its relationships with endoplasmic reticulum stress and metal-ion signaling. Elucidating these mechanisms may unveil new therapeutic targets within the cGAS-STING pathway to improve healing outcomes in DWH. This review synthesizes current understanding of how cGAS-STING activation contributes to DWH pathology and proposes future research directions to exploit modulation of this pathway for therapeutic benefit.
Collapse
Affiliation(s)
- Wenjie He
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Xingrui Mu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Xingqian Wu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Ye Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Junyu Deng
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Yiqiu Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xuqiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| |
Collapse
|
39
|
Xie C, Liu K, Xie Y, Liu S, Ji B. Metabolism-related signalling pathways involved in the pathogenesis and development of metabolic dysfunction-associated steatotic liver disease. Clin Res Hepatol Gastroenterol 2024; 48:102264. [PMID: 38142587 DOI: 10.1016/j.clinre.2023.102264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/03/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) which formerly known as non-alcoholic fatty liver disease (NAFLD) is one of the causes of liver cirrhosis. Currently, a growing number of liver cirrhosis cases develop on the basis of MASLD, and the pathogenesis of MASLD remains unclear. This paper reviews the research progress on the involvement of different metabolism-related signalling pathways in the pathogenesis and development of MASLD.
Collapse
Affiliation(s)
- Cheng Xie
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Centre, First Hospital of Jilin University, 1 XinMin St., Changchun, Jilin, China.
| | - Kaiyu Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Centre, First Hospital of Jilin University, 1 XinMin St., Changchun, Jilin, China.
| | - Yixin Xie
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Centre, First Hospital of Jilin University, 1 XinMin St., Changchun, Jilin, China.
| | - Shun Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Centre, First Hospital of Jilin University, 1 XinMin St., Changchun, Jilin, China.
| | - Bai Ji
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Centre, First Hospital of Jilin University, 1 XinMin St., Changchun, Jilin, China.
| |
Collapse
|
40
|
Hong Z, Chen S, Sun J, Cheng D, Guo H, Mei J, Zhang X, Maimaiti M, Hao H, Cao P, Hu H, Wang C. STING signaling in islet macrophages impairs insulin secretion in obesity. SCIENCE CHINA. LIFE SCIENCES 2024; 67:345-359. [PMID: 37906411 DOI: 10.1007/s11427-022-2371-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/17/2023] [Indexed: 11/02/2023]
Abstract
The innate immune regulator stimulator of interferon genes (STING) mediates self-DNA sensing and leads to the induction of type I interferons and inflammatory cytokines, which promotes the progression of various inflammatory and autoimmune diseases. Innate immune system plays a critical role in regulating obesity-induced islet dysfunction, whereas the potential effect of STING signaling is not fully understood. Here, we demonstrate that STING is mainly expressed and activated in islet macrophages upon high-fat diet (HFD) feeding. Sting-/- alleviates HFD-induced islet inflammation by inhibiting the expression of pro-inflammatory cytokines and the infiltration of macrophages. Mechanically, palmitic acid incubation promotes mitochondrial DNA leakage into the cytosol and subsequently activates STING pathway in macrophages. Additionally, STING activation in macrophages impairs glucose-stimulated insulin secretion by mediating the engulfment of β cell insulin secretory granules. Pharmacologically inhibiting STING activation enhances insulin secretion to control hyperglycemia. Together, our results reveal a regulatory mechanism in controlling the islet inflammation and insulin secretion in diet--induced obesity and suggest that selective blocking of the STING activation may be a promising strategy for treating type 2 diabetes.
Collapse
Affiliation(s)
- Ze Hong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Saihua Chen
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Jing Sun
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Dan Cheng
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Hanli Guo
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiahao Mei
- School of Life Sciences, Westlake University, Hangzhou, 310012, China
| | - Xiang Zhang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Munire Maimaiti
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Peng Cao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haiyang Hu
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| | - Chen Wang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
41
|
Parola M, Pinzani M. Liver fibrosis in NAFLD/NASH: from pathophysiology towards diagnostic and therapeutic strategies. Mol Aspects Med 2024; 95:101231. [PMID: 38056058 DOI: 10.1016/j.mam.2023.101231] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Liver fibrosis, as an excess deposition of extracellular matrix (ECM) components, results from chronic liver injury as well as persistent activation of inflammatory response and of fibrogenesis. Liver fibrosis is a major determinant for chronic liver disease (CLD) progression and in the last two decades our understanding on the major molecular and cellular mechanisms underlying the fibrogenic progression of CLD has dramatically improved, boosting pre-clinical studies and clinical trials designed to find novel therapeutic approaches. From these studies several critical concepts have emerged, starting to reveal the complexity of the pro-fibrotic microenvironment which involves very complex, dynamic and interrelated interactions between different hepatic and extrahepatic cell populations. This review will offer first a recapitulation of established and novel pathophysiological basic principles and concepts by intentionally focus the attention on NAFLD/NASH, a metabolic-related form of CLD with a high impact on the general population and emerging as a leading cause of CLD worldwide. NAFLD/NASH-related pro-inflammatory and profibrogenic mechanisms will be analysed as well as novel information on cells, mediators and signalling pathways which have taken advantage from novel methodological approaches and techniques (single cell genomics, imaging mass cytometry, novel in vitro two- and three-dimensional models, etc.). We will next offer an overview on recent advancement in diagnostic and prognostic tools, including serum biomarkers and polygenic scores, to support the analysis of liver biopsies. Finally, this review will provide an analysis of current and emerging therapies for the treatment of NAFLD/NASH patients.
Collapse
Affiliation(s)
- Maurizio Parola
- Dept. Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Corso Raffaello 30, 10125, Torino, Italy.
| | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health, Division of Medicine - Royal Free Hospital, London, NW32PF, United Kingdom.
| |
Collapse
|
42
|
Liu W, Zhang Chen Z, Yang C, Fan Y, Qiao L, Xie S, Cao L. Update on the STING Signaling Pathway in Developing Nonalcoholic Fatty Liver Disease. J Clin Transl Hepatol 2024; 12:91-99. [PMID: 38250469 PMCID: PMC10794270 DOI: 10.14218/jcth.2023.00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 01/23/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a prevalent chronic liver condition with limited treatment options. Inflammation caused by metabolic disturbances plays a significant role in NAFLD development. Stimulator of interferon gene (STING), a critical regulator of innate immunity, induces the production of interferons and other pro-inflammatory factors by recognizing cytoplasmic DNA to defend against pathogen infection. The STING-mediated signaling pathway appears to play a vital role in hepatic inflammation, metabolic disorders, and even carcinogenesis. Promisingly, pharmacological interventions targeting STING have shown improvements in the pathological state of NAFLD. Macrophages, dendritic cells, natural killer cells, and T cell pathways regulated by STING present potential novel druggable targets for NAFLD treatment. Further research and development in this area may offer new therapeutic options for managing NAFLD effectively.
Collapse
Affiliation(s)
- Wei Liu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhili Zhang Chen
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chenhui Yang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yaofu Fan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Liang Qiao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shaofeng Xie
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Lin Cao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
43
|
Bourayou E, Perchet T, Meunier S, Bouvier H, Mailhe MP, Melanitou E, Cumano A, Golub R. Bone marrow monocytes sustain NK cell-poiesis during non-alcoholic steatohepatitis. Cell Rep 2024; 43:113676. [PMID: 38217855 DOI: 10.1016/j.celrep.2024.113676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/22/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
Natural killer (NK) cells are the predominant lymphocyte population in the liver. At the onset of non-alcoholic steatohepatitis (NASH), an accumulation of activated NK cells is observed in the liver in parallel with inflammatory monocyte recruitment and an increased systemic inflammation. Using in vivo and in vitro experiments, we unveil a specific stimulation of NK cell-poiesis during NASH by medullary monocytes that trans-present interleukin-15 (IL-15) and secrete osteopontin, a biomarker for patients with NASH. This cellular dialogue leads to increased survival and maturation of NK precursors that are recruited to the liver, where they dampen the inflammatory monocyte infiltration. The increase in the production of both osteopontin and the IL-15/IL-15Rα complex by bone marrow monocytes is induced by endotoxemia. We propose a tripartite gut-liver-bone marrow axis regulating the immune population dynamics and effector functions during liver inflammation.
Collapse
Affiliation(s)
- Elsa Bourayou
- Institut Pasteur, Université Paris Cité, INSERM U1223, Lymphocyte and Immunity Unit, 75015 Paris, France
| | - Thibaut Perchet
- Institut Pasteur, Université Paris Cité, INSERM U1223, Lymphocyte and Immunity Unit, 75015 Paris, France
| | - Sylvain Meunier
- Institut Pasteur, Université Paris Cité, INSERM U1223, Lymphocyte and Immunity Unit, 75015 Paris, France; Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, 94000 Créteil, France
| | - Hugo Bouvier
- Institut Pasteur, Université Paris Cité, INSERM U1223, Lymphocyte and Immunity Unit, 75015 Paris, France
| | - Marie-Pierre Mailhe
- Institut Pasteur, Université Paris Cité, INSERM U1223, Lymphocyte and Immunity Unit, 75015 Paris, France
| | - Evie Melanitou
- Institut Pasteur, Université Paris Cité, Department of Parasites and Insect Vectors, 75015 Paris, France
| | - Ana Cumano
- Institut Pasteur, Université Paris Cité, INSERM U1223, Lymphocyte and Immunity Unit, 75015 Paris, France
| | - Rachel Golub
- Institut Pasteur, Université Paris Cité, INSERM U1223, Lymphocyte and Immunity Unit, 75015 Paris, France.
| |
Collapse
|
44
|
Gao W, Sun L, Gai J, Cao Y, Zhang S. Exploring the resistance mechanism of triple-negative breast cancer to paclitaxel through the scRNA-seq analysis. PLoS One 2024; 19:e0297260. [PMID: 38227591 PMCID: PMC10791000 DOI: 10.1371/journal.pone.0297260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND The triple negative breast cancer (TNBC) is the most malignant subtype of breast cancer with high aggressiveness. Although paclitaxel-based chemotherapy scenario present the mainstay in TNBC treatment, paclitaxel resistance is still a striking obstacle for cancer cure. So it is imperative to probe new therapeutic targets through illustrating the mechanisms underlying paclitaxel chemoresistance. METHODS The Single cell RNA sequencing (scRNA-seq) data of TNBC cells treated with paclitaxel at different points were downloaded from the Gene Expression Omnibus (GEO) database. The Seurat R package was used to filter and integrate the scRNA-seq expression matrix. Cells were further clustered by the FindClusters function, and the gene marker of each subset was defined by FindAllMarkers function. Then, the hallmark score of each cell was calculated by AUCell R package, the biological function of the highly expressed interest genes was analyzed by the DAVID database. Subsequently, we performed pseudotime analysis to explore the change patterns of drug resistance genes and SCENIC analysis to identify the key transcription factors (TFs). Finally, the inhibitors of which were also analyzed by the CTD database. RESULTS We finally obtained 6 cell subsets from 2798 cells, which were marked as AKR1C3+, WNT7A+, FAM72B+, RERG+, IDO1+ and HEY1+HCC1143 cell subsets, among which the AKR1C3+, IDO1+ and HEY1+ cell subsets proportions increased with increasing treatment time, and then were regarded as paclitaxel resistance subsets. Hallmark score and pseudotime analysis showed that these paclitaxel resistance subsets were associated with the inflammatory response, virus and interferon response activation. In addition, the gene regulatory networks (GRNs) indicated that 3 key TFs (STAT1, CEBPB and IRF7) played vital role in promoting resistance development, and five common inhibitors targeted these TFs as potential combination therapies of paclitaxel were identified. CONCLUSION In this study, we identified 3 paclitaxel resistance relevant IFs and their inhibitors, which offers essential molecular basis for paclitaxel resistance and beneficial guidance for the combination of paclitaxel in clinical TNBC therapy.
Collapse
Affiliation(s)
- Wei Gao
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Linlin Sun
- Day Surgery Center, Dalian Municipal Central Hospital, Dalian, China
| | - Jinwei Gai
- Day Surgery Center, Dalian Municipal Central Hospital, Dalian, China
| | - Yinan Cao
- Graduate School of Dalian Medical University, Dalian, China
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
45
|
Wang HF, Xu JS, Zong K, Liang ZW, Li RF, Xue JF, Ding J, Zhao LS. Jujuboside B alleviates acetaminophen-induced hepatotoxicity in mice by regulating Nrf2-STING signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115810. [PMID: 38100849 DOI: 10.1016/j.ecoenv.2023.115810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Jujuboside B (JuB) is the main bioactive saponin component of Chinese anti-insomnia herbal medicine Ziziphi Spinosae Semen, which has been reported to possess varied pharmacological functions. Even though it has been traditionally used to treat inflammation- and toxicity-related diseases, the effects of JuB on acetaminophen (APAP) overdose-induced hepatotoxicity have not been determined yet. METHODS C57BL/6 J mice were pre-treated with JuB (20 or 40 mg/kg) for seven days before APAP (400 mg/kg) injection. After 24 h of APAP treatment, serum, and liver tissues were collected to evaluate the therapeutic effects. To investigate whether the Nrf2-STING signaling pathway is involved in the protective effects of JuB against APAP-induced hepatotoxicity, the mice received the DMXAA (the specific STING agonist) or ML385 (the specific Nrf2 inhibitor) during the administration of JuB, and Hematoxylin-eosin staining, Real-time PCR, immunohistochemical, and western blot were performed. RESULTS JuB pretreatment reversed APAP-induced CYP2E1 accumulations and alleviated APAP-induced acute liver injury. Furthermore, JuB treatment significantly inhibited oxidative stress and the pro-inflammatory cytokines, as well as alleviated hepatocyte apoptosis induced by APAP. Besides, our result also demonstrated that JuB treatment upregulated the levels of total Nrf2, facilitated its nuclear translocation, upregulated the expression of HO-1 and NQO-1, and inhibited the APAP-induced STING pathway activation. Finally, we verified that the beneficial effects of JuB were weakened by DMXAA and ML385. CONCLUSION Our study suggested that JuB could ameliorate APAP-induced hepatic damage and verified a previously unrecognized mechanism by which JuB prevented APAP-induced hepatotoxicity through adjusting the Nrf2-STING pathway.
Collapse
Affiliation(s)
- Hong-Fei Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia-Shuang Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Zong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi-Wei Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ren-Feng Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian-Feng Xue
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Ding
- Department of Pediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Long-Shuan Zhao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
46
|
Wei F, Wang T, Wang C, Zhang Z, Zhao J, Heng W, Tang Z, Du M, Yan X, Li X, Guo Z, Qian J, Zhou C. Cytoplasmic Escape of Mitochondrial DNA Mediated by Mfn2 Downregulation Promotes Microglial Activation via cGas-Sting Axis in Spinal Cord Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305442. [PMID: 38009491 PMCID: PMC10811505 DOI: 10.1002/advs.202305442] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/16/2023] [Indexed: 11/29/2023]
Abstract
Neuroinflammation is associated with poor outcomes in patients with spinal cord injury (SCI). Recent studies have demonstrated that stimulator of interferon genes (Sting) plays a key role in inflammatory diseases. However, the role of Sting in SCI remains unclear. In the present study, it is found that increased Sting expression is mainly derived from activated microglia after SCI. Interestingly, knockout of Sting in microglia can improve the recovery of neurological function after SCI. Microglial Sting knockout restrains the polarization of microglia toward the M1 phenotype and alleviates neuronal death. Furthermore, it is found that the downregulation of mitofusin 2 (Mfn2) expression in microglial cells leads to an imbalance in mitochondrial fusion and division, inducing the release of mitochondrial DNA (mtDNA), which mediates the activation of the cGas-Sting signaling pathway and aggravates inflammatory response damage after SCI. A biomimetic microglial nanoparticle strategy to deliver MASM7 (named MSNs-MASM7@MI) is established. In vitro, MSNs-MASM7@MI showed no biological toxicity and effectively delivered MASM7. In vivo, MSNs-MASM7@MI improves nerve function after SCI. The study provides evidence that cGas-Sting signaling senses Mfn2-dependent mtDNA release and that its activation may play a key role in SCI. These findings provide new perspectives and potential therapeutic targets for SCI treatment.
Collapse
Affiliation(s)
- Fei‐Long Wei
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Tian‐Fu Wang
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Chao‐Li Wang
- Department of Pharmaceutical AnalysisSchool of PharmacyFourth Military Medical UniversityXi'an710032China
| | - Zhen‐Peng Zhang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences BeijingResearch Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical SciencesInstitute of LifeomicsBeijing102206China
| | - Jing‐Wei Zhao
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Wei Heng
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Zhen Tang
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Ming‐Rui Du
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Xiao‐Dong Yan
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Xiao‐Xiang Li
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Zheng Guo
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Ji‐Xian Qian
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Cheng‐Pei Zhou
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| |
Collapse
|
47
|
Yang L, Ma Q, Chen J, Kong X, Yu X, Wang W. Foxa2 attenuates steatosis and inhibits the NF-κB/IKK signaling pathway in nonalcoholic fatty liver disease. PeerJ 2023; 11:e16466. [PMID: 38084145 PMCID: PMC10710773 DOI: 10.7717/peerj.16466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
Objective Forkhead box a2 (Foxa2) is proven to be an insulin-sensitive transcriptional regulator and affects hepatic steatosis. This study aims to investigate the mechanism by which Foxa2 affects nonalcoholic fatty liver disease (NAFLD). Methods Animal and cellular models of NAFLD were constructed using high-fat diet (HFD) feeding and oleic acid (OA) stimulation, respectively. NAFLD mice received tail vein injections of either an overexpressing negative control (oe-NC) or Foxa2 (oe-Foxa2) for four weeks. HepG2 cells were transfected with oe-NC and oe-Foxa2 for 48 h before OA stimulation. Histological changes and lipid accumulation were assessed using hematoxylin-eosin staining and oil red O staining, respectively. Expression of Foxa2, NF-κB/IKK pathway proteins, lipid synthesis proteins, and fatty acid β-oxidation protein in HFD mice and OA-induced HepG2 cells was detected using western blot. Results Foxa2 expression was downregulated in HFD mice and OA-induced HepG2 cells. Foxa2 overexpression attenuated lipid accumulation and liver injury, and reduced the levels of aspartate aminotransferase, alanine aminotransferase, total cholesterol, or triglyceride in HFD mice and OA-induced HepG2 cells. Moreover, Foxa2 overexpression decreased the expression of lipid synthesis proteins and increased fatty acid β-oxidation protein expression in the liver tissues. Furthermore, overexpression of Foxa2 downregulated the expression of p-NF-κB/NF-κB and p-IKK/IKK in OA-induced HepG2 cells. Additionally, lipopolysaccharide (NF-κB/IKK pathway activator) administration reversed the downregulation of lipid synthesis proteins and the upregulation of fatty acid β-oxidation protein. Conclusion Foxa2 expression is downregulated in NAFLD. Foxa2 ameliorated hepatic steatosis and inhibited the activation of the NF-κB/IKK signaling pathway.
Collapse
Affiliation(s)
- Li Yang
- Northwest Minzu University, Lanzhou, Gansu, China
| | - Qiang Ma
- Department of Gastroenterology, 940th Hospital of Joint Support Force, Lanzhou, Gansu, China
| | - Jiayu Chen
- Department of Gastroenterology, 940th Hospital of Joint Support Force, Lanzhou, Gansu, China
| | - Xiangcai Kong
- Department of Gastroenterology, 940th Hospital of Joint Support Force, Lanzhou, Gansu, China
| | - Xiaohui Yu
- Department of Gastroenterology, 940th Hospital of Joint Support Force, Lanzhou, Gansu, China
| | - Wei Wang
- Department of Gastroenterology, 940th Hospital of Joint Support Force, Lanzhou, Gansu, China
| |
Collapse
|
48
|
Li H, Yang Q, Wu H, Guo J, Tang Z, Liao J. Terbuthylazine exposure induces innate immune response and inflammation through activating cGAS-STING/NF-κB pathway in myocardium of broiler chicken (Gallus gallus). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105700. [PMID: 38072555 DOI: 10.1016/j.pestbp.2023.105700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023]
Abstract
Terbuthylazine (TBA), a triazine herbicide, is extensively employed in agriculture for its wide range of effectiveness. However, prolonged utilization of TBA can pose a potential hazard to animals and human health. Here, a total of 180 broiler chickens (Gallus gallus) were stochastically assigned to three groups (control group, 0.4 mg/kg TBA group, and 4 mg/kg TBA group) for investigating the impact of TBA on cardiotoxicity. The results revealed that TBA exposure resulted in pathological alterations in the myocardium. Moreover, TBA exposure activated cGAS-STING pathway and markedly elevated the mRNA and protein expression levels of innate immune response (cGAS, STING, TBK1, and IRF3) in myocardium. Additionally, NF-κB signal was also activated under TBA exposure, which was characterized by the increasing mRNA expression levels of NF-κB, IKKα and the protein expression levels of p-NF-κB/NF-κB, IKKα, p-IκBα/IκBα in the TBA treatment groups. Meanwhile, the expression of pro-inflammatory cytokines (TNF-α and IL-1β) were also significantly increased. In summary, our findings suggested that cGAS-STING/NF-κB pathway functionated in the innate immune response and inflammation in myocardium brought on by TBA exposure, which provided new insights into the TBA toxicology.
Collapse
Affiliation(s)
- Haoye Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Qingwen Yang
- Laboratory of Veterinary Pharmacology, Department of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, PR China
| | - Haitong Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
49
|
Hu MM, Shu HB. Mitochondrial DNA-triggered innate immune response: mechanisms and diseases. Cell Mol Immunol 2023; 20:1403-1412. [PMID: 37932533 PMCID: PMC10687031 DOI: 10.1038/s41423-023-01086-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/12/2023] [Indexed: 11/08/2023] Open
Abstract
Various cellular stress conditions trigger mitochondrial DNA (mtDNA) release from mitochondria into the cytosol. The released mtDNA is sensed by the cGAS-MITA/STING pathway, resulting in the induced expression of type I interferon and other effector genes. These processes contribute to the innate immune response to viral infection and other stress factors. The deregulation of these processes causes autoimmune diseases, inflammatory metabolic disorders and cancer. Therefore, the cGAS-MITA/STING pathway is a potential target for intervention in infectious, inflammatory and autoimmune diseases as well as cancer. In this review, we focus on the mechanisms underlying the mtDNA-triggered activation of the cGAS-MITA/STING pathway, the effects of the pathway under various physiological and pathological conditions, and advances in the development of drugs that target cGAS and MITA/STING.
Collapse
Affiliation(s)
- Ming-Ming Hu
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
| | - Hong-Bing Shu
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
| |
Collapse
|
50
|
El-Deeb OS, Hafez YM, Eltokhy AK, Awad MM, El-shaer RAA, Abdel Ghafar MT, Atef MM. Stimulator of interferon genes/Interferon regulatory factor 3 (STING-IRF3) and inflammasome-activation mediated pyroptosis biomarkers: a network of integrated pathways in diabetic nephropathy. J Diabetes Metab Disord 2023; 22:1471-1480. [PMID: 37975106 PMCID: PMC10638254 DOI: 10.1007/s40200-023-01270-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/25/2023] [Indexed: 11/19/2023]
Abstract
Background Diabetic Nephropathy (DN) is serious diabetic complication affecting the structure and function of the kidney. This study assessed the stimulator of interferon genes/ Interferon regulatory factor 3 (STING/IRF3) signaling pathway roles and inflammasome-activation mediated pyroptosis, being imperative pathways of inordinate importance in disease progression, in DN throughout its different stages. Methods 45 Diabetic cases were categorized into three groups based on their albuminuric status as follow: Normoalbuminuric, Microalbuminuric and Macroalbuminuric diabetic groups and 15 healthy subjects as controls were included. We evaluated STING and absent in melanoma 2 (AIM2) messenger RNA (mRNA) expressions from whole blood using quantitative RT-PCR. Additionally, Serum levels of STING, AIM2, IRF3, Nod like receptor pyrins-3 (NLRP3), interleukin-1β (IL-1β) and caspase-1 were assessed by ELISA technique. Results The study documented that STING and AIM2 mRNA expressions had significantly increased in DN cases with highest value in macroalbuminuric diabetic groups (p < 0.001*). Parallel results were observed concerning serum STING, AIM2, IRF3, NLRP3, Caspase-1 in addition to IL-1β levels (p < 0.001*). Conclusion The study documented the forthcoming role of STING in DN progression and its positive correlation with inflammasome-activation mediated pyroptosis biomarkers throughout its three different stages; launching new horizons in DN pathogenesis by highlighting its role as a reliable prognostic biomarker.
Collapse
Affiliation(s)
- Omnia Safwat El-Deeb
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, El Geesh Street, Tanta, 31511 Egypt
| | - Yasser Mostafa Hafez
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amira Kamel Eltokhy
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, El Geesh Street, Tanta, 31511 Egypt
| | - Marwa Mahmoud Awad
- Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | | | - Marwa Mohamed Atef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, El Geesh Street, Tanta, 31511 Egypt
| |
Collapse
|