1
|
Goldstein O, Shani S, Gana-Weisz M, Elkoshi N, Casey F, Sun YH, Chandratre K, Cedarbaum JM, Blauwendraat C, Bar-Shira A, Thaler A, Gurevich T, Mirelman A, Giladi N, Orr-Urtreger A, Alcalay RN. The effect of polygenic risk score on PD risk and phenotype in LRRK2 G2019S and GBA1 carriers. JOURNAL OF PARKINSON'S DISEASE 2025; 15:291-299. [PMID: 39973498 DOI: 10.1177/1877718x241310722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BackgroundWhile LRRK2 and GBA1 variants are associated with Parkinson's disease (PD), most carriers will not develop the disease.ObjectiveTo test if polygenic risk score (PRS) modifies disease risk and phenotypes in LRRK2 G2019S carriers, GBA1 carriers, and non-carriers (NC).MethodsWe genotyped 786 participants using Illumina's NeuroBooster-array (NBA) and sequenced the genome of 244, all of Ashkenazi ancestry (AJ), and calculated PRS to test its effects on clinically- and biologically-defined disease risk and phenotypes (n = 715). Among LRRK2 G2019S PD, we tested PRS association with α-synuclein seed-amplification-assay (n = 11). We used the PPMI and AMP-PD databases as validation cohorts.ResultsIn clinically-defined PD, PRS significantly modified disease risk in GBA1 carriers and in NC (p = 0.033 and p < 0.0001, respectively), and demonstrated a trend in LRRK2 G2019S carriers (p = 0.054), with similar effect sizes (OR = 1.55, 1.62, and 1.49, respectively). PRS association with PD risk in LRRK2 was primarily driven by the rs7938782-A risk allele, replicated in AMP-PD (268 AJs LRRK2 G2019S carriers). PRS and age-at-onset were negatively correlated in NC (p < 0.0001). NBA GBA1 genotype calls failed at GBA1 L483P and c.115 + 1G > A mutations. False negative call rate of 10.2% was observed for the imputed GBA1 N409S carriers.ConclusionsPRS contributes to PD risk across different genotypes. The genetic and epigenetic role of rs7938782 in LRRK2 PD risk should be further explored. Future PRS models should be tailored to specific genotypes to better understand penetrance and phenotypes. Furthermore, models predicting PD defined biologically rather than clinically may further identify genetic risk factors for synucleinopathies.
Collapse
Affiliation(s)
- Orly Goldstein
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Shachar Shani
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Mali Gana-Weisz
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nadav Elkoshi
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | - Yu H Sun
- Research Data Sciences, Translational Biology, Biogen Inc., Cambridge, MA, USA
| | - Khyati Chandratre
- Research Data Sciences, Translational Biology, Biogen Inc., Cambridge, MA, USA
| | - Jesse M Cedarbaum
- Formerly Biogen Inc, Cambridge, MA, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Anat Bar-Shira
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Avner Thaler
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Movement disorders Center, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tanya Gurevich
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Movement disorders Center, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Anat Mirelman
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Movement disorders Center, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Nir Giladi
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Brain Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Avi Orr-Urtreger
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Roy N Alcalay
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Movement disorders Center, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
2
|
Brault JJ, Conway SJ. What can ATP content tell us about Barth syndrome muscle phenotypes? JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2025; 9:1-10. [PMID: 40161853 PMCID: PMC11951242 DOI: 10.20517/jtgg.2024.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Adenosine triphosphate (ATP) is the energy currency within all living cells and is involved in many vital biochemical reactions, including cell viability, metabolic status, cell death, intracellular signaling, DNA and RNA synthesis, purinergic signaling, synaptic signaling, active transport, and muscle contraction. Consequently, altered ATP production is frequently viewed as a contributor to both disease pathogenesis and subsequent progression of organ failure. Barth syndrome (BTHS) is an X-linked mitochondrial disease characterized by fatigue, skeletal muscle weakness, cardiomyopathy, neutropenia, and growth delay due to inherited TAFAZZIN enzyme mutations. BTHS is widely hypothesized in the literature to be a model of defective mitochondrial ATP production leading to energy deficits. Prior patient data have linked both impaired ATP production and reduced phosphocreatine to ATP ratios (PCr/ATP) in BTHS children and adult hearts and muscles, suggesting a primary role for perturbed energetics. Moreover, although only limited direct measurements of ATP content and ADP/ATP ratio (an indicator of the energy available from ATP hydrolysis) have so far been carried out, analysis of divergent BTHS animal models, cultured cell types, and diverse organs has failed to uncover a unifying understanding of the molecular mechanisms linking TAFAZZIN deficiency to perturbed muscle energetics. This review mainly focuses on the energetics of striated muscle in BTHS mitochondriopathy.
Collapse
Affiliation(s)
- Jeffrey J. Brault
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Simon J. Conway
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
Miura T, Kouzu H, Tanno M, Tatekoshi Y, Kuno A. Role of AMP deaminase in diabetic cardiomyopathy. Mol Cell Biochem 2024; 479:3195-3211. [PMID: 38386218 DOI: 10.1007/s11010-024-04951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
Diabetes mellitus is one of the major causes of ischemic and nonischemic heart failure. While hypertension and coronary artery disease are frequent comorbidities in patients with diabetes, cardiac contractile dysfunction and remodeling occur in diabetic patients even without comorbidities, which is referred to as diabetic cardiomyopathy. Investigations in recent decades have demonstrated that the production of reactive oxygen species (ROS), impaired handling of intracellular Ca2+, and alterations in energy metabolism are involved in the development of diabetic cardiomyopathy. AMP deaminase (AMPD) directly regulates adenine nucleotide metabolism and energy transfer by adenylate kinase and indirectly modulates xanthine oxidoreductase-mediated pathways and AMP-activated protein kinase-mediated signaling. Upregulation of AMPD in diabetic hearts was first reported more than 30 years ago, and subsequent studies showed similar upregulation in the liver and skeletal muscle. Evidence for the roles of AMPD in diabetes-induced fatty liver, sarcopenia, and heart failure has been accumulating. A series of our recent studies showed that AMPD localizes in the mitochondria-associated endoplasmic reticulum membrane as well as the sarcoplasmic reticulum and cytosol and participates in the regulation of mitochondrial Ca2+ and suggested that upregulated AMPD contributes to contractile dysfunction in diabetic cardiomyopathy via increased generation of ROS, adenine nucleotide depletion, and impaired mitochondrial respiration. The detrimental effects of AMPD were manifested at times of increased cardiac workload by pressure loading. In this review, we briefly summarize the expression and functions of AMPD in the heart and discuss the roles of AMPD in diabetic cardiomyopathy, mainly focusing on contractile dysfunction caused by this disorder.
Collapse
Affiliation(s)
- Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1, Maeda-7, Teine-Ku, Sapporo, 006-8585, Japan.
| | - Hidemichi Kouzu
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaya Tanno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Nursing, Sapporo Medical University School of Health Sciences, Sapporo, Japan
| | - Yuki Tatekoshi
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Kuno
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
4
|
Guo QW, Lin J, Shen YL, Zheng YJ, Chen X, Su M, Zhang JC, Wang JH, Tang H, Su GM, Li ZK, Fang DZ. Reduced hepatic AdipoR2 by increased glucocorticoid mediates effect of psychosocial stress to elevate serum cholesterol. Mol Cell Endocrinol 2024; 592:112282. [PMID: 38815796 DOI: 10.1016/j.mce.2024.112282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/18/2024] [Accepted: 05/26/2024] [Indexed: 06/01/2024]
Abstract
Understanding the effects of psychosocial stress on serum cholesterol may offer valuable insights into the relationship between psychological disorders and endocrine diseases. However, these effects and their underlying mechanisms have not been elucidated yet. Here we show that serum corticosterone, total cholesterol and low-density lipoprotein cholesterol (LDL-C) are elevated in a mouse model of psychosocial stress. Furthermore, alterations occur in AdipoR2-mediated AMPK and PPARα signaling pathways in liver, accompanied by a decrease in LDL-C clearance and an increase in cholesterol synthesis. These changes are further verified in wild-type and AdipoR2 overexpression HepG2 cells incubated with cortisol and AdipoR agonist, and are finally confirmed by treating wild-type and hepatic-specific AdipoR2 overexpression mice with corticosterone. We conclude that increased glucocorticoid mediates the effects of psychosocial stress to elevate serum cholesterol by inhibiting AdipoR2-mediated AMPK and PPARα signaling to decrease LDL-C clearance and increase cholesterol synthesis in liver.
Collapse
Affiliation(s)
- Qi Wei Guo
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Jia Lin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Yi Lin Shen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Yan Jiang Zheng
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Xu Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Mi Su
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Ji Cheng Zhang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Jin Hua Wang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Hui Tang
- Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University Chongqing, PR China
| | - Guo Ming Su
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Zheng Ke Li
- Department of Thoracic/Head and Neck Medical Oncology, The MD Anderson Cancer Center, University of Texas Houston, TX, USA
| | - Ding Zhi Fang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China.
| |
Collapse
|
5
|
Marzan AL, Chitti SV, Gummadi S, Kang T, Ang CS, Mathivanan S. Proteomics analysis of C2C12 myotubes treated with atrophy inducing cancer cell-derived factors. Proteomics 2024; 24:e2300020. [PMID: 37882347 DOI: 10.1002/pmic.202300020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Cancer-associated cachexia is a wasting syndrome that results in dramatic loss of whole-body weight, predominantly due to loss of skeletal muscle mass. It has been established that cachexia inducing cancer cells secrete proteins and extracellular vesicles (EVs) that can induce muscle atrophy. Though several studies examined these cancer-cell derived factors, targeting some of these components have shown little or no clinical benefit. To develop new therapies, understanding of the dysregulated proteins and signaling pathways that regulate catabolic gene expression during muscle wasting is essential. Here, we sought to examine the effect of conditioned media (CM) that contain secreted factors and EVs from cachexia inducing C26 colon cancer cells on C2C12 myotubes using mass spectrometry-based label-free quantitative proteomics. We identified significant changes in the protein profile of C2C12 cells upon exposure to C26-derived CM. Functional enrichment analysis revealed enrichment of proteins associated with inflammation, mitochondrial dysfunction, muscle catabolism, ROS production, and ER stress in CM treated myotubes. Furthermore, strong downregulation in muscle structural integrity and development and/or regenerative pathways were observed. Together, these enriched proteins in atrophied muscle could be utilized as potential muscle wasting markers and the dysregulated biological processes could be employed for therapeutic benefit in cancer-induced muscle wasting.
Collapse
Affiliation(s)
- Akbar L Marzan
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Sai V Chitti
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Sriram Gummadi
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Taeyoung Kang
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Ching-Seng Ang
- The Bio21 Institute of Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Suresh Mathivanan
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Lai Y, Ramírez-Pardo I, Isern J, An J, Perdiguero E, Serrano AL, Li J, García-Domínguez E, Segalés J, Guo P, Lukesova V, Andrés E, Zuo J, Yuan Y, Liu C, Viña J, Doménech-Fernández J, Gómez-Cabrera MC, Song Y, Liu L, Xu X, Muñoz-Cánoves P, Esteban MA. Multimodal cell atlas of the ageing human skeletal muscle. Nature 2024; 629:154-164. [PMID: 38649488 PMCID: PMC11062927 DOI: 10.1038/s41586-024-07348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
Muscle atrophy and functional decline (sarcopenia) are common manifestations of frailty and are critical contributors to morbidity and mortality in older people1. Deciphering the molecular mechanisms underlying sarcopenia has major implications for understanding human ageing2. Yet, progress has been slow, partly due to the difficulties of characterizing skeletal muscle niche heterogeneity (whereby myofibres are the most abundant) and obtaining well-characterized human samples3,4. Here we generate a single-cell/single-nucleus transcriptomic and chromatin accessibility map of human limb skeletal muscles encompassing over 387,000 cells/nuclei from individuals aged 15 to 99 years with distinct fitness and frailty levels. We describe how cell populations change during ageing, including the emergence of new populations in older people, and the cell-specific and multicellular network features (at the transcriptomic and epigenetic levels) associated with these changes. On the basis of cross-comparison with genetic data, we also identify key elements of chromatin architecture that mark susceptibility to sarcopenia. Our study provides a basis for identifying targets in the skeletal muscle that are amenable to medical, pharmacological and lifestyle interventions in late life.
Collapse
Affiliation(s)
- Yiwei Lai
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Ignacio Ramírez-Pardo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - Joan Isern
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - Juan An
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Eusebio Perdiguero
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - Antonio L Serrano
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - Jinxiu Li
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Esther García-Domínguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Jessica Segalés
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Pengcheng Guo
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Vera Lukesova
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eva Andrés
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jing Zuo
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Yue Yuan
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Chuanyu Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Julio Doménech-Fernández
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Arnau de Vilanova y Hospital de Liria and Health Care Department Arnau-Lliria, Valencia, Spain
- Department of Orthopedic Surgery, Clinica Universidad de Navarra, Pamplona, Spain
| | - Mari Carmen Gómez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Yancheng Song
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Longqi Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xun Xu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Pura Muñoz-Cánoves
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA.
- ICREA, Barcelona, Spain.
| | - Miguel A Esteban
- BGI Research, Hangzhou, China.
- BGI Research, Shenzhen, China.
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Jilin, China.
- The Fifth Affiliated Hospital of Guangzhou Medical University-BGI Research Center for Integrative Biology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Domaniku-Waraich A, Agca S, Toledo B, Sucuoglu M, Özen SD, Bilgic SN, Arabaci DH, Kashgari AE, Kir S. Oncostatin M signaling drives cancer-associated skeletal muscle wasting. Cell Rep Med 2024; 5:101498. [PMID: 38569555 PMCID: PMC11031427 DOI: 10.1016/j.xcrm.2024.101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/21/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
Progressive weakness and muscle loss are associated with multiple chronic conditions, including muscular dystrophy and cancer. Cancer-associated cachexia, characterized by dramatic weight loss and fatigue, leads to reduced quality of life and poor survival. Inflammatory cytokines have been implicated in muscle atrophy; however, available anticytokine therapies failed to prevent muscle wasting in cancer patients. Here, we show that oncostatin M (OSM) is a potent inducer of muscle atrophy. OSM triggers cellular atrophy in primary myotubes using the JAK/STAT3 pathway. Identification of OSM targets by RNA sequencing reveals the induction of various muscle atrophy-related genes, including Atrogin1. OSM overexpression in mice causes muscle wasting, whereas muscle-specific deletion of the OSM receptor (OSMR) and the neutralization of circulating OSM preserves muscle mass and function in tumor-bearing mice. Our results indicate that activated OSM/OSMR signaling drives muscle atrophy, and the therapeutic targeting of this pathway may be useful in preventing muscle wasting.
Collapse
Affiliation(s)
| | - Samet Agca
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Batu Toledo
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Melis Sucuoglu
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Sevgi Döndü Özen
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Sevval Nur Bilgic
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Dilsad Hilal Arabaci
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Aynur Erkin Kashgari
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Serkan Kir
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye.
| |
Collapse
|
8
|
Bonnet A, Bluy L, Gress L, Canario L, Ravon L, Sécula A, Billon Y, Liaubet L. Sex and fetal genome influence gene expression in pig endometrium at the end of gestation. BMC Genomics 2024; 25:303. [PMID: 38515025 PMCID: PMC10958934 DOI: 10.1186/s12864-024-10144-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND A fine balance of feto-maternal resource allocation is required to support pregnancy, which depends on interactions between maternal and fetal genetic potential, maternal nutrition and environment, endometrial and placental functions. In particular, some imprinted genes have a role in regulating maternal-fetal nutrient exchange, but few have been documented in the endometrium. The aim of this study is to describe the expression of 42 genes, with parental expression, in the endometrium comparing two extreme breeds: Large White (LW); Meishan (MS) with contrasting neonatal mortality and maturity at two days of gestation (D90-D110). We investigated their potential contribution to fetal maturation exploring genes-fetal phenotypes relationships. Last, we hypothesized that the fetal genome and sex influence their endometrial expression. For this purpose, pure and reciprocally crossbred fetuses were produced using LW and MS breeds. Thus, in the same uterus, endometrial samples were associated with its purebred or crossbred fetuses. RESULTS Among the 22 differentially expressed genes (DEGs), 14 DEGs were differentially regulated between the two days of gestation. More gestational changes were described in LW (11 DEGs) than in MS (2 DEGs). Nine DEGs were differentially regulated between the two extreme breeds, highlighting differences in the regulation of endometrial angiogenesis, nutrient transport and energy metabolism. We identified DEGs that showed high correlations with indicators of fetal maturation, such as ponderal index at D90 and fetal blood fructose level and placental weight at D110. We pointed out for the first time the influence of fetal sex and genome on endometrial expression at D90, highlighting AMPD3, CITED1 and H19 genes. We demonstrated that fetal sex affects the expression of five imprinted genes in LW endometrium. Fetal genome influenced the expression of four genes in LW endometrium but not in MS endometrium. Interestingly, both fetal sex and fetal genome interact to influence endometrial gene expression. CONCLUSIONS These data provide evidence for some sexual dimorphism in the pregnant endometrium and for the contribution of the fetal genome to feto-maternal interactions at the end of gestation. They suggest that the paternal genome may contribute significantly to piglet survival, especially in crossbreeding production systems.
Collapse
Affiliation(s)
- Agnes Bonnet
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France.
| | - Lisa Bluy
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
| | - Laure Gress
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
| | - Laurianne Canario
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
| | - Laure Ravon
- GenESI, INRAE, Le Magneraud, 17700, Surgères, France
| | - Aurelie Sécula
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
- Present Address: IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Yvon Billon
- GenESI, INRAE, Le Magneraud, 17700, Surgères, France
| | - Laurence Liaubet
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
| |
Collapse
|
9
|
Miller SG, Matias C, Hafen PS, Law AS, Witczak CA, Brault JJ. Uric acid formation is driven by crosstalk between skeletal muscle and other cell types. JCI Insight 2024; 9:e171815. [PMID: 38032735 PMCID: PMC10906236 DOI: 10.1172/jci.insight.171815] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
Hyperuricemia is implicated in numerous pathologies, but the mechanisms underlying uric acid production are poorly understood. Using a combination of mouse studies, cell culture studies, and human serum samples, we sought to determine the cellular source of uric acid. In mice, fasting and glucocorticoid treatment increased serum uric acid and uric acid release from ex vivo-incubated skeletal muscle. In vitro, glucocorticoids and the transcription factor FoxO3 increased purine nucleotide degradation and purine release from differentiated muscle cells, which coincided with the transcriptional upregulation of AMP deaminase 3, a rate-limiting enzyme in adenine nucleotide degradation. Heavy isotope tracing during coculture experiments revealed that oxidation of muscle purines to uric acid required their transfer from muscle cells to a cell type that expresses xanthine oxidoreductase, such as endothelial cells. Last, in healthy women, matched for age and body composition, serum uric acid was greater in individuals scoring below average on standard physical function assessments. Together, these studies reveal skeletal muscle purine degradation is an underlying driver of uric acid production, with the final step of uric acid production occurring primarily in a nonmuscle cell type. This suggests that skeletal muscle fiber purine degradation may represent a therapeutic target to reduce serum uric acid and treat numerous pathologies.
Collapse
Affiliation(s)
- Spencer G. Miller
- Indiana Center for Musculoskeletal Health and
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, USA
| | - Catalina Matias
- Indiana Center for Musculoskeletal Health and
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Paul S. Hafen
- Indiana Center for Musculoskeletal Health and
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andrew S. Law
- Indiana Center for Musculoskeletal Health and
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Carol A. Witczak
- Indiana Center for Musculoskeletal Health and
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jeffrey J. Brault
- Indiana Center for Musculoskeletal Health and
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
10
|
Marco-Bonilla M, Fresnadillo M, Largo R, Herrero-Beaumont G, Mediero A. Energy Regulation in Inflammatory Sarcopenia by the Purinergic System. Int J Mol Sci 2023; 24:16904. [PMID: 38069224 PMCID: PMC10706580 DOI: 10.3390/ijms242316904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The purinergic system has a dual role: the maintenance of energy balance and signaling within cells. Adenosine and adenosine triphosphate (ATP) are essential for maintaining these functions. Sarcopenia is characterized by alterations in the control of energy and signaling in favor of catabolic pathways. This review details the association between the purinergic system and muscle and adipose tissue homeostasis, discussing recent findings in the involvement of purinergic receptors in muscle wasting and advances in the use of the purinergic system as a novel therapeutic target in the management of sarcopenia.
Collapse
Affiliation(s)
| | | | | | | | - Aránzazu Mediero
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, 28040 Madrid, Spain; (M.M.-B.); (M.F.); (R.L.); (G.H.-B.)
| |
Collapse
|
11
|
Yang H, Wang Q, Xi Y, Yu W, Xie D, Morisaki H, Morisaki T, Cheng J. AMPD2 plays important roles in regulating hepatic glucose and lipid metabolism. Mol Cell Endocrinol 2023; 577:112039. [PMID: 37567359 DOI: 10.1016/j.mce.2023.112039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Dysregulation of hepatic glucose and lipid metabolism can instigate the onset of various metabolic disorders including obesity, dyslipidemia, insulin resistance, type 2 diabetes, and fatty liver disease. Adenosine monophosphate (AMP) deaminase (AMPD), which converts AMP to inosine monophosphate, plays a key role in maintaining adenylate energy charge. AMPD2 is the major isoform present in the liver. However, the mechanistic link between AMPD2 and hepatic glucose and lipid metabolism remains elusive. In this study, we probed into the hepatic glucose and lipid metabolism in AMPD2-deficient (A2-/-) mice. These mice exhibited reduced body weight, fat accumulation, and blood glucose levels, coupled with enhanced insulin sensitivity while maintaining consistent calorie intake and spontaneous motor activity compared with wild type mice. Furthermore, A2-/- mice showed mitigated obesity and hyper-insulinemia induced by high-fat diet (HFD) but elevated levels of the serum triglyceride and cholesterol. The hepatic mRNA levels of several fatty acid and cholesterol metabolism-related genes were altered in A2-/- mice. RNA sequencing unveiled multiple alterations in lipid metabolic pathways due to AMPD2 deficiency. These mice were also more susceptible to fasting or HFD-induced hepatic lipid accumulation. The liver exhibited elevated AMP levels but unaltered AMP/ATP ratio. In addition, AMPD2 deficiency is not associated with the adenosine production. In summary, this study established a link between purine metabolism and hepatic glucose and lipid metabolism via AMPD2, providing novel insights into these metabolic pathways.
Collapse
Affiliation(s)
- Haiyan Yang
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Qiang Wang
- Department of Internal Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yuemei Xi
- Department of Internal Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wei Yu
- Department of Internal Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - De Xie
- Department of Internal Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hiroko Morisaki
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Department of Medical Genecics, Sakakibara Heart Institute, Fuchu, Tokyo, Japan
| | - Takayuki Morisaki
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.
| | - Jidong Cheng
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China; Department of Internal Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, Fujian, China; Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.
| |
Collapse
|
12
|
Chen C, Xie T, Zhang Y, Wang Y, Yu F, Lin L, Zhang W, Brown BC, Zhang X, Kellems RE, D'Alessandro A, Xia Y. Erythrocyte ENT1-AMPD3 Axis is an Essential Purinergic Hypoxia Sensor and Energy Regulator Combating CKD in a Mouse Model. J Am Soc Nephrol 2023; 34:1647-1671. [PMID: 37725437 PMCID: PMC10561773 DOI: 10.1681/asn.0000000000000195] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 07/05/2023] [Indexed: 09/21/2023] Open
Abstract
SIGNIFICANCE STATEMENT Hypoxia drives kidney damage and progression of CKD. Although erythrocytes respond rapidly to hypoxia, their role and the specific molecules sensing and responding to hypoxia in CKD remain unclear. In this study, we demonstrated in a mouse model that erythrocyte ENT1-AMPD3 is a master energy regulator of the intracellular purinergic hypoxic compensatory response that promotes rapid energy supply from extracellular adenosine, eAMPK-dependent metabolic reprogramming, and O 2 delivery, which combat renal hypoxia and progression of CKD. ENT1-AMPD3-AMPK-BPGM comprise a group of circulating erythroid-specific biomarkers, providing early diagnostic and novel therapeutic targets for CKD. BACKGROUND Hypoxia drives kidney damage and progression of CKD. Although erythrocytes respond rapidly to hypoxia, their role and the specific molecules sensing and responding to hypoxia in CKD remain unclear. METHODS Mice with an erythrocyte-specific deficiency in equilibrative nucleoside transporter 1 ( eEnt1-/- ) and a global deficiency in AMP deaminase 3 ( Ampd3-/- ) were generated to define their function in two independent CKD models, including angiotensin II (Ang II) infusion and unilateral ureteral obstruction (UUO). Unbiased metabolomics, isotopic adenosine flux, and various biochemical and cell culture analyses coupled with genetic studies were performed. Translational studies in patients with CKD and cultured human erythrocytes examined the role of ENT1 and AMPD3 in erythrocyte function and metabolism. RESULTS eEnt1-/- mice display severe renal hypoxia, kidney damage, and fibrosis in both CKD models. The loss of eENT1-mediated adenosine uptake reduces intracellular AMP and thus abolishes the activation of AMPK α and bisphosphoglycerate mutase (BPGM). This results in reduced 2,3-bisphosphoglycerate and glutathione, leading to overwhelming oxidative stress in eEnt1-/- mice. Excess reactive oxygen species (ROS) activates AMPD3, resulting in metabolic reprogramming and reduced O 2 delivery, leading to severe renal hypoxia in eEnt1-/- mice. By contrast, genetic ablation of AMPD3 preserves the erythrocyte adenine nucleotide pool, inducing AMPK-BPGM activation, O 2 delivery, and antioxidative stress capacity, which protect against Ang II-induced renal hypoxia, damage, and CKD progression. Translational studies recapitulated the findings in mice. CONCLUSION eENT1-AMPD3, two highly enriched erythrocyte purinergic components that sense hypoxia, promote eAMPK-BPGM-dependent metabolic reprogramming, O 2 delivery, energy supply, and antioxidative stress capacity, which mitigates renal hypoxia and CKD progression.
Collapse
Affiliation(s)
- Changhan Chen
- National Medical Metabolomics International Collaborative Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - TingTing Xie
- National Medical Metabolomics International Collaborative Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of General Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yujin Zhang
- National Medical Metabolomics International Collaborative Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiyan Wang
- National Medical Metabolomics International Collaborative Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Yu
- National Medical Metabolomics International Collaborative Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lizhen Lin
- National Medical Metabolomics International Collaborative Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weiru Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of General Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Benjamin C. Brown
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rodney E. Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School at Houston, Houston, Texas
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado
| | - Yang Xia
- National Medical Metabolomics International Collaborative Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
13
|
Ogawa T, Kouzu H, Osanami A, Tatekoshi Y, Sato T, Kuno A, Fujita Y, Ino S, Shimizu M, Toda Y, Ohwada W, Yano T, Tanno M, Miki T, Miura T. Downregulation of extramitochondrial BCKDH and its uncoupling from AMP deaminase in type 2 diabetic OLETF rat hearts. Physiol Rep 2023; 11:e15608. [PMID: 36802195 PMCID: PMC9938007 DOI: 10.14814/phy2.15608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 02/20/2023] Open
Abstract
Systemic branched-chain amino acid (BCAA) metabolism is dysregulated in cardiometabolic diseases. We previously demonstrated that upregulated AMP deaminase 3 (AMPD3) impairs cardiac energetics in a rat model of obese type 2 diabetes, Otsuka Long-Evans-Tokushima fatty (OLETF). Here, we hypothesized that the cardiac BCAA levels and the activity of branched-chain α-keto acid dehydrogenase (BCKDH), a rate-limiting enzyme in BCAA metabolism, are altered by type 2 diabetes (T2DM), and that upregulated AMPD3 expression is involved in the alteration. Performing proteomic analysis combined with immunoblotting, we discovered that BCKDH localizes not only to mitochondria but also to the endoplasmic reticulum (ER), where it interacts with AMPD3. Knocking down AMPD3 in neonatal rat cardiomyocytes (NRCMs) increased BCKDH activity, suggesting that AMPD3 negatively regulates BCKDH. Compared with control rats (Long-Evans Tokushima Otsuka [LETO] rats), OLETF rats exhibited 49% higher cardiac BCAA levels and 49% lower BCKDH activity. In the cardiac ER of the OLETF rats, BCKDH-E1α subunit expression was downregulated, while AMPD3 expression was upregulated, resulting in an 80% lower AMPD3-E1α interaction compared to LETO rats. Knocking down E1α expression in NRCMs upregulated AMPD3 expression and recapitulated the imbalanced AMPD3-BCKDH expressions observed in OLETF rat hearts. E1α knockdown in NRCMs inhibited glucose oxidation in response to insulin, palmitate oxidation, and lipid droplet biogenesis under oleate loading. Collectively, these data revealed previously unrecognized extramitochondrial localization of BCKDH in the heart and its reciprocal regulation with AMPD3 and imbalanced AMPD3-BCKDH interactions in OLETF. Downregulation of BCKDH in cardiomyocytes induced profound metabolic changes that are observed in OLETF hearts, providing insight into mechanisms contributing to the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Toshifumi Ogawa
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Hidemichi Kouzu
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Arata Osanami
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Yuki Tatekoshi
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Tatsuya Sato
- Department of Cellular Physiology and Signal TransductionSapporo Medical University School of MedicineSapporoJapan
| | - Atsushi Kuno
- Department of PharmacologySapporo Medical University School of MedicineSapporoJapan
| | - Yugo Fujita
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Shoya Ino
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Masaki Shimizu
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Yuki Toda
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Wataru Ohwada
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Toshiyuki Yano
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Masaya Tanno
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Takayuki Miki
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
- Department of Clinical Pharmacology, Faculty of Pharmaceutical SciencesHokkaido University of ScienceSapporoJapan
| |
Collapse
|
14
|
Li J, Yan N, Li X, He S, Yu X. Identification and analysis of hub genes of hypoxia-immunity in type 2 diabetes mellitus. Front Genet 2023; 14:1154839. [PMID: 37153000 PMCID: PMC10160629 DOI: 10.3389/fgene.2023.1154839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
The chronic metabolic disease named type 2 diabetes (T2D) accounts for over 90% of diabetes mellitus. An increasing number of evidences have revealed that hypoxia has a significantly suppressive effect on cell-mediated immunity, as well as the utilization of glucose in diabetics. Therefore, we aimed to screen and identify hypoxia-immune-related hub genes in T2D through bioinformatic analysis. The Gene Expression Omnibus (GEO) database was used to get T2D gene expression profile data in the peripheral blood samples (GSE184050), and hypoxia-related genes were acquired from Molecular Signatures Database (MSigDB). Differentially expressed mRNAs (DEGs) and lncRNAs (DELs) between T2D and normal samples were identified by DeSeq2 package. The clusterProfiler package was used to perform enrichment analyses for the overlapped genes of DEGs and hypoxia-related genes. Further, Hypoxia-related hub genes were discovered using two machine learning algorithms. Next, the compositional patterns of immune and stromal cells in T2D and healthy groups were estimated by using xCell algorithm. Moreover, we used the weighted correlation network analysis (WGCNA) to examine the connection between genes and immune cells to screen immune-related genes. Gene Set Enrichment Analysis (GSEA) was used to investigate the functions of the hypoxia-immune-related hub genes. Finally, two peripheral blood cohorts of T2D (GSE184050 and GSE95849) as well as the quantitative real-time PCR (qRT-PCR) experiments for clicinal peripheral blood samples with T2D were used for verification analyses of hub genes. And meanwhile, a lncRNA-TF-mRNA network was constructed. Following the differentially expressed analysis, 38 out of 3822 DEGs were screened as hypoxia-related DEGs, and 493 DELs were found. These hypoxia-related DEGs were mainly enriched in the GO terms of pyruvate metabolic process, cytoplasmic vesicle lumen and monosaccharide binding, and the KEGG pathways of glycolysis/gluconeogenesis, pentose phosphate pathway and biosynthesis of nucleotide sugars. Moreover, 7 out of hypoxia-related DEGs were identified as hub genes. There were six differentially expressed immune cell types between T2D and healthy samples, which were further used as the clinical traits for WGCNA to identify AMPD3 and IER3 as the hypoxia-immune-related hub genes. The results of the KEGG pathways of genes in high-expression groups of AMPD3 and IER3 were mainly concentrated in glycosaminoglycan degradation and vasopressin-regulated water reabsorption, while the low-expression groups of AMPD3 and IER3 were mainly associated with RNA degradation and nucleotide excision repair. Finally, when compared to normal samples, both the AMPD3 and IER3 were highly expressed in the T2D groups in the GSE184050 and GSE95849 datasets. The result of lncRNA-TF-mRNA regulatory network showed that lncRNAs such as BACH1-IT1 and SNHG15 might induce the expression of the corresponding TFs such as TFAM and THAP12 and upregulate the expression of AMPD3. This study identified AMPD3 and IER3 as hypoxia-immune-related hub genes and potential regulatory mechanism for T2D, which provided a new perspective for elucidating the upstream molecular regulatory mechanism of diabetes mellitus.
Collapse
Affiliation(s)
- Jing Li
- Department of Endocrinology Diabetes, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Ni Yan
- Department of Rheumatology and Immunology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Xiaofeng Li
- Department of Endocrinology Diabetes, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Shenglin He
- Department of Endocrinology Diabetes, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Xiangyou Yu
- Department of Endocrinology Diabetes, Shaanxi Provincial People’s Hospital, Xi’an, China
- *Correspondence: Xiangyou Yu,
| |
Collapse
|
15
|
Li J, Li J, Fang H, Yang H, Wu T, Shi X, Pang C. Isolongifolene alleviates liver ischemia/reperfusion injury by regulating AMPK-PGC1α signaling pathway-mediated inflammation, apoptosis, and oxidative stress. Int Immunopharmacol 2022; 113:109185. [DOI: 10.1016/j.intimp.2022.109185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/05/2022]
|
16
|
Ding Q, Wang Y, Xia SW, Zhao F, Zhong JF, Wang HL, Chen KL. SIRT4 Expression Ameliorates the Detrimental Effect of Heat Stress via AMPK/mTOR Signaling Pathway in BMECs. Int J Mol Sci 2022; 23:13307. [PMID: 36362094 PMCID: PMC9658231 DOI: 10.3390/ijms232113307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 08/29/2023] Open
Abstract
Sirtuin 4 (SIRT4), a member of the SIRT family, has been reported to be a key factor involved in antioxidant defense in mitochondria. This study aimed to explore the potential molecular mechanism via which SIRT4 regulates heat stress-induced oxidative stress and lactoprotein synthesis in bovine mammary epithelial cells (BMECs). Our results showed that SIRT4 was significantly decreased in heat stressed mammary tissue. Depletion of SIRT4 in BMECs induced the generation of ROS, which, as exhibited by the decreased activity of antioxidant enzymes, changed mitochondrial morphology through mediating protein and mRNA levels related to mitochondrial fission and fusion. Moreover, we found that depletion of SIRT4 or stress conditions inhibited the expression of milk proteins, as well as lipid and glucose synthesis-related genes, and activated the AMPK/mTOR signaling pathway. Increased SIRT4 expression was found to have the opposite effect. However, blocking the AMPK/mTOR signaling pathway could inhibit the regulatory function of SIRT4 in milk synthesis-related gene expression. In summary, our results suggest that SIRT4 may play critical roles in maintaining mammary gland function by regulating the AMPK/mTOR signaling pathway in dairy cows, indicating that SIRT4 may be a potential molecular target for curing heat stress-induced BMEC injury and low milk production in dairy cows.
Collapse
Affiliation(s)
| | | | | | | | | | - Hui-Li Wang
- Key Laboratory of Crop and Animal Integrated Farming/Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Kun-Lin Chen
- Key Laboratory of Crop and Animal Integrated Farming/Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| |
Collapse
|
17
|
Hafen PS, Law AS, Matias C, Miller SG, Brault JJ. Skeletal muscle contraction kinetics and AMPK responses are modulated by the adenine nucleotide degrading enzyme AMPD1. J Appl Physiol (1985) 2022; 133:1055-1066. [PMID: 36107988 PMCID: PMC9602816 DOI: 10.1152/japplphysiol.00035.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/15/2022] [Accepted: 09/09/2022] [Indexed: 12/31/2022] Open
Abstract
AMP deaminase 1 (AMPD1; AMP → IMP + NH3) deficiency in skeletal muscle results in an inordinate accumulation of AMP during strenuous exercise, with some but not all studies reporting premature fatigue and reduced work capacity. To further explore these inconsistencies, we investigated the extent to which AMPD1 deficiency impacts skeletal muscle contractile function of different muscles and the [AMP]/AMPK responses to different intensities of fatiguing contractions. To reduce AMPD1 protein, we electroporated either an inhibitory AMPD1-specific miRNA encoding plasmid or a control plasmid, into contralateral EDL and SOL muscles of C57BL/6J mice (n = 48 males, 24 females). After 10 days, isolated muscles were assessed for isometric twitch, tetanic, and repeated fatiguing contraction characteristics using one of four (None, LOW, MOD, and HIGH) duty cycles. AMPD1 knockdown (∼35%) had no effect on twitch force or twitch contraction/relaxation kinetics. However, during maximal tetanic contractions, AMPD1 knockdown impaired both time-to-peak tension (TPT) and half-relaxation time (½ RT) in EDL, but not SOL muscle. In addition, AMPD1 knockdown in EDL exaggerated the AMP response to contractions at LOW (+100%) and MOD (+54%) duty cycles, but not at HIGH duty cycle. This accumulation of AMP was accompanied by increased AMPK phosphorylation (Thr-172; LOW +25%, MOD +34%) and downstream substrate phosphorylation (LOW +15%, MOD +17%). These responses to AMPD1 knockdown were not different between males and females. Our findings demonstrate that AMPD1 plays a role in maintaining skeletal muscle contractile function and regulating the energetic responses associated with repeated contractions in a muscle- but not sex-specific manner.NEW & NOTEWORTHY AMP deaminase 1 (AMPD1) deficiency has been associated with premature muscle fatigue and reduced work capacity, but this finding has been inconsistent. Herein, we report that although AMPD1 knockdown in mouse skeletal muscle does not change maximal isometric force, it negatively impacts muscle function by slowing contraction and relaxation kinetics in EDL muscle but not SOL muscle. Furthermore, AMPD1 knockdown differentially affects the [AMP]/AMPK responses to fatiguing contractions in an intensity-dependent manner in EDL muscle.
Collapse
Affiliation(s)
- Paul S Hafen
- Department of Anatomy, Cell Biology & Physiology, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana
| | - Andrew S Law
- Department of Anatomy, Cell Biology & Physiology, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana
| | - Catalina Matias
- Department of Anatomy, Cell Biology & Physiology, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana
| | - Spencer G Miller
- Department of Anatomy, Cell Biology & Physiology, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Kinesiology, East Carolina University, Greenville, North Carolina
| | - Jeffrey J Brault
- Department of Anatomy, Cell Biology & Physiology, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
18
|
Law AS, Hafen PS, Brault JJ. Liquid chromatography method for simultaneous quantification of ATP and its degradation products compatible with both UV-Vis and mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1206:123351. [PMID: 35797802 PMCID: PMC9479163 DOI: 10.1016/j.jchromb.2022.123351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/20/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
ATP and its degradation products are essential metabolic and signaling molecules. Traditionally, they have been quantified via high-performance liquid chromatography (HPLC) with UV-Vis detection while utilizing phosphate buffer mobile phase, but this approach is incompatible with modern mass detection. The goal of this study was to develop an ultra-performance liquid chromatography (UPLC) method free of phosphate buffer, to allow for analysis of adenine nucleotides with UV-Vis and mass spectrometry (MS) simultaneously. The final conditions used an Acquity HSS T3 premier column with a volatile ammonium acetate buffer to successfully separate and quantify ATP-related analytes in a standard mixture and in extracts from non-contracted and contracted mouse hindlimb muscles. Baseline resolution was achieved with all 10 metabolites, and a lower limit of quantification down to 1 pmol per inject was observed for most metabolites using UV-Vis. Therefore, this method allows for the reliable quantification of adenine nucleotides and their degradation products via UV-Vis and their confirmation and/or identification of unknown peaks via MS.
Collapse
Affiliation(s)
- Andrew S Law
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Paul S Hafen
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jeffrey J Brault
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|