1
|
Sung DE, Rhee EJ, Lee JY, Lee MY, Sung KC. Elevated lipoprotein(a) is not linked to coronary artery calcification incidence or progression. Eur J Prev Cardiol 2025:zwaf088. [PMID: 40179012 DOI: 10.1093/eurjpc/zwaf088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/06/2025] [Accepted: 02/11/2025] [Indexed: 04/05/2025]
Abstract
AIMS Lipoprotein(a) [Lp(a)] is a genetically determined, independent risk factor for atherosclerotic cardiovascular disease. However, its role in coronary artery calcification (CAC) remains unclear. We aimed to determine whether Lp(a) levels are associated with the incidence and progression of CAC. METHODS AND RESULTS We conducted a longitudinal cohort study (2015-22) of 41 929 adults (aged ≥30 years) who underwent baseline Lp(a) measurement and CAC assessment via multi-detector computed tomography. Participants were stratified into those with baseline CAC = 0 (n = 32 338) and CAC > 0 (n = 9591). Outcomes were analysed according to Lp(a) quintiles and clinically relevant categories (<30, 30-50, 50-100, ≥ 100 mg/dL). Cox proportional hazards models estimated hazard ratios (HRs) for incident CAC (CAC > 0) among those with CAC = 0 (median follow-up, 4.04 years). Linear mixed-effects models evaluated CAC progression among those with CAC > 0 (median follow-up, 3.78 years). All models were adjusted for cardiovascular risk factors. Among participants with CAC = 0 (mean age, 40.94 ± 5.81 years; 85.69% men), neither Lp(a) quintiles nor clinical categories were significantly associated with incident CAC [HR for highest vs. second quintile: 0.998 (95% confidence interval, CI, 0.90-1.10); HR for ≥100 vs. <30 mg/dL: 0.83 (95% CI, 0.57-1.23)]. Among those with CAC > 0 (mean age, 45.99 ± 7.20 years; 94.90% men), CAC progression did not differ materially across Lp(a) quintiles or clinical thresholds. CONCLUSION Elevated Lp(a) levels were not associated with new-onset CAC or progression of existing CAC in this large longitudinal cohort.
Collapse
Affiliation(s)
- Da-Eun Sung
- Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun-Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong-Young Lee
- Division of Cardiology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, Republic of Korea
| | - Mi-Yeon Lee
- Division of Biostatistics, Department of Academic Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ki-Chul Sung
- Division of Cardiology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, Republic of Korea
| |
Collapse
|
2
|
Man S, Zu Y, Yang X, Deng Y, Shen D, Ma Y, Fu J, Du J, Yu C, Lv J, Li G, Wang B, Li L. Prevalence of Elevated Lipoprotein(a) and its Association With Subclinical Atherosclerosis in 2.9 Million Chinese Adults. J Am Coll Cardiol 2025:S0735-1097(25)05277-5. [PMID: 40266173 DOI: 10.1016/j.jacc.2025.02.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND Elevated lipoprotein(a) [Lp(a)] is strongly associated with an increased risk of atherosclerotic cardiovascular disease; yet, large-scale studies on the epidemiology of elevated Lp(a) as well as its association with subclinical atherosclerosis in the Chinese population are limited. OBJECTIVES This study aimed to estimate the prevalence of elevated Lp(a) in a large check-up population of China, and investigate its associations with both site-specific and multisite subclinical atherosclerosis. METHODS Adults who underwent Lp(a) testing between 2017 and 2023 at Meinian health check-up centers in 30 provinces of China were included. Because the test results of Lp(a) were reported in either the mass unit (mg/dL) or the molar unit (nmol/L) and conversion between units was not recommended, separate analyses were conducted for each unit. Subclinical atherosclerosis was assessed using various imaging examinations at the carotid artery, the brain, and the coronary artery. The prevalence of elevated Lp(a) was estimated across the overall study population and various subpopulations. The logistic regression model was used to investigate the associations between elevated Lp(a) and subclinical atherosclerosis. RESULTS A total of 2,788,206 and 167,114 participants with the mass unit and the molar unit were included. In the mass unit group, the prevalence of Lp(a) >30 and >50 mg/dL was 18.67% and 8.41%, respectively. Significantly higher prevalence was observed among women, elderly individuals, and individuals with various cardio-renal-metabolic risk factors (all P < 0.05). Compared with Lp(a) ≤30 mg/dL, individuals with Lp(a) >30 to ∼50 mg/dL exhibited 11%, 15%, 9%, and 11% greater odds of increased carotid intima-media thickness, carotid plaque, subclinical brain infarcts, and coronary artery calcification, respectively. The odds were even higher for those with Lp(a) >50 mg/dL. Furthermore, elevated Lp(a) was significantly associated with the extent of coronary artery calcification, as well as subclinical atherosclerosis at 1, 2, and 3 sites, with the association being more pronounced in cases with severe extent and multisite involvement. These results were similar in the molar unit group. CONCLUSIONS A significant burden of elevated Lp(a) was found in China, highlighting the necessity of prioritized Lp(a) screening in high-risk groups. Elevated Lp(a) was identified as a significant risk factor for site-specific subclinical atherosclerosis, with stronger associations observed in severe extent and multisite involvement. Our findings suggest that individuals with elevated Lp(a) should undergo a comprehensive assessment of subclinical atherosclerosis at multiple sites to help prevent ASCVD.
Collapse
Affiliation(s)
- Sailimai Man
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Meinian Institute of Health, Beijing, China; Peking University Health Science Center Meinian Public Health Institute, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Yining Zu
- Meinian Institute of Health, Beijing, China
| | - Xiaochen Yang
- Meinian Institute of Health, Beijing, China; Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing, China
| | - Yuhan Deng
- Chongqing Research Institute of Big Data, Peking University, Chongqing, China
| | - Dan Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Yuan Ma
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingzhu Fu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China; School of Public Health of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Du
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Peking University Health Science Center Meinian Public Health Institute, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China; Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Peking University Health Science Center Meinian Public Health Institute, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China; Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing, China.
| | - Gang Li
- Beijing Center for Disease Prevention and Control, Beijing, China; School of Public Health, Capital Medical University, Beijing, China.
| | - Bo Wang
- Meinian Institute of Health, Beijing, China; Peking University Health Science Center Meinian Public Health Institute, Beijing, China; Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China.
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Peking University Health Science Center Meinian Public Health Institute, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China; Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
| |
Collapse
|
3
|
Ong JYS, Tan SML, Koh AS, Kong W, Sia CH, Yeo TC, Quek SC, Poh KK. Novel Circulating Biomarkers in Aortic Valve Stenosis. Int J Mol Sci 2025; 26:1902. [PMID: 40076529 PMCID: PMC11899762 DOI: 10.3390/ijms26051902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
The underlying pathophysiology of aortic stenosis and factors affecting its clinical progression remain poorly understood. Apart from B-type natriuretic peptide (BNP), novel and emerging biomarkers have been described in association with aortic stenosis, emphasising the potential for these biomarkers to illuminate on yet unknown mechanisms of its pathogenesis. In this review, we aimed to summarise what is known about aortic stenosis biomarkers, highlight the emerging ones, and provide a roadmap for translating these insights into clinical applications. Among the biomarkers studied, lipoprotein(a) [Lp(a)] has emerged as the most promising for risk stratification. Elevated Lp(a) levels are often associated with more rapid aortic stenosis progression. This detrimental effect is attributed to its role in promoting valve calcification. While other emerging biomarkers such as matrix metalloproteinases, monocytes, and metabolites show promises, their specific roles in aortic stenosis pathophysiology remain less clear. This may be due to their relatively recent discovery. Ongoing research aims to elucidate their mechanisms of action.
Collapse
Affiliation(s)
- Joy Yi-Shan Ong
- Department of Cardiology, National University Heart Centre Singapore, Singapore 119074, Singapore; (J.Y.-S.O.); (S.M.L.T.)
| | - Sarah Ming Li Tan
- Department of Cardiology, National University Heart Centre Singapore, Singapore 119074, Singapore; (J.Y.-S.O.); (S.M.L.T.)
| | - Angela S. Koh
- National Heart Centre Singapore, Singapore 169609, Singapore
- DUKE-NUS Medical School, Singapore 169857, Singapore
| | - William Kong
- Department of Cardiology, National University Heart Centre Singapore, Singapore 119074, Singapore; (J.Y.-S.O.); (S.M.L.T.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Ching Hui Sia
- Department of Cardiology, National University Heart Centre Singapore, Singapore 119074, Singapore; (J.Y.-S.O.); (S.M.L.T.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Tiong Cheng Yeo
- Department of Cardiology, National University Heart Centre Singapore, Singapore 119074, Singapore; (J.Y.-S.O.); (S.M.L.T.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Swee Chye Quek
- Department of Cardiology, National University Heart Centre Singapore, Singapore 119074, Singapore; (J.Y.-S.O.); (S.M.L.T.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Kian Keong Poh
- Department of Cardiology, National University Heart Centre Singapore, Singapore 119074, Singapore; (J.Y.-S.O.); (S.M.L.T.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
4
|
Hafiane A, Pisaturo A, Favari E, Bortnick AE. Atherosclerosis, calcific aortic valve disease and mitral annular calcification: same or different? Int J Cardiol 2025; 420:132741. [PMID: 39557087 DOI: 10.1016/j.ijcard.2024.132741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/03/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024]
Abstract
There are similarities in the pathophysiologic mechanisms of atherosclerosis, calcific aortic valve disease (CAVD) and mitral annular calcification (MAC), however, medical treatment to slow or stop the progression of CAVD or MAC has been more elusive as compared to atherosclerosis. Atherosclerosis and CAVD share common demographic, clinical, protein, and genetic factors even more so than with MAC, which supports the possibility of shared medical therapies, though abrogating calcific extracellular vesicle shedding could be a common target for all three conditions. Herein, we summarize the overlapping and distinct pathways for further investigation, as well as key areas where additional research is needed.
Collapse
Affiliation(s)
- Anouar Hafiane
- Department of Medicine, Faculty of Medicine, Institute of the McGill University Health Centre, McGill University, Montreal, Canada.
| | | | - Elda Favari
- Department of Food and Drug, University of Parma, Parma, Italy.
| | - Anna E Bortnick
- Department of Medicine, Divisions of Cardiology and Geriatrics, and Department of Obstetrics & Gynecology and Women's Health, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States of America.
| |
Collapse
|
5
|
Tang X, Qian H, Lu S, Huang H, Wang J, Li F, Bian A, Ye X, Yang G, Ma K, Xing C, Xu Y, Zeng M, Wang N. Predictive nomogram model for severe coronary artery calcification in end-stage kidney disease patients. Ren Fail 2024; 46:2365393. [PMID: 38874139 PMCID: PMC11232636 DOI: 10.1080/0886022x.2024.2365393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
INTRODUCTION The Agatston coronary artery calcification score (CACS) is an assessment index for coronary artery calcification (CAC). This study aims to explore the characteristics of CAC in end-stage kidney disease (ESKD) patients and establish a predictive model to assess the risk of severe CAC in patients. METHODS CACS of ESKD patients was assessed using an electrocardiogram-gated coronary computed tomography (CT) scan with the Agatston scoring method. A predictive nomogram model was established based on stepwise regression. An independent validation cohort comprised of patients with ESKD from multicentres. RESULTS 369 ESKD patients were enrolled in the training set, and 127 patients were included in the validation set. In the training set, the patients were divided into three subgroups: no calcification (CACS = 0, n = 98), mild calcification (0 < CACS ≤ 400, n = 141) and severe calcification (CACS > 400, n = 130). Among the four coronary branches, the left anterior descending branch (LAD) accounted for the highest proportion of calcification. Stepwise regression analysis showed that age, dialysis vintage, β-receptor blocker, calcium-phosphorus product (Ca × P), and alkaline phosphatase (ALP) level were independent risk factors for severe CAC. A nomogram that predicts the risk of severe CAC in ESKD patients has been internally and externally validated, demonstrating high sensitivity and specificity. CONCLUSION CAC is both prevalent and severe in ESKD patients. In the four branches of the coronary arteries, LAD calcification is the most common. Our validated nomogram model, based on clinical risk factors, can help predict the risk of severe coronary calcification in ESKD patients who cannot undergo coronary CT analysis.
Collapse
Affiliation(s)
- Xinfang Tang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Department of Nephrology, the Affiliated Lianyungang Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Hanyang Qian
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Department of Nephrology, Nanjing Tongren Hospital, Nanjing, China
| | - Shijiu Lu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Hui Huang
- Center for Medical Big Data, Nanjing Drum Tower Hospital, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jing Wang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Fan Li
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Department of Nephrology, Nanjing BenQ Medical Center, Nanjing, China
| | - Anning Bian
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Department of Critical Medicine, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoxue Ye
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Guang Yang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Kefan Ma
- Department of Imaging, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Changying Xing
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yi Xu
- Department of Imaging, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Ming Zeng
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Ningning Wang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
6
|
Ma Z, Zhong J, Tu W, Li S, Chen J. The functions of apolipoproteins and lipoproteins in health and disease. MOLECULAR BIOMEDICINE 2024; 5:53. [PMID: 39465476 PMCID: PMC11513782 DOI: 10.1186/s43556-024-00218-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
Lipoproteins and apolipoproteins are crucial in lipid metabolism, functioning as essential mediators in the transport of cholesterol and triglycerides and being closely related to the pathogenesis of multiple systems, including cardiovascular. Lipoproteins a (Lp(a)), as a unique subclass of lipoproteins, is a low-density lipoprotein(LDL)-like particle with pro-atherosclerotic and pro-inflammatory properties, displaying high heritability. More and more strong evidence points to a possible link between high amounts of Lp(a) and cardiac conditions like atherosclerotic cardiovascular disease (ASCVD) and aortic stenosis (AS), making it a risk factor for heart diseases. In recent years, Lp(a)'s role in other diseases, including neurological disorders and cancer, has been increasingly recognized. Although therapies aimed at low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) have achieved significant success, elevated Lp(a) levels remain a significant clinical management problem. Despite the limited efficacy of current lipid-lowering therapies, major clinical advances in new Lp(a)-lowering therapies have significantly advanced the field. This review, grounded in the pathophysiology of lipoproteins, seeks to summarize the wide-ranging connections between lipoproteins (such as LDL-C and HDL-C) and various diseases, alongside the latest clinical developments, special emphasis is placed on the pivotal role of Lp(a) in cardiovascular disease, while also examining its future potential and mechanisms in other conditions. Furthermore, this review discusses Lp(a)-lowering therapies and highlights significant recent advances in emerging treatments, advocates for further exploration into Lp(a)'s pathogenic mechanisms and its potential as a therapeutic target, proposing new secondary prevention strategies for high-risk individuals.
Collapse
Affiliation(s)
- Zijun Ma
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, 430030, Hubei, China
| | - Wei Tu
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shiliang Li
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jun Chen
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China.
| |
Collapse
|
7
|
Mitsis A, Khattab E, Christodoulou E, Myrianthopoulos K, Myrianthefs M, Tzikas S, Ziakas A, Fragakis N, Kassimis G. From Cells to Plaques: The Molecular Pathways of Coronary Artery Calcification and Disease. J Clin Med 2024; 13:6352. [PMID: 39518492 PMCID: PMC11545949 DOI: 10.3390/jcm13216352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Coronary artery calcification (CAC) is a hallmark of atherosclerosis and a critical factor in the development and progression of coronary artery disease (CAD). This review aims to address the complex pathophysiological mechanisms underlying CAC and its relationship with CAD. We examine the cellular and molecular processes that drive the formation of calcified plaques, highlighting the roles of inflammation, lipid accumulation, and smooth muscle cell proliferation. Additionally, we explore the genetic and environmental factors that contribute to the heterogeneity in CAC and CAD presentation among individuals. Understanding these intricate mechanisms is essential for developing targeted therapeutic strategies and improving diagnostic accuracy. By integrating current research findings, this review provides a comprehensive overview of the pathways linking CAC to CAD, offering insights into potential interventions to mitigate the burden of these interrelated conditions.
Collapse
Affiliation(s)
- Andreas Mitsis
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (A.M.); (E.K.); (K.M.); (M.M.)
| | - Elina Khattab
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (A.M.); (E.K.); (K.M.); (M.M.)
| | - Evi Christodoulou
- Cardiology Department, Limassol General Hospital, State Health Services Organization, Limassol 3304, Cyprus;
| | - Kimon Myrianthopoulos
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (A.M.); (E.K.); (K.M.); (M.M.)
| | - Michael Myrianthefs
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (A.M.); (E.K.); (K.M.); (M.M.)
| | - Stergios Tzikas
- Third Department of Cardiology, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Antonios Ziakas
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Nikolaos Fragakis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - George Kassimis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| |
Collapse
|
8
|
Bellinge JW, Chan DC, Pang J, Francis RJ, Page MM, Watts GF, Schultz CJ. Plasma lipoprotein(a) is associated with calcification activity of the thoracic aorta and aortic valve in statin naïve individuals with diabetes mellitus. Eur J Clin Invest 2024; 54:e14167. [PMID: 38265272 DOI: 10.1111/eci.14167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Affiliation(s)
- Jamie W Bellinge
- Medical School, University of Western Australia, Perth, Western Australia, Australia
- Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Dick C Chan
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Jing Pang
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Roslyn J Francis
- Medical School, University of Western Australia, Perth, Western Australia, Australia
- Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Michael M Page
- Medical School, University of Western Australia, Perth, Western Australia, Australia
- Department of Clinical Biochemistry, Western Diagnostic Pathology, Perth, Australia
| | - Gerald F Watts
- Medical School, University of Western Australia, Perth, Western Australia, Australia
- Cardiometabolic Service, Department of Cardiology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Carl J Schultz
- Medical School, University of Western Australia, Perth, Western Australia, Australia
- Department of Cardiology, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
9
|
Mukherjee D, Nissen SE. Lipoprotein (a) as a Biomarker for Cardiovascular Diseases and Potential New Therapies to Mitigate Risk. Curr Vasc Pharmacol 2024; 22:171-179. [PMID: 38141196 DOI: 10.2174/0115701611267835231210054909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Lipoprotein (a) [Lp(a)] is a molecule that induces inflammation of the blood vessels, atherogenesis, valvular calcification, and thrombosis. METHODS We review the available evidence that suggests that high Lp(a) levels are associated with a persisting risk for atherosclerotic cardiovascular diseases despite optimization of established risk factors, including low-density lipoprotein cholesterol (LDL-C) levels. OBSERVATIONS Approximately a quarter of the world population have Lp(a) levels of >50 mg/dL (125 nmol/L), a level associated with elevated cardiovascular risk. Lifestyle modification, statins, and ezetimibe do not effectively lower Lp(a) levels, while proprotein convertase subtilisin/kexin type 9 (PCSK-9) inhibitors and niacin only lower Lp(a) levels modestly. We describe clinical studies suggesting that gene silencing therapeutics, such as small interfering RNA (siRNA) and antisense oligonucleotide targeting Lp(a), offer a targeted approach with the potential for safe and robust Lp(a)- lowering with only a few doses (3-4) per year. Prospective randomized phase 3 studies are ongoing to validate safety, effectiveness in improving hard clinical outcomes, and tolerability to assess these therapies. CONCLUSION Several emerging treatments with robust Lp(a)-lowering effects may significantly lower atherosclerotic cardiovascular risk.
Collapse
Affiliation(s)
- Debabrata Mukherjee
- Department of Internal Medicine, Texas Tech University Health Sciences Center at El Paso, Texas, USA
| | - Steven E Nissen
- Heart, Vascular, and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
10
|
Qiu Y, Hao W, Guo Y, Guo Q, Zhang Y, Liu X, Wang X, Nie S. The association of lipoprotein (a) with coronary artery calcification: A systematic review and meta-analysis. Atherosclerosis 2024; 388:117405. [PMID: 38101270 DOI: 10.1016/j.atherosclerosis.2023.117405] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND AND AIMS Coronary artery calcification (CAC) is a crucial pathophysiological characteristic of atherosclerosis. The association between lipoprotein (a) [Lp(a)] and CAC is inconsistent. We aimed to assess the relationship between Lp(a) and CAC by exploring the association between elevated Lp(a) and CAC prevalence, the relationship between Lp(a) level and CAC prevalence, and the correlation between elevated Lp(a) and CAC progression. METHODS We searched the PubMed, Web of Science, and EMBASE databases up to November 01, 2023. Studies exploring the association between serum Lp(a) and CAC (quantified using the Agatston score) were included. Association between Lp(a) level or elevated Lp(a) (higher than the cutoff values of 30 mg/dL, 50 mg/dL, or the highest quartile ranging from 33 to 38.64 mg/dL) and prevalence [CAC score >0 or >100, log (CAC score+1) >0] or progression (an increase in CAC score >0 or ≥100) of CAC were analysed. Odds ratios and 95% confidence intervals were calculated using a random-effects model. RESULTS 40,073 individuals from 17 studies were included. Elevated Lp(a) was associated with a higher prevalence of CAC (OR, 1.31; 95% CI, 1.06 to 1.61; p = 0.01). As a continuous variable, Lp(a) level was positively correlated with the prevalence of CAC (OR, 1.05; 95% CI, 1.02 to 1.08; p = 0.003). Furthermore, elevated Lp(a) was associated with greater CAC progression (OR, 1.54; 95% CI, 1.23 to 1.92; p = 0.0002). CONCLUSIONS This meta-analysis suggested that Lp(a) is associated with prevalence and progression of CAC. Further studies are required to explore whether Lp(a)-lowering therapy could prevent or inhibit CAC, ultimately reducing coronary artery disease risk.
Collapse
Affiliation(s)
- Yuyao Qiu
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wen Hao
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yingying Guo
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Qian Guo
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yushi Zhang
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaochen Liu
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiao Wang
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Shaoping Nie
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Yuan D, Xu N, Song Y, Zhang Z, Xu J, Liu Z, Tang X, Han Y, Chen Y, Zhang Y, Zhu P, Guo X, Wang Z, Liu R, Wang Q, Yao Y, Feng Y, Zhao X, Yuan J. Association Between Free Fatty Acids and Cardiometabolic Risk in Coronary Artery Disease: Results From the PROMISE Study. J Clin Endocrinol Metab 2023; 109:125-134. [PMID: 37540767 DOI: 10.1210/clinem/dgad416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Indexed: 08/06/2023]
Abstract
CONTEXT The association between free fatty acids (FFAs) and unfavorable clinical outcomes has been reported in the general population. However, evidence in the secondary prevention population is relatively scarce. OBJECTIVE We aimed to examine the relationship between FFA and cardiovascular risk in patients with coronary artery disease (CAD). METHODS This study was based on a multicenter cohort of patients with CAD enrolled from January 2015 to May 2019. The primary outcome was all-cause death. Secondary outcomes included cardiac death and major adverse cardiovascular events (MACE), a composite of death, myocardial infarction, and unplanned revascularization. RESULTS During a follow-up of 2 years, there were 468 (3.0%) all-cause deaths, 335 (2.1%) cardiac deaths, and 1279 (8.1%) MACE. Elevated FFA levels were independently associated with increased risks of all-cause death, cardiac death, and MACE (all P < .05). Moreover, When FFA were combined with an original model derived from the Cox regression, there were significant improvements in discrimination and reclassification for prediction of all-cause death (net reclassification improvement [NRI] 0.245, P < .001; integrated discrimination improvement [IDI] 0.004, P = .004), cardiac death (NRI 0.269, P < .001; IDI 0.003, P = .006), and MACE (NRI 0.268, P < .001; IDI 0.004, P < .001). Notably, when stratified by age, we found that the association between FFA with MACE risk appeared to be stronger in patients aged ≥60 years compared with those aged <60 years. CONCLUSION In patients with CAD, FFAs are associated with all-cause death, cardiac death, and MACE. Combined evaluation of FFAs with other traditional risk factors could help identify high-risk individuals who may require closer monitoring and aggressive treatment.
Collapse
Affiliation(s)
- Deshan Yuan
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Na Xu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Ying Song
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Zheng Zhang
- Department of Cardiology, the First Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jingjing Xu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Zhenyu Liu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Xiaofang Tang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Yaling Han
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110000, People's Republic of China
| | - Yan Chen
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Yongzhen Zhang
- Department of Cardiology, Peking University Third Hospital, Beijing 100037, People's Republic of China
| | - Pei Zhu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Xiaogang Guo
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine (FAHZU), Hangzhou 310000, People's Republic of China
| | - Zhifang Wang
- Department of Cardiology, Xinxiang Central Hospital, Xinxiang 453000, People's Republic of China
| | - Ru Liu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Qingsheng Wang
- Department of Cardiology, the First Hospital of Qinhuangdao, Qinhuangdao 066000, People's Republic of China
| | - Yi Yao
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Yingqing Feng
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangzhou 510000, People's Republic of China
| | - Xueyan Zhao
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Jinqing Yuan
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| |
Collapse
|
12
|
Vazirian F, Sadeghi M, Kelesidis T, Budoff MJ, Zandi Z, Samadi S, Mohammadpour AH. Predictive value of lipoprotein(a) in coronary artery calcification among asymptomatic cardiovascular disease subjects: A systematic review and meta-analysis. Nutr Metab Cardiovasc Dis 2023; 33:2055-2066. [PMID: 37567791 PMCID: PMC11073574 DOI: 10.1016/j.numecd.2023.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/20/2023] [Accepted: 07/11/2023] [Indexed: 08/13/2023]
Abstract
AIMS Studies have indicated inconsistent results regarding the association between plasma levels of Lipoprotein(a) [Lp(a)] and coronary artery calcification (CAC). We performed a systematic review and meta-analysis to investigate the association between elevated levels of Lp(a) and risk of CAC in populations free of cardiovascular disease (CVD) symptoms. DATA SYNTHESIS PubMed, Web of Science, Embase, and Scopus were searched up to July 2022 and the methodological quality was assessed using Newcastle-Ottawa Scale (NOS) scale. Random-effects meta-analysis was used to estimate pooled odds ratio (OR) and 95% confidence interval. Out of 298 studies, data from 8 cross-sectional (n = 18,668) and 4 cohort (n = 15,355) studies were used in meta-analysis. Cohort studies demonstrated a positive significant association between Lp(a) and CAC, so that individuals with Lp(a)≥30-50 exposed to about 60% risk of CAC incidence compared to those with lower Lp(a) concentrations in asymptomatic CVD subjects (OR, 1.58; 95% CI, 1.38-1.80; l2, 0.0%; P, 0.483); Subgroup analysis showed that a cut-off level for Lp(a) measurement could not statistically affect the association, but race significantly affected the relationship between Lp(a) and CAC (OR,1.60; 95% CI, 1.41-1.81). Analyses also revealed that both men and women with higher Lp(a) concentrations are at the same risk for increased CAC. CONCLUSIONS Blood Lp(a) level was significantly associated with CAC incidence in asymptomatic populations with CVD, indicating that measuring Lp(a) may be a useful biomarker for diagnosing subclinical atherosclerosis in individuals at higher risk of CAC score. PROSPERO REGISTRATION NUMBER CRD42022350297.
Collapse
Affiliation(s)
- Fatemeh Vazirian
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Sadeghi
- Department of Epidemiology, Faculty of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Matthew J Budoff
- Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Zahra Zandi
- Department of Cardiovascular Disease, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Samadi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amir Hooshang Mohammadpour
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Assini JM, Clark JR, Youssef A, Xing C, Doerfler AM, Park SH, Saxena L, Yaseen AB, Børen J, Gros R, Bao G, Lagor WR, Boffa MB, Koschinsky ML. High levels of lipoprotein(a) in transgenic mice exacerbate atherosclerosis and promote vulnerable plaque features in a sex-specific manner. Atherosclerosis 2023; 384:117150. [PMID: 37290980 DOI: 10.1016/j.atherosclerosis.2023.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND AIMS Despite increased clinical interest in lipoprotein(a) (Lp(a)), many questions remain about the molecular mechanisms by which it contributes to atherosclerotic cardiovascular disease. Existing murine transgenic (Tg) Lp(a) models are limited by low plasma levels of Lp(a) and have not consistently shown a pro-atherosclerotic effect of Lp(a). METHODS We generated Tg mice expressing both human apolipoprotein(a) (apo(a)) and human apoB-100, with pathogenic levels of plasma Lp(a) (range 87-250 mg/dL). Female and male Lp(a) Tg mice (Tg(LPA+/0;APOB+/0)) and human apoB-100-only controls (Tg(APOB+/0)) (n = 10-13/group) were fed a high-fat, high-cholesterol diet for 12 weeks, with Ldlr knocked down using an antisense oligonucleotide. FPLC was used to characterize plasma lipoprotein profiles. Plaque area and necrotic core size were quantified and immunohistochemical assessment of lesions using a variety of cellular and protein markers was performed. RESULTS Male and female Tg(LPA+/0;APOB+/0) and Tg(APOB+/0) mice exhibited proatherogenic lipoprotein profiles with increased cholesterol-rich VLDL and LDL-sized particles and no difference in plasma total cholesterol between genotypes. Complex lesions developed in the aortic sinus of all mice. Plaque area (+22%), necrotic core size (+25%), and calcified area (+65%) were all significantly increased in female Tg(LPA+/0;APOB+/0) mice compared to female Tg(APOB+/0) mice. Immunohistochemistry of lesions demonstrated that apo(a) deposited in a similar pattern as apoB-100 in Tg(LPA+/0;APOB+/0) mice. Furthermore, female Tg(LPA+/0;APOB+/0) mice exhibited less organized collagen deposition as well as 42% higher staining for oxidized phospholipids (OxPL) compared to female Tg(APOB+/0) mice. Tg(LPA+/0;APOB+/0) mice had dramatically higher levels of plasma OxPL-apo(a) and OxPL-apoB compared to Tg(APOB+/0) mice, and female Tg(LPA+/0;APOB+/0) mice had higher plasma levels of the proinflammatory cytokine MCP-1 (+3.1-fold) compared to female Tg(APOB+/0) mice. CONCLUSIONS These data suggest a pro-inflammatory phenotype exhibited by female Tg mice expressing Lp(a) that appears to contribute to the development of more severe lesions with greater vulnerable features.
Collapse
Affiliation(s)
- Julia M Assini
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, London, Ontario, Canada
| | - Justin R Clark
- Robarts Research Institute, Schulich School of Medicine & Dentistry, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Amer Youssef
- Robarts Research Institute, Schulich School of Medicine & Dentistry, London, Ontario, Canada
| | - Chuce Xing
- Robarts Research Institute, Schulich School of Medicine & Dentistry, London, Ontario, Canada
| | - Alexandria M Doerfler
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - So Hyun Park
- Department of Bioengineering, Rice University, Houston, USA
| | - Lavanya Saxena
- Department of Bioengineering, Rice University, Houston, USA
| | - Adam B Yaseen
- Department of Bioengineering, Rice University, Houston, USA
| | - Jan Børen
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Robert Gros
- Robarts Research Institute, Schulich School of Medicine & Dentistry, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Gang Bao
- Robarts Research Institute, Schulich School of Medicine & Dentistry, London, Ontario, Canada
| | - William R Lagor
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, USA
| | - Michael B Boffa
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, London, Ontario, Canada.
| | - Marlys L Koschinsky
- Robarts Research Institute, Schulich School of Medicine & Dentistry, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
14
|
Neels JG, Leftheriotis G, Chinetti G. Atherosclerosis Calcification: Focus on Lipoproteins. Metabolites 2023; 13:metabo13030457. [PMID: 36984897 PMCID: PMC10056669 DOI: 10.3390/metabo13030457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids in the vessel wall, leading to the formation of an atheroma and eventually to the development of vascular calcification (VC). Lipoproteins play a central role in the development of atherosclerosis and VC. Both low- and very low-density lipoproteins (LDL and VLDL) and lipoprotein (a) (Lp(a)) stimulate, while high-density lipoproteins (HDL) reduce VC. Apolipoproteins, the protein component of lipoproteins, influence the development of VC in multiple ways. Apolipoprotein AI (apoAI), the main protein component of HDL, has anti-calcific properties, while apoB and apoCIII, the main protein components of LDL and VLDL, respectively, promote VC. The role of lipoproteins in VC is also related to their metabolism and modifications. Oxidized LDL (OxLDL) are more pro-calcific than native LDL. Oxidation also converts HDL from anti- to pro-calcific. Additionally, enzymes such as autotaxin (ATX) and proprotein convertase subtilisin/kexin type 9 (PCSK9), involved in lipoprotein metabolism, have a stimulatory role in VC. In summary, a better understanding of the mechanisms by which lipoproteins and apolipoproteins contribute to VC will be crucial in the development of effective preventive and therapeutic strategies for VC and its associated cardiovascular disease.
Collapse
Affiliation(s)
- Jaap G Neels
- Université Côte d'Azur, INSERM, C3M, 06200 Nice, France
| | | | - Giulia Chinetti
- Université Côte d'Azur, CHU, INSERM, C3M, 06200 Nice, France
| |
Collapse
|
15
|
Golüke NM, Schoffelmeer MA, De Jonghe A, Emmelot-Vonk MH, De Jong PA, Koek HL. Serum biomarkers for arterial calcification in humans: A systematic review. Bone Rep 2022; 17:101599. [PMID: 35769144 PMCID: PMC9234354 DOI: 10.1016/j.bonr.2022.101599] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022] Open
Abstract
Aim To clarify the role of mediators of ectopic mineralization as biomarkers for arterial calcifications. Methods MEDLINE and Embase were searched for relevant literature, until January 4th 2022. The investigated biomarkers were: calcium, phosphate, parathyroid hormone, vitamin D, pyrophosphate, osteoprotegerin, receptor activator of nuclear factor-kappa B ligand (RANKL), fibroblast growth factor-23 (FGF-23), Klotho, osteopontin, osteocalcin, Matrix Gla protein (MGP) and its inactive forms and vitamin K. Studies solely performed in patients with kidney insufficiency or diabetes mellitus were excluded. Results After screening of 8985 articles, a total of 129 articles were included in this systematic review. For all biomarkers included in this review, the results were variable and more than half of the studies for each specific biomarker had a non-significant result. Also, the overall quality of the included studies was low, partly as a result of the mostly cross-sectional study designs. The largest body of evidence is available for phosphate, osteopontin and FGF-23, as a little over half of the studies showed a significant, positive association. Firm statements for these biomarkers cannot be drawn, as the number of studies was limited and hampered by residual confounding or had non-significant results. The associations of the other mediators of ectopic mineralization with arterial calcifications were not clear. Conclusion Associations between biomarkers of ectopic mineralization and arterial calcification are variable in the published literature. Future longitudinal studies differentiating medial and intimal calcification could add to the knowledge of biomarkers and mechanisms of arterial calcifications. We researched the association between biomarkers and arterial calcifications. This review focused on biomarkers of bone metabolism and Matrix Gla protein. Associations between biomarkers and arterial calcification are variable. Future studies should differentiate between medial and intimal calcifications.
Collapse
Key Words
- 1,25(OH)2D, 1,25-dihydroxyvitamin D
- 25(OH)D, 25-hydroxyvitamin D
- Arterial calcification
- Biomarkers
- CAC, coronary artery calcification
- CAD, coronary artery disease
- CVD, cardiovascular disease
- FGF-23, fibroblast growth factor-23
- GACI, generalized arterial calcification of infancy
- MGP, matrix Gla protein
- MK, menaquinone
- OPG, osteoprotegerin
- PIVKA-2, protein induced by vitamin K absence or antagonist-2
- PK, phylloquinone
- PTH, parathyroid hormone
- PXE, pseudoxanthoma elasticum
- RANKL, receptor activator of nuclear factor-kappa B ligand
- Review
- dp-cMGP, carboxylated but dephosphorylated MGP
- dp-ucMGP, uncarboxylated an dephosphorylated MGP
- uc-MGP, uncarboxylated MGP
Collapse
Affiliation(s)
- Nienke M.S. Golüke
- University Medical Center Utrecht, Department of Geriatrics, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
- Tergooi Hospitals, Department of Geriatrics, Rijksstraatweg 1, 1261 AN Blaricum, the Netherlands
- Corresponding author at: Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands.
| | - Marit A. Schoffelmeer
- University Medical Center Utrecht, Department of Geriatrics, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Annemarieke De Jonghe
- Tergooi Hospitals, Department of Geriatrics, Rijksstraatweg 1, 1261 AN Blaricum, the Netherlands
| | - Mariëlle H. Emmelot-Vonk
- University Medical Center Utrecht, Department of Geriatrics, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Pim A. De Jong
- University Medical Center Utrecht, Department of Radiology, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Huiberdina L. Koek
- University Medical Center Utrecht, Department of Geriatrics, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Lipids and lipoproteins have long been known to contribute to atherosclerosis and cardiovascular calcification. One theme of recent work is the study of lipoprotein (a) [Lp(a)], a lipoprotein particle similar to LDL-cholesterol that carries a long apoprotein tail and most of the circulating oxidized phospholipids. RECENT FINDINGS In-vitro studies show that Lp(a) stimulates osteoblastic differentiation and mineralization of vascular smooth muscle cells, while the association of Lp(a) with coronary artery calcification continues to have varying results, possibly because of the widely varying threshold levels of Lp(a) chosen for association analyses. Another emerging area in the field of cardiovascular calcification is pathological endothelial-to-mesenchymal transition (EndMT), the process whereby endothelial cell transition into multipotent mesenchymal cells, some of which differentiate into osteochondrogenic cells and mineralize. The effects of lipids and lipoproteins on EndMT suggest that they modulate cardiovascular calcification through multiple mechanisms. There are also emerging trends in imaging of calcific vasculopathy, including: intravascular optical coherence tomography for quantifying plaque characteristics, PET with a radiolabeled NaF tracer, with either CT or MRI to detect coronary plaque vulnerability. SUMMARY Recent work in this field includes studies of Lp(a), EndMT, and new imaging techniques.
Collapse
Affiliation(s)
- Jeffrey J Hsu
- Department of Medicine
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Yin Tintut
- Department of Medicine
- Department of Physiology
- Department of Orthopaedic Surgery
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Linda L Demer
- Department of Medicine
- Department of Physiology
- Department of Bioengineering, University of California
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
17
|
Lipoprotein(a) Serum Levels Predict Pulse Wave Velocity in Subjects in Primary Prevention for Cardiovascular Disease with Large Apo(a) Isoforms: Data from the Brisighella Heart Study. Biomedicines 2022; 10:biomedicines10030656. [PMID: 35327457 PMCID: PMC8945189 DOI: 10.3390/biomedicines10030656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022] Open
Abstract
In the last decades, high serum levels of lipoprotein(a) (Lp(a)) have been associated with increased cardiovascular disease (CVD) risk, in particular among individuals with smaller apolipoprotein(a) (apo(a)) isoforms than those with larger sizes. The aim of our analysis was to evaluate whether Lp(a) levels could predict early vascular aging, and whether smaller apo(a) isoforms had a predictive value for vascular aging different than larger apo(a) isoforms in a cohort of subjects free from CVD. We considered the data of a subset of Brisighella Heart Study (BHS) participants free from CVD (462 men and 516 women) who were clinically evaluated during the 2012 BHS population survey. Predictors of arterial stiffness, measured as carotid-femoral pulse wave velocity (cfPWV) were estimated by the application of a step-wise linear regression model. In our cohort, there were 511 subjects with small apo(a) size and 467 subjects with large apo(a) isoforms. Subjects with larger apo(a) isoform sizes had significantly lower serum levels of Lp(a). In the BHS subpopulation sample, cfPWV was predicted by age, systolic blood pressure (SBP), serum levels of high-density lipoprotein cholesterol (HDL-C), triglycerides (TG) and sex, higher HDL-C serum levels and female sex associated with lower values of cfPWV. In subjects with smaller apo(a) isoform sizes, predictors of cfPWV were age, SBP, sex and serum levels of HDL-C, being higher HDL-C serum levels and female sex associated to lower values of cfPWV. In subjects with larger apo(a) isoform sizes, cfPWV was predicted by age, SBP, serum levels of Lp(a) and sex, with female sex associated with lower values of cfPWV. In our subpopulation sample, Lp(a) did not predict cfPWV. However, in subjects with large apo(a) isoform sizes, Lp(a) was a significant predictor of arterial stiffness.
Collapse
|