1
|
Zhu M, Li X, Xiao L, Yu K, Li J, Dai Z, Zhang Q, Dai J, Jia Z, Bai Y, Zhang K. 3D-printed microfibers encapsulating stem cells in scaffold with tri-culture and two-stage metformin release for bone/vasculature/nerve regeneration in rats. Bioact Mater 2025; 51:399-413. [PMID: 40491689 PMCID: PMC12148644 DOI: 10.1016/j.bioactmat.2025.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 05/08/2025] [Accepted: 05/11/2025] [Indexed: 06/11/2025] Open
Abstract
Introduction Regeneration of critical-sized bone defects remains a major clinical challenge. Solely promoting osteogenesis is inadequate, because vasculature and neural innervation are critical for establishing the bone regenerative microenvironment. Objective For the first time, the present study developed 3D bio-printed hydrogel microfibers (aMF) encapsulating human periodontal ligament stem cells (hPDLSCs) in a tri-culture system in calcium phosphate cement (CPC) scaffold with a two-stage metformin release for regeneration of nerve, vasculature, and bone. Materials and methods This tri-culture system consisted of hPDLSCs, human umbilical vein endothelial cells (hUVECs), and pericytes (PCs). Moreover, we employed 3D-bioprinted aMF in CPC scaffold with a controlled two-stage release system for metformin release to promote bone, vasculature, and nerve regeneration. Results Our innovative construct increased the regenerated amounts of bone, vasculature and nerve significantly by 2.5-fold, 3-fold, and 3.5-fold, respectively, than control group, in cranial defects in rats. Conclusion This novel hPDLSCs tri-culture system in aMF-CPC scaffold with two-stage metformin release is highly promising for the regeneration of all three tissues of bone, vasculature, and nerves in a wide range of craniofacial and orthopedic applications.
Collapse
Affiliation(s)
- Minjia Zhu
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100070, PR China
| | - Xinyi Li
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100070, PR China
| | - Le Xiao
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100070, PR China
| | - Kan Yu
- Department of Orthodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, PR China
| | - Jingyi Li
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100070, PR China
| | - Zixiang Dai
- Department of Dentistry, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, PR China
| | - Qinrou Zhang
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100070, PR China
| | - Jialiang Dai
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100070, PR China
| | - Zihan Jia
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100070, PR China
| | - Yuxing Bai
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100070, PR China
| | - Ke Zhang
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100070, PR China
| |
Collapse
|
2
|
Furrer R, Handschin C. Biomarkers of aging: from molecules and surrogates to physiology and function. Physiol Rev 2025; 105:1609-1694. [PMID: 40111763 DOI: 10.1152/physrev.00045.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/10/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
Many countries face an unprecedented challenge in aging demographics. This has led to an exponential growth in research on aging, which, coupled to a massive financial influx of funding in the private and public sectors, has resulted in seminal insights into the underpinnings of this biological process. However, critical validation in humans has been hampered by the limited translatability of results obtained in model organisms, additionally confined by the need for extremely time-consuming clinical studies in the ostensible absence of robust biomarkers that would allow monitoring in shorter time frames. In the future, molecular parameters might hold great promise in this regard. In contrast, biomarkers centered on function, resilience, and frailty are available at the present time, with proven predictive value for morbidity and mortality. In this review, the current knowledge of molecular and physiological aspects of human aging, potential antiaging strategies, and the basis, evidence, and potential application of physiological biomarkers in human aging are discussed.
Collapse
|
3
|
Chen J, Xie C, Li Y, Sun Q, Yu F, Li K, Gao H, Liang Z, Tang B, Lin L. A multifunctional metformin loaded carboxymethyl chitosan/tannic acid/manganese composite hydrogel with promising capabilities for age-related bone defect repair. Carbohydr Polym 2025; 358:123526. [PMID: 40383585 DOI: 10.1016/j.carbpol.2025.123526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/06/2025] [Accepted: 03/20/2025] [Indexed: 05/20/2025]
Abstract
As the global population ages, age-related bone defects have become a major public health challenge. The decline in bone tissue repair capacity among the elderly is primarily attributed to the senescence of bone marrow mesenchymal stem cells (BMSCs), which leads to reduced proliferation and differentiation capabilities, thereby impeding the bone healing process. Additionally, the deterioration of the bone microenvironment, characterized by chronic inflammation and oxidative stress, further complicates bone repair. To address these issues, a multifunctional hydrogel drug delivery system, the metformin-loaded carboxymethyl chitosan/tannic acid/manganese (MCTM) hydrogel was developed. This system integrates the synergistic effects of CMCS, TA, Mn2+, and metformin to effectively alleviate BMSCs senescence, optimize the local chronic inflammatory microenvironment, eliminate oxidative stress, and reduce post-implantation infection risks. Detailed material characterization revealed that the introduction of Mn2+ significantly enhances the mechanical properties and optimizes the degradation characteristics of the CMCS/TA hydrogel, ensuring continuous and stable drug release at tissue repair sites. In vitro and in vivo experiments demonstrated MCTM's excellent biocompatibility and its ability to combine stem cell senescence alleviation with bone repair microenvironment improvement, thereby effectively overcoming various adverse factors affecting bone defect repair in the elderly. This study presents a promising strategy for enhancing bone regeneration under senescent conditions.
Collapse
Affiliation(s)
- Jingle Chen
- Department of Joint and Orthopedics, , Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Chao Xie
- Department of Joint and Orthopedics, , Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Yucong Li
- Department of Joint and Orthopedics, , Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Qili Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Fengnian Yu
- Department of Joint and Orthopedics, , Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Kai Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Haotian Gao
- Department of Joint and Orthopedics, , Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Zhaoquan Liang
- Department of Joint and Orthopedics, , Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Bin Tang
- Department of Joint and Orthopedics, , Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, PR China.
| | - Lijun Lin
- Department of Joint and Orthopedics, , Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
4
|
Shteinfer-Kuzmine A, Moyal MM, Karunanithi Nivedita A, Trishna S, Nadir A, Tripathi S, Shoshan-Barmatz V. Metformin-Induced Apoptosis Is Mediated Through Mitochondrial VDAC1. Pharmaceuticals (Basel) 2025; 18:757. [PMID: 40430574 PMCID: PMC12115184 DOI: 10.3390/ph18050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 05/03/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Besides diabetes mellitus, metformin has been identified as a potential therapeutic agent for treating various other conditions that include various cancers, cardiovascular diseases, neurodegenerative diseases, and aging. In cancer, metformin increased apoptotic cell death, while inhibiting it in neurodegenerative diseases. Thus, different modes of metformin action at the molecular level have been proposed. Methods: In this study, we present the mitochondria and the VDAC1 (voltage-dependent anion channel) as a potential target of metformin. Results: Metformin induces VDAC1 overexpression, its oligomerization, and subsequent apoptosis. Metformin analogs phenformin and buformin at much lower concentrations also induce VDAC1 overexpression, oligomerization, and cell death. We demonstrate the interaction of metformin with purified VDAC1, which inhibited its channel conduction in a voltage-dependent manner. Metformin bound to the synthetic VDAC1-N-terminal peptide and binding to this domain was also found by its molecular docking with VDAC1. Moreover, we demonstrated metformin binding to purified hexokinases (HK-I) with a 400-fold lower metformin concentration than that required for cell death induction. In cells, metformin induced HK-I detachment from the mitochondrial VDAC1. Lastly, metformin increased the expression of NLRP3 and ASC and induced their co-localization, suggesting inflammasome activation. Conclusions: The results suggest that VDAC1 is a target for metformin and its analogs, and this is associated with metformin's adverse effects on many diseases.
Collapse
Affiliation(s)
- Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Meital M. Moyal
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.M.M.); (A.K.N.); (S.T.); (A.N.)
| | - Aditya Karunanithi Nivedita
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.M.M.); (A.K.N.); (S.T.); (A.N.)
| | - Sweta Trishna
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.M.M.); (A.K.N.); (S.T.); (A.N.)
| | - Almog Nadir
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.M.M.); (A.K.N.); (S.T.); (A.N.)
| | - Shubhandra Tripathi
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India;
| | - Varda Shoshan-Barmatz
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.M.M.); (A.K.N.); (S.T.); (A.N.)
| |
Collapse
|
5
|
Xin G, Zhou Q, Wang T, Wan C, Yu X, Li K, Li F, Li S, Dong Y, Wang Y, Feng L, Zhang K, Wen A, Huang W. Metformin aggravates pancreatitis by regulating the release of oxidised mitochondrial DNA via the frataxin (FXN)/ninjurin 1 (NINJ1) signalling pathway. Br J Pharmacol 2025. [PMID: 40344214 DOI: 10.1111/bph.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/22/2025] [Accepted: 03/19/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND AND PURPOSE Patients with diabetes are at a higher risk of developing acute pancreatitis compared to those without diabetes. Therefore, it is essential to investigate the effects of metformin, a primary treatment for type 2 diabetes, on the progression of pancreatitis. EXPERIMENTAL APPROACH Network pharmacology was employed to investigate the potential effects of metformin on pancreatitis and to predict its underlying molecular mechanisms. Pharmacological and mechanistic studies of metformin were conducted utilising mtDNA depletion (ρ0) of 266-6 acinar cells, knockout mouse models and experimental models of both acute and chronic pancreatitis. The mitochondrial homeostasis and plasma membrane integrity were examined through phase-contrast microscopy and time-lapse video imaging. KEY RESULTS Network pharmacology analysis revealed that metformin possesses significant potential to modulate the pathogenesis of pancreatitis, likely through its regulation of mitochondrial function and cell membrane morphology. Further, the results revealed that metformin augmented the release of oxidised mitochondrial DNA (Ox-mtDNA) by enhancing NINJ1-mediated plasma membrane rupture, which subsequently ignited a cascade of acinar cell necrosis. Metformin exacerbated mitochondrial iron imbalance by suppressing Frataxin, thereby worsening mitochondrial homeostasis disruption and Ox-mtDNA generation. NINJ1 knockout eliminated the metformin-induced acinar cell necrosis and elevation of Ox-mtDNA levels, and mtDNA depletion reversed the effect of metformin on acinar cell death. CONCLUSION AND IMPLICATIONS Metformin exacerbates both acute and chronic pancreatitis, possibly because of increased release of Ox-mtDNA via modulation of mitochondrial iron homeostasis and NINJ1-mediated plasma membrane rupture, suggesting that extreme caution should be exercised when using metformin in diabetic patients with pancreatitis.
Collapse
Affiliation(s)
- Guang Xin
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qilong Zhou
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tao Wang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chengyu Wan
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiuxian Yu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ke Li
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Li
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shiyi Li
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuman Dong
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yilan Wang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lijuan Feng
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kun Zhang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ao Wen
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wen Huang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Wei Y, Yang J, Zu W, Wang M, Zhao Y. Progression in the In Vitro Macrophage Expansion. J Immunol Res 2025; 2025:9994439. [PMID: 40331017 PMCID: PMC12052461 DOI: 10.1155/jimr/9994439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/02/2025] [Indexed: 05/08/2025] Open
Abstract
Macrophages play essential roles in homeostasis and disease, and they were considered terminally differentiated cells that cannot proliferate. However, growing evidence shows that macrophages can self-renew in homeostasis and multiple pathological states in vivo and artificial induction in vitro. With the rise of immune cell therapy based on macrophages, large-scale in vitro expansion of macrophages has become more and more urgent. However, the proliferation of macrophages in vitro is still inefficient because of the heterogeneity of macrophages, complicated crosstalk between macrophages and their microenvironments, and poor understanding of macrophage proliferation regulations. In this review, we summarized the discoveries known to stimulate macrophage proliferation in vitro, including cytokines, small molecule compounds, metabolites, the composition of pathogens and apoptotic cells, natural product extracts, gene editing, and other factors, as well as related mechanisms. It can be concluded that the promotion of macrophage proliferation in vitro covers various approaches and mechanisms. However, it is still necessary to test more strategies and learn more macrophage proliferation mechanisms to achieve large-scale engineering expansion of macrophages in vitro.
Collapse
Affiliation(s)
- Yunpeng Wei
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Jingzhao Yang
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Wenhong Zu
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Mengran Wang
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Yong Zhao
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518107, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
7
|
Hosseini Y, Niknejad A, Sabbagh Kashani A, Gholami M, Roustaie M, Mohammadi M, Momtaz S, Atkin SL, Jamialahmadi T, Abdolghaffari AH, Sahebkar A. NLRP3 inflammasomes pathway: a key target for Metformin. Inflammopharmacology 2025; 33:1729-1760. [PMID: 40042723 DOI: 10.1007/s10787-025-01702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 01/31/2025] [Indexed: 04/13/2025]
Abstract
Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing 3 (NLRP3) is a signaling pathway that is involved in inflammatory cascades, cell survival and the immune response. NLRP3 is activated by cellular damage, oxidative stress, and other factors that stimulate the immune system. Stimulation of NLRP3 induces inflammatory reactions and the production of inflammatory cytokines. These inflammatory mediators are implicated in several diseases. Metformin (MET) is an anti-hyperglycemia agent that is extensively used in clinical practice worldwide due to its high efficiency, safety profile, and affordable price. MET is the only member of biguanide class that is used in clinical practice and a potent AMP-activated protein kinase (AMPK) agonist with proven anti-inflammatory characteristics. Due to its anti-inflammatory properties, MET is considered to be effective against diseases that have an inflammatory background, and the NLRP3 pathway is involved in the pathophysiology of these disorders. In this review, we have evaluated the evidence if MET can affect this pathway and its utility for future therapeutic approaches.
Collapse
Affiliation(s)
- Yasamin Hosseini
- Faculty of Pharmacy, Department of Toxicology and Pharmacology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhossein Niknejad
- Faculty of Pharmacy, Department of Toxicology and Pharmacology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ayeh Sabbagh Kashani
- Faculty of Pharmacy, Department of Toxicology and Pharmacology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Gholami
- Faculty of Pharmacy, Department of Toxicology and Pharmacology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahtab Roustaie
- Faculty of Pharmacy, Department of Toxicology and Pharmacology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Stephen L Atkin
- Royal College of Surgeons in Ireland, PO Box 15503, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Abdolghaffari
- Faculty of Pharmacy, Department of Toxicology and Pharmacology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Miedlich SU, Lamberti JS. Connecting the dots: Understanding and addressing the metabolic impact of antipsychotic and antidepressant medications. Ann N Y Acad Sci 2025; 1546:35-57. [PMID: 40072935 DOI: 10.1111/nyas.15301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Serious mental disorders such as schizophrenia and major depression are associated with considerable morbidity and mortality, resulting in much shorter life expectancies in those affected. The discovery of antipsychotic medications ushered in improved health outcomes for people with serious mental disorders but also brought about increased morbidity due to their metabolic side effects, including obesity and diabetes mellitus. Antidepressant medications have a more favorable metabolic side effect profile, but some can still cause weight gain and hyperglycemia. In this narrative review, we discuss antipsychotic and antidepressant medications' mechanisms of action, their respective effectiveness in treating psychosis and depression, and their metabolic side effects. In addition, we present therapeutic strategies for minimizing cardiometabolic health risks in patients treated with these medications by applying a comprehensive, biopsychosocial approach.
Collapse
Affiliation(s)
- Susanne U Miedlich
- Division of Endocrinology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - J Steven Lamberti
- Department of Psychiatry, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
9
|
Tao Q, Wu Y, Pang H, Lv P, Li W, Nie X, Han FY. Effect of administration routes on the efficacy of human umbilical cord mesenchymal stem cells in type 2 diabetic rats. Front Endocrinol (Lausanne) 2025; 16:1536655. [PMID: 40190404 PMCID: PMC11968364 DOI: 10.3389/fendo.2025.1536655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Background Human umbilical cord mesenchymal stem cells (UCMSCs) are being investigated in various clinical trials for different conditions, including type 2 diabetes mellitus (T2DM). However, there is limited research on the optimal injection routes for UCMSCs in T2DM, particularly intravenous injection. Objective The objective of this study aims to investigate the efficacy of four different administration routes of UCMSCs in treating T2DM rats, including pancreas injection (DP), tail vein injection (DT), intraperitoneal injection (DI), and dorsal pancreatic artery injection (DPA). Results After two weeks of UCMSCs treatment, the fasting blood glucose levels in the DT group decreased significantly. The oral glucose tolerance test (OGTT) levels and the islet structure in the DT group almost recovered to normal. The contents of C-P and GLP-1 in serum increased significantly in all treatment groups, while the levels of INS, TNF-α, IL-6, IL-1β, IAA, and GSP decreased significantly. These improvements were further observed after four weeks of UCMSCs treatment. Histological analysis confirmed the progression of pancreatic recovery in all treatment groups, with the DT group showing the most significant improvement, correlating with the observed efficacy. Immunohistochemistry results further demonstrated increased insulin and PDX-1 expression, along with reduced glucagon levels in UCMSCs-treated rats. Additionally, liver and kidney function significantly improved across all treatment groups, with the DT group showing the best outcomes. Conclusion Overall, these findings suggest that the administration route significantly affected the efficacy of UCMSCs in treating T2DM, with tail vein injection showing the most effective results.
Collapse
Affiliation(s)
- Qiqiang Tao
- Hainan Beautech Stem Cell Anti-Aging Hospital, Qionghai, Hainan, China
| | - Youzhi Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Huiwen Pang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Pinglei Lv
- Hainan Beautech Stem Cell Anti-Aging Hospital, Qionghai, Hainan, China
| | - Wenrui Li
- Hainan Beautech Stem Cell Anti-Aging Hospital, Qionghai, Hainan, China
| | - Xuqiang Nie
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Felicity Y. Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Bozoglan MY, Kuloglu T, Gozel N, Kılınc F, Cakmak E, Akkoç RF, Dağoğlu Hark B. Metformin Increases Serum Isthmin-1 Levels and Lowers Low-Density Lipoprotein: Potential Implications for Lipid Metabolism in T2DM. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:522. [PMID: 40142334 PMCID: PMC11944227 DOI: 10.3390/medicina61030522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/24/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025]
Abstract
Background and Objectives: Type 2 Diabetes Mellitus (T2DM) is a metabolic disease caused by the failure of the skeletal muscle, liver and adipose tissue to respond to insulin. Metformin is the first choice for the treatment of T2DM. Isthmin 1 (Ism1) is a newly discovered adipokine that affects all carbohydrate, lipid and protein metabolism. This study examines the changes in serum and salivary levels of Ism1 in patients using metformin, considering its potential as a follow-up marker for T2DM if present in the salivary glands. Materials and Methods: The study included 30 newly diagnosed T2DM patients and 30 non-diabetic controls. Ism1 was measured by ELISA in serum and saliva after 3 months and compared with routine biochemical parameters. Immunostaining of Ism1 was performed in salivary glands. Results: Ism1 was immunohistochemically detected in salivary glands for the first time. Serum Ism1 levels increased significantly after 3 months of metformin treatment (p = 0.028). The increase in salivary Ism1 levels did not reach statistical significance. Fasting plasma glucose (FPG) (p < 0.001), HbA1c (p < 0.001) and LDL (p = 0.015) levels decreased with metformin. There was a significant negative correlation between the increase in Ism1 levels and the decrease in LDL levels (rho = -0.362, p = 0.05). Conclusions: Despite its first detection in salivary glands, the hypothesis that Ism1 may be a surveillance marker in T2DM could not be confirmed. The negative correlation of Ism1 with LDL levels suggests that Ism1 may contribute to the ameliorative effect of metformin on serum lipids. Further studies are needed to support this conclusion.
Collapse
Affiliation(s)
- Merve Yilmaz Bozoglan
- School of Medicine, Department of Medical Pharmacology, Firat University, Elazig 23200, Türkiye
| | - Tuncay Kuloglu
- School of Medicine, Department of Histology and Embryology, Firat University, Elazig 23200, Türkiye;
| | - Nevzat Gozel
- School of Medicine, Department of Internal Medicine, Firat University, Elazig 23200, Türkiye;
| | - Faruk Kılınc
- School of Medicine, Department of Endocrinology, Firat University, Elazig 23200, Türkiye;
| | - Erkan Cakmak
- School of Medicine, Department of Intensive Care, Firat University, Elazig 23200, Türkiye;
| | - Ramazan Fazıl Akkoç
- School of Medicine, Department of Anatomy, Firat University, Elazig 23200, Türkiye;
| | - Betül Dağoğlu Hark
- School of Medicine, Department of Biostatistics, Firat University, Elazig 23200, Türkiye;
| |
Collapse
|
11
|
Pecikoza U, Lasica A, Nastić K, Dinić M, Jasnić N, Micov A, Đorđević J, Stepanović-Petrović R, Tomić M. Metformin reduces inflammatory nociception in mice through a serotonin-dependent mechanism. Eur J Pharmacol 2025; 991:177324. [PMID: 39892451 DOI: 10.1016/j.ejphar.2025.177324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
The antidiabetic drug metformin has demonstrated antinociceptive efficacy in different pain models, and these effects are usually attributed to activation of the AMP-dependent protein kinase (AMPK). However, the downstream targets that contribute to inhibition of nociception following AMPK activation have been only partially elucidated. Here, we examined the contribution of serotonergic mechanisms in mediating metformin's antinociceptive effects, seeing as AMPK activators (including metformin) have been shown to modulate serotonergic neurotransmission. The formalin test in mice was used as an inflammatory pain model. First, we examined metformin's effects following systemic (intraperitoneal) and local peripheral (intraplantar) administration. In the second part, we examined the roles of the AMPK and serotonin system in mediating metformin's antinociceptive effects by (locally and/or systemically) pretreating animals with the AMPK inhibitor (dorsomorphin), antagonists of serotonin 5-HT1A (WAY100635) and 5-HT1B/1D receptors (GR127935) or the tryptophan-hydroxylase inhibitor (PCPA). Metformin significantly reduced second phase nociceptive behavior following systemic and local application. In inhibitor/antagonist studies systemic application of dorsomorphin, WAY100635 or GR127935 significantly inhibited metformin's antinociceptive effects. Local application of dorsomorphin did not change metformin's antinociceptive effects, however locally administered serotonin receptor antagonists significantly reduced them. Finally, four-day pretreatment with PCPA (which depleted brainstem and spinal cord serotonin content) led to a significant reduction of metformin's antinociceptive effects. In conclusion, metformin produces serotonin-dependent antinociceptive effects against inflammatory pain via peripheral, and possibly central, serotonin 5-HT1A and 5-HT1B/1D receptors. The serotonin-mediated mechanism appears to be dependent on serotonin release, seeing as depletion of endogenous serotonin content attenuated metformin's antinociceptive effects.
Collapse
Affiliation(s)
- Uroš Pecikoza
- University of Belgrade - Faculty of Pharmacy, Department of Pharmacology, Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Anđelka Lasica
- University of Belgrade - Faculty of Pharmacy, Department of Pharmacology, Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Katarina Nastić
- University of Belgrade - Faculty of Pharmacy, Department of Pharmacology, Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Miroslav Dinić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia.
| | - Nebojša Jasnić
- University of Belgrade - Faculty of Biology, Institute of Physiology and Biochemistry "Ivan Djaja", Studentski trg 16, 11158, Belgrade, Serbia.
| | - Ana Micov
- University of Belgrade - Faculty of Pharmacy, Department of Pharmacology, Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Jelena Đorđević
- University of Belgrade - Faculty of Biology, Institute of Physiology and Biochemistry "Ivan Djaja", Studentski trg 16, 11158, Belgrade, Serbia.
| | - Radica Stepanović-Petrović
- University of Belgrade - Faculty of Pharmacy, Department of Pharmacology, Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Maja Tomić
- University of Belgrade - Faculty of Pharmacy, Department of Pharmacology, Vojvode Stepe 450, 11221, Belgrade, Serbia.
| |
Collapse
|
12
|
SULAIMAN AHMEDH, HYDER MIRGHANI, OMAIMA A HAMID, ABDELRAHMAN MOHAMED AHMED ABUKANNA, HAFIZ OSMAN IBNIDRIS ALMISBAH, HAIDER OSMAN IBN IDRIS ELMISBAH. METFORMIN THERAPY FOR ACNE VULGARIS AMONG MALES AND FEMALES WITHOUT POLYCYSTIC OVARY SYNDROME: A SYSTEMATIC REVIEW AND META-ANALYSIS. ASIAN JOURNAL OF PHARMACEUTICAL AND CLINICAL RESEARCH 2025:10-15. [DOI: 10.22159/ajpcr.2025v18i3.53774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
Objectives: There is an association between Acne vulgaris and insulin resistance and metabolic syndrome. Although metformin was effective in polycystic ovary syndrome (PCOS) patients, its effects on acne vulgaris among males and females without PCOS are scarce. The study aimed to assess the impact of metformin on acne vulgaris among males and females without PCOS.
Methods: We searched seven databases including Scopus, Web of Science, PubMed, Google Scholar, MEDLINE, EBSCO, and Cochrane Library. We conducted the literature search during October and November of 2024 and the articles were included from inception up to the most recently published research. We used the keywords metformin, doxycycline, tetracycline, isotretinoin, acne vulgaris, acne severity, inflammatory lesions, non-inflammatory lesions, and Global Acne Grading System. A checklist was used to collect the information analyzed by the RevMan System 5.4 (United Kingdom).
Results: Out of a hundred and forty-eight studies identified, we screened 27 full texts, and only five studies were found eligible to be included in the meta-analysis. The studies included 214 patients with study duration of 2–6 months. Metformin was effective in reducing global acne severity scores. However, it was inferior to doxycycline, tetracycline, and isotretinoin, odd ratio, 1.16, 95% CI, 0.37–1.94, Chi-square, 3.95, and p=0.004, and odd ratio, 3.75, 95% CI, 1.85–5.65, Chi-square, 98.32, and p<0.001, respectively.
Conclusion: Metformin was effective in acne vulgaris treatment among males and females without PCOS, p<0.05, but not superior to other systemic therapies. p>0.05. Furthermore, extensive controlled trials are recommended.
Collapse
|
13
|
Mirchandani AS, Sanchez-Garcia MA, Walmsley SR. How oxygenation shapes immune responses: emerging roles for physioxia and pathological hypoxia. Nat Rev Immunol 2025; 25:161-177. [PMID: 39349943 DOI: 10.1038/s41577-024-01087-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 03/04/2025]
Abstract
Most eukaryotes require oxygen for their survival and, with increasing multicellular complexity, oxygen availability and delivery rates vary across the tissues of complex organisms. In humans, healthy tissues have markedly different oxygen gradients, ranging from the hypoxic environment of the bone marrow (where our haematopoietic stem cells reside) to the lungs and their alveoli, which are among the most oxygenated areas of the body. Immune cells are therefore required to adapt to varying oxygen availability as they move from the bone marrow to peripheral organs to mediate their effector functions. These changing oxygen gradients are exaggerated during inflammation, where oxygenation is often depleted owing to alterations in tissue perfusion and increased cellular activity. As such, it is important to consider the effects of oxygenation on shaping the immune response during tissue homeostasis and disease conditions. In this Review, we address the relevance of both physiological oxygenation (physioxia) and disease-associated hypoxia (where cellular oxygen demand outstrips supply) for immune cell functions, discussing the relevance of hypoxia for immune responses in the settings of tissue homeostasis, inflammation, infection, cancer and disease immunotherapy.
Collapse
Affiliation(s)
- Ananda Shanti Mirchandani
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| | | | - Sarah Ruth Walmsley
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
14
|
Gan Y, Yuan Z, Weng J, Huang M, Li T, Wu Y, Lin K, Han J, Li X, Liu H, Wan Z, Li Z, Chen Z, Cui J, Luo Y, Huang M, Yu H, Lin J. Transcriptomic profile of RNA pseudouridine modification as a biomarker for cellular senescence associated with survival outcomes in colorectal cancer. BMC Biol 2025; 23:61. [PMID: 40016751 PMCID: PMC11866714 DOI: 10.1186/s12915-025-02170-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 02/18/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is considered as an age-related disease, and cellular senescence (CS) plays a crucial role in cancer development and progression. Previous studies have shown the role of epigenetic changes in aging and cancer development, but the role of RNA pseudouridine (Ψ) modification in aging and cancer remains to be explored. RESULTS Using bulk RNA sequencing, CRC cells with low Ψ writers expression levels have higher CS levels. We developed the Psi Score for assessing the transcriptomic profile of RNA Ψ modification regulation and found that the Psi Score correlates with CS. Furthermore, Psi-related senescence may be mediated by mTOR, TGF-β, TNF-α, and inflammatory response signaling pathways. Meanwhile, Psi Score could predict the anti-cancer treatment outcomes of anti-aging interventions and could be used to predict the response to immunotherapy. CONCLUSIONS Overall, these findings reveal that RNA Ψ modification connected aging and cancer and provided novel insights into biomarker-guided cancer regimens.
Collapse
Affiliation(s)
- Yingguo Gan
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Ze Yuan
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Jingrong Weng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Mingzhe Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Tuoyang Li
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Yuanhui Wu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Kaixin Lin
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Junyi Han
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Xuan Li
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Haotian Liu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Zixiao Wan
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Ziming Li
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Zhenghua Chen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Ji Cui
- Departments of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Yanxin Luo
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Meijin Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China.
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China.
| | - Huichuan Yu
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China.
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China.
| | - Jinxin Lin
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China.
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
15
|
Gillespie A, Mehdorn AS, Lim TQ, Wang T, Mooney BA, Ovens AJ, Orang A, Oakhill JS, Michael MZ, Petersen J. Reversal of metformin's anti-proliferative effect in fission yeast efr3 and dnm1 (DRP1) mutants with elongated mitochondria. NPJ METABOLIC HEALTH AND DISEASE 2025; 3:5. [PMID: 39991135 PMCID: PMC11845315 DOI: 10.1038/s44324-024-00048-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/26/2024] [Indexed: 02/25/2025]
Abstract
Metformin is a well-tolerated drug frequently prescribed for managing type 2 diabetes. Extended metformin use has been linked to a significant decrease in cancer incidence across both diabetic and non-diabetic populations. Here we investigate the anti-proliferative effects of metformin on fission yeast S. pombe. Our findings demonstrate that metformin's inhibitory impact on cell proliferation is effective in the absence of AMP-activated protein kinase (AMPK). Using an unbiased genetic screen we identified the plasma membrane signalling scaffold Efr3, critical for phosphatidylinositol signalling and the generation of PI4Ps, as a key determinant of resistance to the anti-proliferative effect of metformin. Deletion of efr3 resulted in both AMPK-dependent and AMPK-independent resistance to metformin. We show that Efr3 does not influence cell proliferation by controlling Ras1 activity or its cellular localization in yeast. We observe that dnm1 (DRP1) mutants with elongated mitochondria are also resistant to the anti-proliferative effect of metformin and that metformin treatment promotes mitochondrial fusion. Metabolic measurements after prolonged metformin exposure demonstrated a reduction in respiration in both wild type and the efr3 deletion, however, that reduction is less pronounced in the efr3 deletion, which also contained elongated mitochondria. It is likely that mitochondrial fusion enhances yeast fitness in response to metformin exposure. Together we provide a new perspective on the cellular response to metformin.
Collapse
Affiliation(s)
- Ari Gillespie
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042 Australia
| | - Anne-Sophie Mehdorn
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042 Australia
- Present Address: Department of General, Abdominal, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Tiffany Q. Lim
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042 Australia
| | - Tingting Wang
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042 Australia
| | - Bridget A. Mooney
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042 Australia
| | - Ashley J. Ovens
- Metabolic Signalling Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, Victoria, 3065 Australia
| | - Ayla Orang
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042 Australia
| | - Jonathan S. Oakhill
- Metabolic Signalling Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, Victoria, 3065 Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, 3010 Australia
| | - Michael Z. Michael
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042 Australia
- Flinders Centre for Innovation in Cancer, Dept. Gastroenterology and Hepatology, Flinders Medical Centre, Bedford Park, Adelaide, SA 5042 Australia
| | - Janni Petersen
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042 Australia
- South Australia Health and Medical Research Institute, Adelaide, South Australia Australia
| |
Collapse
|
16
|
Frandsen JR, Yuan Z, Bedi B, Prasla Z, Choi SR, Narayanasamy P, Sadikot RT. PGC-1α activation to enhance macrophage immune function in mycobacterial infections. PLoS One 2025; 20:e0310908. [PMID: 39913377 PMCID: PMC11801632 DOI: 10.1371/journal.pone.0310908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 09/09/2024] [Indexed: 02/09/2025] Open
Abstract
Nontuberculous Mycobacteria (NTM) are a heterogeneous group of environmental microorganisms with distinct human pathogenesis. Their incidence and prevalence are rising worldwide, due in part to elevated antimicrobial resistance which complicates treatment and potential successful outcomes. Although information exists on the clinical significance of NTMs, little is known about host immune response to infection. NTM infections alter macrophage mitochondrial capacity and decrease ATP production, efficient immune response, and bacterial clearance. Transcription factor peroxisome proliferator activated receptor (PPAR) γ coactivator-1α (PGC-1α) is a master regulator of mitochondrial biogenesis, influencing metabolism, mitochondrial pathways, and antioxidant response. Mitochondrial transcription factor A (TFAM) is a protein essential for mitochondrial DNA (mtDNA) genome stability, integrity, and metabolism. Both PGC-1α and TFAM regulate mitochondrial biogenesis and activity, and their disruption is linked to inflammatory signaling and altered macrophage function. We show that NTM causes macrophage mitochondrial damage and disrupted bioenergetics. Mechanistically we show that this is related to attenuation of expression of PGC-1α and TFAM in infected macrophages. Importantly, rescuing expression of PGC-1α and TFAM using pharmacologic approaches restored macrophage immune function. Our results suggest that pharmacologic approaches to enhance mitochondrial function provide a novel approach to target macrophage immune function and means to combat NTM infections.
Collapse
Affiliation(s)
- Joel R. Frandsen
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Zhihong Yuan
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Brahmchetna Bedi
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Zohra Prasla
- Pulmonology and Critical Care Department, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Seoung-Ryoung Choi
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ruxana T. Sadikot
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
17
|
Liu K, Zhao H, Chen X, Wu H, Wong CHM, Ko ICH, Nicoletti R, Chiu PKF, Ng CF, Teoh JYC. Association Between Hypoglycemia Agents and Long-term Survival Outcomes for Patients with Non-muscle-invasive Bladder Cancer Treated with Intravesical Bacillus Calmette-Guérin Immunotherapy. Eur Urol Oncol 2025; 8:164-170. [PMID: 39689991 DOI: 10.1016/j.euo.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND AND OBJECTIVE There is a lack of data on the impact of hypoglycemia agents, especially metformin, on prognosis for non-muscle-invasive bladder cancer (NMIBC). Our aim was to investigate the association between hypoglycemia agents, especially metformin, and long-term survival outcomes for patients with NMIBC treated with bacillus Calmette-Guérin. METHODS All patients with NMIBC treated with intravesical BCG therapy from 2001 to 2020 were identified in a territory-wide database in Hong Kong. Patients were stratified into two groups according to whether or not they were taking a hypoglycemia agent at BCG treatment initiation. We analyzed data for overall survival (OS), cancer-specific survival (CSS), recurrence-free survival (RFS), and progression-free survival (PFS) using the Kaplan-Meier method. Multivariable Cox regression analysis was used to adjust for potential confounding factors and estimate hazard ratio (HRs) and 95% confidence intervals (CIs). Subgroup analyses were conducted to assess the specific influence of metformin on survival outcomes. KEY FINDINGS AND LIMITATIONS Of 2602 patients with NMIBC treated with intravesical BCG, 19.5% (n = 507) were taking a hypoglycemia agent at BCG initiation (treatment group) and 80.5% (n = 2095) were not (control group). At median follow-up of 11 yr, Kaplan-Meier analysis revealed a significant difference in OS between the groups (p < 0.01), but not in CSS (p = 0.36), RFS (p = 0.19), or PFS (p = 0.05). Subgroup analysis comparing outcomes for patients taking metformin, patients taking a hypoglycemia agent other than metformin, and control subjects revealed significant differences in OS (p < 0.01) and RFS (p = 0.02), but not in CSS (p = 0.59) or PFS (p = 0.08). Multivariable Cox regression analysis identified metformin-based treatment for hypoglycemia as an independent risk factor for RFS (HR 1.22, 95% CI 1.02-1.46), whereas hypoglycemia agents other than metformin were not significantly associated with RFS (HR 0.71, 95% CI 0.47-1.06). CONCLUSIONS AND CLINICAL IMPLICATIONS Metformin-based hypoglycemia treatment was an independent risk factor for RFS in BCG-treated NMIBC. Hypoglycemia treatment with an agent other than metformin was not related to long-term survival outcomes. PATIENT SUMMARY We investigated the relationship between treatment for high blood sugar and long-term survival for patients with intermediate-risk or high-risk non-muscle-invasive bladder cancer. The patients had received BCG (bacillus Calmette-Guérin) treatment in Hong Kong for their bladder cancer over the past two decades. Our results show that metformin, but not other drugs used to treat high blood sugar, was associated with poorer survival free from bladder cancer recurrence for these patients.
Collapse
Affiliation(s)
- Kang Liu
- S.H. Ho Urology Centre, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hongda Zhao
- S.H. Ho Urology Centre, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xuan Chen
- S.H. Ho Urology Centre, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hongwei Wu
- S.H. Ho Urology Centre, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chris Ho-Ming Wong
- S.H. Ho Urology Centre, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ivan Ching-Ho Ko
- S.H. Ho Urology Centre, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Rossella Nicoletti
- S.H. Ho Urology Centre, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Experimental and Clinical Biomedical Science, University of Florence, Florence, Italy
| | - Peter Ka-Fung Chiu
- S.H. Ho Urology Centre, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi-Fai Ng
- S.H. Ho Urology Centre, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jeremy Yuen-Chun Teoh
- S.H. Ho Urology Centre, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Urology, Medical University of Vienna, Austria, Vienna.
| |
Collapse
|
18
|
Shtroblia V, Petakh P, Kamyshna I, Halabitska I, Kamyshnyi O. Recent advances in the management of knee osteoarthritis: a narrative review. Front Med (Lausanne) 2025; 12:1523027. [PMID: 39906596 PMCID: PMC11790583 DOI: 10.3389/fmed.2025.1523027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/02/2025] [Indexed: 02/06/2025] Open
Abstract
Knee osteoarthritis (OA) is a common condition that causes pain and reduces the quality of life for many people. It also leads to high health and financial costs. Managing knee OA pain requires using different methods together for the best results. This review overviews current therapeutic options for knee OA pain, focusing on their efficacy, safety, and potential roles in clinical practice. Topical treatments, such as NSAIDs and capsaicin, offer significant pain relief with minimal systemic side effects and are suitable for initial therapy, together with nonpharmacologic interventions like exercise and, when relevant, weight loss. Oral analgesics, including acetaminophen and opioids, have limited efficacy and serious side effects, making them appropriate only for short-term or rescue therapy. Intra-articular injections, such as corticosteroids, hyaluronic acid, and platelet rich plasma, demonstrate varying levels of efficacy and safety. Nutritional supplements, including curcumin, Boswellia serrata, and glucosaminechondroitin combinations, offer modest benefits and are best used as adjuncts to standart treatment. Nonpharmacological treatments, such as transcutaneous electrical nerve stimulation (TENS), acupuncture, and local heat therapy, provide variable pain relief and should be customized based on individual patient responses. Targeted biologic agents, such as antibodies to TNF-α, IL-1, and NGF, hold promise for more precise pain relief; however, further research is required to establish their routine use. Treating knee OA pain should be personalized, combining several methods. Research must continue to improve treatments and make them safer.
Collapse
Affiliation(s)
- Viktor Shtroblia
- Department of General Surgery, Uzhhorod National University, Uzhhorod, Ukraine
| | - Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, Ukraine
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| |
Collapse
|
19
|
Liu Y, Tan H, Dai J, Lin J, Zhao K, Hu H, Zhong C. Targeting macrophages in cancer immunotherapy: Frontiers and challenges. J Adv Res 2025:S2090-1232(24)00622-2. [PMID: 39778768 DOI: 10.1016/j.jare.2024.12.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Cancer immunotherapy has emerged as a groundbreaking approach in cancer treatment, primarily realized through the manipulation of immune cells, notably T cell adoption and immune checkpoint blockade. Nevertheless, the manipulation of T cells encounters formidable hurdles. Macrophages, serving as the pivotal link between innate and adaptive immunity, play crucial roles in phagocytosis, cytokine secretion, and antigen presentation. Consequently, macrophage-targeted therapies have garnered significant attention. AIM OF REVIEW We aim to provide the most cutting-edge insights and future perspectives for macrophage-targeted therapies, fostering the development of novel and effective cancer treatments. KEY SCIENTIFIC CONCEPTS OF REVIEW To date, the forefront strategies for macrophage targeting encompass: altering their plasticity, harnessing CAR-macrophages, and targeting phagocytosis checkpoints. Macrophages are characterized by their remarkable diversity and plasticity, offering a unique therapeutic target. In this context, we critically analyze the innovative strategies aimed at transforming macrophages from their M2 (tumor-promoting) to M1 (tumor-suppressing) phenotype. Furthermore, we delve into the design principles, developmental progress, and advantages of CAR-macrophages. Additionally, we illuminate the challenges encountered in targeting phagocytosis checkpoints on macrophages and propose potential strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Yu'e Liu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Pediatric Hematology-Oncology, Boston Children's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Huabing Tan
- Department of Infectious Diseases, Hepatology Institute, Renmin Hospital, Hubei University of Medicine, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, Hubei Province 442000, China; General internal medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430048, China
| | - Jingyuan Dai
- School of Computer Science and Information Systems, Northwest Missouri State University, Maryville, MO 64468, USA
| | - Jianghua Lin
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Kaijun Zhao
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| | - Haibo Hu
- Department of Cardiothoracic Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China.
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| |
Collapse
|
20
|
Qi MH, Zhang HY, Hou YY, Nguepi Tsopmejio IS, Liu W, Chang WG, Chen C, Wang Z, Li W. Ginseng-derived GABAFG ameliorates type 2 diabetes mellitus by modulating autophagy-lysosome pathway and gut microbiota. J Adv Res 2025:S2090-1232(25)00003-7. [PMID: 39761869 DOI: 10.1016/j.jare.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025] Open
Abstract
INTRODUCTION Hyperglycemia and hyperlipidemia are the hallmarks of type 2 diabetes mellitus (T2DM). T2DM is a systemic metabolic disease caused by insulin resistance and malfunctioning pancreatic β-cells. Although ginseng (the roots of Panax ginseng C.A. Meyer) can be used to treat T2DM, the underlying mechanism is unclear. OBJECTIVES To assess the role and mechanism of, γ-aminobutyric acid-fructosyl-glucose (GABAFG), a maillard reaction product of ginseng, in T2DM treatment. METHODS The metabolism of GABAFG in serum and tissues was analyzed via ultra-high performance liquid chromatography-Q exactive-mass spectrometry (UHPLC-QE-MS). The molecular mechanisms of GABAFG in pancreatic β-cells (in vivo and in vitro) were investigated via Western blotting, qPCR and immunofluorescence. In addition, the results were validated via high-throughput sequencing and serum metabolomics. RESULTS GABAFG alleviated the elevation of blood glucose and blood lipids in HFD/STZ-induced T2DM mice. Also, GABAFG reduced the insulin resistance-associated IRS-1 signaling axis in pancreatic β-cells in vitro. Mechanistically, GABAFG targeted the nuclear translocation of TFEB inhibited apoptosis of pancreatic β-cells by enhancing autophagolysosome function. In addition, GABAFG remodeled the gut microbiota. Specifically, GABAFG increased Akkermansia, decreased Romboutsia abundance, and decreased serum glycerophospholipid metabolism, thus alleviating T2DM-induced dyslipidemia. CONCLUSION This is the first study to assess the pharmacological effects of ginseng-derived GABAFG in T2DM. Therefore, this study provides a new theoretical basis for understanding ginseng effect in metabolic diseases.
Collapse
Affiliation(s)
- Meng-Han Qi
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Hai-Yan Zhang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yun-Yi Hou
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ivan Steve Nguepi Tsopmejio
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Liu
- College of Pharmacy, Beihua University, Jilin 132013, China
| | - Wen-Guang Chang
- Institute for Translational Medicine, The Affiliated Hospital, Qingdao University, Qingdao, China
| | - Chen Chen
- SBMS, Faculty of Medicine, The University of Queensland, Brisbane, Qld, Australia
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
21
|
Cignarella A, Lin Q, Bae M. Metformin finding its way into the central nervous system: Combating neurological diseases? J Pharmacol Exp Ther 2025; 392:100042. [PMID: 39892994 DOI: 10.1016/j.jpet.2024.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/25/2024] [Indexed: 02/04/2025] Open
Affiliation(s)
- Andrea Cignarella
- Department of Medicine, University of Padova Medical School, Padova, Italy.
| | - Qingxiang Lin
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Misuk Bae
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania
| |
Collapse
|
22
|
Moldasheva A, Zhakupova A, Aljofan M. Antiproliferative Mechanisms of Metformin in Breast Cancer: A Systematic Review of the Literature. Int J Mol Sci 2024; 26:247. [PMID: 39796103 PMCID: PMC11719601 DOI: 10.3390/ijms26010247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/13/2025] Open
Abstract
Metformin is an antidiabetic drug with reported potential antiproliferative activity against different cancer types including breast cancer. However, the mechanism of action of how metformin can induce its antiproliferative activity is still unclear. Thus, the current study is a systematic review of the literature aiming to explore the reported antiproliferative mechanisms of metformin against breast cancer. The study included seventeen research articles that describe different mechanisms of action against breast cancer. While the majority of the studies confirm the antiproliferative potential of metformin, albeit at different potencies, there appear to be various mechanisms and factors that can influence this effect. There are a number of questions yet to be answered pertaining the use of metformin as an anti-cancer agent, warranting further investigation into this emerging area of research.
Collapse
Affiliation(s)
- Aiman Moldasheva
- Department of Biomedical Sciences, School of Medicine Nazarbayev University, Astana 010000, Kazakhstan; (A.M.); (A.Z.)
| | - Assem Zhakupova
- Department of Biomedical Sciences, School of Medicine Nazarbayev University, Astana 010000, Kazakhstan; (A.M.); (A.Z.)
| | - Mohamad Aljofan
- Department of Biomedical Sciences, School of Medicine Nazarbayev University, Astana 010000, Kazakhstan; (A.M.); (A.Z.)
- Laboratory of Drug Discovery and Development, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
23
|
Sun S, Hou X, Li K, Huang C, Rong Y, Bi J, Li X, Wu D. Curcumin and Metformin Infinite Coordination Polymer Nanoparticles for Combined Therapy of Diabetic Mice via Intraperitoneal Injections. J Funct Biomater 2024; 15:388. [PMID: 39728188 DOI: 10.3390/jfb15120388] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/01/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Metformin (Met) is one of the most commonly prescribed first-line drugs for diabetes treatment. However, it has several issues, including low bioavailability, therapeutic platform, and side effects at high doses. In order to improve the therapeutic efficiency of Met, this study proposes a strategy of using Met and curcumin (Cur) to prepare Cur-Zn(II)-Met infinite coordination polymer nanoparticles (CM ICP NPs), and combining this with intraperitoneal injections, for the treatment of diabetic mice. Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), nanoparticle analysis, cytotoxicity experiments, and mice experiments were used to investigate structure, properties, and application effects. The results showed that CM ICP NPs exhibit a high drug encapsulation rate (100%), good stability, and an absence of in vivo and in vitro toxicity. The blood glucose level of diabetic mice after treatment was reduced to 6.7 ± 0.65 mmol/L at the seventh week. In terms of therapeutic mechanism, it appears that Met and Cur can synergistically regulate blood glucose in mice from multiple paths. This study provides a promising method for the treatment of diabetes using Met and other drugs.
Collapse
Affiliation(s)
- Siwei Sun
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Xi'an Medical University, Xi'an 710021, China
| | - Xinyi Hou
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Xi'an Medical University, Xi'an 710021, China
- School of Pharmacy, Xi'an Medical University, Xi'an 710021, China
| | - Ke Li
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Xi'an Medical University, Xi'an 710021, China
| | - Chenqi Huang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yu Rong
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Xi'an Medical University, Xi'an 710021, China
| | - Jiao Bi
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Xi'an Medical University, Xi'an 710021, China
| | - Xueping Li
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Xi'an Medical University, Xi'an 710021, China
- School of Clinical Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
24
|
Zhao Y, Fei L, Duan Y. Movement disorders related to antidiabetic medications: a real-world pharmacovigilance study. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111128. [PMID: 39181309 DOI: 10.1016/j.pnpbp.2024.111128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Diabetic Mellitus (DM) has progressively emerged as a worldwide health problem, leading to the widespread deployment of antidiabetic drugs as the primary therapy in the global population. The incidence of diabetes medications-related movement disorders (drMD) is noteworthy but underestimated by clinical practitioners. RESEARCH DESIGN AND METHODS In order to address the incidence of drMD in DM patients and realize the serious outcomes associated with drMD, we conducted a real-world pharmacovigilance study of 612,043 DM patients using the FDA Adverse Event Reporting System (FAERS) database from January 2004 to September 2023. Reporting Odd Ratio (ROR) was calculated to reflect the risk of drMD. A multivariable logistic regression analysis was employed to adjust crude ROR with the mixed factors including age, sex and various antidiabetic treatments. Afterward, a Mendelian Randomization (MR) study was performed to elucidate the underlying genetic correlation between the genetically proxied targets of antidiabetic drugs and motor disorders. RESULTS Among 11,729 cases of motor adverse events in DM patients, six categories of drMD were significantly associated with DM medications. Noticeably, metformin was revealed to drastically increase the incidence of parkinsonism (adjusted ROR:3.97; 95 %CI (3.03, 5.19), p = 5.68e-24), bradykinesia (adjusted ROR:1.69; 95 %CI (1.07,2.59), p = 0.02) and irregular hyperkinesia, including chorea, choreoathetosis and athetosis. Insulin/insulin analogues and GLP-1 analogues presented notably higher odds of tremor: the adjusted ROR (aROR) of insulin and GLP-1 analogue is respectively 1.24 (95 %CI (1.15,1.34), p = 2.51e-08) and 1.78 (95 %CI (1.65,1.91), p = 5.64e-54). The combined therapeutic effects of multiple genetic variants of metformin, especially AMP-activated protein kinase (AMPK) were markedly linked to a greater likelihood of developing secondary parkinsonism (OR:10.816, p = 0.049) according to MR analyses. CONCLUSION The use of antidiabetic medications was significantly related to an increased incidence of movement disorders in DM patients. Moreover, MR analyses provided further genetic evidence for the pharmacovigilance study. This comprehensive investigation might help physicians recognize neurological adverse events associated with antidiabetic treatments and administer effective interventions.
Collapse
Affiliation(s)
- Yingjie Zhao
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Henan Province 450053, China; Department of Geriatrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan Province 450053, China
| | - Lu Fei
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Henan Province 450053, China; Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Henan Province 450053, China
| |
Collapse
|
25
|
Mediaas SD, Haug M, Louet C, Wahl SGF, Gidon A, Flo TH. Metformin improves Mycobacterium avium infection by strengthening macrophage antimicrobial functions. Front Immunol 2024; 15:1463224. [PMID: 39737195 PMCID: PMC11682992 DOI: 10.3389/fimmu.2024.1463224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
Introduction The incidence and prevalence of infections with non-tuberculous mycobacteria such as Mycobacterium avium (Mav) are increasing. Prolonged drug regimens, inherent antibiotic resistance, and low cure rates underscore the need for improved treatment, which may be achieved by combining standard chemotherapy with drugs targeting the host immune system. Here, we examined if the diabetes type 2 drug metformin could improve Mav-infection. Methods Metformin was administered to C57BL/6 mice infected intranasally with Mav and C57BL/6 mice were infected intranasally with Mav and treated with metformin over 3 weeks. Organ bacterial loads and lung pathology, inflammatory cytokines and immune cell profiles were assessed. For mechanistic insight, macrophages infected with Mav were treated with metformin alone or in combination with inhibitors for mitochondrial ROS or AMPK and assessed for bacterial burden and phagosome maturation. Results and discussion Three weeks of metformin treatment significantly reduced the lung mycobacterial burden in mice infected with Mav without major changes in the overall lung pathology or immune cell composition. Metformin treatment had no significant impact on tissue inflammation except for a tendency of increased lung IFNγ and infiltration of Mav-specific IFNγ-secreting T cells. Metformin did, however, boost the antimicrobial capacity of infected macrophages directly by modulating metabolism/activating AMPK, increasing mitochondrial ROS and phagosome maturation, and indirectly by bolstering type I immunity. Taken together, our data show that metformin improved the control of Mav-infection in mice, mainly by strengthening antimicrobial defenses in macrophages, and suggest that metformin has potential as an adjunct treatment of Mav infections.
Collapse
Affiliation(s)
- Sindre Dahl Mediaas
- Centre of Molecular Inflammation Research, Department of Molecular and Clinical Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Infection, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Markus Haug
- Centre of Molecular Inflammation Research, Department of Molecular and Clinical Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Infection, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Claire Louet
- Centre of Molecular Inflammation Research, Department of Molecular and Clinical Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sissel Gyrid Freim Wahl
- Department of Pathology, Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
| | - Alexandre Gidon
- Centre of Molecular Inflammation Research, Department of Molecular and Clinical Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Trude Helen Flo
- Centre of Molecular Inflammation Research, Department of Molecular and Clinical Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Infection, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
26
|
Ashraf MS, Tuli K, Moiz S, Sharma SK, Sharma D, Adnan M. AMP kinase: A promising therapeutic drug target for post-COVID-19 complications. Life Sci 2024; 359:123202. [PMID: 39489398 DOI: 10.1016/j.lfs.2024.123202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has resulted in severe respiratory issues and persistent complications, particularly affecting glucose metabolism. Patients with or without pre-existing diabetes often experience worsened symptoms, highlighting the need for innovative therapeutic approaches. AMPK, a crucial regulator of cellular energy balance, plays a pivotal role in glucose metabolism, insulin sensitivity, and inflammatory responses. AMPK activation, through allosteric or kinase-dependent mechanisms, impacts cellular processes like glucose uptake, fatty acid oxidation, and autophagy. The tissue-specific distribution of AMPK emphasizes its role in maintaining metabolic homeostasis throughout the body. Intriguingly, SARS-CoV-2 infection inhibits AMPK, contributing to metabolic dysregulation and post-COVID-19 complications. AMPK activators like capsaicinoids, curcumin, phytoestrogens, cilostazol, and momordicosides have demonstrated the potential to regulate AMPK activity. Compounds from various sources improve fatty acid oxidation and insulin sensitivity, with metformin showing opposing effects on AMPK activation compared to the virus, suggesting potential therapeutic options. The diverse effects of AMPK activation extend to its role in countering viral infections, further highlighting its significance in COVID-19. This review explores AMPK activation mechanisms, its role in metabolic disorders, and the potential use of natural compounds to target AMPK for post-COVID-19 complications. Also, it aims to review the possible methods of activating AMPK to prevent post-COVID-19 diabetes and cardiovascular complications. It also explores the use of natural compounds for their therapeutic effects in targeting the AMPK pathways. Targeting AMPK activation emerges as a promising avenue to mitigate the long-term effects of COVID-19, offering hope for improved patient outcomes and a better quality of life.
Collapse
Affiliation(s)
- Mohammad Saquib Ashraf
- Department of Medical Laboratory Science College of Pharmacy, Nursing and Medical Science Riyadh ELM University, Riyadh, P.O. Box 12734, Saudi Arabia.
| | - Kanika Tuli
- Guru Nanak Institute of Pharmacy, Dalewal, Hoshiarpur 144208, Punjab, India
| | - Shadman Moiz
- Department of Biotechnology, Lalit Narayan Mithila University, Darbhanga 846004, Bihar, India
| | - Satish Kumar Sharma
- Department of Pharmacology, Glocal School of Pharmacy, The Glocal University, Saharanpur, India
| | - Deepa Sharma
- UMM Matrix Innovations Private Limited, Delhi 110044, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia; Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| |
Collapse
|
27
|
Afshar K, Adibfard S, Nikbakht MH, Rastegarnasab F, Pourmahdi‐Boroujeni M, Abtahi‐Naeini B. A Systematic Review on Clinical Evidence for Topical Metformin: Old Medication With New Application. Health Sci Rep 2024; 7:e70281. [PMID: 39703496 PMCID: PMC11656099 DOI: 10.1002/hsr2.70281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
Background and Aims Metformin is a widely used oral agent for controlling diabetes mellitus, but it also has other therapeutic benefits for various conditions. In addition, conventional oral metformin, and topical metformin have been used in, in-vitro studies in the treatment of acne, psoriasis, wound healing, and and so forth. While topical metformin has shown promising results in animal studies, there is limited data on its effectiveness in humans. Our study aims to summarize the clinical findings of human studies on the efficacy of topical metformin. Methods This review followed the PRISMA standards and systematically searched multiple databases using specific keywords. The relevant articles were selected according to the inclusions and exclusions criteria. Results Our search strategy yielded 1831 articles, after screening, 27 articles met our inclusion criteria which were: human studies, articles published before the start of the search, and topical forms of metformin. We also identified three additional relevant articles through reference checking. Therefore, our systematic review included a total of 30 articles. Conclusion Most commonly, topical metformin has been studied in dentistry and dermatology. In dentistry, it has been found effective in treating periodontitis when used with scaling and root planning. Combining metformin with platelet-rich fibrin can provide better benefits for furcation-involved teeth, and coating dental implants with metformin improves osseointegration. In dermatology, studies on melasma have had inconsistent results. Topical metformin has also shown promising results in promoting hair regrowth, wound healing, and acne vulgaris, suggesting it could be a potential treatment option for these conditions.
Collapse
Affiliation(s)
- Kimia Afshar
- Student Research CommitteeIsfahan University of Medical SciencesIsfahanIran
| | - Sara Adibfard
- Student Research CommitteeIsfahan University of Medical SciencesIsfahanIran
| | | | | | | | - Bahareh Abtahi‐Naeini
- Skin Diseases and Leishmaniasis Research CenterIsfahan University of Medical SciencesIsfahanIran
- Pediatric Dermatology Division of Department of Pediatrics, Imam Hossein Children's HospitalIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
28
|
Krummeich J, Nardi L, Caliendo C, Aschauer D, Engelhardt V, Arlt A, Maier J, Bicker F, Kwiatkowski MD, Rolski K, Vincze K, Schneider R, Rumpel S, Gerber S, Schmeisser MJ, Schweiger S. Premature cognitive decline in a mouse model of tuberous sclerosis. Aging Cell 2024; 23:e14318. [PMID: 39192595 PMCID: PMC11634721 DOI: 10.1111/acel.14318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Little is known about the influence of (impaired) neurodevelopment on cognitive aging. We here used a mouse model for tuberous sclerosis (TS) carrying a heterozygous deletion of the Tsc2 gene. Loss of Tsc2 function leads to mTOR hyperactivity in mice and patients. In a longitudinal behavioral analysis, we found premature decline of hippocampus-based cognitive functions together with a significant reduction of immediate early gene (IEG) expression. While we did not detect any morphological changes of hippocampal projections and synaptic contacts, molecular markers of neurodegeneration were increased and the mTOR signaling cascade was downregulated in hippocampal synaptosomes. Injection of IGF2, a molecule that induces mTOR signaling, could fully rescue cognitive impairment and IEG expression in aging Tsc2+/- animals. This data suggests that TS is an exhausting disease that causes erosion of the mTOR pathway over time and IGF2 is a promising avenue for treating age-related degeneration in mTORopathies.
Collapse
Affiliation(s)
- J. Krummeich
- Institute of Human GeneticsUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
- Present address:
Bioscientia Institut für Medizinische Diagnostik GmbH HumangenetikIngelheimGermany
| | - L. Nardi
- Institute of AnatomyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - C. Caliendo
- Institute of Human GeneticsUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - D. Aschauer
- Institute of PhysiologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - V. Engelhardt
- Institute of Human GeneticsUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - A. Arlt
- Institute of Human GeneticsUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
- Present address:
Institute for Genomic Statistics and BioinformaticsUniversity of BonnBonnGermany
| | - J. Maier
- Institute of AnatomyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - F. Bicker
- Institute of AnatomyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | | | - K. Rolski
- Department of BiochemistryUniversity of InnsbruckInnsbruckAustria
| | - K. Vincze
- Department of BiochemistryUniversity of InnsbruckInnsbruckAustria
| | - R. Schneider
- Department of BiochemistryUniversity of InnsbruckInnsbruckAustria
| | - S. Rumpel
- Institute of PhysiologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - S. Gerber
- Institute of Human GeneticsUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - M. J. Schmeisser
- Institute of AnatomyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - S. Schweiger
- Institute of Human GeneticsUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
- Leibniz Institute of Resilience ResearchMainzGermany
- Institute of Molecular BiologyMainzGermany
| |
Collapse
|
29
|
Nangia A, Saravanan JS, Hazra S, Priya V, Sudesh R, Rana SS, Ahmad F. Exploring the clinical connections between epilepsy and diabetes mellitus: Promising therapeutic strategies utilizing agmatine and metformin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9617-9632. [PMID: 39066910 DOI: 10.1007/s00210-024-03295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Diabetes mellitus (DM) and epilepsy and the psychological and socio-economic implications that are associated with their treatments can be quite perplexing. Metformin is an antihyperglycemic medication that is used to treat type 2 DM. In addition, metformin elicits protective actions against multiple diseases, including neurodegeneration and epilepsy. Recent studies indicate that metformin alters the resident gut microbiota in favor of species producing agmatine, an arginine metabolite which, in addition to beneficially altering metabolic pathways, is a potent neuroprotectant and neuromodulant. METHODS We first examine the literature for epidemiological and clinical evidences linking DM and epilepsy. Next, basing our analyses on published literature, we propose the possible complementarity of agmatine and metformin in the treatment of DM and epilepsy. RESULTS Our analyses of the clinical data suggest a significant association between pathogeneses of epilepsy and DM. Further, both agmatine and metformin appear to be multimodal therapeutic agents and have robust antiepileptogenic and antidiabetic properties. Data from animal and clinical studies largely support the use of metformin/agmatine as a double-edged pharmacotherapeutic agent against DM and epilepsy, particularly in their concurrent pathological occurrences. CONCLUSION The present review explores the evidences and available data on possible uses of metformin/agmatine as pertinent antidiabetic and antiepileptic agents. Our hope is that this will stimulate further research on the therapeutic actions of these multimodal agents, particularly for subject-specific clinical outcomes.
Collapse
Affiliation(s)
- Aayushi Nangia
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Janani Srividya Saravanan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Shruti Hazra
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Vijayan Priya
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Ravi Sudesh
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Sandeep Singh Rana
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
30
|
Ko M, Kim J, Lazim R, Lee JY, Kim JY, Gosu V, Lee Y, Choi S, Kwon HJ. The anticancer effect of metformin targets VDAC1 via ER-mitochondria interactions-mediated autophagy in HCC. Exp Mol Med 2024; 56:2714-2725. [PMID: 39627451 DOI: 10.1038/s12276-024-01357-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 12/28/2024] Open
Abstract
Metformin (MetF) is used worldwide as a first-line therapy for type 2 diabetes. Recently, interest in the pleiotropic effects of MetF, such as its anticancer and antiaging properties, has increased. However, the molecular target of MetF and the detailed mechanism underlying its ability to inhibit cell growth through autophagy induction remain incompletely understood. In this study, using an innovative label-free drug affinity responsive target stability (DARTS)-LC-MS/MS method, we discovered that mitochondrial voltage-dependent anion channel 1 (VDAC1) is a novel binding protein involved in the induction of autophagy-related cell death by high-dose MetF in hepatocellular carcinoma (HCC). Computational alanine scanning mutagenesis revealed that MetF and VDAC1 (D9, E203) interact electrostatically. MetF disrupts the IP3R-GRP75-VDAC1 complex, which plays a key role in stabilizing mitochondria-associated ER membranes (MAMs), by binding to VDAC1. This disruption leads to increased cytosolic calcium levels, thereby contributing to autophagy induction. MetF also decreased the AMP/ATP ratio and activated the AMPK pathway. Cells with genetic knockdown of VDAC1 mimicked the activity of MetF. In conclusion, this study provides new insights into the involvement of MetF in ionic interactions with VDAC1, contributing to its anticancer effects in HCC. These findings help elucidate the diverse biological and pharmacological effects of MetF, particularly its influence on autophagy, as well as the potential of MetF as a therapeutic agent for diseases characterized by VDAC1 overexpression.
Collapse
Affiliation(s)
- Minjeong Ko
- Chemical Genomics Leader Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jiho Kim
- Chemical Genomics Leader Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Raudah Lazim
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Ju Yeon Lee
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jin Young Kim
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Vijayakumar Gosu
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Yoonji Lee
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Sun Choi
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea.
| | - Ho Jeong Kwon
- Chemical Genomics Leader Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
31
|
Anike O, Cuhorka J, Ezeogu N, Mikulášek P. Separation of Antibiotics Using Two Commercial Nanofiltration Membranes-Experimental Study and Modelling. MEMBRANES 2024; 14:248. [PMID: 39728698 DOI: 10.3390/membranes14120248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024]
Abstract
The widespread use of antimicrobial drugs has contributed to the increasing trace levels of contaminants in the environment, posing an environmental problem and a challenge to modern-day medicine seeking advanced solutions. Nanofiltration is one such breakthrough solution for the selective removal of antibiotics from wastewater due to their high efficiency, scalability, and versatility. This study examines the separation of antibiotics (sulfamethoxazole (SMX), trimethoprim (TMP), and metformin (MET), respectively) using commercially available membranes with an emphasis on AFC membranes (AFC 30 and AFC 80). Thus, we evaluate their efficacy, performance, and applicability in wastewater treatment processes. The data for characterizing the structural parameters of the NF membranes were determined from an uncharged organic solute rejection experiment, and the effect of various operating conditions on the retention of solutes was evaluated. All experimental data were collected using a laboratory-scale nanofiltration unit and HPLC, and rejection percentages were determined using analytical measurements. The results obtained allowed for the determination of the radius of the membrane pores using the Steric Hindrance Pore (SHP) model, resulting in values of 0.353 and 0.268 nm for the AFC 30 and AFC 80 membranes, respectively. Additionally, higher transmembrane pressure and feed flow were observed to lead to an increased rejection of antibiotics. AFC 30 demonstrated a rejection of 94% for SMX, 87% for TMP, and 87% for MET, while AFC 80 exhibited a rejection of 99.5% for SMX, 97.5% for TMP, and 98% for MET. The sieving effect appears to be the primary separation mechanism for AFC 30, as lower feed-flow rates were observed to intensify concentration polarization, thereby compromising rejection efficiency. On the contrary, AFC 80 experienced less concentration polarization due to its smaller pore sizes, effectively preventing pore clogging. Membrane performance was evaluated using the Spiegler-Kedem-Katchalsky model, based on irreversible thermodynamics, which effectively explained the mechanism of solute transport of antibiotics through the AFC 30 and AFC 80 membranes in the NF process.
Collapse
Affiliation(s)
- Obinna Anike
- Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Jiří Cuhorka
- Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Nkechi Ezeogu
- Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Petr Mikulášek
- Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| |
Collapse
|
32
|
Shalannandia WA, Chou Y, Bashari MH, Khairani AF. Intermediate Filaments in Breast Cancer Progression, and Potential Biomarker for Cancer Therapy: A Narrative Review. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:689-704. [PMID: 39430570 PMCID: PMC11488350 DOI: 10.2147/bctt.s489953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Intermediate filaments are one of the three components of the cytoskeletons, along with actin and microtubules. The intermediate filaments consist of extensive variations of structurally related proteins with specific expression patterns in cell types. The expression pattern alteration of intermediate filaments is frequently correlated with cancer progression, specifically with the epithelial-to-mesenchymal transition process closely related to increasing cellular migration and invasion. This review will discuss the involvement of cytoplasmic intermediate filaments, specifically vimentin, nestin, and cytokeratin (CK5/CK6, CK7, CK8/CK18, CK17, CK19, CK20, CSK1), in breast cancer progression and as prognostic or diagnostic biomarkers. The potential for drug development targeting intermediate filaments in cancer will be reviewed.
Collapse
Affiliation(s)
- Widad Aghnia Shalannandia
- Graduate School of Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
| | - Yoan Chou
- Graduate School of Master Program in Anti Aging and Aesthetic Medicine, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
| | - Muhammad Hasan Bashari
- Graduate School of Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
| | - Astrid Feinisa Khairani
- Graduate School of Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Jatinangor, West Java, Indonesia
| |
Collapse
|
33
|
Halabitska I, Oksenych V, Kamyshnyi O. Exploring the Efficacy of Alpha-Lipoic Acid in Comorbid Osteoarthritis and Type 2 Diabetes Mellitus. Nutrients 2024; 16:3349. [PMID: 39408316 PMCID: PMC11478474 DOI: 10.3390/nu16193349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives. The comorbidity of osteoarthritis and type 2 diabetes mellitus poses a complex clinical challenge, complicating patient management due to overlapping pathophysiological mechanisms. This research aims to analyze the exacerbation of clinical symptoms and biochemical markers in patients with OA and T2DM compared to those with OA alone. Methods. We employed various assessment methods to evaluate inflammation, oxidative stress, and glycemic control in both cohorts. This study includes the administration of alpha-lipoic acid (ALA) to patients with comorbid OA and T2DM, monitoring its effects on joint function, inflammatory markers, oxidative stress levels, and glycemic control. Results. The findings indicate that T2DM significantly worsens clinical symptoms and biochemical markers in OA patients. Those with both conditions exhibited elevated indicators of inflammation and oxidative stress compared to OA-only patients. Additionally, correlations among metabolic, psychological, and inflammatory factors were identified. Body mass index emerged as a potential predictor for the deterioration of evaluated parameters. The analysis revealed that ALA administration led to statistically significant improvements in WOMAC pain scores, the Lequesne Algofunctional Index, and the AIMS-P compared to the control group. Conclusions. Further research into ALA's effects on OA progression in patients with comorbidities is essential for developing personalized treatment approaches.
Collapse
Affiliation(s)
- Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
34
|
Zhang Y, Wu Y, Liu Z, Yang K, Lin H, Xiong K. Non-coding RNAs as potential targets in metformin therapy for cancer. Cancer Cell Int 2024; 24:333. [PMID: 39354464 PMCID: PMC11445969 DOI: 10.1186/s12935-024-03516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
Metformin, a widely used oral hypoglycemic drug, has emerged as a potential therapeutic agent for cancer treatment. While initially known for its role in managing diabetes, accumulating evidence suggests that metformin exhibits anticancer properties through various mechanisms. Several cellular or animal experiments have attempted to elucidate the role of non-coding RNA molecules, including microRNAs and long non-coding RNAs, in mediating the anticancer effects of metformin. The present review summarized the current understanding of the mechanisms by which non-coding RNAs modulate the response to metformin in cancer cells. The regulatory roles of non-coding RNAs, particularly miRNAs, in key cellular processes such as cell proliferation, cell death, angiogenesis, metabolism and epigenetics, and how metformin affects these processes are discussed. This review also highlights the role of lncRNAs in cancer types such as lung adenocarcinoma, breast cancer, and renal cancer, and points out the need for further exploration of the mechanisms by which metformin regulates lncRNAs. In addition, the present review explores the potential advantages of metformin-based therapies over direct delivery of ncRNAs, and this review highlights the mechanisms of non-coding RNA regulation when metformin is combined with other therapies. Overall, the present review provides insights into the molecular mechanisms underlying the anticancer effects of metformin mediated by non-coding RNAs, offering novel opportunities for the development of personalized treatment strategies in cancer patients.
Collapse
Affiliation(s)
- Yihan Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang, China
| | - Yunhao Wu
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang, China
| | - Zixu Liu
- The First School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Kangping Yang
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang, China
| | - Hui Lin
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang, China
| | - Kai Xiong
- Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China.
| |
Collapse
|
35
|
Ahmad R, Haque M. Metformin: Beyond Type 2 Diabetes Mellitus. Cureus 2024; 16:e71730. [PMID: 39421288 PMCID: PMC11486535 DOI: 10.7759/cureus.71730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024] Open
Abstract
Metformin was developed from an offshoot of Guanidine. It is known to be the first-line medication for type 2 diabetes mellitus, polycystic ovarian syndrome, and weight reduction. Metformin has also been shown to have effectiveness in the management of non-alcoholic fatty liver disease (NAFLD), liver cirrhosis, and various carcinomas like hepatocellular, colorectal, prostate, breast, urinary bladder, blood, melanoma, bone, skin, lung and so on. This narrative review focuses on the effect of metformin on non-alcoholic fatty liver disease, liver cirrhosis, and hepatocellular carcinoma. The search platforms for the topic were PubMed, Scopus, and Google search engine. Critical words for searching included 'Metformin,' AND 'Indications of Metformin,' AND 'Non-Alcoholic Fatty Liver Disease,' AND 'Metformin mechanism of action,' AND 'NAFLD management,' AND 'NAFLD and inflammation,' AND 'Metformin and insulin,' AND 'Metformin and inflammation,' AND 'Liver cirrhosis,' AND 'Hepatocellular carcinoma.' Lifestyle modification and the use of hypoglycemic agents can help improve liver conditions. Metformin has several mechanisms that enhance liver health, including reducing reactive oxygen species, nuclear factor kappa beta (NF-κB), liver enzymes, improving insulin sensitivity, and improving hepatic cell lipophagy. Long-term use of metformin may cause some adverse effects like lactic acidosis and gastrointestinal disturbance. Metformin long-term overdose may lead to a rise in hydrogen sulfide in liver cells, which calls for pharmacovigilance. Drug regulating authorities should provide approval for further research, and national and international guidelines need to be developed for liver diseases, perhaps with the inclusion of metformin as part of the management regime.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka, BGD
| | - Mainul Haque
- Department of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| |
Collapse
|
36
|
Liu S, Xu M, Yang Z, Li Y, Wu D, Tang X. Network pharmacology-based investigation and experimental validation of the mechanism of metformin in the treatment of acute myeloid leukemia. Eur J Med Res 2024; 29:475. [PMID: 39343915 PMCID: PMC11440656 DOI: 10.1186/s40001-024-02022-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/09/2024] [Indexed: 10/01/2024] Open
Abstract
Metformin, a widely used anti-diabetic agent, has shown significant anti-cancer properties as reported in in various cancers, including acute myeloid leukemia. However, the detailed mechanisms by which metformin influences acute myeloid leukemia remain unrevealed. Employing a synergistic approach of network pharmacology and experimental validation, this study systematically identifies and analyzes potential metformin targets and AML-related genes. These findings are then cross-referenced with biomedical databases to construct a target-gene network, providing insights into metformin's pharmacodynamics in AML treatment. Protein-Protein Interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses are utilized. Results show metformin's effectiveness in inhibiting AML cell proliferation and inducing apoptosis through the AKT/HIF1A/PDK1 signaling pathway. This research provides insights into metformin's clinical application in AML treatment.
Collapse
MESH Headings
- Metformin/pharmacology
- Metformin/therapeutic use
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Network Pharmacology/methods
- Cell Proliferation/drug effects
- Signal Transduction/drug effects
- Protein Interaction Maps/drug effects
- Apoptosis/drug effects
- Proto-Oncogene Proteins c-akt/metabolism
- Gene Regulatory Networks/drug effects
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
Collapse
Affiliation(s)
- Shaoyu Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Mingming Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Tianjin Medical University General Hospital, Tianjin, China
| | - Zhuofan Yang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- The 1st affiliated hospital,Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yangzi Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| |
Collapse
|
37
|
Akyildiz K, Yilmaz A, Avci U, Toraman MN, Yazici ZA. White Tea Consumption Alleviates Anthropometric and Metabolic Parameters in Obese Patients. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1568. [PMID: 39459354 PMCID: PMC11509830 DOI: 10.3390/medicina60101568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Obesity and related disorders are an increasing global health problem. Achieving and maintaining long-term weight loss through lifestyle changes and/or pharmacological interventions have not met expectations. Dietary supplements and alternative treatments have also shown limited effectiveness in this regard. The consumption of green tea in general has been shown to benefit obese patients, with effects attributed to caffeine, catechins, polyphenols and other components. However, the potential of white tea to prevent and treat the negative effects of obesity has not been addressed so far. In this study, the effect of white tea (WT) consumption in obese individuals was anthropometrically and biochemically investigated. Materials and Methods: Based on anthropometric and biochemical assessments, the patients were assigned to the control, orlistat, metformin and WT groups. Patients were given a diet and exercise program and one of either orlistat, metformin or WT for 12 weeks. At the end of the 12th week, the anthropometric and biochemical measurements were reassessed. Results: Body weight, waist circumference and BMI parameters decreased significantly in all groups. TNF-α, IL-6, IL-1β and MMP-9 levels decreased significantly in the WT group. In addition, contrary to a significant elevation in HDL-C, the serum cholesterol, LDL-C and TG levels decreased significantly. Furthermore, leptin, ghrelin and asprosin levels decreased significantly. Serum glucose levels decreased significantly in all groups except for the control. In the WT group, while there was a significant decrease in the levels of serum PL MDA and 8-OHdG, the opposite was true for GSH. Conclusions: The oral consumption of WT, its availability and its potency in obesity treatment and prevention pave the way for further delineation of the mechanisms of actions of its bioactive compounds at the cellular and endocrinological levels.
Collapse
Affiliation(s)
- Kerimali Akyildiz
- Department of Medical Services and Techniques, School of Vocational Healh Care Services, Recep Tayyip Erdogan University, 53100 Rize, Turkey;
| | - Adnan Yilmaz
- Department of Biochemistry, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| | - Ugur Avci
- Department of Endocrinology and Metabolism, Recep Tayyip Erdogan University, 53100 Rize, Turkey;
| | - Merve Nur Toraman
- Department of Nutrition and Diet, Recep Tayyip Erdogan University, 53100 Rize, Turkey;
| | - Zihni Acar Yazici
- Department of Microbiology, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| |
Collapse
|
38
|
Conte E, Boccanegra B, Dinoi G, Pusch M, De Luca A, Liantonio A, Imbrici P. Therapeutic Approaches to Tuberous Sclerosis Complex: From Available Therapies to Promising Drug Targets. Biomolecules 2024; 14:1190. [PMID: 39334956 PMCID: PMC11429992 DOI: 10.3390/biom14091190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/29/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare multisystem disorder caused by heterozygous loss-of-function pathogenic variants in the tumour suppressor genes TSC1 and TSC2 encoding the tuberin and hamartin proteins, respectively. Both TSC1 and TSC2 inhibit the mammalian target of rapamycin (mTOR) complexes pathway, which is crucial for cell proliferation, growth, and differentiation, and is stimulated by various energy sources and hormonal signaling pathways. Pathogenic variants in TSC1 and TSC2 lead to mTORC1 hyperactivation, producing benign tumours in multiple organs, including the brain and kidneys, and drug-resistant epilepsy, a typical sign of TSC. Brain tumours, sudden unexpected death from epilepsy, and respiratory conditions are the three leading causes of morbidity and mortality. Even though several therapeutic options are available for the treatment of TSC, there is further need for a better understanding of the pathophysiological basis of the neurologic and other manifestations seen in TSC, and for novel therapeutic approaches. This review provides an overview of the main current therapies for TSC and discusses recent studies highlighting the repurposing of approved drugs and the emerging role of novel targets for future drug design.
Collapse
Affiliation(s)
- Elena Conte
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (E.C.); (B.B.); (G.D.); (A.D.L.); (A.L.)
| | - Brigida Boccanegra
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (E.C.); (B.B.); (G.D.); (A.D.L.); (A.L.)
| | - Giorgia Dinoi
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (E.C.); (B.B.); (G.D.); (A.D.L.); (A.L.)
| | - Michael Pusch
- Institute of Biophysics, National Research Council, 16149 Genova, Italy;
| | - Annamaria De Luca
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (E.C.); (B.B.); (G.D.); (A.D.L.); (A.L.)
| | - Antonella Liantonio
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (E.C.); (B.B.); (G.D.); (A.D.L.); (A.L.)
| | - Paola Imbrici
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (E.C.); (B.B.); (G.D.); (A.D.L.); (A.L.)
| |
Collapse
|
39
|
Zhang YM, Li T, Xu CC, Qian JY, Guo H, Zhang X, Zhan ZJ, Lu JJ. Uncover the anticancer potential of lycorine. Chin Med 2024; 19:121. [PMID: 39245716 PMCID: PMC11382518 DOI: 10.1186/s13020-024-00989-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Natural products have a long history in drug discovery. Lycorine is an alkaloid derived from Amaryllidaceae plants, demonstrating significant pharmacological potential. Lycorine and its hydrochloride salt, lycorine hydrochloride, have shown outstanding anticancer effects both in vitro and in vivo. PURPOSE This review aims to comprehensively summarize recent research advancements regarding the anticancer potential of lycorine and lycorine hydrochloride. It intends to elucidate current research limitations, optimization strategies, and future research directions to guide clinical translation. METHODS Various databases, e.g., Web of Science, PubMed, and Chinese National Knowledge Infrastructure, are systematically searched for relevant articles using keywords such as lycorine, cancer, pharmacokinetics, and toxicity. The retrieved literature is then categorized and summarized to provide an overview of the research advancements in the anticancer potential of lycorine and lycorine hydrochloride. RESULTS Lycorine and lycorine hydrochloride demonstrate significant anticancer activities against various types of cancer both in vitro and in vivo, employing diverse mechanisms such as inducing cell cycle arrest, triggering cellular senescence, regulating programmed cell death, inhibiting angiogenesis, suppressing metastasis, and modulating immune system. Furthermore, pharmacokinetic profiles and toxicity data are summarized. Additionally, this review discusses the druggability, limitations, optimization strategies, and target identification of lycorine, offering insights for future preclinical studies. CONCLUSION The anticancer effects and safety profile of lycorine and lycorine hydrochloride suggest promising potential for clinical applications. Further research on their in-depth mechanisms and optimization strategies targeting their limitations will enhance the understanding and druggability of lycorine and lycorine hydrochloride.
Collapse
Affiliation(s)
- Yan-Ming Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao SAR, 999078, China
| | - Chun-Cao Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, China
| | - Jia-Yu Qian
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hongwei Guo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Xiaolei Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao SAR, 999078, China.
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, 999078, China.
| |
Collapse
|
40
|
Hu T, Wei JW, Zheng JY, Luo QY, Hu XR, Du Q, Cai YF, Zhang SJ. Metformin improves cognitive dysfunction through SIRT1/NLRP3 pathway-mediated neuroinflammation in db/db mice. J Mol Med (Berl) 2024; 102:1101-1115. [PMID: 38953935 DOI: 10.1007/s00109-024-02465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/29/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
Diabetes mellitus (DM), an important public health problem, aggravates the global economic burden. Diabetic encephalopathy (DE) is a serious complication of DM in the central nervous system. Metformin has been proven to improve DE. However, the mechanism is still unclear. In this study, the db/db mice, a common model used for DE, were employed to explore and study the neuroprotective effect of metformin and related mechanisms. Behavioral tests indicated that metformin (100 or 200 mg/kg/day) could significantly improve the learning and memory abilities of db/db mice. The outcomes from the oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) demonstrate that metformin effectively modulates glucose and insulin signaling pathways in db/db mice. The results of body weight and blood lipid panel (total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol) show that metformin promotes the level of lipid metabolism in db/db mice. Furthermore, data from oxidative stress assays, which measured levels of malondialdehyde, superoxide dismutase, catalase, and glutathione peroxidase, suggest that metformin suppresses oxidative stress-induced brain damage in db/db mice. In addition, western blot, Nissl staining, and immunofluorescence results showed that metformin increased the expressions of nerve growth factor and postsynaptic density 95 and repaired neuronal structural damage. For the mechanism study, metformin activated SIRT1 and inhibited the expression of NLRP3 inflammasome (NLRP3, ASC, caspase-1, IL-1β, and IL-18) and inflammatory cytokines (TNFα and IL-6). In conclusion, metformin could ameliorate cognitive dysfunction through the SIRT1/NLRP3 pathway, which might be a promising mechanism for DE treatment.
Collapse
Affiliation(s)
- Tian Hu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jun-Wen Wei
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jia-Yi Zheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Qing-Yi Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xin-Rui Hu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China
| | - Qun Du
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Ye-Feng Cai
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| | - Shi-Jie Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
41
|
Kunnath AN, Parker SK, Crasta DN, Kunhiraman JP, Madhvacharya VV, Kumari S, Nayak G, Vani Lakshmi R, Modi PK, Keshava Prasad TS, Kumar A, Khandelwal A, Ghani NK, Kabekkodu SP, Adiga SK, Kalthur G. Metformin augments major cytoplasmic organization except for spindle organization in oocytes cultured under hyperglycemic and hyperlipidemic conditions: An in vitro study. Toxicol Appl Pharmacol 2024; 490:117039. [PMID: 39019093 DOI: 10.1016/j.taap.2024.117039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
The present study aimed to investigate the role of antidiabetic drug metformin on the cytoplasmic organization of oocytes. Germinal vesicle (GV) stage oocytes were collected from adult female Swiss albino mice and subjected to in vitro maturation (IVM) in various experimental groups- control, vehicle control (0.3% ethanol), metformin (50 μg/mL), high glucose and high lipid (HGHL, 10 mM glucose; 150 μM palmitic acid; 75 μM stearic acid and 200 μM oleic acid in ethanol), and HGHL supplemented with metformin. The metaphase II (MII) oocytes were analyzed for lipid accumulation, mitochondrial and endoplasmic reticulum (ER) distribution pattern, oxidative and ER stress, actin filament organization, cortical granule distribution pattern, spindle organization and chromosome alignment. An early polar body extrusion was observed in the HGHL group. However, the maturation rate at 24 h did not differ significantly among the experimental groups compared to the control. The HGHL conditions exhibited significantly higher levels of oxidative stress, ER stress, poor actin filament organization, increased lipid accumulation, altered mitochondrial distribution, spindle abnormalities, and chromosome misalignment compared to the control. Except for spindle organization, supplementation of metformin to the HGHL conditions improved all the parameters (non-significant for ER and actin distribution pattern). These results show that metformin exposure in the culture media helped to improve the hyperglycemia and hyperlipidemia-induced cytoplasmic anomalies except for spindle organization. Given the crucial role of spindle organization in proper chromosome segregation during oocyte maturation and meiotic resumption, the implications of metformin's limitations in this aspect warrant careful evaluation and further investigation.
Collapse
Affiliation(s)
- Amrutha Nedumbrakkad Kunnath
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Shravani Kanakadas Parker
- Center of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Daphne Norma Crasta
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Jyolsna Ponnaratta Kunhiraman
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Vanishree Vasave Madhvacharya
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Sandhya Kumari
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Guruprasad Nayak
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - R Vani Lakshmi
- Department of Data Science, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal 576104, India
| | - Prashanth Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, University Road, Mangalore 575018, India
| | | | - Anujith Kumar
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Allasandra, Yelahanka, Bangalore 560065, India
| | - Ayush Khandelwal
- Department of Cell and Molecular Biology, Manipal School of Life sciences, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Nadeem Khan Ghani
- Department of Cell and Molecular Biology, Manipal School of Life sciences, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life sciences, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Satish Kumar Adiga
- Center of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
42
|
Zhang Y, Zhao H, Li Y. Pleiotropic Regulation of PGC-1α in Tumor Initiation and Progression. Antioxid Redox Signal 2024; 41:557-572. [PMID: 38770801 DOI: 10.1089/ars.2023.0506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Significance: Mitochondria are recognized as a central metabolic hub with bioenergetic, biosynthetic, and signaling functions that tightly control key cellular processes. As a crucial component of mitochondrial biogenesis, peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) is involved in regulating various metabolic pathways, including energy metabolism and reactive oxygen species homeostasis. Recent Advances: Recent studies have highlighted the significant role of PGC-1α in tumorigenesis, cancer progression, and treatment resistance. However, PGC-1α exhibits pleiotropic effects in different cancer types, necessitating a more comprehensive and thorough understanding. Critical Issues: In this review, we discuss the structure and regulatory mechanisms of PGC-1α, analyze its cellular and metabolic functions, explore its impact on tumorigenesis, and propose potential strategies for targeting PGC-1α. Future Directions: The targeted adjustment of PGC-1α based on the metabolic preferences of different cancer types could offer a hopeful therapeutic approach for both preventing and treating tumors. Antioxid. Redox Signal. 41, 557-572.
Collapse
Affiliation(s)
- Yan Zhang
- School of Medicine, Chongqing University, Chongqing, China
| | - Huakan Zhao
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yongsheng Li
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
43
|
Xu Y, Che H, Liu J, Ye P. Association of metformin and statin uses with the prognosis of colon cancer: a meta-analysis. Eur J Cancer Prev 2024; 33:414-424. [PMID: 38215022 DOI: 10.1097/cej.0000000000000872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
BACKGROUND Metformin and statins are commonly used globally for the treatment of type 2 diabetes mellitus and dyslipidemia, respectively. Recently, multiple novel pathways have been discovered, which may contribute to the treatment of various types of cancer. Several meta-analysis studies have reported that the use of metformin or statins is associated with a lower risk of colon cancer compared to nonusers. In this study, our aim was to perform a meta-analysis and investigate the prognostic roles of these two medications in colon cancer. METHODS To identify relevant articles, literature searches were performed in the PubMed and Web of Science databases using a combination of keywords related to metformin, statins and colon cancer prognosis until August 2023. The study utilized STATA 12.0 software (Stata Corporation, College Station, Texas, USA) to compute all the hazard ratios (HRs) and 95% confidence intervals (CIs) regarding the association between metformin or statin uses and prognostic-related outcomes. RESULTS Our analysis revealed that the use of metformin was associated with a significantly lower overall mortality of colon cancer (HR = 0.63; 95% CI = 0.51-0.77; I2 = 94.9%; P < 0.001), as well as lower cancer-specific mortality of colon cancer (HR = 0.68; 95% CI = 0.50-0.94; I2 = 91.9%; P < 0.001). Similarly, the use of statins was also associated with a lower overall mortality of colon cancer (HR = 0.68; 95% CI = 0.60-0.78; I2 = 93.8%; P < 0.001), as well as a lower cancer-specific mortality of colon cancer (HR = 0.74; 95% CI = 0.67-0.81; I2 = 82.2%; P < 0.001). CONCLUSION Our meta-analysis study suggests that statins and metformin may have potential as adjuvant agents with significant benefits in the prognosis of colon cancer.
Collapse
Affiliation(s)
- Yanyan Xu
- Department of Anus and Colorectal Surgery, Shaoxing People's Hospital, Shaoxing, China
| | | | | | | |
Collapse
|
44
|
Sjöholm Å. Glucokinase activators and imeglimin: new weaponry in the armamentarium against type 2 diabetes. BMJ Open Diabetes Res Care 2024; 12:e004291. [PMID: 39214626 PMCID: PMC11367400 DOI: 10.1136/bmjdrc-2024-004291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
The prevalence of type 2 diabetes (T2D) is increasing relentlessly all over the world, in parallel with a similar increase in obesity, and is striking ever younger patients. Only a minority of patients with T2D attain glycemic targets, indicating a clear need for novel antidiabetic drugs that not only control glycemia but also halt or slow the progressive loss of β-cells. Two entirely novel classes of antidiabetic agents-glucokinase activators and imeglimin-have recently been approved and will be the subject of this review.Allosteric activators of glucokinase, an enzyme stimulating insulin secretion in β-cells and suppressing hepatic glucose production, are oral low-molecular-weight drugs. One of these, dorzagliatin, is approved in China for use in adult patients with T2D, either as monotherapy or as an add-on to metformin. It remains to be seen whether the drug will produce sustained antidiabetic effects over many years and whether the side effects that led to the discontinuation of early drug candidates will limit the usefulness of dorzagliatin.Imeglimin-which shares structural similarities with metformin-targets mitochondrial dysfunction and was approved in Japan against T2D. In preclinical studies, the drug has also shown promising β-cell protective and preservative effects that may translate into disease-modifying effects.Hopefully, these two newcomers will contribute to filling the great medical need for new treatment modalities, preferably with disease-modifying potential. It remains to be seen where they will fit in contemporary treatment algorithms, which combinations of drugs are effective and which should be avoided. Time will tell to what extent these new antidiabetic agents will add value to the current treatment options against T2D in terms of sustained antidiabetic effect, acceptable safety, utility in combination therapy, and impact on hard end-points such as cardiovascular disease.
Collapse
Affiliation(s)
- Åke Sjöholm
- University of Gävle, Gavle, Sweden
- Department of Internal Medicine, Region Gävleborg, Gavle, Sweden
| |
Collapse
|
45
|
Toppila M, Ranta-aho S, Kaarniranta K, Hytti M, Kauppinen A. Metformin Alleviates Inflammation and Induces Mitophagy in Human Retinal Pigment Epithelium Cells Suffering from Mitochondrial Damage. Cells 2024; 13:1433. [PMID: 39273005 PMCID: PMC11394619 DOI: 10.3390/cells13171433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Mitochondrial malfunction, excessive production of reactive oxygen species (ROS), deficient autophagy/mitophagy, and chronic inflammation are hallmarks of age-related macular degeneration (AMD). Metformin has been shown to activate mitophagy, alleviate inflammation, and lower the odds of developing AMD. Here, we explored the ability of metformin to activate mitophagy and alleviate inflammation in retinal pigment epithelium (RPE) cells. Human ARPE-19 cells were pre-treated with metformin for 1 h prior to exposure to antimycin A (10 µM), which induced mitochondrial damage. Cell viability, ROS production, and inflammatory cytokine production were measured, while autophagy/mitophagy proteins were studied using Western blotting and immunocytochemistry. Metformin pre-treatment reduced the levels of proinflammatory cytokines IL-6 and IL-8 to 42% and 65% compared to ARPE-19 cells exposed to antimycin A alone. Metformin reduced the accumulation of the autophagy substrate SQSTM1/p62 (43.9%) and the levels of LC3 I and II (51.6% and 48.6%, respectively) after antimycin A exposure. Metformin also increased the colocalization of LC3 with TOM20 1.5-fold, suggesting active mitophagy. Antimycin A exposure increased the production of mitochondrial ROS (226%), which was reduced by the metformin pre-treatment (84.5%). Collectively, metformin showed anti-inflammatory and antioxidative potential with mitophagy induction in human RPE cells suffering from mitochondrial damage.
Collapse
Affiliation(s)
- Maija Toppila
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (S.R.-a.); (M.H.)
- Department of Ophthalmology, Kuopio University Hospital, 70211 Kuopio, Finland;
| | - Sofia Ranta-aho
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (S.R.-a.); (M.H.)
| | - Kai Kaarniranta
- Department of Ophthalmology, Kuopio University Hospital, 70211 Kuopio, Finland;
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Maria Hytti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (S.R.-a.); (M.H.)
- Department of Ophthalmology, Kuopio University Hospital, 70211 Kuopio, Finland;
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (S.R.-a.); (M.H.)
| |
Collapse
|
46
|
Ding LJ, Jiang X, Li T, Wang S. Role of UFMylation in tumorigenesis and cancer immunotherapy. Front Immunol 2024; 15:1454823. [PMID: 39247188 PMCID: PMC11377280 DOI: 10.3389/fimmu.2024.1454823] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Protein post-translational modifications (PTMs) represent a crucial aspect of cellular regulation, occurring after protein synthesis from mRNA. These modifications, which include phosphorylation, ubiquitination, acetylation, methylation, glycosylation, Sumoylation, and palmitoylation, play pivotal roles in modulating protein function. PTMs influence protein localization, stability, and interactions, thereby orchestrating a variety of cellular processes in response to internal and external stimuli. Dysregulation of PTMs is linked to a spectrum of diseases, such as cancer, inflammatory diseases, and neurodegenerative disorders. UFMylation, a type of PTMs, has recently gained prominence for its regulatory role in numerous cellular processes, including protein stability, response to cellular stress, and key signaling pathways influencing cellular functions. This review highlights the crucial function of UFMylation in the development and progression of tumors, underscoring its potential as a therapeutic target. Moreover, we discuss the pivotal role of UFMylation in tumorigenesis and malignant progression, and explore its impact on cancer immunotherapy. The article aims to provide a comprehensive overview of biological functions of UFMylation and propose how targeting UFMylation could enhance the effectiveness of cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Li-Juan Ding
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Te Li
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Shudong Wang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
47
|
Iqbal F, Khanzada ZH, Qasim Q. Metformin's Enigma: Bridging Gaps in Research on Potential Benefits & Associated Risks - A Critical Plea for Comprehensive Investigation [Letter]. Drug Des Devel Ther 2024; 18:3643-3644. [PMID: 39161683 PMCID: PMC11332420 DOI: 10.2147/dddt.s487044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024] Open
Affiliation(s)
- Faiqa Iqbal
- Shaheed Mohtarma Benazir Bhutto Medical College, Karachi, Pakistan
| | | | - Qirat Qasim
- Shaheed Mohtarma Benazir Bhutto Medical College, Karachi, Pakistan
| |
Collapse
|
48
|
Zhou F, Qian HY, Wang K, Gu YJ, Liu PL, Zhang L, Chen L, Song Y, Chen YN, Zhang HL. Metformin relieves bone cancer pain by reducing TGFβRI-TRPV1 signaling in rats. Heliyon 2024; 10:e34991. [PMID: 39157315 PMCID: PMC11328085 DOI: 10.1016/j.heliyon.2024.e34991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
Common cancer complications include bone cancer pain (BCP), which was not sufficiently alleviated by traditional analgesics. More safe and effective therapy was urgent needed. Metformin relieved osteoarthritis pain, but the analgesia of Metformin in BCP was not well studied. The study aimed to explore the Metformin-mediated analgesic effect and its molecular mechanisms in BCP rats. We demonstrated that Walker 256 cell transplantation into the medullary cavity of the tibia worsened mechanical allodynia in BCP rats, increased the expression of TGFβ1 in the metastatic bone tissue, and raised the expression of TGFβRI and TRPV1 in the L4-6 dorsal root ganglion (DRG) of BCP rats. While, selectively blockade of TGFβRI by SD208 could obviously elevated the paw withdraw threshold (PWT) of BCP rats, together with decreased TRPV1 expression in L4-6 DRG. Notably, continuous Metformin treatment reduced TGFβ1, TGFβRI and TRPV1 expression, and relieved mechanical allodynia of BCP rats in a long-term effect. In conclusion, these results illustrated that Metformin ameliorated bone cancer pain, and the downregulation of TGFβ1-TGFβRI-TRPV1 might be a potential mechanism of Metformin-mediated analgesia in BCP.
Collapse
Affiliation(s)
- Fang Zhou
- Center for Translational Medicine, Department of Oncology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - He-Ya Qian
- Center for Translational Medicine, Department of Oncology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Ke Wang
- Department of Pain, Suzhou Wuzhong People's Hospital, Suzhou 215128, China
| | - Yong-Juan Gu
- Center for Translational Medicine, Department of Oncology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Pei-Lin Liu
- Center for Translational Medicine, Department of Oncology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Ling Zhang
- Center for Translational Medicine, Department of Oncology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Long Chen
- Center for Translational Medicine, Department of Oncology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Yu Song
- Center for Translational Medicine, Department of Oncology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Ya-Nan Chen
- Center for Translational Medicine, Department of Oncology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Hai-Long Zhang
- Center of Translational Medicine and Clinical Laboratory, The Fourth Affiliated Hospital of Soochow University, Medical Center of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
49
|
Papini N, Giussani P, Tringali C. Metformin Lysosomal Targeting: A Novel Aspect to Be Investigated for Metformin Repurposing in Neurodegenerative Diseases? Int J Mol Sci 2024; 25:8884. [PMID: 39201569 PMCID: PMC11354325 DOI: 10.3390/ijms25168884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Metformin is a widely employed drug in type 2 diabetes. In addition to warranting good short- and long-term glycemic control, metformin displays many intriguing properties as protection against cardiovascular and neurodegenerative diseases, anti-tumorigenic and longevity promotion. In addition to being a low-cost drug, metformin is generally well tolerated. However, despite the enthusiastic drive to aliment these novel studies, many contradictory results suggest the importance of better elucidating the complexity of metformin action in different tissues/cells to establish its possible employment in neurodegenerative diseases. This review summarises recent data identifying lysosomal-dependent processes and lysosomal targets, such as endosomal Na+/H+ exchangers, presenilin enhancer 2 (PEN2), the lysosomal pathway leading to AMP-activated protein kinase (AMPK) activation, and the transcription factor EB (TFEB), modulated by metformin. Lysosomal dysfunctions resulting in autophagic and lysosomal acidification and biogenesis impairment appear to be hallmarks of many inherited and acquired neurodegenerative diseases. Lysosomes are not yet seen as a sort of cellular dump but are crucial in determining key signalling paths and processes involved in the clearance of aggregated proteins. Thus, the possibility of pharmacologically modulating them deserves great interest. Despite the potentiality of metformin in this context, many additional important issues, such as dosing, should be addressed in the future.
Collapse
Affiliation(s)
| | | | - Cristina Tringali
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, 20054 Segrate, MI, Italy; (N.P.); (P.G.)
| |
Collapse
|
50
|
Stanciu SM, Jinga M, Miricescu D, Stefani C, Nica RI, Stanescu-Spinu II, Vacaroiu IA, Greabu M, Nica S. mTOR Dysregulation, Insulin Resistance, and Hypertension. Biomedicines 2024; 12:1802. [PMID: 39200267 PMCID: PMC11351979 DOI: 10.3390/biomedicines12081802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Worldwide, diabetes mellitus (DM) and cardiovascular diseases (CVDs) represent serious health problems associated with unhealthy diet and sedentarism. Metabolic syndrome (MetS) is characterized by obesity, dyslipidemia, hyperglycemia, insulin resistance (IR) and hypertension. The mammalian target of rapamycin (mTOR) is a serine/threonine kinase with key roles in glucose and lipid metabolism, cell growth, survival and proliferation. mTOR hyperactivation disturbs glucose metabolism, leading to hyperglycemia and further to IR, with a higher incidence in the Western population. Metformin is one of the most used hypoglycemic drugs, with anti-inflammatory, antioxidant and antitumoral properties, having also the capacity to inhibit mTOR. mTOR inhibitors such as rapamycin and its analogs everolimus and temsirolimus block mTOR activity, decrease the levels of glucose and triglycerides, and reduce body weight. The link between mTOR dysregulation, IR, hypertension and mTOR inhibitors has not been fully described. Therefore, the main aim of this narrative review is to present the mechanism by which nutrients, proinflammatory cytokines, increased salt intake and renin-angiotensin-aldosterone system (RAAS) dysregulation induce mTOR overactivation, associated further with IR and hypertension development, and also mTOR inhibitors with higher potential to block the activity of this protein kinase.
Collapse
Affiliation(s)
- Silviu Marcel Stanciu
- Department of Internal Medicine and Gastroenterology, Carol Davila University of Medicine and Pharmacy, Central Military Emergency University Hospital, “Dr. Carol Davila”, 010825 Bucharest, Romania; (S.M.S.); (M.J.)
| | - Mariana Jinga
- Department of Internal Medicine and Gastroenterology, Carol Davila University of Medicine and Pharmacy, Central Military Emergency University Hospital, “Dr. Carol Davila”, 010825 Bucharest, Romania; (S.M.S.); (M.J.)
| | - Daniela Miricescu
- Discipline of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Constantin Stefani
- Department of Family Medicine and Clinical Base, Central Military Emergency University Hospital, “Dr. Carol Davila”, 010825 Bucharest, Romania;
| | - Remus Iulian Nica
- Surgery Department, Central Military Emergency University Hospital, “Dr. Carol Davila”, 010825 Bucharest, Romania;
- Discipline of General Surgery, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanotari Blvd, 054474 Bucharest, Romania
| | - Iulia-Ioana Stanescu-Spinu
- Discipline of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Ileana Adela Vacaroiu
- Department of Nephrology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Maria Greabu
- Discipline of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Silvia Nica
- Emergency Discipline, University Hospital of Bucharest, 050098 Bucharest, Romania;
- Department of Emergency and First Aid, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| |
Collapse
|