1
|
Liu C, Li X. Role of leptin and adiponectin in immune response and inflammation. Int Immunopharmacol 2025; 161:115082. [PMID: 40516255 DOI: 10.1016/j.intimp.2025.115082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 05/29/2025] [Accepted: 06/09/2025] [Indexed: 06/16/2025]
Abstract
Adipose tissue has gained significant attention for its role in immune response and inflammation through the secretion of adipokines. Adipokines, such as leptin and adiponectin, are secreted by adipose tissue and have been implicated in various physiological processes, with a focus on their role in modulating immune responses and inflammation. Leptin and adiponectin are the most abundant adipokines in human, playing a crucial role in regulating functions of the heart, skeletal muscle, growth, and inflammation. Leptin, a pro-inflammatory adipokine, is involved in controlling food intake and energy expenditure, and it influences immune cell activation and cytokine production. In contrast, adiponectin, an anti-inflammatory adipokine, circulates at high levels in the plasma and modulates immune cell functions, counteracting the effects of leptin. Here we provided an overview of the role of adipokines in immune response and inflammation. In addition,The leptin-adiponectin ratio (Adpn/Lep) has emerged as a significant indicator of various metabolic diseases and conditions. Further research is needed to fully elucidate the mechanisms by which adipokines influence immune responses and to identify potential therapeutic targets for inflammatory and metabolic disorders.
Collapse
Affiliation(s)
- Chang Liu
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong, Shanghai 200120, China.
| | - Xiaojiao Li
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
2
|
Pomares-Bri I, Roca M, Borrás F, Wabitsch M, Lahoz A, Micol V, Herranz-López M. Polyphenols reverse hyperglycemia-induced adipocyte dysfunction: A Metabolomic and Lipidomic study of efficacy. Food Res Int 2025; 211:116453. [PMID: 40356124 DOI: 10.1016/j.foodres.2025.116453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/20/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
Hyperglycemia leads to metabolic dysfunction in human adipocytes, characterized by decreased AKT phosphorylation, downregulation of glycolysis, TCA cycle, and amino acid metabolism, as well as altered lipid profiles. This study aimed to elucidate these metabolic alterations and evaluate the potential therapeutic effects of selected polyphenols. Comprehensive metabolic profiling revealed profound disruptions, including impaired carbon metabolism, amino acids, and lipids associated with obesity. Importantly, treatment with polyphenols, particularly verbascoside and ferulic acid, effectively mitigated these metabolic disturbances, restoring adipocyte homeostasis. The polyphenols increased metabolites from carbon metabolism and amino acids, improving glycolysis, the TCA cycle, and related pathways. They also modulated lipid profiles that are negatively associated with obesity and related diseases. These findings provide valuable insights into the metabolic pathways underlying adipocyte dysfunction in hyperglycemia and highlight the therapeutic potential of polyphenols in ameliorating metabolic disorders.
Collapse
Affiliation(s)
- Irene Pomares-Bri
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández (UMH), 03202 Elche, Spain
| | - Marta Roca
- Analytical Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Fernando Borrás
- Statistics and Operative Research Department, UMH, Avda, Universidad s/n, 03202, Elche, Spain
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Center Ulm, Ulm, Germany
| | - Agustín Lahoz
- Biomarkers and Precision Medicine Unit, Health Research Institute-Hospital La Fe, 46026, Valencia, Spain
| | - Vicente Micol
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández (UMH), 03202 Elche, Spain.; CIBER: CB12/03/30038, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain.
| | - María Herranz-López
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández (UMH), 03202 Elche, Spain
| |
Collapse
|
3
|
Huang X, Chen S, Lu L, Jin R, Chang M, Yuan Z, Luo X, Zhu Z, Liu G. Thermal-crosslinked acellular dermal matrix combined with adipose-derived stem cells to regenerate vascularized adipose tissue. Biomed Mater 2025; 20:025020. [PMID: 39879651 DOI: 10.1088/1748-605x/adaff8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/29/2025] [Indexed: 01/31/2025]
Abstract
The reconstruction of large-sized soft tissue defects remains a substantial clinical challenge, with adipose tissue engineering emerging as a promising solution. The acellular dermal matrix (ADM), known for its intricate spatial arrangement and active cytokine involvement, is widely employed as a scaffold in soft tissue engineering. Since ADM shares high similarity with decellularized adipose matrix, it holds potential as a substitute for adipose tissue. This study explores the adipogenic ability of a spongy material derived from ADM via vacuum-thermal crosslinking (T-ADM), characterized by high porosity, adjustable thickness, and suitable mechanical strength. Adipose-derived stem cells (ADSCs) are considered ideal seed cells in adipose tissue engineering. Nevertheless, whether pre-adipogenic induction is necessary before their incorporation remains debatable. In this context, ADSCs, both with and without pre-adipogenic induction, were seeded into T-ADM to regenerate vascularized adipose tissue. A comparative analysis of the two constructs was performed to evaluate angiogenesis and adipogenesisin vitro, and tissue regeneration efficacyin vivo. Additionally, RNA-seq analysis was utilized to investigate the potential mechanisms. The results showed that T-ADM exhibited good performance in terms of volume retention and maintenance of adipocyte phenotype, confirming its suitability as a scaffold for adipose tissue engineering.In-vitrooutcomes demonstrated that pre-adipogenic induction enhanced the adipogenic level of ADSCs, but reduced their ability to promote vascularization. Furthermore, constructs utilizing pre-induced ADSCs showed an insignificant superiority inin-vivofat formation, and neovascularization compared with those with non-induced ADSCs, which may be attributed to similar macrophage regulation, and balanced modulation of the proliferator-activated receptor-γand hypoxia-inducible factor 1αpathways. Consequently, the direct use of ADSCs is advocated to streamline the engineering process and reduce associated costs. The combined strategy of T-ADM with ADSCs proves to be feasible, convenient and effective, offering substantial potential for addressing large-sized tissue deficits and facilitating clinical applications.
Collapse
Affiliation(s)
- Xing Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
- Shanghai KeyLaboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Siyuan Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Lin Lu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Rui Jin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Mengling Chang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Zhaoqi Yuan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Xusong Luo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Zhu Zhu
- Shanghai KeyLaboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Guangpeng Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Li Y, Li RY, Zhu JY, Chen M, Mu WJ, Luo HY, Li S, Yan LJ, Yin MT, Li X, Chen HM, Guo L. Maternal exercise prevents metabolic disorders in offspring mice through SERPINA3C. Nat Metab 2025; 7:401-420. [PMID: 39891022 DOI: 10.1038/s42255-024-01213-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 12/17/2024] [Indexed: 02/03/2025]
Abstract
Maternal exercise can improve the metabolic health of the offspring. However, the molecular mechanisms underlying the beneficial effects of maternal exercise on the offspring remain unclear. Here, we show that maternal exercise during pregnancy alleviates high-fat diet (HFD)-induced adipose inflammation and glucose intolerance in offspring mice, accompanied by upregulation of the adipokine serine protease inhibitor A3C (SERPINA3C) both in maternal adipose tissues and the fetal circulation. Adipose SERPINA3C knockdown impairs, but its overexpression in dams mimics, maternal exercise-mediated metabolic benefits in HFD-fed offspring. Maternal SERPINA3C is transported into the fetal circulation and promotes Krüppel-like factor 4 (Klf4) gene promoter demethylation in fetal preadipocytes to increase KLF4 expression, which inhibits adipose inflammation in HFD-fed offspring mice. The SERPINA3C-cathepsin G-integrin β1 axis activates phosphatidylinositol 3-kinase signalling in preadipocytes. This promotes nuclear translocation of the p110β subunit to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3) in the nucleus. O-linked β-N-acetylglucosamine (O-GlcNAc) transferase then binds to PIP3 to promote ten-eleven translocation methylcytosine dioxygenase 1 (TET1) O-GlcNAcylation, thereby enhancing TET1 activity to facilitate Klf4 gene promoter demethylation. These results provide mechanistic insights into maternal exercise-mediated improvement of offspring metabolism.
Collapse
Affiliation(s)
- Yang Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Ruo-Ying Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Jie-Ying Zhu
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Min Chen
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Wang-Jing Mu
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Hong-Yang Luo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Shan Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Lin-Jing Yan
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Meng-Ting Yin
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Xin Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Hu-Min Chen
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Liang Guo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China.
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China.
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
5
|
Wang T, Zhou D, Hong Z. Sarcopenia and cachexia: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2025; 6:e70030. [PMID: 39764565 PMCID: PMC11702502 DOI: 10.1002/mco2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 03/17/2025] Open
Abstract
Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ. Recognizing the interplay and distinctions between these disorders is essential for advancing both basic and translational research in this area, enhancing diagnostic accuracy and ultimately achieving effective therapeutic solutions for affected patients. This review discusses the muscle microenvironment's changes contributing to these conditions, recent therapeutic approaches like lifestyle modifications, small molecules, and nutritional interventions, and emerging strategies such as gene editing, stem cell therapy, and gut microbiome modulation. We also address the challenges and opportunities of multimodal interventions, aiming to provide insights into the pathogenesis and molecular mechanisms of sarcopenia and cachexia, ultimately aiding in innovative strategy development and improved treatments.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Dong Zhou
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Zhen Hong
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| |
Collapse
|
6
|
Lee EO, Jin H, Kim S, Joo HK, Lee YR, An SY, Piao S, Lee KH, Jeon BH. Alterations in Adipose Tissue and Adipokines in Heterozygous APE1/Ref-1 Deficient Mice. Endocrinol Metab (Seoul) 2024; 39:932-945. [PMID: 39566547 PMCID: PMC11695485 DOI: 10.3803/enm.2024.2061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGRUOUND The role of apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) in adipose tissue remains poorly understood. This study investigates adipose tissue dysfunction in heterozygous APE1/Ref-1 deficiency (APE1/Ref-1+/-) mice, focusing on changes in adipocyte physiology, oxidative stress, adipokine regulation, and adipose tissue distribution. METHODS APE1/Ref-1 mRNA and protein levels in white adipose tissue (WAT) were measured in APE1/Ref-1+/- mice, compared to their wild-type (APE1/Ref-1+/+) controls. Oxidative stress was assessed by evaluating reactive oxygen species (ROS) levels. Histological and immunohistochemical analyses were conducted to observe adipocyte size and macrophage infiltration of WAT. Adipokine expression was measured, and micro-magnetic resonance imaging (MRI) was used to quantify abdominal fat volumes. RESULTS APE1/Ref-1+/- mice exhibited significant reductions in APE1/Ref-1 mRNA and protein levels in WAT and liver tissue. These mice also showed elevated ROS levels, suggesting a regulatory role for APE1/Ref-1 in oxidative stress in WAT and liver. Histological and immunohistochemical analyses revealed hypertrophic adipocytes and macrophage infiltration in WAT, while Oil Red O staining demonstrated enhanced ectopic fat deposition in the liver of APE1/Ref-1+/- mice. These mice also displayed altered adipokine expression, with decreased adiponectin and increased leptin levels in the WAT, along with corresponding alterations in plasma levels. Despite no significant changes in overall body weight, microMRI assessments demonstrated a significant increase in visceral and subcutaneous abdominal fat volumes in APE1/Ref-1+/- mice. CONCLUSION APE1/Ref-1 is crucial in adipokine regulation and mitigating oxidative stress. These findings suggest its involvement in adipose tissue dysfunction, highlighting its potential impact on abdominal fat distribution and its implications for obesity and oxidative stress-related conditions.
Collapse
Affiliation(s)
- Eun-Ok Lee
- Research Institute of Medical Sciences, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Physiology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Hao Jin
- Department of Physiology, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Sungmin Kim
- Department of Physiology, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Hee Kyoung Joo
- Research Institute of Medical Sciences, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Physiology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Yu Ran Lee
- Research Institute of Medical Sciences, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Physiology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Soo Yeon An
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
- Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Shuyu Piao
- Research Institute of Medical Sciences, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Physiology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Kwon Ho Lee
- Department of Physical Therapy, Joongbu University, Geumsan, Korea
| | - Byeong Hwa Jeon
- Research Institute of Medical Sciences, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Physiology, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| |
Collapse
|
7
|
Malicka A, Ali A, MacCannell ADV, Roberts LD. Brown and beige adipose tissue-derived metabokine and lipokine inter-organ signalling in health and disease. Exp Physiol 2024. [PMID: 39591977 DOI: 10.1113/ep092008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
Adipose tissue has an established endocrine function through the secretion of adipokines. However, a role for bioactive metabolites and lipids, termed metabokines and lipokines, is emerging in adipose tissue-mediated autocrine, paracrine and endocrine signalling and inter-organ communication. Traditionally seen as passive entities, metabolites are now recognized for their active roles in regulating cellular signalling and local and systemic metabolism. Distinct from white adipose tissue, specific endocrine functions have been attributed to thermogenic brown and beige adipose tissues. Brown and beige adipose tissues have been identified as sources of metabokines and lipokines, which influence diverse metabolic pathways, such as fatty acid β-oxidation, mitochondrial function and glucose homeostasis, across a range of tissues, including skeletal muscle, adipose tissue and heart. This review explores the intricate signalling mechanisms of brown and beige adipose tissue-derived metabokines and lipokines, emphasizing their roles in maintaining metabolic homeostasis and their potential dysregulation in metabolic diseases. Furthermore, we discuss the therapeutic potential of targeting these pathways, proposing that precise modulation of metabokine receptors and transporters could offer superior specificity and efficacy in comparison to conventional approaches, such as β-adrenergic signalling-stimulated activation of brown adipose tissue thermogenesis. Understanding the complex interactions between adipokines, metabokines and lipokines is essential for developing a systems-level approach to new interventions for metabolic disorders, underscoring the need for continued research in this rapidly evolving field.
Collapse
Affiliation(s)
- Anna Malicka
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Aysha Ali
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Amanda D V MacCannell
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Lee D Roberts
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
8
|
Guo J, Wang J, Zhang K, Yang Z, Li B, Pan Y, Yu H, Yu S, Abbas Raza SH, Kuraz Abebea B, Zan L. Molecular cloning of TPM3 gene in qinchuan cattle and its effect on myoblast proliferation and differentiation. Anim Biotechnol 2024; 35:2345238. [PMID: 38775564 DOI: 10.1080/10495398.2024.2345238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Tropomyosin 3 (TPM3) plays a significant role as a regulatory protein in muscle contraction, affecting the growth and development of skeletal muscles. Despite its importance, limited research has been conducted to investigate the influence of TPM3 on bovine skeletal muscle development. Therefore, this study revealed the role of TPM3 in bovine myoblast growth and development. This research involved conducting a thorough examination of the Qinchuan cattle TPM3 gene using bioinformatics tools to examine its sequence and structural characteristics. Furthermore, TPM3 expression was evaluated in various bovine tissues and cells using quantitative real-time polymerase chain reaction (qRT-PCR). The results showed that the coding region of TPM3 spans 855 bp, with the 161st base being the T base, encoding a protein with 284 amino acids and 19 phosphorylation sites. This protein demonstrated high conservation across species while displaying a predominant α-helix secondary structure despite being an unstable acidic protein. Notably, a noticeable increase in TPM3 expression was observed in the longissimus dorsi muscle and myocardium of calves and adult cattle. Expression patterns varied during different stages of myoblast differentiation. Functional studies that involved interference with TPM3 in Qinchuan cattle myoblasts revealed a very significantly decrease in S-phase cell numbers and EdU-positive staining (P < 0.01), and disrupted myotube morphology. Moreover, interference with TPM3 resulted in significantly (P < 0.05) or highly significantly (P < 0.01) decreased mRNA and protein levels of key proliferation and differentiation markers, indicating its role in the modulation of myoblast behavior. These findings suggest that TPM3 plays an essential role in bovine skeletal muscle growth by influencing myoblast proliferation and differentiation. This study provides a foundation for further exploration into the mechanisms underlying TPM3-mediated regulation of bovine muscle development and provides valuable insights that could guide future research directions as well as potential applications for livestock breeding and addressing muscle-related disorders.
Collapse
Affiliation(s)
- Juntao Guo
- College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Ke Zhang
- College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Zhimei Yang
- College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Bingzhi Li
- Yangling Vocational and Technical College, Yangling, China
| | - Yueting Pan
- College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Hengwei Yu
- College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Shengchen Yu
- College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, China
| | - Belete Kuraz Abebea
- College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A and F University, Yangling, China
- National Beef Cattle Improvement Center, Yangling, China
| |
Collapse
|
9
|
Wang T, Zhou D, Hong Z. Adipose tissue in older individuals: a contributing factor to sarcopenia. Metabolism 2024; 160:155998. [PMID: 39128607 DOI: 10.1016/j.metabol.2024.155998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Sarcopenia is a geriatric syndrome characterized by a functional decline in muscle. The prevalence of sarcopenia increases with natural aging, becoming a serious health problem among elderly individuals. Therefore, understanding the pathology of sarcopenia is critical for inhibiting age-related alterations and promoting health and longevity in elderly individuals. The development of sarcopenia may be influenced by interactions between visceral and subcutaneous adipose tissue and skeletal muscle, particularly under conditions of chronic low-grade inflammation and metabolic dysfunction. This hypothesis is supported by the following observations: (i) accumulation of senescent cells in both adipose tissue and skeletal muscle with age; (ii) gut dysbiosis, characterized by an imbalance in gut microbial communities as the main trigger for inflammation, sarcopenia, and aged adipose tissue; and (iii) microbial dysbiosis, which could impact the onset or progression of a senescent state. Moreover, adipose tissue acts as an endocrine organ, releasing molecules that participate in intricate communication networks between organs. Our discussion focuses on novel adipokines and their role in regulating adipose tissue and muscle, particularly those influenced by aging and obesity, emphasizing their contributions to disease development. On the basis of these findings, we propose that age-related adipose tissue and sarcopenia are disorders characterized by chronic inflammation and metabolic dysregulation. Finally, we explore new potential therapeutic strategies involving specialized proresolving mediator (SPM) G protein-coupled receptor (GPCR) agonists, non-SPM GPCR agonists, transient receptor potential (TRP) channels, antidiabetic drugs in conjunction with probiotics and prebiotics, and compounds designed to target senescent cells and mitigate their pro-inflammatory activity.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China.
| | - Dong Zhou
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China
| | - Zhen Hong
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Zhou Y, Ling D, Wang L, Xu Z, You W, Chen W, Nong Q, Valencak TG, Shan T. Dietary "Beigeing" Fat Contains More Phosphatidylserine and Enhances Mitochondrial Function while Counteracting Obesity. RESEARCH (WASHINGTON, D.C.) 2024; 7:0492. [PMID: 39329159 PMCID: PMC11425158 DOI: 10.34133/research.0492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
Activation of mitochondrial function and heat production in adipose tissue by the modification of dietary fat is a promising strategy against obesity. However, as an important source of lipids for ketogenic and daily diets, the function of fats extracted from different adipose tissue sites was largely unknown. In this study, we illustrated the function of fats extracted from adipose tissues with different "beigeing" properties in the ketogenic diet and identified lipid profiles of fats that facilitate energy expenditure. We found that the anti-obesity effect of ketogenic diets was potentiated by using "beigeing" fat [porcine subcutaneous adipose tissue (SAT)] as a major energy-providing ingredient. Through lipidomic analyses, phosphatidylserine (PS) was identified as a functional lipid activating thermogenesis in adipose tissue. Moreover, in vivo studies showed that PS induces adipose tissue thermogenesis and alleviates diet-induced obesity in mice. In vitro studies showed that PS promotes UCP1 expression and lipolysis of adipocytes. Mechanistically, PS promoted mitochondrial function in adipocytes via the ADCY3-cAMP-PKA-PGC1α pathway. In addition, PS-PGC1a binding may affect the stability of the PGC1α protein, which further augments PS-induced thermogenesis. These results demonstrated the efficacy of dietary SAT fats in diminishing lipid accumulation and the underlying molecular mechanism of PS in enhancing UCP1 expression and mitochondrial function. Thus, our findings suggest that as dietary fat, "beigeing" fat provides more beneficial lipids that contribute to the improvement of mitochondrial function, including PS, which may become a novel, nonpharmacological therapy to increase energy expenditure and counteract obesity and its related diseases.
Collapse
Affiliation(s)
- Yanbing Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, China
| | - Defeng Ling
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, China
| | - Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, China
| | - Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, China
| | - Wenjing You
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, China
| | - Wentao Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, China
| | - Qiuyun Nong
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, China
| | - Teresa G Valencak
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
11
|
Liu J, Sebastià C, Jové-Juncà T, Quintanilla R, González-Rodríguez O, Passols M, Castelló A, Sánchez A, Ballester M, Folch JM. Identification of genomic regions associated with fatty acid metabolism across blood, liver, backfat and muscle in pigs. Genet Sel Evol 2024; 56:66. [PMID: 39327557 PMCID: PMC11426007 DOI: 10.1186/s12711-024-00933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND The composition and distribution of fatty acids (FA) are important factors determining the quality, flavor, and nutrient value of meat. In addition, FAs synthesized in the body participate in energy metabolism and are involved in different regulatory pathways in the form of signaling molecules or by acting as agonist or antagonist ligands of different nuclear receptors. Finally, synthesis and catabolism of FAs affect adaptive immunity by regulating lymphocyte metabolism. The present study performed genome-wide association studies using FA profiles of blood, liver, backfat and muscle from 432 commercial Duroc pigs. RESULTS Twenty-five genomic regions located on 15 Sus scrofa chromosomes (SSC) were detected. Annotation of the quantitative trait locus (QTL) regions identified 49 lipid metabolism-related candidate genes. Among these QTLs, four were identified in more than one tissue. The ratio of C20:4n-6/C20:3n-6 was associated with the region on SSC2 at 7.56-14.26 Mb for backfat, liver, and muscle. Members of the fatty acid desaturase gene cluster (FADS1, FADS2, and FADS3) are the most promising candidate genes in this region. Two QTL regions on SSC14 (103.81-115.64 Mb and 100.91-128.14 Mb) were identified for FA desaturation in backfat and muscle. In addition, two separate regions on SSC9 at 0 - 14.55 Mb and on SSC12 at 0-1.91 Mb were both associated with the same multiple FA traits for backfat, with candidate genes involved in de novo FA synthesis and triacylglycerol (TAG) metabolism, such as DGAT2 and FASN. The ratio C20:0/C18:0 was associated with the region on SSC5 at 64.84-78.32 Mb for backfat. Furthermore, the association of the C16:0 content with the region at 118.92-123.95 Mb on SSC4 was blood specific. Finally, candidate genes involved in de novo lipogenesis regulate T cell differentiation and promote the generation of palmitoleate, an adipokine that alleviates inflammation. CONCLUSIONS Several SNPs and candidate genes were associated with lipid metabolism in blood, liver, backfat, and muscle. These results contribute to elucidating the molecular mechanisms implicated in the determination of the FA profile in different pig tissues and can be useful in selection programs that aim to improve health and energy metabolism in pigs.
Collapse
Affiliation(s)
- Junhui Liu
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Spain.
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain.
| | - Cristina Sebastià
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - Teodor Jové-Juncà
- Animal Breeding and Genetics Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Olga González-Rodríguez
- Animal Breeding and Genetics Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Magí Passols
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Spain
| | - Anna Castelló
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - Armand Sánchez
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - Maria Ballester
- Animal Breeding and Genetics Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Josep M Folch
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Spain.
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain.
| |
Collapse
|
12
|
Zhang L, Zhang L, Chen H, Xu X. The Interplay Between Cytokines and MicroRNAs to Regulate Metabolic Disorders. J Interferon Cytokine Res 2024; 44:337-348. [PMID: 39082185 DOI: 10.1089/jir.2024.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Metabolic disorders represent significant public health challenges worldwide. Emerging evidence suggests that cytokines and microRNAs (miRNAs) play crucial roles in the pathogenesis of metabolic disorders by regulating various metabolic processes, including insulin sensitivity, lipid metabolism, and inflammation. This review provides a comprehensive overview of the intricate interplay between cytokines and miRNAs in the context of metabolic disorders, including obesity, type 2 diabetes, and cardiovascular diseases. We discuss how dysregulation of cytokine-miRNA networks contributes to the development and progression of metabolic disorders and explore the therapeutic potential of targeting these interactions for disease management.
Collapse
Affiliation(s)
- Li Zhang
- Department of Clinical Laboratory, The Second Staff Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan, China
| | - Li Zhang
- Department of Clinical Laboratory, The Second Staff Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan, China
| | - Huan Chen
- Department of Clinical Laboratory, Wuhan Institute of Technology Hospital, Wuhan Institute of Technology, Wuhan, China
| | - Xiangyong Xu
- Department of Clinical Laboratory, The Second Staff Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan, China
| |
Collapse
|
13
|
Braga GDC, Simões JLB, Teixeira Dos Santos YJ, Filho JCM, Bagatini MD. The impacts of obesity in rheumatoid arthritis and insights into therapeutic purinergic modulation. Int Immunopharmacol 2024; 136:112357. [PMID: 38810303 DOI: 10.1016/j.intimp.2024.112357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
Rheumatoid Arthritis (RA) is an autoimmune condition responsible for the impairment of synovia and joints, endangering the functionality of individuals and contributing to mortality. Currently, obesity is increasing worldwide, and recent studies have suggested an association between such condition and RA. In this sense, obese individuals present a lower capacity for achieving remission and present more intense symptoms of the disease, demonstrating a link between both disorders. Different studies aim to understand the possible connection between the conditions; however, few is known in this sense. Therefore, knowing that obesity can alter the activity of multiple body systems, this work's objective is to evaluate the main modifications caused by obesity, which can be linked to the pathophysiology of RA, highlighting as relevant topics obesity's negative impact triggering systemic inflammation, intestinal dysbiosis, endocrine disbalances. Furthermore, the relationship between oxidative stress and obesity also deserves to be highlighted, considering the influence of reactive oxygen species (ROS) accumulation in RA exacerbation. Additionally, many of those characteristics influenced by obesity, along with the classic peculiarities of RA pathophysiology, can also be associated with purinergic signaling. Hence, this work suggests possible connections between the purinergic system and RA, proposing potential therapeutic targets against RA to be studied.
Collapse
|
14
|
Xu G, Wu Y, Chen J, Xiang D, Li D. The relationship between muscle mass and fat content in body composition and non-alcoholic fatty liver disease in the Chinese general population: a cross-sectional study. Front Med (Lausanne) 2024; 11:1384366. [PMID: 38915765 PMCID: PMC11194319 DOI: 10.3389/fmed.2024.1384366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Introduction Non-alcoholic fatty liver disease (NAFLD) poses a significant global health challenge, necessitating comprehensive exploration of its etiology. This study investigates the intricate relationship between body composition and NAFLD prevalence, focusing on the balance between muscle mass and fat content. Methods Employing a retrospective cross-sectional design, 2,493 participants undergoing routine health examinations were analyzed. Body compositions, including muscle mass and fat, were measured using bioelectrical-impedance analysis. The prevalence of NAFLD was assessed based on clinical guidelines. Results This study included 2,493 patients, including 1,601 (64.2%) men and 892(35.8%) women. The average age of these participants was 46.0 ± 13.1 years, with a mean body mass index of 25.0 ± 3.6 kg/m2. The levels of fat free mass (FFM) to fat mass (FM) ratio (FFM/FM) and appendicular skeletal muscle mass index (ASMI) demonstrated a negative association with the prevalence of NAFLD (OR (95% CI): 0.553 (0.427-0.704) and 0.850 (0.730-0.964), p < 0.001 and p = 0.022, respectively). Liver function further elucidates the multifaceted impact of body composition on hepatic health. In contrast to other parameters, FFM/FM displayed a negative association with liver damage indicators, including a negative association with alanine aminotransferase (Beta±SE: -1.00 ± 0.17, p < 0.001), with aspartate aminotransferase showing borderline significance (Beta±SE: -0.26 ± 0.15, p = 0.084). Similar associations were also evident in terms of liver productive function and bilirubin metabolism. Conclusion Our study offers novel insights into the nuanced interplay between body composition and NAFLD. Recognizing the significance of the balance between muscle and fat provides a foundation for tailored interventions that may reshape the landscape of NAFLD prevention and management.
Collapse
Affiliation(s)
- Guoqiong Xu
- Health Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Yuanyuan Wu
- Health Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Jie Chen
- Department of Nursing, Armed Police Hospital of Chongqing, Chongqing, China
| | - Dan Xiang
- Department of Geriatrics, Armed Police Hospital of Chongqing, Chongqing, China
| | - Dongji Li
- Health Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Ge Y, You Q, Gao F, Liu G, Wang L, Li B, Tian M, Yang M, Wu X. Muscle density, but not size, is independently associated with cognitive health in older adults with hip fractures. JBMR Plus 2024; 8:ziae047. [PMID: 38665314 PMCID: PMC11044827 DOI: 10.1093/jbmrpl/ziae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Emerging evidence indicates a complex interplay between skeletal muscle and cognitive function. Despite the known differences between muscle quantity and quality, which can be measured via computed tomography (CT), the precise nature of their associations with cognitive performance remain underexplored. To investigate the links between muscle size and density and cognitive impairment (CI) in the older adults with hip fractures, we conducted a post hoc, cross-sectional analysis within a prospective cohort study on 679 patients with hip fractures over 65. Mini-Mental State Examination (MMSE) and routine hip CT imaging were utilized to assess cognition function and muscle characteristics in older adults with hip fractures. The CT scans provided data on cross-sectional area and attenuation for the gluteus maximus (G.MaxM) and the combined gluteus medius and minimus (G.Med/MinM). Participants were categorized into CI and non-CI groups based on education levels and MMSE scores. Multivariate logistic regressions, propensity score (PS) methods, and subgroup analysis were employed to analyze associations and validate findings. This study included 123 participants (81.6 ± 6.8 years, 74% female) with CI and 556 participants (78.5 ± 7.7 years, 72% female) without. Compared to the non-CI group, muscle parameters, especially density, were significantly lower in the CI group. Specifically, G.Med/Min muscle density, but not size was robustly associated with CI (odds ratio (OR) = 0.77, 95% confidence interval = 0.62-0.96, P = 0.02), independent of other medical situations. Sensitivity analysis corroborated that G.Med/Min muscle density was consistently lower in the CI group than the non-CI group, as evidenced in the PS matched (P = 0.024) and weighted cohort (P = 0.033). Enhanced muscle parameters, particularly muscle density in the G.Med/MinM muscle, correlate with a lower risk of CI. Muscle density demonstrates a stronger association with cognitive performance than muscle size, highlighting its potential as a key focus in future cognitive health research.
Collapse
Affiliation(s)
- Yufeng Ge
- Department of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Qian You
- Department of Neurology, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Feng Gao
- Department of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Gang Liu
- Department of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Ling Wang
- Department of Radiology, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
- JST Sarcopenia Research Center, Beijing Research Institute of Traumatology and Orthopaedics, Beijing 100035, China
| | - Bo Li
- Department of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Maoyi Tian
- The George Institute for Global Health, Peking University Health Science Centre, Beijing 100191, China
| | - Minghui Yang
- Department of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Xinbao Wu
- Department of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| |
Collapse
|
16
|
Peng Y, Zhao L, Li M, Liu Y, Shi Y, Zhang J. Plasticity of Adipose Tissues: Interconversion among White, Brown, and Beige Fat and Its Role in Energy Homeostasis. Biomolecules 2024; 14:483. [PMID: 38672499 PMCID: PMC11048349 DOI: 10.3390/biom14040483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Obesity, characterized by the excessive accumulation of adipose tissue, has emerged as a major public health concern worldwide. To develop effective strategies for treating obesity, it is essential to comprehend the biological properties of different adipose tissue types and their respective roles in maintaining energy balance. Adipose tissue serves as a crucial organ for energy storage and metabolism in the human body, with functions extending beyond simple fat storage to encompass the regulation of energy homeostasis and the secretion of endocrine factors. This review provides an overview of the key characteristics, functional differences, and interconversion processes among white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue. Moreover, it delves into the molecular mechanisms and recent research advancements concerning the browning of WAT, activation of BAT, and whitening of BAT. Although targeting adipose tissue metabolism holds promise as a potential approach for obesity treatment, further investigations are necessary to unravel the intricate biological features of various adipose tissue types and elucidate the molecular pathways governing their interconversion. Such research endeavors will pave the way for the development of more efficient and targeted therapeutic interventions in the fight against obesity.
Collapse
Affiliation(s)
| | | | | | | | | | - Jian Zhang
- School of Bioengineering, Zunyi Medical University, Zhuhai 519000, China; (Y.P.); (L.Z.); (M.L.); (Y.L.); (Y.S.)
| |
Collapse
|
17
|
Wang L, Valencak TG, Shan T. Fat infiltration in skeletal muscle: Influential triggers and regulatory mechanism. iScience 2024; 27:109221. [PMID: 38433917 PMCID: PMC10907799 DOI: 10.1016/j.isci.2024.109221] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Fat infiltration in skeletal muscle (also known as myosteatosis) is now recognized as a distinct disease from sarcopenia and is directly related to declining muscle capacity. Hence, understanding the origins and regulatory mechanisms of fat infiltration is vital for maintaining skeletal muscle development and improving human health. In this article, we summarized the triggering factors such as aging, metabolic diseases and metabolic syndromes, nonmetabolic diseases, and muscle injury that all induce fat infiltration in skeletal muscle. We discussed recent advances on the cellular origins of fat infiltration and found several cell types including myogenic cells and non-myogenic cells that contribute to myosteatosis. Furthermore, we reviewed the molecular regulatory mechanism, detection methods, and intervention strategies of fat infiltration in skeletal muscle. Based on the current findings, our review will provide new insight into regulating function and lipid metabolism of skeletal muscle and treating muscle-related diseases.
Collapse
Affiliation(s)
- Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | | | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
18
|
Alemany M. The Metabolic Syndrome, a Human Disease. Int J Mol Sci 2024; 25:2251. [PMID: 38396928 PMCID: PMC10888680 DOI: 10.3390/ijms25042251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review focuses on the question of metabolic syndrome (MS) being a complex, but essentially monophyletic, galaxy of associated diseases/disorders, or just a syndrome of related but rather independent pathologies. The human nature of MS (its exceptionality in Nature and its close interdependence with human action and evolution) is presented and discussed. The text also describes the close interdependence of its components, with special emphasis on the description of their interrelations (including their syndromic development and recruitment), as well as their consequences upon energy handling and partition. The main theories on MS's origin and development are presented in relation to hepatic steatosis, type 2 diabetes, and obesity, but encompass most of the MS components described so far. The differential effects of sex and its biological consequences are considered under the light of human social needs and evolution, which are also directly related to MS epidemiology, severity, and relations with senescence. The triggering and maintenance factors of MS are discussed, with especial emphasis on inflammation, a complex process affecting different levels of organization and which is a critical element for MS development. Inflammation is also related to the operation of connective tissue (including the adipose organ) and the widely studied and acknowledged influence of diet. The role of diet composition, including the transcendence of the anaplerotic maintenance of the Krebs cycle from dietary amino acid supply (and its timing), is developed in the context of testosterone and β-estradiol control of the insulin-glycaemia hepatic core system of carbohydrate-triacylglycerol energy handling. The high probability of MS acting as a unique complex biological control system (essentially monophyletic) is presented, together with additional perspectives/considerations on the treatment of this 'very' human disease.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
19
|
Bilski J, Brzozowski T. Special Issue "Adipokines, Myokines, and Physical Exercise in Health and Disease 2.0". Int J Mol Sci 2024; 25:940. [PMID: 38256013 PMCID: PMC10815892 DOI: 10.3390/ijms25020940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
We are pleased to present our Editorial to this Special Issue on "Adipokines, Myokines, and Physical Exercise in Health and Disease 2 [...].
Collapse
Affiliation(s)
- Jan Bilski
- Department of Biomechanics and Kinesiology, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland
| |
Collapse
|
20
|
Xiang Y, Lu W, Mao X, Zou J, Wang J, Xu R, Tang Q. Osteocalcin has a muscle-protective effect during weight loss in men without metabolic syndrome: a multicenter, prospective, observational study. Front Endocrinol (Lausanne) 2023; 14:1308452. [PMID: 38093960 PMCID: PMC10716436 DOI: 10.3389/fendo.2023.1308452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Objective Weight reduction often accompanies muscle loss. Existing studies highlight the involvement of osteocalcin (OC) in energy metabolism and its potential to prevent age-related muscle loss. Nevertheless, these studies predominantly involve individuals with hyperglycemia, yielding conflicting research outcomes. This study investigated the protective role of OC against muscle loss during weight reduction in individuals without metabolic syndrome (MetS). Measures We enrolled 130 overweight or obese individuals without MetS in a 4-month high-protein, energy-restricted dietary weight management program conducted at two clinic centers. Body composition and laboratory tests were assessed both before and after weight loss. Correlation and regression analysis were made between the changes in metabolic indicators and muscle mass during weight loss. Results Following weight loss, there was a decrease in body mass index (BMI), percentage of body fat (PBF), visceral fat area (VFA), fasting insulin (FINS), homeostasis model assessment insulin resistance (HOMA-IR), glycated haemoglobin (HbA1c), and lipid profile, and increase in the percentage of skeletal muscle (PSM) and vitamin D. There was no change in osteocalcin (OC) during the intervention. Correlation analysis of the relative changes in all metabolic indicators revealed a positive correlation between OC and PSM (r=0.383, p=0.002). Multiple linear regression analysis found that OC has a significant protective effect on muscles during weight loss in males after adjusting for confounding factors (β=0.089, p=0.017). Conclusion High-protein, energy-restricted diets demonstrate efficacy in enhancing metabolic indicators within the weight-loss population. Furthermore, OC exhibits a protective effect on muscle mass during weight reduction in individuals without MetS, with this effect being particularly evident in males.
Collapse
Affiliation(s)
- Yi Xiang
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenyi Lu
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaomeng Mao
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Zou
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jialu Wang
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Renying Xu
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingya Tang
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Gabbia D, De Martin S. Targeting the Adipose Tissue-Liver-Gut Microbiota Crosstalk to Cure MASLD. BIOLOGY 2023; 12:1471. [PMID: 38132297 PMCID: PMC10741127 DOI: 10.3390/biology12121471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
The gut microbiota is a complex system, playing a peculiar role in regulating innate and systemic immunity. Increasing evidence links dysfunctional gut microbiota to metabolic dysfunction-associated steatotic liver disease (MASLD) due to the activation of multiple pathways in the gut and in the liver, including those mediated by Toll-like receptors (TLRs), that sustain hepatic inflammation. Thus, many efforts have been made to unravel the role of microbiota-associated dysfunction in MASLD, with the final aim of finding novel strategies to improve liver steatosis and function. Moreover, recent evidence underlines the role of adipose tissue in sustaining hepatic inflammation during MASLD development. In this review, we focus on the recently discovered strategies proposed to improve the alteration of gut microbiota observed in MASLD patients, with a particular insight into those known to modulate gut microbiota-associated dysfunction and to affect the complex crosstalk between the gut, the adipose tissue, and the liver.
Collapse
Affiliation(s)
- Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 351131 Padova, Italy;
| | | |
Collapse
|
22
|
Bilski J, Schramm-Luc A, Szczepanik M, Mazur-Biały AI, Bonior J, Luc K, Zawojska K, Szklarczyk J. Adipokines in Rheumatoid Arthritis: Emerging Biomarkers and Therapeutic Targets. Biomedicines 2023; 11:2998. [PMID: 38001998 PMCID: PMC10669400 DOI: 10.3390/biomedicines11112998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease manifested by joint involvement, extra-articular manifestations, and general symptoms. Adipose tissue, previously perceived as an inert energy storage organ, has been recognised as a significant contributor to RA pathophysiology. Adipokines modulate immune responses, inflammation, and metabolic pathways in RA. Although most adipokines have a pro-inflammatory and aggravating effect on RA, some could counteract this pathological process. The coexistence of RA and sarcopenic obesity (SO) has gained attention due to its impact on disease severity and outcomes. Sarcopenic obesity further contributes to the inflammatory milieu and metabolic disturbances. Recent research has highlighted the intricate crosstalk between adipose tissue and skeletal muscle, suggesting potential interactions between these tissues in RA. This review summarizes the roles of adipokines in RA, particularly in inflammation, immune modulation, and joint destruction. In addition, it explores the emerging role of adipomyokines, specifically irisin and myostatin, in the pathogenesis of RA and their potential as therapeutic targets. We discuss the therapeutic implications of targeting adipokines and adipomyokines in RA management and highlight the challenges and future directions for research in this field.
Collapse
Affiliation(s)
- Jan Bilski
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland; (A.I.M.-B.); (K.Z.)
| | - Agata Schramm-Luc
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; (A.S.-L.); (K.L.)
| | - Marian Szczepanik
- Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-034 Krakow, Poland;
| | - Agnieszka Irena Mazur-Biały
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland; (A.I.M.-B.); (K.Z.)
| | - Joanna Bonior
- Department of Medical Physiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Krakow, Poland; (J.B.); (J.S.)
| | - Kevin Luc
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; (A.S.-L.); (K.L.)
| | - Klaudia Zawojska
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland; (A.I.M.-B.); (K.Z.)
| | - Joanna Szklarczyk
- Department of Medical Physiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Krakow, Poland; (J.B.); (J.S.)
| |
Collapse
|
23
|
Zamboni WC, Charlab R, Burckart GJ, Stewart CF. Effect of Obesity on the Pharmacokinetics and Pharmacodynamics of Anticancer Agents. J Clin Pharmacol 2023; 63 Suppl 2:S85-S102. [PMID: 37942904 DOI: 10.1002/jcph.2326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/12/2023] [Indexed: 11/10/2023]
Abstract
An objective of the Precision Medicine Initiative, launched in 2015 by the US Food and Drug Administration and National Institutes of Health, is to optimize and individualize dosing of drugs, especially anticancer agents, with high pharmacokinetic and pharmacodynamic variability. The American Society of Clinical Oncology recently reported that 40% of obese patients receive insufficient chemotherapy doses and exposures, which may lead to reduced efficacy, and recommended pharmacokinetic studies to guide appropriate dosing in these patients. These issues will only increase in importance as the incidence of obesity in the population increases. This publication reviews the effects of obesity on (1) tumor biology, development of cancer, and antitumor response; (2) pharmacokinetics and pharmacodynamics of small-molecule anticancer drugs; and (3) pharmacokinetics and pharmacodynamics of complex anticancer drugs, such as carrier-mediated agents and biologics. These topics are not only important from a scientific research perspective but also from a drug development and regulator perspective. Thus, it is important to evaluate the effects of obesity on the pharmacokinetics and pharmacodynamics of anticancer agents in all categories of body habitus and especially in patients who are obese and morbidly obese. As the effects of obesity on the pharmacokinetics and pharmacodynamics of anticancer agents may be highly variable across drug types, the optimal dosing metric and algorithm for difference classes of drugs may be widely different. Thus, studies are needed to evaluate current and novel metrics and methods for measuring body habitus as related to optimizing the dose and reducing pharmacokinetic and pharmacodynamic variability of anticancer agents in patients who are obese and morbidly obese.
Collapse
Affiliation(s)
- William C Zamboni
- UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Caroline Institute of Nanomedicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rosane Charlab
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Gilbert J Burckart
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | | |
Collapse
|
24
|
Ruocco C, Malavazos AE, Ragni M, Carruba MO, Valerio A, Iacobellis G, Nisoli E. Amino acids contribute to adaptive thermogenesis. New insights into the mechanisms of action of recent drugs for metabolic disorders are emerging. Pharmacol Res 2023; 195:106892. [PMID: 37619907 DOI: 10.1016/j.phrs.2023.106892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Adaptive thermogenesis is the heat production by muscle contractions (shivering thermogenesis) or brown adipose tissue (BAT) and beige fat (non-shivering thermogenesis) in response to external stimuli, including cold exposure. BAT and beige fat communicate with peripheral organs and the brain through a variegate secretory and absorption processes - controlling adipokines, microRNAs, extracellular vesicles, and metabolites - and have received much attention as potential therapeutic targets for managing obesity-related disorders. The sympathetic nervous system and norepinephrine-releasing adipose tissue macrophages (ATM) activate uncoupling protein 1 (UCP1), expressed explicitly in brown and beige adipocytes, dissolving the electrochemical gradient and uncoupling tricarboxylic acid cycle and the electron transport chain from ATP production. Mounting evidence has attracted attention to the multiple effects of dietary and endogenously synthesised amino acids in BAT thermogenesis and metabolic phenotype in animals and humans. However, the mechanisms implicated in these processes have yet to be conclusively characterized. In the present review article, we aim to define the principal investigation areas in this context, including intestinal microbiota constitution, adipose autophagy modulation, and secretome and metabolic fluxes control, which lead to increased brown/beige thermogenesis. Finally, also based on our recent epicardial adipose tissue results, we summarise the evidence supporting the notion that the new dual and triple agonists of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon (GCG) receptor - with never before seen weight loss and insulin-sensitizing efficacy - promote thermogenic-like amino acid profiles in BAT with robust heat production and likely trigger sympathetic activation and adaptive thermogenesis by controlling amino acid metabolism and ATM expansion in BAT and beige fat.
Collapse
Affiliation(s)
- Chiara Ruocco
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Alexis Elias Malavazos
- Endocrinology Unit, Clinical Nutrition and Cardiovascular Prevention Service, IRCCS Policlinico San Donato, Piazza Edmondo Malan, 2, San Donato Milanese, 20097 Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, via della Commenda, 10, 20122 Milan, Italy
| | - Maurizio Ragni
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Michele O Carruba
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa, 11, 25123 Brescia, Italy
| | - Gianluca Iacobellis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami, 1400 NW 12th Ave, Miami, FL, USA
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy.
| |
Collapse
|
25
|
Sampath SJP, Venkatesan V, Ghosh S, Kotikalapudi N. Obesity, Metabolic Syndrome, and Osteoarthritis-An Updated Review. Curr Obes Rep 2023; 12:308-331. [PMID: 37578613 DOI: 10.1007/s13679-023-00520-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 08/15/2023]
Abstract
PURPOSE OF REVIEW Metabolic syndrome (MetS), also called the 'deadly quartet' comprising obesity, diabetes, dyslipidemia, and hypertension, has been ascertained to have a causal role in the pathogenesis of osteoarthritis (OA). This review is aimed at discussing the current knowledge on the contribution of metabolic syndrome and its various components to OA pathogenesis and progression. RECENT FINDINGS Lately, an increased association identified between the various components of metabolic syndrome (obesity, diabetes, dyslipidemia, and hypertension) with OA has led to the identification of the 'metabolic phenotype' of OA. These metabolic perturbations alongside low-grade systemic inflammation have been identified to inflict detrimental effects upon multiple tissues of the joint including cartilage, bone, and synovium leading to complete joint failure in OA. Recent epidemiological and clinical findings affirm that adipokines significantly contribute to inflammation, tissue degradation, and OA pathogenesis mediated through multiple signaling pathways. OA is no longer perceived as just a 'wear and tear' disease and the involvement of the metabolic components in OA pathogenesis adds up to the complexity of the disease. Given the global surge in obesity and its allied metabolic perturbations, this review aims to throw light on the current knowledge on the pathophysiology of MetS-associated OA and the need to address MetS in the context of metabolic OA management. Better regulation of the constituent factors of MetS could be profitable in preventing MetS-associated OA. The identification of key roles for several metabolic regulators in OA pathogenesis has also opened up newer avenues in the recognition and development of novel therapeutic agents.
Collapse
Affiliation(s)
- Samuel Joshua Pragasam Sampath
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
- Molecular Biology Division, Indian Council of Medical Research - National Institute of Nutrition, Hyderabad, Telangana, 500007, India.
| | | | - Sudip Ghosh
- Molecular Biology Division, Indian Council of Medical Research - National Institute of Nutrition, Hyderabad, Telangana, 500007, India
| | - Nagasuryaprasad Kotikalapudi
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School Teaching Hospital, Boston, MA, 02115, USA
| |
Collapse
|
26
|
Wang W, Gu X, Cao Z, Wang X, Lei Y, Xu X, Wang S, Wu T, Bao Z. A potential correlation between adipokines, skeletal muscle function and bone mineral density in middle-aged and elderly individuals. Lipids Health Dis 2023; 22:111. [PMID: 37525169 PMCID: PMC10388529 DOI: 10.1186/s12944-023-01879-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Evidence exists of a strong association between inflammation and a decrease in skeletal muscle function and bone mineral density (BMD); however, the specific mechanisms of these associations remain unclear. Adipokines, as key regulators of the inflammatory response, may be implicated in these processes. The objective of this study was to explore the potential correlation between adipokines, skeletal muscle function and BMD in middle-aged and elderly individuals. METHODS A comparative cross-sectional study was carried out at the Huadong Hospital Affiliated with Fudan University (Shanghai, China). A total of 460 middle-aged and elderly individuals were recruited, and 125 were enrolled in the analysis. Their biochemical indices, body composition, skeletal muscle function and BMD were measured. Bioinformatic analysis was also employed to identify potential adipokine targets linked to skeletal muscle function and BMD. To validate these targets, plasma and peripheral blood mononuclear cells (PBMCs) were harvested from these individuals and subjected to western blotting (WB) and enzyme-linked immunosorbent assay (ELISA). RESULTS Individuals in this cross-sectional study were categorized into 2 groups according to their median skeletal muscle mass (SMM) (28.8 kg for males and 20.6 kg for females). Individuals with lower SMM exhibited poorer grip strength (P = 0.017), longer 5-Times-Sit-to-Stand Test (FTSST) duration (P = 0.029), lower total hip BMD (P = 0.043), lower femoral neck BMD (P = 0.011) and higher levels of inflammatory markers in comparison with individuals with higher SMM. Bioinformatics analysis identified LEP, ADIPOQ, RBP4, and DPP4 as potential adipokine targets associated with skeletal muscle function and BMD. In vitro experiments demonstrated that individuals with decreased skeletal muscle function and BMD expressed higher levels of these adipokines. CONCLUSIONS Skeletal muscle function is positively correlated with BMD and negatively correlated with levels of inflammatory markers among middle-aged and elderly individuals. Those with lower skeletal muscle function and BMD tend to have a higher expression of LEP, ADIPOQ, RBP4 and DPP4.
Collapse
Affiliation(s)
- Wenhao Wang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, No 221 West Yan-An Road, Shanghai, 200040, China
| | - Xuchao Gu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, No 221 West Yan-An Road, Shanghai, 200040, China
| | - Ziyi Cao
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Xiaojun Wang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, No 221 West Yan-An Road, Shanghai, 200040, China
| | - Yiming Lei
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, No 221 West Yan-An Road, Shanghai, 200040, China
| | - Xiaoli Xu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, No 221 West Yan-An Road, Shanghai, 200040, China
| | - Shiwen Wang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China.
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, No 221 West Yan-An Road, Shanghai, 200040, China.
| | - Tao Wu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, No 221 West Yan-An Road, Shanghai, 200040, China.
| | - Zhijun Bao
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China.
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, No 221 West Yan-An Road, Shanghai, 200040, China.
| |
Collapse
|
27
|
Iwaki M, Kobayashi T, Nogami A, Saito S, Nakajima A, Yoneda M. Impact of Sarcopenia on Non-Alcoholic Fatty Liver Disease. Nutrients 2023; 15:nu15040891. [PMID: 36839249 PMCID: PMC9965462 DOI: 10.3390/nu15040891] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
With the increasing incidence of non-alcoholic fatty liver disease (NAFLD) and the aging of the population, sarcopenia is attracting attention as one of the pathological conditions involved in the development and progression of NAFLD. In NAFLD, sarcopenia is closely associated with insulin resistance and results from the atrophy of skeletal muscle, an insulin target organ. In addition, inflammatory cytokines that promote skeletal muscle protein breakdown, low adiponectin levels leading to decreased insulin sensitivity, and hyperleptinemia are also involved in NAFLD pathogenesis. The presence of sarcopenia is a prognostic factor and increases the risk of mortality in patients with cirrhosis and post-treatment liver cancer. Sarcopenia, the presence of which mainly occurs due to decreased muscle mass, combined with increased visceral fat, can lead to sarcopenia-associated obesity, which increases the risk of NASH, liver fibrosis, and cardiovascular disease. In order to treat sarcopenia, it is necessary to properly evaluate sarcopenia status. Patients with high BMI, as in sarcopenic obesity, may improve with caloric restriction. However, inadequate oral intake may lead to further loss of muscle mass. Aerobic and resistance exercise should also be used appropriately.
Collapse
|