1
|
Xue Y, Song M, Chen X, Ruan Z, Zou H, Lai Y, Yao D, Ung COL, Hu H. Consolidating International Care Models and Clinical Services for Adult Obesity. Curr Obes Rep 2025; 14:26. [PMID: 40153156 DOI: 10.1007/s13679-025-00621-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2025] [Indexed: 03/30/2025]
Abstract
PURPOSE OF REVIEW This paper aims to analyze and consolidate the existing evidence on models of care and clinical obesity services for adults living with obesity 1) to identify the key components of clinical obesity services, and 2) to propose recommendations for future directions of promoting the international development of clinical obesity care. RECENT FINDINGS The key components of clinical obesity services include 1) a contextualized composition of multi-disciplinary teams and mechanisms to empower the healthcare professionals, 2) clear stepwise pathways matching patient needs with appropriate clinical and community resources in a timely manner, 3) comprehensive assessment and individualized treatment plan informed by the evidence-based clinical practice guidelines. Furthermore, clinical information systems and financing resources are instrumental to the effective and sustainable functioning of a comprehensive clinical service with strong connections across primary, secondary and tertiary levels of care. We synthesized these findings to make recommendations for healthcare practitioners, hospital administrations and policymakers in developing and improving comprehensive clinical services to address the needs of adults living with obesity.
Collapse
Affiliation(s)
- Yan Xue
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Menghuan Song
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Centre for Pharmaceutical Regulatory Sciences, University of Macau, Macao, China
| | - Xianwen Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhen Ruan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Huimin Zou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yunfeng Lai
- School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongning Yao
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Carolina Oi Lam Ung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
- Centre for Pharmaceutical Regulatory Sciences, University of Macau, Macao, China.
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao, China.
| | - Hao Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
- Centre for Pharmaceutical Regulatory Sciences, University of Macau, Macao, China.
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao, China.
| |
Collapse
|
2
|
Karras SN, Michalakis K, Katsiki N, Kypraiou M, Vlastos A, Anemoulis M, Koukoulis G, Mouslech Z, Talidis F, Tzimagiorgis G, Haitoglou C, Georgios Μ, Papanikolaou EG, Dimitrios S, Georgopoulos N. Interrelations of Leptin and Interleukin-6 in Vitamin D Deficient and Overweight Orthodox Nuns from Northern Greece: A Pilot Study. Nutrients 2025; 17:1144. [PMID: 40218903 PMCID: PMC11990288 DOI: 10.3390/nu17071144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Athonian fasting, a rigorous form of intermittent fasting practiced by Christian Orthodox nuns and a subset of the Mediterranean diet, has known health benefits, but its impact on the interplay of adipokines, inflammatory cytokines, and vitamin D status remains under-investigated. This study aimed to elucidate these relationships within this controlled dietary context. Methods: This cross-sectional study examined the interplay of leptin, interleukin-6 (IL-6), and vitamin D in 41 overweight, vitamin D-sufficient Christian Orthodox nuns practicing Athonian fasting. Anthropometric, biochemical, and inflammatory markers were assessed in the nuns (mean age 53.4 ± 17.1 years, median monastery stay 17 years, median BMI 26.8 kg/m2). Results: Analysis revealed significant positive correlations between age and monastery stay (r = 0.615, p < 0.001), age and visceral fat (ρ = 0.791, p < 0.001), age and IL-6 (ρ = 0.647, p < 0.001), and BMI and IL-6 (ρ = 0.622, p < 0.001). Strong associations existed between adiposity (BMI, body fat, visceral fat), leptin, and IL-6. Specifically, body fat showed substantial positive correlations with visceral fat (ρ = 0.858, p < 0.001), leptin (ρ = 0.538, p < 0.001), and IL-6 (ρ = 0.675, p < 0.001). Visceral fat demonstrated strong positive correlations with leptin (ρ = 0.613, p < 0.001) and IL-6 (ρ = 0.741, p < 0.001). A significant positive correlation was also observed between leptin and IL-6 (ρ = 0.507, p = 0.003). Conversely, a significant negative correlation was found between 25(OH)D and PTH (ρ = -0.380, p = 0.016). Multivariate regression analysis did not reveal independent effects of leptin or IL-6 after adjusting for other factors. Conclusions: This study reveals a complex interplay of adiposity, inflammation, and vitamin D status in this unique population of Orthodox monastery fasters. The strong correlations suggest potential targets for interventions aimed at improving metabolic health. Future research should investigate the effects of vitamin D within the context of Athonian fasting.
Collapse
Affiliation(s)
- Spyridon N. Karras
- Laboratory of Biological Chemistry, Medical School, Aristotle University, 54124 Thessaloniki, Greece; (G.T.)
| | | | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece;
- School of Medicine, European University Cyprus Nicosia, Nicosia 2404, Cyprus;
| | - Maria Kypraiou
- Assisting Nature Centre of Reproduction and Genetics, 57001 Thessaloniki, Greece;
| | - Antonios Vlastos
- Medical School, Aristotle University, 54124 Thessaloniki, Greece (M.A.)
| | - Marios Anemoulis
- Medical School, Aristotle University, 54124 Thessaloniki, Greece (M.A.)
| | - Georgios Koukoulis
- Department of Endocrinology, University of Thessaly School of Medicine, 41500 Larissa, Greece
| | - Zadalla Mouslech
- 1st Medical Propedeutic, Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | | | - Georgios Tzimagiorgis
- Laboratory of Biological Chemistry, Medical School, Aristotle University, 54124 Thessaloniki, Greece; (G.T.)
| | - Costas Haitoglou
- Laboratory of Biological Chemistry, Medical School, Aristotle University, 54124 Thessaloniki, Greece; (G.T.)
| | - Μichos Georgios
- Third Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | | | - Skoutas Dimitrios
- Thermi Clinic, Internal Medicine and Diabetes Department 14th km National Road Thessalonikis-Moudanion, 57001 Thessaloniki, Greece;
| | - Neoklis Georgopoulos
- Division of Endocrinology, Department of Internal Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece
| |
Collapse
|
3
|
Mezza T, Wewer Albrechtsen NJ, Di Giuseppe G, Ferraro PM, Soldovieri L, Ciccarelli G, Brunetti M, Quero G, Alfieri S, Nista EC, Gasbarrini A, Tondolo V, Mari A, Pontecorvi A, Giaccari A, Holst JJ. Human subjects with impaired beta-cell function and glucose tolerance have higher levels of intra-islet intact GLP-1. Metabolism 2025; 163:156087. [PMID: 39626843 DOI: 10.1016/j.metabol.2024.156087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/08/2024]
Abstract
AIMS A number of studies have suggested that pancreatic α cells produce intact GLP-1, thereby constituting a gut-independent paracrine incretin system. However, the debate on whether human α cells contain intact GLP-1 and whether this relates to the presence of diabetes is still ongoing. This study aimed to determine the presence of proglucagon-derived peptides, including GLP-1 isoforms, in pancreas biopsies obtained during partial pancreatectomy from metabolically profiled human donors, stratified according to pre-surgery glucose tolerance. METHODS We enrolled 61 individuals with no known history of type 2 diabetes (31F/30M, age 64.6 ± 10.6 yrs., BMI 24.2 ± 3.68 kg/m2) scheduled for partial pancreatectomy for periampullary neoplasm. Differences in glucose tolerance and insulin secretion/sensitivity were assessed using preoperative 2 h OGTT, 4 h-Mixed Meal Test and Hyperinsulinemic Euglycemic Clamp. Subjects were subsequently classified as normal glucose tolerant (NGT, n = 19), impaired glucose tolerant (IGT, n = 20) or newly diagnosed diabetes (DM) (n = 22). We measured total GLP-1, intact GLP-1, glucagon, insulin, and C-peptide in pancreas biopsies and plasma from these subjects and correlated the results with their secretory and metabolic parameters. RESULTS Extractable levels of total GLP-1 were 23.9 ± 2.66 pmol/g, while intact GLP-1 levels were 1.15 ± 0.18 pmol/g. When we examined proglucagon derived peptides (adjusted for glucagon levels), in subjects classified according to glucose tolerance, we observed similar levels of total GLP-1, however, intact GLP-1 was significantly increased in IGT and DM groups and inversely associated with beta cell glucose sensitivity and insulin secretion in vivo. CONCLUSIONS Our data show that development of glucose intolerance and beta cell dysfunction are significantly associated with increased levels of intra-islet intact GLP-1, a potentially beneficial adaptation of the paracrine regulation of insulin secretion in type 2 diabetes.
Collapse
Affiliation(s)
- Teresa Mezza
- Pancreas Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Roma, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
| | | | - Gianfranco Di Giuseppe
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Endocrinologia e Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Pietro Manuel Ferraro
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Sezione di Nefrologia, Dipartimento di Medicina, Università degli Studi di Verona, Italy
| | - Laura Soldovieri
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Endocrinologia e Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Gea Ciccarelli
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Endocrinologia e Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Michela Brunetti
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Endocrinologia e Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Giuseppe Quero
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Chirurgia Digestiva, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Sergio Alfieri
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Chirurgia Digestiva, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Enrico Celestino Nista
- Pancreas Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Roma, Italy
| | - Antonio Gasbarrini
- Pancreas Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Roma, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Vincenzo Tondolo
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Digestive Surgery Unit, Ospedale Isola Tiberina - Gemelli Isola, Roma, Italy
| | - Andrea Mari
- Institute of Neuroscience, National Council of Research - Padua (IT), Italy
| | - Alfredo Pontecorvi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Endocrinologia e Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Andrea Giaccari
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Endocrinologia e Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Kokkorakis M, Folkertsma P, Forte JC, Wolffenbuttel BHR, van Dam S, Mantzoros CS. GDF-15 improves the predictive capacity of steatotic liver disease non-invasive tests for incident morbidity and mortality risk for cardio-renal-metabolic diseases and malignancies. Metabolism 2025; 163:156047. [PMID: 39396641 DOI: 10.1016/j.metabol.2024.156047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/28/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND & AIMS Noninvasive tools (NITs) are currently used to stratify the risk of having or developing hepatic steatosis or fibrosis. Their performance and a proteomic-enabled improvement in forecasting long-term cardio-renal-metabolic morbidity, malignancies, as well as cause-specific and all-cause mortality, are lacking. Therefore, the performance of established NITs needs to be investigated in identifying cardio-renal-metabolic morbidity, malignancies, cause-specific and overall mortality and improve their performance with novel, proteomic-enabled NITs, including growth differentiation factor 15 (GDF-15), allowing multipurpose utilization. METHODS 502,359 UK Biobank participants free of the study outcomes at baseline with a 14-year median follow-up were grouped into three categories: a) general population, b) potentially metabolic dysfunction-associated steatotic liver disease (MASLD) population, c) individuals with type 2 diabetes mellitus. The investigated NITs include Aspartate aminotransferase to Platelet Ratio Index (APRI), Fibrosis 4 Index (FIB-4), Fatty Liver Index (FLI), Hepatic Steatosis Index (HSI), Lipid Accumulation Product (LAP), and metabolic dysfunction-associated fibrosis (MAF-5) score. RESULTS Adding GDF-15 to the existing NITs led to significantly increased prognostic performance compared to the traditional NITs in almost all instances, reaching substantially high C-indices, ranging between 0.601 and 0.808, with an overall >0.2 improvement in C-index. Overall, with the GDF-15 enhanced NITs, up to more than seven times fewer individuals need to be screened to identify more incident cases of adverse outcomes compared to the traditional NITs. The cumulative incidence of all outcomes, based on the continuous value percentiles of NITs, is increasing exponentially in the upper quintile of the GDF-15 enhanced NITs. CONCLUSIONS The herein-developed GDF-15 enhanced indices demonstrate higher screening effectiveness and significantly improved prognostic abilities, which are reduced to practice through an easy-to-use web-based calculator tool (https://clinicalpredictor.shinyapps.io/multimorbidity-mortality-risk/).
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Pytrik Folkertsma
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - José Castela Forte
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bruce H R Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sipko van Dam
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Medicine, Boston VA Healthcare System, Boston, MA, USA
| |
Collapse
|
5
|
Kokkorakis M, Chakhtoura M, Rhayem C, Al Rifai J, Ghezzawi M, Valenzuela-Vallejo L, Mantzoros CS. Emerging pharmacotherapies for obesity: A systematic review. Pharmacol Rev 2025; 77:100002. [PMID: 39952695 DOI: 10.1124/pharmrev.123.001045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
The history of antiobesity pharmacotherapies is marked by disappointments, often entangled with societal pressure promoting weight loss and the prevailing conviction that excess body weight signifies a lack of willpower. However, categories of emerging pharmacotherapies generate hope to reduce obesity rates. This systematic review of phase 2 and phase 3 trials in adults with overweight/obesity investigates the effect of novel weight loss pharmacotherapies, compared to placebo/control or US Food and Drug Administration-approved weight loss medication, through searching Medline, Embase, and ClinicalTrials.gov (2012-2024). We identified 53 phase 3 and phase 2 trials, with 36 emerging antiobesity drugs or combinations thereof and 4 withdrawn or terminated trials. Oral semaglutide 50 mg is the only medication that has completed a phase 3 trial. There are 14 ongoing phase 3 trials on glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) (ecnoglutide, orforglipron, and TG103), GLP-1 RA/amylin agonist (CagriSema), GLP-1/glucagon RAs (mazdutide and survodutide), GLP-1/glucose-dependent insulinotropic polypeptide and glucagon RA (retatrutide), dapagliflozin, and the combination sibutramine/topiramate. Completed phase 2 trials on incretin-based therapies showed a mean percent weight loss of 7.4% to 24.2%. Almost half of the drugs undergoing phase 2 trials are incretin analogs. The obesity drug pipeline is expanding rapidly, with the most promising results reported with incretin analogs. Data on mortality and obesity-related complications, such as cardio-renal-metabolic events, are needed. Moreover, long-term follow-up data on the safety and efficacy of weight maintenance with novel obesity pharmacotherapies, along with studies focused on underrepresented populations, cost-effectiveness assessments, and drug availability, are needed to bridge the care gap for patients with obesity. SIGNIFICANCE STATEMENT: Obesity is the epidemic of the 21st century. Except for the newer injectable medications, drugs with suboptimal efficacy have been available in the clinician's armamentarium for weight management. However, emerging alternatives of novel agents and combinations populate the current obesity therapeutic pipeline. This systematic review identifies the state and mechanism of action of emerging pharmacotherapies undergoing or having completed phase 2 and phase 3 clinical trials. The information provided herein furthers the understanding of obesity management, implying direct clinical implications and stimulating research initiatives.
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marlene Chakhtoura
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| | - Caline Rhayem
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Jana Al Rifai
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Malak Ghezzawi
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Laura Valenzuela-Vallejo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; VA Boston Healthcare System, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
6
|
Kokkorakis M, Folkertsma P, Anagnostakis F, Sirotin N, Agarwal M, Shantouf R, Henning RH, Pijl H, Wolffenbuttel BHR, Bax JJ, Atsma DE, Castela Forte J, Mantzoros CS, van Dam S. Simplifying coronary artery disease risk stratification: development and validation of a questionnaire-based alternative comparable to clinical risk tools. EBioMedicine 2025; 111:105518. [PMID: 39724785 PMCID: PMC11732493 DOI: 10.1016/j.ebiom.2024.105518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Coronary artery disease (CAD) comprises one of the leading causes of morbidity and mortality both in the European population and globally. All established clinical risk stratification scores and models require blood lipids and physical measurements. The latest reports of the European Commission suggest that attracting health professionals to collect these data can be challenging, both from a logistic and cost perspective, which limits the usefulness of established models and makes them unsuitable for population-wide screening in resource-limited settings, i.e., rural areas. Therefore, the aim of this study was to develop and externally validate a questionnaire-based risk stratification model on a population scale at minimal cost, i.e., the Questionnaire-Based Evaluation for Estimating Coronary Artery Disease (QUES-CAD) to stratify the 10-year incidence of coronary artery disease. METHODS Cox proportional hazards (CoxPH) and Cox gradient boosting (CoxGBT) models were trained with 10-fold cross-validation using combinations of ten questionnaire variables on the White population of the UK Biobank (n = 448,818) and internally validated the models in all ethnic minorities (n = 27,433). The Lifelines cohort was employed as an independent external validation population (n = 97,770). Additionally, we compared QUES-CAD's performance, containing only questionnaire variables, to clinically established risk prediction tools, i.e., Framingham Coronary Heart Disease Risk Score, American College of Cardiology/American Heart Association pooled cohort equation, World Health Organization cardiovascular disease risk charts, and Systematic Coronary Risk Estimation 2 (SCORE2). We conducted partial log-likelihood ratio (PLR) tests and C-index comparisons between QUES-CAD and established clinical prediction models. FINDINGS In the external validation set, QUES-CAD exhibited C-index values of CoxPH: 0.692 (95% Confidence Interval [CI]: 0.673-0.71) and CoxGBT: 0.699 (95% CI: 0.681-0.717) for the male population and CoxPH: 0.771 (95% CI: 0.748-0.794) and CoxGBT: 0.759 (95% CI: 0.736-0.783) for the female population. The addition of measurement-based variables and variables that require a prior medical examination (i.e., insulin use, number of treatments/medications taken, prevalent cardiovascular disease [other than CAD, and stroke diagnosed by a doctor]) and the further addition of biomarkers/other measurements (i.e., high-density lipoprotein [HDL] cholesterol, total cholesterol, and glycated haemoglobin) did not significantly improve QUES-CAD's performance in most instances. C-index comparisons and PLR tests showed that QUES-CAD performs and fits the data at least as well as the clinical prediction models. INTERPRETATION QUES-CAD performs comparably to established clinical prediction models and enables a population-wide identification of high-risk individuals for CAD. The model developed and validated herein relies solely on ten questionnaire variables, overcoming the limitations of existing models that depend on physical measurements or biomarkers. FUNDING University Medical Center Groningen.
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Pytrik Folkertsma
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Filippos Anagnostakis
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA; Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Nicole Sirotin
- Department of Preventive Medicine, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Manyoo Agarwal
- Heart, Vascular and Thoracic Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ronney Shantouf
- Heart, Vascular and Thoracic Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Robert H Henning
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Hanno Pijl
- Department of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
| | - Bruce H R Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Douwe E Atsma
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands; National eHealth Living Lab, Leiden, Netherlands; Department of Design, Organization and Strategy, Faculty of Industrial Design Engineering, Delft University of Technology, Delft, Netherlands
| | - José Castela Forte
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| | - Sipko van Dam
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
7
|
Tewari J, Qidwai KA, Tewari A, Kaur S, Tewari V, Maheshwari A. Efficacy and safety of triple hormone receptor agonist retatrutide for the management of obesity: a systematic review and meta-analysis. Expert Rev Clin Pharmacol 2025; 18:51-66. [PMID: 39817343 DOI: 10.1080/17512433.2025.2450254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
INTRODUCTION Retatrutide is a novel triple hormone receptor agonist which has shown great promise in tackling obesity in preliminary trials. We did this systematic review and meta-analysis to pool the results of all available trials and ascertain its safety and efficacy in the treatment of obesity. MATERIAL AND METHODS A literature search was conducted in PubMed, Cochrane Central and Embase using appropriate search terms and randomized control trials (RCTs) were identified which reported the safety and efficacy of retatrutide. Data was pooled using mean differences for continuous variables and risk ratios for the safety profile in RStudio. RESULTS After the initial search four RCTs were included in the analysis which compared the safety and efficacy of retatrutide versus placebo. Retatrutide showed a dose dependent relationship with the 12 mg dose causing the maximum reductions across all the outcomes considered. The safety profile of retatrutide was found to be comparable to the control group. CONCLUSION In conclusion our analysis found retatrutide to be clinically and statistically better than placebo in the various studies outcomes. We eagerly await the conduction of further trials for more robust and substantial results. PROTOCOL REGISTRATION www.crd.york.ac.uk/prospero identifier is CRD42024566153.
Collapse
Affiliation(s)
- Jay Tewari
- Department of Internal Medicine, King George's Medical University, Lucknow, India
| | | | - Ajoy Tewari
- Department of Internal Medicine, HIND Institute of Medical Sciences, Barabanki, India
| | - Savneet Kaur
- Department of Internal Medicine, Himalayan Institute of Medical Sciences, Jollygrant, Dehradun, India
| | - Vineeta Tewari
- Department of Anatomy, Era's Lucknow Medical College & Hospital, Lucknow, India
| | - Anuj Maheshwari
- Department of Internal Medicine, HIND Institute of Medical Sciences, Barabanki, India
| |
Collapse
|
8
|
Perakakis N, Mantzoros CS. Evidence from clinical studies of leptin: current and future clinical applications in humans. Metabolism 2024; 161:156053. [PMID: 39490439 DOI: 10.1016/j.metabol.2024.156053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Leptin has been established as the prototype adipose tissue secreted hormone and as a major regulator of several human physiology functions. Here, we are primarily reviewing the findings from studies in humans involving leptin administration. We are describing the metabolic, endocrine and immunologic effects of leptin replacement in conditions of leptin deficiency, such as short-term fasting in healthy individuals, relative energy deficiency in sports (REDS), congenital leptin deficiency (CLD), generalized (GL) and partial lipodystrophy (PL), HIV-associated lipodystrophy (HIV-L) and of leptin treatment in conditions of leptin excess (common obesity, type 2 diabetes, steatotic liver disease). We are comparing the results with the findings from preclinical models and present the main conclusions regarding the role of leptin in human physiology, pathophysiology and therapeutics. We conclude that, in conditions of energy deficiency, leptin substitution effectively reduces body weight and fat mass through reduction of appetite, it improves hypertriglyceridemia, insulin resistance and hepatic steatosis (especially in GL and PL), it restores neuroendocrine function (especially the gonadotropic axis), it regulates adaptive immune system cell populations and it improves bone health. On the contrary, leptin treatment in conditions of leptin excess, such as common obesity and type 2 diabetes, does not improve any metabolic abnormalities. Strategies to overcome leptin tolerance/resistance in obesity and type 2 diabetes have provided promising results in animal studies, which should though be tested in humans in randomized clinical trials.
Collapse
Affiliation(s)
- Nikolaos Perakakis
- Division of Metabolic and Vascular Medicine, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
| | - Christos S Mantzoros
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Stefanakis K, Kokkorakis M, Mantzoros CS. The impact of weight loss on fat-free mass, muscle, bone and hematopoiesis health: Implications for emerging pharmacotherapies aiming at fat reduction and lean mass preservation. Metabolism 2024; 161:156057. [PMID: 39481534 DOI: 10.1016/j.metabol.2024.156057] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Similar to bariatric surgery, incretin receptor agonists have revolutionized the treatment of obesity, achieving up to 15-25 % weight loss in many patients, i.e., at a rate approaching that achieved with bariatric surgery. However, over 25 % of total weight lost from both surgery and pharmacotherapy typically comes from fat-free mass, including skeletal muscle mass, which is often overlooked and can impair metabolic health and increase the risk of subsequent sarcopenic obesity. Loss of muscle and bone as well as anemia can compromise physical function, metabolic rate, and overall health, especially in older adults. The myostatin-activin-follistatin-inhibin system, originally implicated in reproductive function and subsequently muscle regulation, appears to be crucial for muscle and bone maintenance during weight loss. Activins and myostatin promote muscle degradation, while follistatins inhibit their activity in states of negative energy balance, thereby preserving lean mass. Novel compounds in the pipeline, such as Bimagrumab, Trevogrumab, and Garetosmab-which inhibit activin and myostatin signaling-have demonstrated promise in preventing muscle loss while promoting fat loss. Either alone or combined with incretin receptor agonists, these medications may enhance fat loss while preserving or even increasing muscle and bone mass, offering a potential solution for improving body composition and metabolic health during significant weight loss. Since this dual therapeutic approach could help address the challenges of muscle and bone loss during weight loss, well-designed studies are needed to optimize these strategies and assess long-term benefits. For the time being, considerations like advanced age and prefrailty may affect the choice of suitable candidates in clinical practice for current and emerging anti-obesity medications due to the associated risk of sarcopenia.
Collapse
Affiliation(s)
- Konstantinos Stefanakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Reimer RA, Theis S, Zanzer YC. The effects of chicory inulin-type fructans supplementation on weight management outcomes: systematic review, meta-analysis, and meta-regression of randomized controlled trials. Am J Clin Nutr 2024; 120:1245-1258. [PMID: 39313030 PMCID: PMC11600113 DOI: 10.1016/j.ajcnut.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/26/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Excess body weight and adiposity can adversely affect metabolic health. Prebiotics such as inulin-type fructans (ITFs) from chicory root are known to modulate gut microbiota and may improve body weight regulation. OBJECTIVES This study aimed to assess evidence for chicory ITF supplementation to support weight management. METHODS Eligible articles (initial search to 2021, updated to February 2023) were searched from EMBASE, MEDLINE (PubMed), and Cochrane Library. Data on primary (body weight) and secondary outcomes [body mass index (BMI), total fat mass, body fat percentage, and waist circumference] were extracted by 2 reviewers independently. Random-effects model using inverse-variance method was used. Subgroup analysis (health status and ITF type) and meta-regression (dose and duration) were evaluated. RESULTS A total of 32 eligible studies were included. Chicory ITF significantly reduced body weight [mean difference (MD): -0.97 kg; 95% CI: -1.34, -0.59); n = 1184] compared with placebo. ITF favored overall effects reduction in BMI (MD: -0.39 kg/m2; 95% CI: -0.57, -0.20; n = 985), fat mass (MD: -0.37 kg; 95% CI: -0.61, -0.13; n = 397), waist circumference (MD: -1.03 cm; 95% CI: -1.69, -0.37; n = 604), and for intervention duration of >8 wk, body fat percentage (MD: -0.78%; 95% CI: -1.17, -0.39; n = 488). Except for considerable heterogeneity in body weight (I2: 73%) and body fat percentage (I2: 75%), all other outcomes had negligible to moderate heterogeneity. Significant reduction in body weight, BMI, and waist circumference was evident irrespective of participants' health status. There was minimal evidence that dose, duration, or type of ITF influenced the magnitude of reductions in outcomes. CONCLUSIONS Chicory ITF supplementation may benefit weight management by reducing body weight, BMI, fat mass, waist circumference, and, to a certain extent, body fat percentage. This systematic review with meta-analysis was registered at PROSPERO as CRD42020184908.
Collapse
Affiliation(s)
- Raylene A Reimer
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, Heritage Medical Research Building, Calgary, Alberta, Canada.
| | - Stephan Theis
- BENEO Institute c/o BENEO GmbH, Obrigheim/Pfalz, Germany
| | | |
Collapse
|
11
|
Angelidi AM, Sanoudou D, Hill MA, Mantzoros CS. Management of patients with the cardio renal liver metabolic syndrome: The need for a multidisciplinary approach in research, education and practice. Metabolism 2024; 159:155997. [PMID: 39142601 DOI: 10.1016/j.metabol.2024.155997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Affiliation(s)
- Angeliki M Angelidi
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA 02115, USA
| | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Michael A Hill
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
12
|
Yeh ML, Huang JF, Dai CY, Huang CF, Yu ML, Chuang WL. Metabolic dysfunction-associated steatotic liver disease and diabetes: the cross-talk between hepatologist and diabetologist. Expert Rev Gastroenterol Hepatol 2024; 18:431-439. [PMID: 39099428 DOI: 10.1080/17474124.2024.2388790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
INTRODUCTION Metabolic dysfunction-associated steatotic liver disease (MASLD) and type 2 diabetes mellitus (DM) are the most prevalent metabolic disorders globally. The numbers affected in both disorders are also rapidly increasing with alarming trends in children and young adults. AREAS COVERED Insulin resistance (IR) and the subsequent metabolic dysregulation are the fundamental pathogenesis pathways of the prevalent metabolic disorders. The interaction and impacts are bidirectional between MASLD and DM in terms of disease mechanisms, disease course, risks, and prognosis. There's a pressing issue for highlighting the links between MASLD and DM for both care specialists and primary care providers. The review collected the scientific evidence addressing the mutual interactions between the two disorders. The strategies for surveillance, risk stratification, and management are discussed in a practical manner. It also provides individualized viewpoints of patient care in hepatology and diabetology. EXPERT OPINION Both MASLD and DM shared similar disease mechanisms, and affected the disease development and progression in a bidirectional manner. The high prevalence and the cross-link between the two disorders raise clinical issues from awareness, screening, risk stratification, optimal referral, to appropriate management for primary care providers.
Collapse
Affiliation(s)
- Ming-Lun Yeh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yen Dai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Feng Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine and Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
13
|
Kokkorakis M, Muzurović E, Volčanšek Š, Chakhtoura M, Hill MA, Mikhailidis DP, Mantzoros CS. Steatotic Liver Disease: Pathophysiology and Emerging Pharmacotherapies. Pharmacol Rev 2024; 76:454-499. [PMID: 38697855 DOI: 10.1124/pharmrev.123.001087] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 05/05/2024] Open
Abstract
Steatotic liver disease (SLD) displays a dynamic and complex disease phenotype. Consequently, the metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH) therapeutic pipeline is expanding rapidly and in multiple directions. In parallel, noninvasive tools for diagnosing and monitoring responses to therapeutic interventions are being studied, and clinically feasible findings are being explored as primary outcomes in interventional trials. The realization that distinct subgroups exist under the umbrella of SLD should guide more precise and personalized treatment recommendations and facilitate advancements in pharmacotherapeutics. This review summarizes recent updates of pathophysiology-based nomenclature and outlines both effective pharmacotherapeutics and those in the pipeline for MASLD/MASH, detailing their mode of action and the current status of phase 2 and 3 clinical trials. Of the extensive arsenal of pharmacotherapeutics in the MASLD/MASH pipeline, several have been rejected, whereas other, mainly monotherapy options, have shown only marginal benefits and are now being tested as part of combination therapies, yet others are still in development as monotherapies. Although the Food and Drug Administration (FDA) has recently approved resmetirom, additional therapeutic approaches in development will ideally target MASH and fibrosis while improving cardiometabolic risk factors. Due to the urgent need for the development of novel therapeutic strategies and the potential availability of safety and tolerability data, repurposing existing and approved drugs is an appealing option. Finally, it is essential to highlight that SLD and, by extension, MASLD should be recognized and approached as a systemic disease affecting multiple organs, with the vigorous implementation of interdisciplinary and coordinated action plans. SIGNIFICANCE STATEMENT: Steatotic liver disease (SLD), including metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis, is the most prevalent chronic liver condition, affecting more than one-fourth of the global population. This review aims to provide the most recent information regarding SLD pathophysiology, diagnosis, and management according to the latest advancements in the guidelines and clinical trials. Collectively, it is hoped that the information provided furthers the understanding of the current state of SLD with direct clinical implications and stimulates research initiatives.
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Emir Muzurović
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Špela Volčanšek
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Marlene Chakhtoura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Michael A Hill
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Dimitri P Mikhailidis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| |
Collapse
|
14
|
Kokkorakis M, Boutari C, Hill MA, Kotsis V, Loomba R, Sanyal AJ, Mantzoros CS. Resmetirom, the first approved drug for the management of metabolic dysfunction-associated steatohepatitis: Trials, opportunities, and challenges. Metabolism 2024; 154:155835. [PMID: 38508373 DOI: 10.1016/j.metabol.2024.155835] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Chrysoula Boutari
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michael A Hill
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Vasilios Kotsis
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University Thessaloniki, Greece
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, CA, USA
| | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Kokkinos A, Tsilingiris D, Simati S, Stefanakis K, Angelidi AM, Tentolouris N, Anastasiou IA, Connelly MA, Alexandrou A, Mantzoros CS. Bariatric surgery, through beneficial effects on underlying mechanisms, improves cardiorenal and liver metabolic risk over an average of ten years of observation: A longitudinal and a case-control study. Metabolism 2024; 152:155773. [PMID: 38181882 PMCID: PMC10872266 DOI: 10.1016/j.metabol.2023.155773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/13/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Bariatric surgery has long-term beneficial effects on body weight and metabolic status, but there is an apparent lack of comprehensive cardiometabolic, renal, liver, and metabolomic/lipidomic panels, whereas the underlying mechanisms driving the observed postoperative ameliorations are still poorly investigated. We aimed to study the long-term effects of bariatric surgery on metabolic profile, cardiorenal and liver outcomes in association with underlying postoperative gut hormone adaptations. METHODS 28 individuals who underwent bariatric surgery [17 sleeve gastrectomy (SG), 11 Roux-en-Y gastric bypass (RYGB)] were followed up 3, 6 and 12 and at 10 years following surgery. Participants at 10 years were cross-sectionally compared with an age-, sex- and adiposity-matched group of non-operated individuals (n = 9) and an age-matched pilot group of normal-weight individuals (n = 4). RESULTS There were durable effects of surgery on body weight and composition, with an increase of lean mass percentage persisting despite some weight regain 10 years postoperatively. The improvements in metabolic and lipoprotein profiles, cardiometabolic risk markers, echocardiographic and cardiorenal outcomes persisted over the ten-year observation period. The robust improvements in insulin resistance, adipokines, activin/follistatin components and postprandial gastrointestinal peptide levels persisted 10 years postoperatively. These effects were largely independent of surgery type, except for a lasting reduction of ghrelin in the SG subgroup, and more pronounced increases in proglucagon products, mainly glicentin and oxyntomodulin, and in the cardiovascular risk marker Trimethylamine-N-oxide (TMAO) within the RYGB subgroup. Despite similar demographic and clinical features, participants 10 years after surgery showed a more favorable metabolic profile compared with the control group, in conjunction with a dramatic increase of postprandial proglucagon product secretion. CONCLUSIONS We demonstrate that cardiorenal and metabolic benefits of bariatric surgery remain robust and largely unchanged ten years postoperatively and are associated with durable effects on gastrointestinal- muscle- and adipose tissue-secreted hormones. TRIAL REGISTRATION ClinicalTrials.gov: NCT04170010.
Collapse
Affiliation(s)
- Alexander Kokkinos
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Dimitrios Tsilingiris
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Stamatia Simati
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Konstantinos Stefanakis
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece; Department of Internal Medicine, Boston VA Healthcare System, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Angeliki M Angelidi
- Department of Internal Medicine, Boston VA Healthcare System, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Nikolaos Tentolouris
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Ioanna A Anastasiou
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | | | - Andreas Alexandrou
- First Department of Surgery, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Christos S Mantzoros
- Department of Internal Medicine, Boston VA Healthcare System, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
16
|
Boutari C, Kokkorakis M, Stefanakis K, Valenzuela-Vallejo L, Axarloglou E, Volčanšek Š, Chakhtoura M, Mantzoros CS. Recent research advances in metabolism, clinical and experimental. Metabolism 2023; 149:155722. [PMID: 37931873 DOI: 10.1016/j.metabol.2023.155722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Affiliation(s)
- Chrysoula Boutari
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America
| | - Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America
| | - Konstantinos Stefanakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America
| | - Laura Valenzuela-Vallejo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America
| | - Evangelos Axarloglou
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America
| | - Špela Volčanšek
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Zaloska 7, 1000 Ljubljana, Slovenia; Medical Faculty Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Marlene Chakhtoura
- Department of Internal Medicine, Division of Endocrinology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Boston VA Healthcare System, Boston, MA 02130, United States of America.
| |
Collapse
|
17
|
Xue Y, Zou H, Ruan Z, Chen X, Lai Y, Yao D, Ung COL, Hu H. Pharmacoeconomic evaluation of anti-obesity drugs for chronic weight management: a systematic review of literature. Front Endocrinol (Lausanne) 2023; 14:1254398. [PMID: 38027186 PMCID: PMC10658190 DOI: 10.3389/fendo.2023.1254398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Pharmacological therapy is recommended as a second-line alternative to reverse obesity. Currently, five anti-obesity drugs (AODs) have been approved by the U.S. Food and Drug Administration (FDA) for chronic weight management. The aim of this paper is to investigate the pharmacoeconomic evaluation of AODs through a systematic review with a special focus on methodological considerations. Methods We searched the general and specific databases to identify the primary pharmacoeconomic evaluation of AODs. Results A total of 18 full-text articles and three conference abstracts were included in this review. Most of the economic assessments were still about Orlistat. And the observations we could make were consistent with the previous systematic review. A few studies were on the combined therapies (i.e. PHEN/TPM ER and NB ER) compared to different comparators, which could hardly lead to a generalized summary of the cost-effectiveness. Most recently, pharmacoeconomic evidence on the newest GLP 1 RA approved for the indication of obesity or obesity with at least one comorbidity emerged gradually. Modelling-based cost-utility analysis is the major type of assessment method. In the modelling studies, a manageable number of the key health states and the state transitions were structured to capture the disease progression. In particular, the principal structure of the decision model adopted in the three studies on the newly approved drug was nearly the same, which enables more in-depth comparisons and generalizations of the findings. Conclusion This study provided an up-to-date overview of the strengths and areas for improvement in the methodological design of the pharmacoeconomic evaluation of the licensed drugs for chronic weight management. Future modelling evaluations would benefit from a better understanding of the long-term weight loss effects of the current therapeutic options and the weight rebound process after the discontinuation of treatment. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022302648, identifier CRD42022302648.
Collapse
Affiliation(s)
- Yan Xue
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Huimin Zou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Zhen Ruan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Xianwen Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Yunfeng Lai
- School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongning Yao
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Carolina Oi Lam Ung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao, Macao SAR, China
| | - Hao Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao, Macao SAR, China
| |
Collapse
|
18
|
Katsarou A, Kouvari M, Hill MA, Mantzoros CS. Metabolically unhealthy obesity, sarcopenia and their interactions in obesity pathophysiology and therapeutics: Room for improvement in pharmacotherapy. Metabolism 2023; 149:155714. [PMID: 39491165 DOI: 10.1016/j.metabol.2023.155714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Affiliation(s)
- Angeliki Katsarou
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Matina Kouvari
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Michael A Hill
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Medicine, Boston VA Healthcare System, Boston, MA, USA
| |
Collapse
|
19
|
Bairqdar A, Shakhtshneider E, Ivanoshchuk D, Mikhailova S, Kashtanova E, Shramko V, Polonskaya Y, Ragino Y. Rare Variants of Obesity-Associated Genes in Young Adults with Abdominal Obesity. J Pers Med 2023; 13:1500. [PMID: 37888112 PMCID: PMC10608506 DOI: 10.3390/jpm13101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
The increase in the prevalence of overweight, obesity and associated diseases is a serious problem. The aim of the study was to identify rare variants in obesity-associated genes in young adults with abdominal obesity in our population and to analyze information about these variants in other populations. Targeted high-throughput sequencing of obesity-associated genes was performed (203 young adults with an abdominal obesity phenotype). In our study, all of the 203 young adults with abdominal obesity had some rare variant in the genes associated with obesity. The widest range of rare and common variants was presented in ADIPOQ, FTO, GLP1R, GHRL, and INS genes. The use of targeted sequencing and clinical criteria makes it possible to identify carriers of rare clinically significant variants in a wide range of obesity-associated genes and to investigate their influence on phenotypic manifestations of abdominal obesity.
Collapse
Affiliation(s)
- Ahmad Bairqdar
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia; (A.B.)
- Department of Genetics, Novosibirsk State University, Pirogova Str., 1, 630090 Novosibirsk, Russia
| | - Elena Shakhtshneider
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia; (A.B.)
- Institute of Internal and Preventive Medicine, Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia
| | - Dinara Ivanoshchuk
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia; (A.B.)
- Institute of Internal and Preventive Medicine, Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia
| | - Svetlana Mikhailova
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia; (A.B.)
| | - Elena Kashtanova
- Institute of Internal and Preventive Medicine, Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia
| | - Viktoriya Shramko
- Institute of Internal and Preventive Medicine, Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia
| | - Yana Polonskaya
- Institute of Internal and Preventive Medicine, Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia
| | - Yuliya Ragino
- Institute of Internal and Preventive Medicine, Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia
| |
Collapse
|
20
|
Kokkorakis M, Folkertsma P, van Dam S, Sirotin N, Taheri S, Chagoury O, Idaghdour Y, Henning RH, Forte JC, Mantzoros CS, de Vries DH, Wolffenbuttel BH. Effective questionnaire-based prediction models for type 2 diabetes across several ethnicities: a model development and validation study. EClinicalMedicine 2023; 64:102235. [PMID: 37936659 PMCID: PMC10626169 DOI: 10.1016/j.eclinm.2023.102235] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/10/2023] [Accepted: 09/08/2023] [Indexed: 11/09/2023] Open
Abstract
Background Type 2 diabetes disproportionately affects individuals of non-White ethnicity through a complex interaction of multiple factors. Therefore, early disease detection and prediction are essential and require tools that can be deployed on a large scale. We aimed to tackle this problem by developing questionnaire-based prediction models for type 2 diabetes prevalence and incidence for multiple ethnicities. Methods In this proof of principle analysis, logistic regression models to predict type 2 diabetes prevalence and incidence, using questionnaire-only variables reflecting health state and lifestyle, were trained on the White population of the UK Biobank (n = 472,696 total, aged 37-73 years, data collected 2006-2010) and validated in five other ethnicities (n = 29,811 total) and externally in Lifelines (n = 168,205 total, aged 0-93 years, collected between 2006 and 2013). In total, 631,748 individuals were included for prevalence prediction and 67,083 individuals for the eight-year incidence prediction. Type 2 diabetes prevalence in the UK Biobank ranged between 6% in the White population to 23.3% in the South Asian population, while in Lifelines, the prevalence was 1.9%. Predictive accuracy was evaluated using the area under the receiver operating characteristic curve (AUC), and a detailed sensitivity analysis was conducted to assess potential clinical utility. We compared the questionnaire-only models to models containing physical measurements and biomarkers as well as to clinical non-laboratory type 2 diabetes risk tools and conducted a reclassification analysis. Findings Our algorithms accurately predicted type 2 diabetes prevalence (AUC = 0.901) and eight-year incidence (AUC = 0.873) in the White UK Biobank population. Both models replicated well in the Lifelines external validation, with AUCs of 0.917 and 0.817 for prevalence and incidence, respectively. Both models performed consistently well across different ethnicities, with AUCs of 0.855-0.894 for prevalence and 0.819-0.883 for incidence. These models generally outperformed two clinically validated non-laboratory tools and correctly reclassified >3,000 additional cases. Model performance improved with the addition of blood biomarkers but not with the addition of physical measurements. Interpretation Our findings suggest that easy-to-implement, questionnaire-based models could be used to predict prevalent and incident type 2 diabetes with high accuracy across several ethnicities, providing a highly scalable solution for population-wide risk stratification. Future work should determine the effectiveness of these models in identifying undiagnosed type 2 diabetes, validated in cohorts of different populations and ethnic representation. Funding University Medical Center Groningen.
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Pytrik Folkertsma
- Ancora Health B.V., Groningen, Netherlands
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Sipko van Dam
- Ancora Health B.V., Groningen, Netherlands
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nicole Sirotin
- Department of Preventive Medicine, Cleveland Clinic Abu Dhabi, Al Maryah Island, Abu Dhabi, United Arab Emirates
| | - Shahrad Taheri
- National Obesity Treatment Centre, Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar
- Department of Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Odette Chagoury
- National Obesity Treatment Centre, Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar
- Department of Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Youssef Idaghdour
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Robert H. Henning
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - José Castela Forte
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Ancora Health B.V., Groningen, Netherlands
| | - Christos S. Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Boston VA Healthcare System, Boston, MA, USA
| | - Dylan H. de Vries
- Ancora Health B.V., Groningen, Netherlands
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Bruce H.R. Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|