1
|
Abstract
Fungi exhibit an enormous variety of morphologies, including yeast colonies, hyphal mycelia, and elaborate fruiting bodies. This diversity arises through a combination of polar growth, cell division, and cell fusion. Because fungal cells are nonmotile and surrounded by a protective cell wall that is essential for cell integrity, potential fusion partners must grow toward each other until they touch and then degrade the intervening cell walls without impacting cell integrity. Here, we review recent progress on understanding how fungi overcome these challenges. Extracellular chemoattractants, including small peptide pheromones, mediate communication between potential fusion partners, promoting the local activation of core cell polarity regulators to orient polar growth and cell wall degradation. However, in crowded environments, pheromone gradients can be complex and potentially confusing, raising the question of how cells can effectively find their partners. Recent findings suggest that the cell polarity circuit exhibits searching behavior that can respond to pheromone cues through a remarkably flexible and effective strategy called exploratory polarization.
Collapse
|
2
|
Xie XL, Wei Y, Song YY, Pan GM, Chen LN, Wang G, Zhang SH. Genetic Analysis of Four Sexual Differentiation Process Proteins (isp4/SDPs) in Chaetomium thermophilum and Thermomyces lanuginosus Reveals Their Distinct Roles in Development. Front Microbiol 2020; 10:2994. [PMID: 31969873 PMCID: PMC6956688 DOI: 10.3389/fmicb.2019.02994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/10/2019] [Indexed: 12/29/2022] Open
Abstract
Fungal sexual development requires the involvement of a large number of functional genes. Fungal genes encoding sexual differentiation process proteins (SDPs), isps, have been known for decades. isp4/SDP and its homologs function as oligopeptide transporters (OPTs), yet their roles in reproduction are unknown. Here, we genetically analyzed all four isp4/SDP homologs in the sexual species Chaetomium thermophilum and asexual species Thermomyces lanuginosus. Using single gene deletion mutants, we found that T. lanuginosus SDP (TlSDP) participated in asexual sporulation, whereas the other homologs participated in sexual morphogenesis. In complementary tests, C. thermophilum SDPs (CtSDP1-3) restored sporulation defects in TlSDP deletion strains (ΔTlSDP), and their translated proteins, which were localized onto the cytomembrane, possessed OPT activity. Interestingly, CtSDP2 accumulated at the top of the hyphae played a distinct role in determining the sexual cycle, glutathione transport, and lifespan shortening. A unique 72nt-insertion fragment (72INS) was discovered in CtSDP2. Biological analysis of the 72INS deletion and DsRED-tagged fusion strains implied the involvement of 72INS in fungal growth and development. In contrast to TlSDP, which only contributes to conidial production, the three CtSDPs play important roles in sexual and asexual reproduction, and CtSDP2 harbors a unique functional 72INS that initiates sexual morphogenesis.
Collapse
Affiliation(s)
- Xiang-Li Xie
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yi Wei
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yan-Yue Song
- College of Plant Sciences, Jilin University, Changchun, China
| | - Guan-Ming Pan
- College of Plant Sciences, Jilin University, Changchun, China
| | - Li-Na Chen
- College of Plant Sciences, Jilin University, Changchun, China
| | - Gang Wang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Shi-Hong Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
3
|
Schmid J, Magee PT, Holland BR, Zhang N, Cannon RD, Magee BB. Last hope for the doomed? Thoughts on the importance of a parasexual cycle for the yeast Candida albicans. Curr Genet 2015; 62:81-5. [DOI: 10.1007/s00294-015-0516-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 08/21/2015] [Accepted: 08/22/2015] [Indexed: 12/16/2022]
|
4
|
Abstract
Only few Candida species, e.g., Candida albicans, Candida glabrata, Candida dubliniensis, and Candida parapsilosis, are successful colonizers of a human host. Under certain circumstances these species can cause infections ranging from superficial to life-threatening disseminated candidiasis. The success of C. albicans, the most prevalent and best studied Candida species, as both commensal and human pathogen depends on its genetic, biochemical, and morphological flexibility which facilitates adaptation to a wide range of host niches. In addition, formation of biofilms provides additional protection from adverse environmental conditions. Furthermore, in many host niches Candida cells coexist with members of the human microbiome. The resulting fungal-bacterial interactions have a major influence on the success of C. albicans as commensal and also influence disease development and outcome. In this chapter, we review the current knowledge of important survival strategies of Candida spp., focusing on fundamental fitness and virulence traits of C. albicans.
Collapse
Affiliation(s)
- Melanie Polke
- Research Group Microbial Immunology, Hans-Knoell-Institute, Jena, Germany; Department Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany; Friedrich-Schiller-University, Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Hans-Knoell-Institute, Jena, Germany; Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
5
|
Sexual reproduction and mating-type-mediated strain development in the penicillin-producing fungus Penicillium chrysogenum. Proc Natl Acad Sci U S A 2013; 110:1476-81. [PMID: 23307807 DOI: 10.1073/pnas.1217943110] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Penicillium chrysogenum is a filamentous fungus of major medical and historical importance, being the original and present-day industrial source of the antibiotic penicillin. The species has been considered asexual for more than 100 y, and despite concerted efforts, it has not been possible to induce sexual reproduction, which has prevented sexual crosses being used for strain improvement. However, using knowledge of mating-type (MAT) gene organization, we now describe conditions under which a sexual cycle can be induced leading to production of meiotic ascospores. Evidence of recombination was obtained using both molecular and phenotypic markers. The identified heterothallic sexual cycle was used for strain development purposes, generating offspring with novel combinations of traits relevant to penicillin production. Furthermore, the MAT1-1-1 mating-type gene, known primarily for a role in governing sexual identity, was also found to control transcription of a wide range of genes with biotechnological relevance including those regulating penicillin production, hyphal morphology, and conidial formation. These discoveries of a sexual cycle and MAT gene function are likely to be of broad relevance for manipulation of other asexual fungi of economic importance.
Collapse
|
6
|
Zaffarano PL, Queloz V, Duò A, Grünig CR. Sex in the PAC: a hidden affair in dark septate endophytes? BMC Evol Biol 2011; 11:282. [PMID: 21961933 PMCID: PMC3199270 DOI: 10.1186/1471-2148-11-282] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 09/30/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fungi are asexually and sexually reproducing organisms that can combine the evolutionary advantages of the two reproductive modes. However, for many fungi the sexual cycle has never been observed in the field or in vitro and it remains unclear whether sexual reproduction is absent or cryptic. Nevertheless, there are indirect approaches to assess the occurrence of sex in a species, such as population studies, expression analysis of genes involved in mating processes and analysis of their selective constraints. The members of the Phialocephala fortinii s. l. - Acephala applanata species complex (PAC) are ascomycetes and the predominant dark septate endophytes that colonize woody plant roots. Despite their abundance in many ecosystems of the northern hemisphere, no sexual state has been identified to date and little is known about their reproductive biology, and how it shaped their evolutionary history and contributes to their ecological role in forest ecosystems. We therefore aimed at assessing the importance of sexual reproduction by indirect approaches that included molecular analyses of the mating type (MAT) genes involved in reproductive processes. RESULTS The study included 19 PAC species and > 3, 000 strains that represented populations from different hosts, continents and ecosystems. Whereas A. applanata had a homothallic (self-fertile) MAT locus structure, all other species were structurally heterothallic (self-sterile). Compatible mating types were observed to co-occur more frequently than expected by chance. Moreover, in > 80% of the populations a 1:1 mating type ratio and gametic equilibrium were found. MAT genes were shown to evolve under strong purifying selection. CONCLUSIONS The signature of sex was found in worldwide populations of PAC species and functionality of MAT genes is likely preserved by purifying selection. We hypothesize that cryptic sex regularely occurs in the PAC and that further field studies and in vitro crosses will lead to the discovery of the sexual state. Although structurally heterothallic species prevail, it cannot be excluded that homothallism represents the ancestral breeding system in the PAC.
Collapse
Affiliation(s)
- Pascal L Zaffarano
- Institute of Integrative Biology (IBZ), Forest Pathology and Dendrology, ETH Zurich, 8092 Zürich, Switzerland
| | | | | | | |
Collapse
|
7
|
Characterization of the mating type (MAT) locus in the Phialocephala fortinii s.l. – Acephala applanata species complex. Fungal Genet Biol 2010; 47:761-72. [DOI: 10.1016/j.fgb.2010.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/01/2010] [Accepted: 06/01/2010] [Indexed: 11/18/2022]
|
8
|
Selmecki A, Forche A, Berman J. Genomic plasticity of the human fungal pathogen Candida albicans. EUKARYOTIC CELL 2010; 9:991-1008. [PMID: 20495058 PMCID: PMC2901674 DOI: 10.1128/ec.00060-10] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The genomic plasticity of Candida albicans, a commensal and common opportunistic fungal pathogen, continues to reveal unexpected surprises. Once thought to be asexual, we now know that the organism can generate genetic diversity through several mechanisms, including mating between cells of the opposite or of the same mating type and by a parasexual reduction in chromosome number that can be accompanied by recombination events (2, 12, 14, 53, 77, 115). In addition, dramatic genome changes can appear quite rapidly in mitotic cells propagated in vitro as well as in vivo. The detection of aneuploidy in other fungal pathogens isolated directly from patients (145) and from environmental samples (71) suggests that variations in chromosome organization and copy number are a common mechanism used by pathogenic fungi to rapidly generate diversity in response to stressful growth conditions, including, but not limited to, antifungal drug exposure. Since cancer cells often become polyploid and/or aneuploid, some of the lessons learned from studies of genome plasticity in C. albicans may provide important insights into how these processes occur in higher-eukaryotic cells exposed to stresses such as anticancer drugs.
Collapse
Affiliation(s)
- Anna Selmecki
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Anja Forche
- Department of Biology, Bowdoin College, Brunswick, Maine
| | - Judith Berman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
9
|
Alby K, Bennett RJ. Sexual reproduction in the Candida clade: cryptic cycles, diverse mechanisms, and alternative functions. Cell Mol Life Sci 2010; 67:3275-85. [PMID: 20552251 DOI: 10.1007/s00018-010-0421-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 05/18/2010] [Accepted: 05/25/2010] [Indexed: 12/16/2022]
Abstract
To have sex, or not to have sex, is a question posed by many microorganisms. In favor of a sexual lifestyle is the associated rearrangement of genetic material that confers potential fitness advantages, including resistance to antimicrobial agents. The asexual lifestyle also has benefits, as it preserves complex combinations of genes that may be optimal for pathogenesis. For this reason, it was thought that several pathogenic fungi favored strictly asexual modes of reproduction. Recent approaches using genome sequencing, population analysis, and experimental techniques have now revised this simplistic picture. It is now apparent that many pathogenic fungi have retained the ability to undergo sexual reproduction, although reproduction is primarily clonal in origin. In this review, we highlight the current understanding of sexual programs in the Candida clade of species. We also examine evidence that sexual-related processes can be used for functions in addition to mating and recombination in these organisms.
Collapse
Affiliation(s)
- Kevin Alby
- Department of Molecular Microbiology and Immunology, Brown University, 171 Meeting St, Providence, RI 02912, USA
| | | |
Collapse
|
10
|
The role of sex in fungal evolution. Curr Opin Microbiol 2009; 12:592-8. [DOI: 10.1016/j.mib.2009.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 09/10/2009] [Indexed: 01/09/2023]
|
11
|
|
12
|
Lohse MB, Johnson AD. White-opaque switching in Candida albicans. Curr Opin Microbiol 2009; 12:650-4. [PMID: 19853498 DOI: 10.1016/j.mib.2009.09.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 09/04/2009] [Indexed: 12/12/2022]
Abstract
The human commensal yeast Candida albicans undergoes an epigenetic switch between two distinct types of cells, referred to as white and opaque. These two cell types differ in many respects, including their cell and colony morphologies, their metabolic states, their mating behaviors, their preferred niches in the host, and their interactions with the host immune system. Each of the two cell types is heritable for many generations and switching between them appears stochastic; however, environmental cues can significantly alter the frequency of switching. We review recent work on white-opaque switching, including the establishment of the transcriptional circuit underlying this switch, the identification of environmental signals that affect switching rates, newly discovered differences between the two types of cells, and the involvement of white-opaque switching in biofilm formation. We also review recent speculation on the evolution and adaptive value of white-opaque switching.
Collapse
Affiliation(s)
- Matthew B Lohse
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
13
|
Arnaud MB, Costanzo MC, Shah P, Skrzypek MS, Sherlock G. Gene Ontology and the annotation of pathogen genomes: the case of Candida albicans. Trends Microbiol 2009; 17:295-303. [PMID: 19577928 DOI: 10.1016/j.tim.2009.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 04/06/2009] [Accepted: 04/15/2009] [Indexed: 01/09/2023]
Abstract
The Gene Ontology (GO) is a structured controlled vocabulary developed to describe the roles and locations of gene products in a consistent manner and in a way that can be shared across organisms. The unicellular fungus Candida albicans is similar in many ways to the model organism Saccharomyces cerevisiae but, as both a commensal and a pathogen of humans, differs greatly in its lifestyle. With an expanding at-risk population of immunosuppressed patients, increased use of invasive medical procedures, the increasing prevalence of drug resistance and the emergence of additional Candida species as serious pathogens, it has never been more crucial to improve our understanding of Candida biology to guide the development of better treatments. In this brief review, we examine the importance of GO in the annotation of C. albicans gene products, with a focus on those involved in pathogenesis. We also discuss how sequence information combined with GO facilitates the transfer of knowledge across related species and the challenges and opportunities that such an approach presents.
Collapse
Affiliation(s)
- Martha B Arnaud
- Department of Genetics, Stanford University Medical School, Stanford, CA 94305-5120, USA
| | | | | | | | | |
Collapse
|
14
|
Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature 2009; 457:471-4. [PMID: 19043401 DOI: 10.1038/nature07528] [Citation(s) in RCA: 339] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 01/22/2009] [Accepted: 10/09/2008] [Indexed: 01/19/2023]
Abstract
Aspergillus fumigatus is a saprotrophic fungus whose spores are ubiquitous in the atmosphere. It is also an opportunistic human pathogen in immunocompromised individuals, causing potentially lethal invasive infections, and is associated with severe asthma and sinusitis. The species is only known to reproduce by asexual means, but there has been accumulating evidence for recombination and gene flow from population genetic studies, genome analysis, the presence of mating-type genes and expression of sex-related genes in the fungus. Here we show that A. fumigatus possesses a fully functional sexual reproductive cycle that leads to the production of cleistothecia and ascospores, and the teleomorph Neosartorya fumigata is described. The species has a heterothallic breeding system; isolates of complementary mating types are required for sex to occur. We demonstrate increased genotypic variation resulting from recombination between mating type and DNA fingerprint markers in ascospore progeny from an Irish environmental subpopulation. The ability of A. fumigatus to engage in sexual reproduction is highly significant in understanding the biology and evolution of the species. The presence of a sexual cycle provides an invaluable tool for classical genetic analyses and will facilitate research into the genetic basis of pathogenicity and fungicide resistance in A. fumigatus, with the aim of improving methods for the control of aspergillosis. These results also yield insights into the potential for sexual reproduction in other supposedly 'asexual' fungi.
Collapse
|
15
|
Barnett JA. A history of research on yeasts 12: medical yeasts part 1, Candida albicans. Yeast 2008; 25:385-417. [PMID: 18509848 DOI: 10.1002/yea.1595] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- James A Barnett
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
16
|
Kothe E. Sexual attraction: on the role of fungal pheromone/receptor systems (A review). Acta Microbiol Immunol Hung 2008; 55:125-43. [PMID: 18595318 DOI: 10.1556/amicr.55.2008.2.5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pheromones have been detected in all fungal phylogenetic lineages. This came as a surprise, as the general role of pheromones in mate attraction was not envisioned for some fungi. Pheromones and pheromone receptor genes have been identified, however, in members of all true fungal lineages, and even for mycelia forming organisms of plant and amoeba lineages, like oomycetes and myxomycetes. The mating systems and genes governing the mating type are different in fungi, ranging from bipolar with two opposite mating types to tetrapolar mating systems (with four possible mating outcomes, only one of which leads to fertile sexual development) in homobasidioymcetes with more than 23,000 mating types occurring in nature. Pheromones and receptors specifically recognizing these pheromones have evolved with slightly different functions in these different systems. This review is dedicated to follow the evolution of pheromone/receptor systems from simple, biallelic bipolar systems to multiallelic, tetrapolar versions and to explain the slightly different functions the pheromone recognition and subsequent signal transduction cascades within the fungal kingdom. The biotechnological implications of a detailed understanding of mating systems for biological control and plant protection, in medicine, and in mushroom breeding are discussed.
Collapse
Affiliation(s)
- Erika Kothe
- Institute of Microbiology, Friedrich-Schiller-Universität, Neugasse 25, D-07743 Jena, Germany.
| |
Collapse
|
17
|
Gómez-Raja J, Andaluz E, Magee B, Calderone R, Larriba G. A single SNP, G929T (Gly310Val), determines the presence of a functional and a non-functional allele of HIS4 in Candida albicans SC5314: detection of the non-functional allele in laboratory strains. Fungal Genet Biol 2008; 45:527-41. [PMID: 17964203 PMCID: PMC2605509 DOI: 10.1016/j.fgb.2007.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 08/24/2007] [Accepted: 08/26/2007] [Indexed: 11/20/2022]
Abstract
Candida albicans is a diploid organism that exhibits high levels of heterozygosity. Although the precise manner by which this heterozygosity provides advantage for the commensal/pathogenic life styles of C. albicans is not known, heterozygous markers are themselves useful for studying genomic rearrangements, which occur frequently in C. albicans. Treatment of CAI-4 with UV light yielded histidine auxotrophs which could be complemented by HIS4, suggesting that strain CAI-4 is heterozygous for HIS4. These auxotrophs appeared to have undergone mitotic recombination and/or chromosome loss. As expected from a heterozygote, disruption of the functional allele of HIS4 resulted in a his4::hisG-URA3-hisG strain that is auxotrophic for histidine. Sequencing of random clones of the HIS4 ORF from CAI-4 and its precursor SC5314 revealed the presence of 11 SNPs, seven synonymous and four non-synonymous. Site-directed mutagenesis indicates that only one of those SNPs, T929G (Gly310Val), is responsible for the non-functionality of the encoded enzyme. HIS4 analysis of five commonly used laboratory strains is reported. This study provides a new, easily measured nutritional marker that can be used in future genetic studies in C. albicans.
Collapse
Affiliation(s)
- Jonathan Gómez-Raja
- Departamento de Ciencias Biomédicas, Area Microbiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Encarnación Andaluz
- Departamento de Ciencias Biomédicas, Area Microbiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Beatrice Magee
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Richard Calderone
- Microbiology and Immunology, Georgetown University, School of Medicine, Washington DC 20007, USA
| | - Germán Larriba
- Departamento de Ciencias Biomédicas, Area Microbiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| |
Collapse
|
18
|
Repeat induced point mutation in two asexual fungi, Aspergillus niger and Penicillium chrysogenum. Curr Genet 2008; 53:287-97. [PMID: 18347798 DOI: 10.1007/s00294-008-0185-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 02/25/2008] [Accepted: 03/02/2008] [Indexed: 01/28/2023]
Abstract
Repeat induced point mutation (RIP) is a gene silencing mechanism present in fungal genomes. During RIP, duplicated sequences are efficiently and irreversibly mutated by transitions from C:G to T:A. For the first time, we have identified traces of RIP in transposable elements of Aspergillus niger and Penicillium chrysogenum, two biotechnologically relevant fungi. We found that RIP in P. chrysogenum has affected a large set of sequences, which also contain other mutations. On the other hand, RIP in A. niger is limited to only few sequences, but literally all mutations are RIP-like. Surprisingly, RIP occurred only in transposon sequences that have disrupted open reading frames in A. niger, a phenomenon not yet reported for other fungi. In both fungal species, we identified two sequences with strong sequence similarity to Neurospora crassa RID. RID is a putative DNA methyltransferase and the only known enzyme involved in the RIP process. Our findings suggest that both A. niger and P. chrysogenum either had a sexual past or have a sexual potential. These findings have important implications for future strain development of these fungi.
Collapse
|
19
|
Magee BB, Sanchez MD, Saunders D, Harris D, Berriman M, Magee PT. Extensive chromosome rearrangements distinguish the karyotype of the hypovirulent species Candida dubliniensis from the virulent Candida albicans. Fungal Genet Biol 2008; 45:338-50. [PMID: 17719250 PMCID: PMC2277252 DOI: 10.1016/j.fgb.2007.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 07/06/2007] [Accepted: 07/09/2007] [Indexed: 10/23/2022]
Abstract
Candida dubliniensis and Candida albicans, the most common human fungal pathogen, have most of the same genes and high sequence similarity, but C. dubliniensis is less virulent. C. albicans causes both mucosal and hematogenously disseminated disease, C. dubliniensis mostly mucosal infections. Pulse-field electrophoresis, genomic restriction enzyme digests, Southern blotting, and the emerging sequence from the Wellcome Trust Sanger Institute were used to determine the karyotype of C. dubliniensis type strain CD36. Three chromosomes have two intact homologues. A translocation in the rDNA repeat on chromosome R exchanges telomere-proximal regions of R and chromosome 5. Translocations involving the remaining chromosomes occur at the Major Repeat Sequence. CD36 lacks an MRS on chromosome R but has one on 3. Of six other C. dubliniensis strains, no two had the same electrophoretic karyotype. Despite extensive chromosome rearrangements, karyotypic differences between C. dubliniensis and C. albicans are unlikely to affect gene expression. Karyotypic instability may account for the diminished pathogenicity of C. dubliniensis.
Collapse
Affiliation(s)
- B B Magee
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Candida albicans is a species of fungus that typically resides in the gastrointestinal tracts of humans and other warm-blooded animals. It is also the most common human fungal pathogen, causing a variety of skin and soft tissue infections in healthy people and more virulent invasive and disseminated diseases in patients with compromised immune systems. How this microorganism manages to persist in healthy hosts but also to cause a spectrum of disease states in the immunocompromised host are questions of significant biological interest as well as major clinical and economic importance. In this review, we describe recent developments in population genetics, the mating process, and gene disruption technology that are providing much needed experimental insights into the biology of C. albicans.
Collapse
Affiliation(s)
- Suzanne M Noble
- Department of Microbiology and Immunology, University of California-San Francisco, CA 94143-2200, USA.
| | | |
Collapse
|
21
|
Schaefer D, Côte P, Whiteway M, Bennett RJ. Barrier activity in Candida albicans mediates pheromone degradation and promotes mating. EUKARYOTIC CELL 2007; 6:907-18. [PMID: 17416895 PMCID: PMC1951518 DOI: 10.1128/ec.00090-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mating in Candida albicans and Saccharomyces cerevisiae is regulated by the secretion of peptide pheromones that initiate the mating process. An important regulator of pheromone activity in S. cerevisiae is barrier activity, involving an extracellular aspartyl protease encoded by the BAR1 gene that degrades the alpha pheromone. We have characterized an equivalent barrier activity in C. albicans and demonstrate that the loss of C. albicans BAR1 activity results in opaque a cells exhibiting hypersensitivity to alpha pheromone. Hypersensitivity to pheromone is clearly seen in halo assays; in response to alpha pheromone, a lawn of C. albicans Deltabar1 mutant cells produces a marked zone in which cell growth is inhibited, whereas wild-type strains fail to show halo formation. C. albicans mutants lacking BAR1 also exhibit a striking mating defect in a cells, but not in alpha cells, due to overstimulation of the response to alpha pheromone. The block to mating occurs prior to cell fusion, as very few mating zygotes were observed in mixes of Deltabar1 a and alpha cells. Finally, in a barrier assay using a highly pheromone-sensitive strain, we were able to demonstrate that barrier activity in C. albicans is dependent on Bar1p. These studies reveal that a barrier activity to alpha pheromone exists in C. albicans and that the activity is analogous to that caused by Bar1p in S. cerevisiae.
Collapse
Affiliation(s)
- Dana Schaefer
- MMI Department, Brown University, 171 Meeting Street, Providence, RI 02912, USA
| | | | | | | |
Collapse
|
22
|
Dumitru R, Navarathna DHMLP, Semighini CP, Elowsky CG, Dumitru RV, Dignard D, Whiteway M, Atkin AL, Nickerson KW. In vivo and in vitro anaerobic mating in Candida albicans. EUKARYOTIC CELL 2007; 6:465-72. [PMID: 17259544 PMCID: PMC1828919 DOI: 10.1128/ec.00316-06] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Candida albicans cells of opposite mating types are thought to conjugate during infection in mammalian hosts, but paradoxically, the mating-competent opaque state is not stable at mammalian body temperatures. We found that anaerobic conditions stabilize the opaque state at 37 degrees C, block production of farnesol, and permit in vitro mating at 37 degrees C at efficiencies of up to 84%. Aerobically, farnesol prevents mating because it kills the opaque cells necessary for mating, and as a corollary, farnesol production is turned off in opaque cells. These in vitro observations suggest that naturally anaerobic sites, such as the efficiently colonized gastrointestinal (GI) tract, could serve as niches for C. albicans mating. In a direct test of mating in the mouse GI tract, prototrophic cells were obtained from auxotrophic parent cells, confirming that mating will occur in this organ. These cells were true mating products because they were tetraploid, mononuclear, and prototrophic, and they contained the heterologous hisG marker from one of the parental strains.
Collapse
MESH Headings
- Anaerobiosis/physiology
- Animals
- Candida albicans/cytology
- Candida albicans/genetics
- Candida albicans/metabolism
- Conjugation, Genetic/physiology
- Farnesol/metabolism
- Farnesol/pharmacology
- Female
- Gastrointestinal Tract/microbiology
- Gastrointestinal Tract/physiology
- Gene Expression Regulation, Fungal/drug effects
- Gene Expression Regulation, Fungal/genetics
- Genes, Mating Type, Fungal/drug effects
- Genes, Mating Type, Fungal/genetics
- Genes, Switch/genetics
- Mice
- Mice, Inbred Strains
- Microscopy, Fluorescence
- Microscopy, Phase-Contrast
- Phenotype
- Signal Transduction
- Species Specificity
- Temperature
Collapse
Affiliation(s)
- Raluca Dumitru
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588-0666, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bennett RJ, Johnson AD. The role of nutrient regulation and the Gpa2 protein in the mating pheromone response of C. albicans. Mol Microbiol 2007; 62:100-19. [PMID: 16987174 DOI: 10.1111/j.1365-2958.2006.05367.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Although traditionally classified as asexual, the human fungal pathogen Candida albicans can undergo highly efficient mating. A key component of this mating is the response to pheromone, which is mediated by a conserved kinase cascade that transduces the signal from the pheromone receptor to a transcriptional response in the nucleus. In this paper we show (i) that the detailed response of C. albicans to the alpha pheromone differs among clinical isolates, (ii) that the response depends critically on nutritional conditions, (iii) that the entire response is mediated by the Ste2 receptor, and (iv) that, in terms of genes induced, the response to alpha pheromone in C. albicans shows only marginal overlap with the response in Saccharomyces cerevisiae. We further investigated the nutritional control of pheromone induction and identify the GPA2 gene as a critical component. We found that Deltagpa2/Deltagpa2 mutants are hypersensitive to pheromone and, unlike wild-type strains, show efficient cell cycle arrest (including the formation of characteristic halos on solid medium) in response to mating pheromone. These results indicate that C. albicans, like several other fungal species but unlike S. cerevisiae, integrates signals from a nutrient-sensing pathway with those of the pheromone response MAP kinase pathway to generate the final transcriptional response.
Collapse
Affiliation(s)
- Richard J Bennett
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
24
|
Affiliation(s)
- James A Barnett
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
25
|
Abstract
Traditionally, living organisms have often been classified into two main categories: unicellular and multicellular. In recent years, however, the boundary between these two groups has become less strict and clear than was previously presumed. Studies on the communities formed by unicellular microorganisms have revealed that various properties and processes so far mainly associated with metazoa are also important for the proper development, survival and behaviour of muticellular microbial populations. In this review, we present various examples of this, using a yeast colony as representative of a structured organized microbial community. Among other things, we will show how the differentiation of yeast cells within a colony can be important for the long-term survival of a community under conditions of nutrient shortage, how colony development and physiology can be influenced by the environment, and how a group of colonies can synchronize their developmental changes. In the last section, we introduce examples of molecular mechanisms that can participate in some aspects of the behaviour of yeast populations.
Collapse
Affiliation(s)
- Zdena Palková
- Department of Genetics and Microbiology, Charles University, Prague, Czech Republic.
| | | |
Collapse
|
26
|
Holmes AR, Tsao S, Ong SW, Lamping E, Niimi K, Monk BC, Niimi M, Kaneko A, Holland BR, Schmid J, Cannon RD. Heterozygosity and functional allelic variation in the Candida albicans efflux pump genes CDR1 and CDR2. Mol Microbiol 2006; 62:170-86. [PMID: 16942600 DOI: 10.1111/j.1365-2958.2006.05357.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Elevated expression of the plasma membrane drug efflux pump proteins Cdr1p and Cdr2p was shown to accompany decreased azole susceptibility in Candida albicans clinical isolates. DNA sequence analysis revealed extensive allelic heterozygosity, particularly of CDR2. Cdr2p alleles showed different abilities to transport azoles when individually expressed in Saccharomyces cerevisiae. Loss of heterozygosity, however, did not accompany decreased azole sensitivity in isogenic clinical isolates. Two adjacent non-synonymous single nucleotide polymorphisms (NS-SNPs), G1473A and I1474V in the putative transmembrane (TM) helix 12 of CDR2, were found to be present in six strains including two isogenic pairs. Site-directed mutagenesis showed that the TM-12 NS-SNPs, and principally the G1473A NS-SNP, contributed to functional differences between the proteins encoded by the two Cdr2p alleles in a single strain. Allele-specific PCR revealed that both alleles were equally frequent among 69 clinical isolates and that the majority of isolates (81%) were heterozygous at the G1473A/I1474V locus, a significant (P < 0.001) deviation from the Hardy-Weinberg equilibrium. Phylogenetic analysis by maximum likelihood (Paml) identified 33 codons in CDR2 in which amino acid allelic changes showed a high probability of being selectively advantageous. In contrast, all codons in CDR1 were under purifying selection. Collectively, these results indicate that possession of two functionally different CDR2 alleles in individual strains may confer a selective advantage, but that this is not necessarily due to azole resistance.
Collapse
Affiliation(s)
- Ann R Holmes
- Department of Oral Sciences, School of Dentistry, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chauhan N, Ciudad T, Rodríguez-Alejandre A, Larriba G, Calderone R, Andaluz E. Virulence and karyotype analyses of rad52 mutants of Candida albicans: regeneration of a truncated chromosome of a reintegrant strain (rad52/RAD52) in the host. Infect Immun 2006; 73:8069-78. [PMID: 16299301 PMCID: PMC1307084 DOI: 10.1128/iai.73.12.8069-8078.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The virulence of Candida albicans mutants lacking one or both copies of RAD52, a gene involved in homologous recombination (HR), was evaluated in a murine model of hematogenously disseminated candidiasis. In this study, the virulence of the rad52Delta mutant was dependent upon the inoculum concentration. Mice survived at a cell inoculum of 1 x 10(6), but there was a decrease in survival time at dosages of 1.5 x 10(6) and especially at 3 x 10(6) cells per animal. The heterozygote RAD52/rad52 behaved like wild type, whereas a reintegrant strain was intermediate in its ability to cause death compared to these strains and to the avirulent rad52/rad52 null at inocula of 1 x 10(6) and 1.5 x 10(6) cells. A double mutant, lig4/lig4/rad52/rad52, was avirulent at all inocula used. PCR analysis of the RAD52 and/or LIG4 loci showed that all strains recovered from animals matched the genotype of the inoculated strains. Analysis of the electrophoretical karyotypes indicated that the inoculated, reintegrant strain carried a large deletion in one copy of chromosome 6 (the shortest homologue, or Chr6b). Interestingly, truncated Chr6b was regenerated in all the strains recovered from moribund animals using the homologue as a template. Further, regeneration of Chr6b was paralleled by an increase in virulence that was still lower than that of wild type, likely because of the persistent loss of heterozygosity in the regenerated region. Overall, our results indicate that systemic candidiasis can develop in the absence of HR, but simultaneous elimination of both recombination pathways, HR and nonhomologous end-joining, suppresses virulence even at very high inocula.
Collapse
Affiliation(s)
- Neeraj Chauhan
- Georgetown University Medical Center, Department of Microbiology & Immunology, Washington, DC, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Candida albicans is a normal part of the human microflora, but it is also an opportunistic fungal pathogen that causes both mucosal infections and life-threatening systemic infections. Until recently, C. albicans was thought to be asexual, existing only as an obligate diploid. However, a mating locus was identified that was homologous to those in sexually reproducing fungi, and mating of C. albicans strains was subsequently demonstrated in the laboratory. In this review, we compare and contrast the mating process in C. albicans with that of other fungi, particularly Saccharomyces cerevisiae, whose mating has been most intensively studied. Several features of the mating pathway appear unique to C. albicans, including aspects of gene regulation and cell biology, as well as the involvement of "white-opaque" switching, an alteration between two quasi-stable inheritable states. These specializations of the mating process may have evolved to promote the survival of C. albicans in the hostile environment of a mammalian host.
Collapse
Affiliation(s)
- R J Bennett
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA.
| | | |
Collapse
|
29
|
Chibana H, Mikami Y. [Structural and functional analyses of MRS (major repeated sequnece) in Candida albicans. Application for genotyping and the eternal way to the complete genome sequence]. NIHON ISHINKIN GAKKAI ZASSHI = JAPANESE JOURNAL OF MEDICAL MYCOLOGY 2006; 47:129-34. [PMID: 16940945 DOI: 10.3314/jjmm.47.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
There are several different types of repeated sequences in the genome of Candida albicans, including the MRS (Major repeated sequence). In 2004, the whole genome sequence of C. albicans was published. Assembly of the sequences to chromosomal length contigs was not achieved, mainly due to interruption of the sequences by MRS. However, MRS including Ca3, 27A and RPS have been playing important roles in a number of epidemiological studies and basic biological investigations into C. albicans chromosome loss events and associated phenotypic changes. Here we summarize structural analyses from subrepeat sequences to the chromosome level, and functional analyses of MRS.
Collapse
Affiliation(s)
- Hiroji Chibana
- Research Center for Pathogenic Fungi and Microbial Toxicoses, Chiba University, Japan.
| | | |
Collapse
|
30
|
Zhao R, Daniels KJ, Lockhart SR, Yeater KM, Hoyer LL, Soll DR. Unique aspects of gene expression during Candida albicans mating and possible G(1) dependency. EUKARYOTIC CELL 2005; 4:1175-90. [PMID: 16002644 PMCID: PMC1168966 DOI: 10.1128/ec.4.7.1175-1190.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Taking advantage of the high frequency of conjugation tube formation in mating mixtures and alpha-pheromone-treated a/a cells derived from saturation phase cultures of opaque cells of Candida albicans, 56 up-regulated and 30 down-regulated genes were identified employing microarray and Northern analyses. Combining these results with previous profiling studies of pheromone-induced cells, a more comprehensive transcript profile was developed for comparison with Saccharomyces cerevisiae. This comparison revealed the following: (i) that while a majority of mating-associated genes are regulated similarly between the two species, a significant minority are regulated dissimilarly; (ii) that filamentation genes are uniquely up-regulated and opaque-specific genes uniquely down-regulated during C. albicans mating; and (iii) that a newly identified class of genes is selectively down-regulated in opaque, but not white, cells that have entered saturation phase in a growth culture and then are up-regulated by pheromone. The observations that opaque cells are uniquely mating competent, that saturation phase facilitates mating, and that a newly identified group of genes is down-regulated only in opaque cells that have entered saturation phase led us to hypothesize that entering saturation phase may be requisite for mating. A test of this hypothesis revealed, however, that cells, whether in the exponential or saturation phase, may simply have to be in G(1) of the cell cycle to respond to pheromone and that the response includes G(1) arrest. These results add to the lists of similarities and dissimilarities between the mating processes of C. albicans and S. cerevisiae and underscore the unique regulation of filamentation and switching genes in the C. albicans mating process.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Biological Sciences, 302 BBE, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
31
|
Paoletti M, Rydholm C, Schwier EU, Anderson MJ, Szakacs G, Lutzoni F, Debeaupuis JP, Latgé JP, Denning DW, Dyer PS. Evidence for sexuality in the opportunistic fungal pathogen Aspergillus fumigatus. Curr Biol 2005; 15:1242-8. [PMID: 16005299 DOI: 10.1016/j.cub.2005.05.045] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 05/13/2005] [Accepted: 05/16/2005] [Indexed: 10/25/2022]
Abstract
Aspergillus fumigatus is a medically important opportunistic pathogen and a major cause of respiratory allergy. The species has long been considered an asexual organism. However, genome analysis has revealed the presence of genes associated with sexual reproduction, including a MAT-2 high-mobility group mating-type gene and genes for pheromone production and detection (Galagan et al., personal communication; Nierman et al., personal communication). We now demonstrate that A. fumigatus has other key characteristics of a sexual species. We reveal the existence of isolates containing a complementary MAT-1 alpha box mating-type gene and show that the MAT locus has an idiomorph structure characteristic of heterothallic (obligate sexual outbreeding) fungi. Analysis of 290 worldwide clinical and environmental isolates with a multiplex-PCR assay revealed the presence of MAT1-1 and MAT1-2 genotypes in similar proportions (43% and 57%, respectively). Further population genetic analyses provided evidence of recombination across a global sampling and within North American and European subpopulations. We also show that mating-type, pheromone-precursor, and pheromone-receptor genes are expressed during mycelial growth. These results indicate that A. fumigatus has a recent evolutionary history of sexual recombination and might have the potential for sexual reproduction. The possible presence of a sexual cycle is highly significant for the population biology and disease management of the species.
Collapse
Affiliation(s)
- Mathieu Paoletti
- School of Biology, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kaur R, Domergue R, Zupancic ML, Cormack BP. A yeast by any other name: Candida glabrata and its interaction with the host. Curr Opin Microbiol 2005; 8:378-84. [PMID: 15996895 DOI: 10.1016/j.mib.2005.06.012] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 06/21/2005] [Indexed: 10/25/2022]
Abstract
Well-characterized traits important to Candida albicans virulence, such as hyphal formation or secreted proteinase activity, play no known role in Candida glabrata virulence. Likewise, some C. glabrata characteristics, such as chromatin-based regulation of the large telomeric family of lectins encoded by the EPA (epithelial adhesin) genes, have no precise parallels in C. albicans. However, similarities between the two species, for example in population structure, in the large numbers of (putative) adhesins that they encode, and in phenotypic plasticity conferred by phenotypic switching, suggest that they share general strategies in adaptation to an opportunistic lifestyle.
Collapse
Affiliation(s)
- Rupinder Kaur
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 617 Hunterian Building, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
33
|
Current awareness on yeast. Yeast 2005; 22:745-52. [PMID: 16106592 DOI: 10.1002/yea.1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|