1
|
Ardissone S, Kint N, Viollier PH. Specificity in glycosylation of multiple flagellins by the modular and cell cycle regulated glycosyltransferase FlmG. eLife 2020; 9:e60488. [PMID: 33108275 PMCID: PMC7591256 DOI: 10.7554/elife.60488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
How specificity is programmed into post-translational modification of proteins by glycosylation is poorly understood, especially for O-linked glycosylation systems. Here we reconstitute and dissect the substrate specificity underpinning the cytoplasmic O-glycosylation pathway that modifies all six flagellins, five structural and one regulatory paralog, in Caulobacter crescentus, a monopolarly flagellated alpha-proteobacterium. We characterize the biosynthetic pathway for the sialic acid-like sugar pseudaminic acid and show its requirement for flagellation, flagellin modification and efficient export. The cognate NeuB enzyme that condenses phosphoenolpyruvate with a hexose into pseudaminic acid is functionally interchangeable with other pseudaminic acid synthases. The previously unknown and cell cycle-regulated FlmG protein, a defining member of a new class of cytoplasmic O-glycosyltransferases, is required and sufficient for flagellin modification. The substrate specificity of FlmG is conferred by its N-terminal flagellin-binding domain. FlmG accumulates before the FlaF secretion chaperone, potentially timing flagellin modification, export, and assembly during the cell division cycle.
Collapse
Affiliation(s)
- Silvia Ardissone
- Department of Microbiology & Molecular Medicine, Faculty of Medicine / CMU, University of GenevaGenèveSwitzerland
| | - Nicolas Kint
- Department of Microbiology & Molecular Medicine, Faculty of Medicine / CMU, University of GenevaGenèveSwitzerland
| | - Patrick H Viollier
- Department of Microbiology & Molecular Medicine, Faculty of Medicine / CMU, University of GenevaGenèveSwitzerland
| |
Collapse
|
2
|
Kawalek A, Bartosik AA, Glabski K, Jagura-Burdzy G. Pseudomonas aeruginosa partitioning protein ParB acts as a nucleoid-associated protein binding to multiple copies of a parS-related motif. Nucleic Acids Res 2019; 46:4592-4606. [PMID: 29648658 PMCID: PMC5961200 DOI: 10.1093/nar/gky257] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/28/2018] [Indexed: 12/16/2022] Open
Abstract
ParA and ParB homologs are involved in accurate chromosome segregation in bacteria. ParBs participate in the separation of ori domains by binding to parS palindromes, mainly localized close to oriC. In Pseudomonas aeruginosa neither ParB deficiency nor modification of all 10 parSs is lethal. However, such mutants show not only defects in chromosome segregation but also growth retardation and motility dysfunctions. Moreover, a lack of parB alters expression of over 1000 genes, suggesting that ParB could interact with the chromosome outside its canonical parS targets. Here, we show that indeed ParB binds specifically to hundreds of sites in the genome. ChIP-seq analysis revealed 420 ParB-associated regions in wild-type strain and around 1000 in a ParB-overproducing strain and in various parS mutants. The vast majority of the ParB-enriched loci contained a heptanucleotide motif corresponding to one arm of the parS palindrome. All previously postulated parSs, except parS5, interacted with ParB in vivo. Whereas the ParB binding to the four parS sites closest to oriC, parS1-4, is involved in chromosome segregation, its genome-wide interactions with hundreds of parS half-sites could affect chromosome topology, compaction and gene expression, thus allowing P. aeruginosa ParB to be classified as a nucleoid-associated protein.
Collapse
Affiliation(s)
- Adam Kawalek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Aneta A Bartosik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Krzysztof Glabski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Grazyna Jagura-Burdzy
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
3
|
The impact of depuration on mussel hepatopancreas bacteriome composition and predicted metagenome. Antonie van Leeuwenhoek 2018; 111:1117-1129. [PMID: 29340947 DOI: 10.1007/s10482-018-1015-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/06/2018] [Indexed: 02/06/2023]
Abstract
Due to the rapid elimination of bacteria through normal behaviour of filter feeding and excretion, the decontamination of hazardous contaminating bacteria from shellfish is performed by depuration. This process, under conditions that maximize shellfish filtering activity, is a useful method to eliminate microorganisms from bivalves. The microbiota composition in bivalves reflects that of the environment of harvesting waters, so quite different bacteriomes would be expected in shellfish collected in different locations. Bacterial accumulation within molluscan shellfish occurs primarily in the hepatopancreas. In order to assess the effect of the depuration process on these different bacteriomes, in this work we used 16S RNA pyrosequencing and metagenome prediction to assess the impact of 15 h of depuration on the whole hepatopancreas bacteriome of mussels collected in three different locations.
Collapse
|
4
|
Ricci DP, Melfi MD, Lasker K, Dill DL, McAdams HH, Shapiro L. Cell cycle progression in Caulobacter requires a nucleoid-associated protein with high AT sequence recognition. Proc Natl Acad Sci U S A 2016; 113:E5952-E5961. [PMID: 27647925 PMCID: PMC5056096 DOI: 10.1073/pnas.1612579113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Faithful cell cycle progression in the dimorphic bacterium Caulobacter crescentus requires spatiotemporal regulation of gene expression and cell pole differentiation. We discovered an essential DNA-associated protein, GapR, that is required for Caulobacter growth and asymmetric division. GapR interacts with adenine and thymine (AT)-rich chromosomal loci, associates with the promoter regions of cell cycle-regulated genes, and shares hundreds of recognition sites in common with known master regulators of cell cycle-dependent gene expression. GapR target loci are especially enriched in binding sites for the transcription factors GcrA and CtrA and overlap with nearly all of the binding sites for MucR1, a regulator that controls the establishment of swarmer cell fate. Despite constitutive synthesis, GapR accumulates preferentially in the swarmer compartment of the predivisional cell. Homologs of GapR, which are ubiquitous among the α-proteobacteria and are encoded on multiple bacteriophage genomes, also accumulate in the predivisional cell swarmer compartment when expressed in Caulobacter The Escherichia coli nucleoid-associated protein H-NS, like GapR, selectively associates with AT-rich DNA, yet it does not localize preferentially to the swarmer compartment when expressed exogenously in Caulobacter, suggesting that recognition of AT-rich DNA is not sufficient for the asymmetric accumulation of GapR. Further, GapR does not silence the expression of H-NS target genes when expressed in E. coli, suggesting that GapR and H-NS have distinct functions. We propose that Caulobacter has co-opted a nucleoid-associated protein with high AT recognition to serve as a mediator of cell cycle progression.
Collapse
Affiliation(s)
- Dante P Ricci
- Department of Developmental Biology, Stanford University, Stanford, CA 94305
| | - Michael D Melfi
- Department of Developmental Biology, Stanford University, Stanford, CA 94305; Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Keren Lasker
- Department of Developmental Biology, Stanford University, Stanford, CA 94305
| | - David L Dill
- Department of Computer Science, Stanford University, Stanford, CA 94305
| | - Harley H McAdams
- Department of Developmental Biology, Stanford University, Stanford, CA 94305
| | - Lucy Shapiro
- Department of Developmental Biology, Stanford University, Stanford, CA 94305;
| |
Collapse
|
5
|
David A, Demarre G, Muresan L, Paly E, Barre FX, Possoz C. The two Cis-acting sites, parS1 and oriC1, contribute to the longitudinal organisation of Vibrio cholerae chromosome I. PLoS Genet 2014; 10:e1004448. [PMID: 25010199 PMCID: PMC4091711 DOI: 10.1371/journal.pgen.1004448] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 05/07/2014] [Indexed: 11/19/2022] Open
Abstract
The segregation of bacterial chromosomes follows a precise choreography of spatial organisation. It is initiated by the bipolar migration of the sister copies of the replication origin (ori). Most bacterial chromosomes contain a partition system (Par) with parS sites in close proximity to ori that contribute to the active mobilisation of the ori region towards the old pole. This is thought to result in a longitudinal chromosomal arrangement within the cell. In this study, we followed the duplication frequency and the cellular position of 19 Vibrio cholerae genome loci as a function of cell length. The genome of V. cholerae is divided between two chromosomes, chromosome I and II, which both contain a Par system. The ori region of chromosome I (oriI) is tethered to the old pole, whereas the ori region of chromosome II is found at midcell. Nevertheless, we found that both chromosomes adopted a longitudinal organisation. Chromosome I extended over the entire cell while chromosome II extended over the younger cell half. We further demonstrate that displacing parS sites away from the oriI region rotates the bulk of chromosome I. The only exception was the region where replication terminates, which still localised to the septum. However, the longitudinal arrangement of chromosome I persisted in Par mutants and, as was reported earlier, the ori region still localised towards the old pole. Finally, we show that the Par-independent longitudinal organisation and oriI polarity were perturbed by the introduction of a second origin. Taken together, these results suggest that the Par system is the major contributor to the longitudinal organisation of chromosome I but that the replication program also influences the arrangement of bacterial chromosomes.
Collapse
Affiliation(s)
- Ariane David
- CNRS, Centre de Génétique Moléculaire, Gif-sur-Yvette, France
- Université Paris-Sud, Orsay, France
| | - Gaëlle Demarre
- CNRS, Centre de Génétique Moléculaire, Gif-sur-Yvette, France
- Université Paris-Sud, Orsay, France
| | - Leila Muresan
- CNRS, Centre de Génétique Moléculaire, Gif-sur-Yvette, France
- Université Paris-Sud, Orsay, France
| | - Evelyne Paly
- CNRS, Centre de Génétique Moléculaire, Gif-sur-Yvette, France
- Université Paris-Sud, Orsay, France
| | - François-Xavier Barre
- CNRS, Centre de Génétique Moléculaire, Gif-sur-Yvette, France
- Université Paris-Sud, Orsay, France
- * E-mail: (FXB); (CP)
| | - Christophe Possoz
- CNRS, Centre de Génétique Moléculaire, Gif-sur-Yvette, France
- Université Paris-Sud, Orsay, France
- * E-mail: (FXB); (CP)
| |
Collapse
|
6
|
Greub G. Pathogenesis and cell corruption by intracellular bacteria. Microbes Infect 2013; 15:969-70. [DOI: 10.1016/j.micinf.2013.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 12/19/2022]
|
7
|
Ying BW, Seno S, Kaneko F, Matsuda H, Yomo T. Multilevel comparative analysis of the contributions of genome reduction and heat shock to the Escherichia coli transcriptome. BMC Genomics 2013; 14:25. [PMID: 23324527 PMCID: PMC3553035 DOI: 10.1186/1471-2164-14-25] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 12/29/2012] [Indexed: 12/24/2022] Open
Abstract
Background Both large deletions in genome and heat shock stress would lead to alterations in the gene expression profile; however, whether there is any potential linkage between these disturbances to the transcriptome have not been discovered. Here, the relationship between the genomic and environmental contributions to the transcriptome was analyzed by comparing the transcriptomes of the bacterium Escherichia coli (strain MG1655 and its extensive genomic deletion derivative, MDS42) grown in regular and transient heat shock conditions. Results The transcriptome analysis showed the following: (i) there was a reorganization of the transcriptome in accordance with preferred chromosomal periodicity upon genomic or heat shock perturbation; (ii) there was a considerable overlap between the perturbed regulatory networks and the categories enriched for differentially expressed genes (DEGs) following genome reduction and heat shock; (iii) the genes sensitive to genome reduction tended to be located close to genomic scars, and some were also highly responsive to heat shock; and (iv) the genomic and environmental contributions to the transcriptome displayed not only a positive correlation but also a negatively compensated relationship (i.e., antagonistic epistasis). Conclusion The contributions of genome reduction and heat shock to the Escherichia coli transcriptome were evaluated at multiple levels. The observations of overlapping perturbed networks, directional similarity in transcriptional changes, positive correlation and epistatic nature linked the two contributions and suggest somehow a crosstalk guiding transcriptional reorganization in response to both genetic and environmental disturbances in bacterium E. coli.
Collapse
Affiliation(s)
- Bei-Wen Ying
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|
8
|
|
9
|
ppGpp and polyphosphate modulate cell cycle progression in Caulobacter crescentus. J Bacteriol 2011; 194:28-35. [PMID: 22020649 DOI: 10.1128/jb.05932-11] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Caulobacter crescentus differentiates from a motile, foraging swarmer cell into a sessile, replication-competent stalked cell during its cell cycle. This developmental transition is inhibited by nutrient deprivation to favor the motile swarmer state. We identify two cell cycle regulatory signals, ppGpp and polyphosphate (polyP), that inhibit the swarmer-to-stalked transition in both complex and glucose-exhausted media, thereby increasing the proportion of swarmer cells in mixed culture. Upon depletion of available carbon, swarmer cells lacking the ability to synthesize ppGpp or polyP improperly initiate chromosome replication, proteolyze the replication inhibitor CtrA, localize the cell fate determinant DivJ, and develop polar stalks. Furthermore, we show that swarmer cells produce more ppGpp than stalked cells upon starvation. These results provide evidence that ppGpp and polyP are cell-type-specific developmental regulators.
Collapse
|
10
|
Spitzer J. From water and ions to crowded biomacromolecules: in vivo structuring of a prokaryotic cell. Microbiol Mol Biol Rev 2011; 75:491-506, second page of table of contents. [PMID: 21885682 PMCID: PMC3165543 DOI: 10.1128/mmbr.00010-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interactions and processes which structure prokaryotic cytoplasm (water, ions, metabolites, and biomacromolecules) and ensure the fidelity of the cell cycle are reviewed from a physicochemical perspective. Recent spectroscopic and biological evidence shows that water has no active structuring role in the cytoplasm, an unnecessary notion still entertained in the literature; water acts only as a normal solvent and biochemical reactant. Subcellular structuring arises from localizations and interactions of biomacromolecules and from the growth and modifications of their surfaces by catalytic reactions. Biomacromolecular crowding is a fundamental physicochemical characteristic of cells in vivo. Though some biochemical and physiological effects of crowding (excluded volume effect) have been documented, crowding assays with polyglycols, dextrans, etc., do not properly mimic the compositional variety of biomacromolecules in vivo. In vitro crowding assays are now being designed with proteins, which better reflect biomacromolecular environments in vivo, allowing for hydrophobic bonding and screened electrostatic interactions. I elaborate further the concept of complex vectorial biochemistry, where crowded biomacromolecules structure the cytosol into electrolyte pathways and nanopools that electrochemically "wire" the cell. Noncovalent attractions between biomacromolecules transiently supercrowd biomacromolecules into vectorial, semiconducting multiplexes with a high (35 to 95%)-volume fraction of biomacromolecules; consequently, reservoirs of less crowded cytosol appear in order to maintain the experimental average crowding of ∼25% volume fraction. This nonuniform crowding model allows for fast diffusion of biomacromolecules in the uncrowded cytosolic reservoirs, while the supercrowded vectorial multiplexes conserve the remarkable repeatability of the cell cycle by preventing confusing cross talk of concurrent biochemical reactions.
Collapse
Affiliation(s)
- Jan Spitzer
- Mallard Creek Polymers, Inc., 14700 Mallard Creek Road, Charlotte, NC 28262, USA.
| |
Collapse
|
11
|
Llopis PM, Jackson AF, Sliusarenko O, Surovtsev I, Heinritz J, Emonet T, Jacobs-Wagner C. Spatial organization of the flow of genetic information in bacteria. Nature 2010; 466:77-81. [PMID: 20562858 PMCID: PMC2896451 DOI: 10.1038/nature09152] [Citation(s) in RCA: 295] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 04/28/2010] [Indexed: 11/10/2022]
Abstract
Eukaryotic cells spatially organize mRNA processes such as translation and mRNA decay. Much less is clear in bacterial cells where the spatial distribution of mature mRNA remains ambiguous. Using a sensitive method based on quantitative fluorescence in situ hybridization, we show here that in Caulobacter crescentus and Escherichia coli, chromosomally expressed mRNAs largely display limited dispersion from their site of transcription during their lifetime. We estimate apparent diffusion coefficients at least two orders of magnitude lower than expected for freely diffusing mRNA, and provide evidence in C. crescentus that this mRNA localization restricts ribosomal mobility. Furthermore, C. crescentus RNase E appears associated with the DNA independently of its mRNA substrates. Collectively, our findings show that bacteria can spatially organize translation and, potentially, mRNA decay by using the chromosome layout as a template. This chromosome-centric organization has important implications for cellular physiology and for our understanding of gene expression in bacteria.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Caulobacter crescentus/cytology
- Caulobacter crescentus/genetics
- Caulobacter crescentus/metabolism
- Chaperonins/genetics
- Chromosomes, Bacterial/genetics
- Chromosomes, Bacterial/metabolism
- DNA, Bacterial/metabolism
- Diffusion
- Endoribonucleases/metabolism
- Escherichia coli/cytology
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression Regulation, Bacterial
- In Situ Hybridization, Fluorescence
- Lac Operon/genetics
- Protein Biosynthesis
- RNA Stability
- RNA Transport
- RNA, Bacterial/analysis
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Ribosomes/metabolism
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Paula Montero Llopis
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Audrey F. Jackson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Oleksii Sliusarenko
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Ivan Surovtsev
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Jennifer Heinritz
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Thierry Emonet
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Department of Physics, Yale University, New Haven, CT 06520, USA
| | - Christine Jacobs-Wagner
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
- Section of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
12
|
Janakiraman A, Fixen KR, Gray AN, Niki H, Goldberg MB. A genome-scale proteomic screen identifies a role for DnaK in chaperoning of polar autotransporters in Shigella. J Bacteriol 2009; 191:6300-11. [PMID: 19684128 PMCID: PMC2753027 DOI: 10.1128/jb.00833-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 08/07/2009] [Indexed: 11/20/2022] Open
Abstract
Autotransporters are outer membrane proteins that are widely distributed among gram-negative bacteria. Like other autotransporters, the Shigella autotransporter IcsA, which is required for actin assembly during infection, is secreted at the bacterial pole. In the bacterial cytoplasm, IcsA localizes to poles and potential cell division sites independent of the cell division protein FtsZ. To identify bacterial proteins involved in the targeting of IcsA to the pole in the bacterial cytoplasm, we screened a genome-scale library of Escherichia coli proteins tagged with green fluorescent protein (GFP) for those that displayed a localization pattern similar to that of IcsA-GFP in cells that lack functional FtsZ using a strain carrying a temperature-sensitive ftsZ allele. For each protein that mimicked the localization of IcsA-GFP, we tested whether IcsA localization was dependent on the presence of the protein. Although these approaches did not identify a polar receptor for IcsA, the cytoplasmic chaperone DnaK both mimicked IcsA localization at elevated temperatures as a GFP fusion and was required for the localization of IcsA to the pole in the cytoplasm of E. coli. DnaK was also required for IcsA secretion at the pole in Shigella flexneri. The localization of DnaK-GFP to poles and potential cell division sites was dependent on elevated growth temperature and independent of the presence of IcsA or functional FtsZ; native DnaK was found to be enhanced at midcell and the poles. A second Shigella autotransporter, SepA, also required DnaK for secretion, consistent with a role of DnaK more generally in the chaperoning of autotransporter proteins in the bacterial cytoplasm.
Collapse
Affiliation(s)
- Anuradha Janakiraman
- Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
13
|
Sciara MI, Spagnuolo C, Jares-Erijman E, García Véscovi E. Cytolocalization of the PhoP response regulator in Salmonella enterica: modulation by extracellular Mg2+ and by the SCV environment. Mol Microbiol 2008; 70:479-93. [PMID: 18761685 DOI: 10.1111/j.1365-2958.2008.06427.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The PhoP/PhoQ two-component system plays an essential role regulating numerous virulence phenotypes in Salmonella enterica. Previous work showed that PhoQ, the sensor protein, switches between the kinase- and the phosphatase-dominant state in response to environmental Mg2+ availability. This switch defines the PhoP phosphorylation status and, as a result, the transcriptional activity of this regulator. In this work, using the FlAsH labelling technique, we examine PhoP cytolocalization in response to extracellular Mg2+ limitation in vitro and to the Salmonella-containing vacuole (SCV) environment in macrophage cells. We demonstrate that in these PhoP/PhoQ-inducing environments PhoP displays preferential localization to one cell pole, while being homogeneously distributed in the bacterial cytoplasm in repressing conditions. Polar localization is lost in the absence of PhoQ or when a non-phosphorylatable PhoP(D52A) mutant is expressed. However, when PhoP transcriptional activation is achieved in a Mg2+- and PhoQ-independent manner, PhoP regains asymmetric polar localization. In addition, we show that, in the analysed conditions, PhoQ cellular distribution does not parallel PhoP location pattern. These findings reveal that PhoP cellular location is dynamic and conditioned by its environmentally defined transcriptional status, showing a new insight in the PhoP/PhoQ system mechanism.
Collapse
Affiliation(s)
- Mariela I Sciara
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | | | | | | |
Collapse
|
14
|
Long MS, Cans AS, Keating CD. Budding and asymmetric protein microcompartmentation in giant vesicles containing two aqueous phases. J Am Chem Soc 2007; 130:756-62. [PMID: 18092782 DOI: 10.1021/ja077439c] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the effect of external osmolarity on giant lipid vesicles containing an aqueous two-phase system (ATPS GVs). The ATPS, which is comprised of poly(ethyleneglycol) [PEG], dextran, and water, serves as a primitive model of the macromolecularly crowded environment of the cytoplasm. Coexisting PEG-rich and dextran-rich aqueous phases provide chemically dissimilar microenvironments, enabling local differences in protein concentration to be maintained within single ATPS GVs. The degree of biomolecule microcompartmentation can be increased by exposing the ATPS GVs to a hypertonic external solution, which draws water out of the vesicles, concentrating the polymers. Enrichment of a protein, soybean agglutinin, in the dextran-rich phase improves from 2.3-fold to 10-fold with an increase in external osmolarity from 100 to 200 mmol/kg. In some cases, budding occurs, with the bud(s) formed by partial expulsion of one of the two polymer-rich aqueous phases. Budding results in asymmetry in the internal polymer and biomolecule composition, giving rise to polarity in these primitive model cells. Budding is observed with increasing frequency as external ionic strength increases, when membrane elasticity permits, and can be reversed by decreasing external osmolarity. We note that the random symmetry-breaking induced by simple osmotic shrinkage resulted in polarity in both the structure and internal protein distribution in these primitive model cells. Budding in ATPS-containing GVs thus offers an experimental model system for investigating the effects of biochemical asymmetry on the length scale of single cells.
Collapse
Affiliation(s)
- M Scott Long
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
15
|
Thanbichler M, Iniesta AA, Shapiro L. A comprehensive set of plasmids for vanillate- and xylose-inducible gene expression in Caulobacter crescentus. Nucleic Acids Res 2007; 35:e137. [PMID: 17959646 PMCID: PMC2175322 DOI: 10.1093/nar/gkm818] [Citation(s) in RCA: 256] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Caulobacter crescentus is widely used as a powerful model system for the study of prokaryotic cell biology and development. Analysis of this organism is complicated by a limited selection of tools for genetic manipulation and inducible gene expression. This study reports the identification and functional characterization of a vanillate-regulated promoter (Pvan) which meets all requirements for application as a multi-purpose expression system in Caulobacter, thus complementing the established xylose-inducible system (Pxyl). Furthermore, we introduce a newly constructed set of integrating and replicating shuttle vectors that considerably facilitate cell biological and physiological studies in Caulobacter. Based on different narrow and broad-host range replicons, they offer a wide choice of promoters, resistance genes, and fusion partners for the construction of fluorescently or affinity-tagged proteins. Since many of these constructs are also suitable for use in other bacteria, this work provides a comprehensive collection of tools that will enrich many areas of microbiological research.
Collapse
Affiliation(s)
- Martin Thanbichler
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 35043 Marburg, Germany.
| | | | | |
Collapse
|
16
|
Transcriptome changes and cAMP oscillations in an archaeal cell cycle. BMC Cell Biol 2007; 8:21. [PMID: 17562013 PMCID: PMC1906763 DOI: 10.1186/1471-2121-8-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 06/11/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The cell cycle of all organisms includes mass increase by a factor of two, replication of the genetic material, segregation of the genome to different parts of the cell, and cell division into two daughter cells. It is tightly regulated and typically includes cell cycle-specific oscillations of the levels of transcripts, proteins, protein modifications, and signaling molecules. Until now cell cycle-specific transcriptome changes have been described for four eukaryotic species ranging from yeast to human, but only for two prokaryotic species. Similarly, oscillations of small signaling molecules have been identified in very few eukaryotic species, but not in any prokaryote. RESULTS A synchronization procedure for the archaeon Halobacterium salinarum was optimized, so that nearly 100% of all cells divide in a time interval that is 1/4th of the generation time of exponentially growing cells. The method was used to characterize cell cycle-dependent transcriptome changes using a genome-wide DNA microarray. The transcript levels of 87 genes were found to be cell cycle-regulated, corresponding to 3% of all genes. They could be clustered into seven groups with different transcript level profiles. Cluster-specific sequence motifs were detected around the start of the genes that are predicted to be involved in cell cycle-specific transcriptional regulation. Notably, many cell cycle genes that have oscillating transcript levels in eukaryotes are not regulated on the transcriptional level in H. salinarum. Synchronized cultures were also used to identify putative small signaling molecules. H. salinarum was found to contain a basal cAMP concentration of 200 microM, considerably higher than that of yeast. The cAMP concentration is shortly induced directly prior to and after cell division, and thus cAMP probably is an important signal for cell cycle progression. CONCLUSION The analysis of cell cycle-specific transcriptome changes of H. salinarum allowed to identify a strategy of transcript level regulation that is different from all previously characterized species. The transcript levels of only 3% of all genes are regulated, a fraction that is considerably lower than has been reported for four eukaryotic species (6%-28%) and for the bacterium C. crescentus (19%). It was shown that cAMP is present in significant concentrations in an archaeon, and the phylogenetic profile of the adenylate cyclase indicates that this signaling molecule is widely distributed in archaea. The occurrence of cell cycle-dependent oscillations of the cAMP concentration in an archaeon and in several eukaryotic species indicates that cAMP level changes might be a phylogenetically old signal for cell cycle progression.
Collapse
|
17
|
Abstract
The branching order and coherence of the alphaproteobacterial orders have not been well established, and not all studies have agreed that mitochondria arose from within the Rickettsiales. A species tree for 72 alphaproteobacteria was produced from a concatenation of alignments for 104 well-behaved protein families. Coherence was upheld for four of the five orders with current standing that were represented here by more than one species. However, the family Hyphomonadaceae was split from the other Rhodobacterales, forming an expanded group with Caulobacterales that also included Parvularcula. The three earliest-branching alphaproteobacterial orders were the Rickettsiales, followed by the Rhodospirillales and then the Sphingomonadales. The principal uncertainty is whether the expanded Caulobacterales group is more closely associated with the Rhodobacterales or the Rhizobiales. The mitochondrial branch was placed within the Rickettsiales as a sister to the combined Anaplasmataceae and Rickettsiaceae, all subtended by the Pelagibacter branch. Pelagibacter genes will serve as useful additions to the bacterial outgroup in future evolutionary studies of mitochondrial genes, including those that have transferred to the eukaryotic nucleus.
Collapse
Affiliation(s)
- Kelly P Williams
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | | | | |
Collapse
|
18
|
McGrath PT, Lee H, Zhang L, Iniesta AA, Hottes AK, Tan MH, Hillson NJ, Hu P, Shapiro L, McAdams HH. High-throughput identification of transcription start sites, conserved promoter motifs and predicted regulons. Nat Biotechnol 2007; 25:584-92. [PMID: 17401361 DOI: 10.1038/nbt1294] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 03/01/2007] [Indexed: 11/08/2022]
Abstract
Using 62 probe-level datasets obtained with a custom-designed Caulobacter crescentus microarray chip, we identify transcriptional start sites of 769 genes, 53 of which are transcribed from multiple start sites. Transcriptional start sites are identified by analyzing probe signal cross-correlation matrices created from probe pairs tiled every 5 bp upstream of the genes. Signals from probes binding the same message are correlated. The contribution of each promoter for genes transcribed from multiple promoters is identified. Knowing the transcription start site enables targeted searching for regulatory-protein binding motifs in the promoter regions of genes with similar expression patterns. We identified 27 motifs, 17 of which share no similarity to the characterized motifs of other C. crescentus transcriptional regulators. Using these motifs, we predict coregulated genes. We verified novel promoter motifs that regulate stress-response genes, including those responding to uranium challenge, a stress-response sigma factor and a stress-response noncoding RNA.
Collapse
Affiliation(s)
- Patrick T McGrath
- Department of Physics, Stanford University, Varian Physics, 382 Via Pueblo Mall, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ebersbach G, Jacobs-Wagner C. Exploration into the spatial and temporal mechanisms of bacterial polarity. Trends Microbiol 2007; 15:101-8. [PMID: 17275310 DOI: 10.1016/j.tim.2007.01.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 01/04/2007] [Accepted: 01/23/2007] [Indexed: 10/23/2022]
Abstract
The recognition of bacterial asymmetry is not new: the first high-resolution microscopy studies revealed that bacteria come in a multitude of shapes and sometimes carry asymmetrically localized external structures such as flagella on the cell surface. Even so, the idea that bacteria could have an inherent overall polarity, which affects not only their outer appearance but also many of their vital processes, has only recently been appreciated. In this review, we focus on recent advances in our understanding of the molecular mechanisms underlying the establishment of polarized functions and cell polarity in bacteria.
Collapse
Affiliation(s)
- Gitte Ebersbach
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
20
|
Briegel A, Dias DP, Li Z, Jensen RB, Frangakis AS, Jensen GJ. Multiple large filament bundles observed in Caulobacter crescentus by electron cryotomography. Mol Microbiol 2006; 62:5-14. [PMID: 16987173 DOI: 10.1111/j.1365-2958.2006.05355.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
While the absence of any cytoskeleton was once recognized as a distinguishing feature of prokaryotes, it is now clear that a number of different bacterial proteins do form filaments in vivo. Despite the critical roles these proteins play in cell shape, genome segregation and cell division, molecular mechanisms have remained obscure in part for lack of electron microscopy-resolution images where these filaments can be seen acting within their cellular context. Here, electron cryotomography was used to image the widely studied model prokaryote Caulobacter crescentus in an intact, near-native state, producing three-dimensional reconstructions of these cells with unprecedented clarity and fidelity. We observed many instances of large filament bundles in various locations throughout the cell and at different stages of the cell cycle. The bundles appear to fall into four major classes based on shape and location, referred to here as 'inner curvature', 'cytoplasmic', 'polar' and 'ring-like'. In an attempt to identify at least some of the filaments, we imaged cells where crescentin and MreB filaments would not be present. The inner curvature and cytoplasmic bundles persisted, which together with their localization patterns, suggest that they are composed of as-yet unidentified cytoskeletal proteins. Thus bacterial filaments are frequently found as bundles, and their variety and abundance is greater than previously suspected.
Collapse
Affiliation(s)
- Ariane Briegel
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | | | | |
Collapse
|
21
|
Hendrickson H, Lawrence JG. Selection for Chromosome Architecture in Bacteria. J Mol Evol 2006; 62:615-29. [PMID: 16612541 DOI: 10.1007/s00239-005-0192-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 12/31/2005] [Indexed: 02/04/2023]
Abstract
Bacterial chromosomes are immense polymers whose faithful replication and segregation are crucial to cell survival. The ability of proteins such as FtsK to move unidirectionally toward the replication terminus, and direct DNA translocation into the appropriate daughter cell during cell division, requires that bacterial genomes maintain an architecture for the orderly replication and segregation of chromosomes. We suggest that proteins that locate the replication terminus exploit strand-biased sequences that are overrepresented on one DNA strand, and that selection increases with decreased distance to the replication terminus. We report a generalized method for detecting these architecture imparting sequences (AIMS) and have identified AIMS in nearly all bacterial genomes. Their increased abundance on leading strands and decreased abundance on lagging strands toward replication termini are not the result of changes in mutational bias; rather, they reflect a gradient of long-term positive selection for AIMS. The maintenance of the pattern of AIMS across the genomes of related bacteria independent of their positions within individual genes suggests a well-conserved role in genome biology. The stable gradient of AIMS abundance from replication origin to terminus suggests that the replicore acts as a target of selection, where selection for chromosome architecture results in the maintenance of gene order and in the lack of high-frequency DNA inversion within replicores.
Collapse
Affiliation(s)
- Heather Hendrickson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
22
|
Koutsoudis MD, Tsaltas D, Minogue TD, von Bodman SB. Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii. Proc Natl Acad Sci U S A 2006; 103:5983-8. [PMID: 16585516 PMCID: PMC1458684 DOI: 10.1073/pnas.0509860103] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Indexed: 01/17/2023] Open
Abstract
The phytopathogenic bacterium Pantoea stewartii subsp. stewartii synthesizes stewartan exo/capsular polysaccharide (EPS) in a cell density-dependent manner governed by the EsaI/EsaR quorum-sensing (QS) system. This study analyzes biofilm development and host colonization of the WT and QS regulatory mutant strains of P. stewartii. First, we show that the cell density-dependent synthesis of stewartan EPS, governed by the EsaI/EsaR QS system, is required for proper bacterial adhesion and development of spatially defined, 3D biofilms. Second, a nonvirulent mutant lacking the esaI gene adheres strongly to surfaces and develops densely packed, less structurally defined biofilms in vitro. This strain appears to be arrested in a low cell density developmental mode. Exposure of this strain to exogenous N-acyl-homoserine lactone counteracts this adhesion phenotype. Third, QS mutants lacking the EsaR repressor attach poorly to surfaces and form amorphous biofilms heavily enmeshed in excess EPS. Fourth, the WT strain disseminates efficiently within the xylem, primarily in a basipetal direction. In contrast, the two QS mutant strains remain largely localized at the site of infection. Fifth, and most significantly, epifluorescence microscopic imaging of infected leaf tissue and excised xylem vessels reveals that the bacteria colonize the xylem with unexpected specificity, particularly toward the annular rings and spiral secondary wall thickenings of protoxylem, as opposed to indiscriminate growth to fill the xylem lumen. These observations are significant to bacterial plant pathogenesis in general and may reveal targets for disease control.
Collapse
Affiliation(s)
| | | | - Timothy D. Minogue
- Plant Science, University of Connecticut, Storrs, CT 06269; and
- Pathogen Functional Genomic Resource Center, Center for Genomic Research, 9712 Medical Drive, Rockville, MD 20850
| | | |
Collapse
|
23
|
McGrath PT, Iniesta AA, Ryan KR, Shapiro L, McAdams HH. A dynamically localized protease complex and a polar specificity factor control a cell cycle master regulator. Cell 2006; 124:535-47. [PMID: 16469700 DOI: 10.1016/j.cell.2005.12.033] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 11/22/2005] [Accepted: 12/12/2005] [Indexed: 11/29/2022]
Abstract
Regulated proteolysis is essential for cell cycle progression in both prokaryotes and eukaryotes. We show here that the ClpXP protease, responsible for the degradation of multiple bacterial proteins, is dynamically localized to specific cellular positions in Caulobacter where it degrades colocalized proteins. The CtrA cell cycle master regulator, that must be cleared from the Caulobacter cell to allow the initiation of chromosome replication, interacts with the ClpXP protease at the cell pole where it is degraded. We have identified a novel, conserved protein, RcdA, that forms a complex with CtrA and ClpX in the cell. RcdA is required for CtrA polar localization and degradation by ClpXP. The localization pattern of RcdA is coincident with and dependent upon ClpX localization. Thus, a dynamically localized ClpXP proteolysis complex in concert with a cytoplasmic factor provides temporal and spatial specificity to protein degradation during a bacterial cell cycle.
Collapse
|
24
|
Harry E, Monahan L, Thompson L. Bacterial cell division: the mechanism and its precison. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 253:27-94. [PMID: 17098054 DOI: 10.1016/s0074-7696(06)53002-5] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The recent development of cell biology techniques for bacteria to allow visualization of fundamental processes in time and space, and their use in synchronous populations of cells, has resulted in a dramatic increase in our understanding of cell division and its regulation in these tiny cells. The first stage of cell division is the formation of a Z ring, composed of a polymerized tubulin-like protein, FtsZ, at the division site precisely at midcell. Several membrane-associated division proteins are then recruited to this ring to form a complex, the divisome, which causes invagination of the cell envelope layers to form a division septum. The Z ring marks the future division site, and the timing of assembly and positioning of this structure are important in determining where and when division will take place in the cell. Z ring assembly is controlled by many factors including negative regulatory mechanisms such as Min and nucleoid occlusion that influence Z ring positioning and FtsZ accessory proteins that bind to FtsZ directly and modulate its polymerization behavior. The replication status of the cell also influences the positioning of the Z ring, which may allow the tight coordination between DNA replication and cell division required to produce two identical newborn cells.
Collapse
Affiliation(s)
- Elizabeth Harry
- Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney, NSW 2007, Australia
| | | | | |
Collapse
|
25
|
Wang X, Possoz C, Sherratt DJ. Dancing around the divisome: asymmetric chromosome segregation in Escherichia coli. Genes Dev 2005; 19:2367-77. [PMID: 16204186 PMCID: PMC1240045 DOI: 10.1101/gad.345305] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
By simultaneously tracking pairs of specific genetic regions and divisome proteins in live Escherichia coli, we develop a new scheme for the relationship between DNA replication-segregation, chromosome organization, and cell division. A remarkable asymmetric pattern of segregation of different loci in the replication termination region (ter) suggests that individual replichores segregate to distinct nucleoid positions, consistent with an asymmetric segregation of leading and lagging strand templates after replication. Cells growing with a generation time of 100 min are born with a nonreplicating chromosome and have their origin region close to mid-cell and their ter polar. After replication initiation, the two newly replicated origin regions move away from mid-cell to opposite cell halves. By mid-S phase, FtsZ forms a ring at mid-cell at the time of initiation of nucleoid separation; ter remains polar. In the latter half of S phase, ter moves quickly toward mid-cell. FtsK, which coordinates the late stages of chromosome segregation with cell division, forms a ring coincident with the FtsZ ring as S phase completes, approximately 50 min after its initiation. As ter duplicates at mid-cell, sister nucleoid separation appears complete. After initiation of invagination, the FtsZ ring disassembles, leaving FtsK to complete chromosome segregation and cytokinesis.
Collapse
Affiliation(s)
- Xindan Wang
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | |
Collapse
|
26
|
Maddock JR. High-resolution anatomy of a progressively pinching cell division. J Bacteriol 2005; 187:6867-9. [PMID: 16199554 PMCID: PMC1251632 DOI: 10.1128/jb.187.20.6867-6869.2005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Janine R Maddock
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109, USA.
| |
Collapse
|