1
|
Pastoors J, Baltin C, Bettmer J, Deitert A, Götzen T, Michel C, Deischter J, Schroll I, Biselli A, Palkovits R, Rose M, Jupke A, Büchs J. Respiration-based investigation of adsorbent-bioprocess compatibility. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:49. [PMID: 36934285 PMCID: PMC10024846 DOI: 10.1186/s13068-023-02297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/03/2023] [Indexed: 03/20/2023]
Abstract
BACKGROUND The efficiency of downstream processes plays a crucial role in the transition from conventional petrochemical processes to sustainable biotechnological production routes. One promising candidate for product separation from fermentations with low energy demand and high selectivity is the adsorption of the target product on hydrophobic adsorbents. However, only limited knowledge exists about the interaction of these adsorbents and the bioprocess. The bioprocess could possibly be harmed by the release of inhibitory components from the adsorbent surface. Another possibility is co-adsorption of essential nutrients, especially in an in situ application, making these nutrients unavailable to the applied microorganism. RESULTS A test protocol investigating adsorbent-bioprocess compatibility was designed and applied on a variety of adsorbents. Inhibitor release and nutrient adsorption was studied in an isolated manner. Respiratory data recorded by a RAMOS device was used to assess the influence of the adsorbents on the cultivation in three different microbial systems for up to six different adsorbents per system. While no inhibitor release was detected in our investigations, adsorption of different essential nutrients was observed. CONCLUSION The application of adsorption for product recovery from the bioprocess was proven to be generally possible, but nutrient adsorption has to be assessed for each application individually. To account for nutrient adsorption, adsorptive product separation should only be applied after sufficient microbial growth. Moreover, concentrations of co-adsorbed nutrients need to be increased to compensate nutrient loss. The presented protocol enables an investigation of adsorbent-bioprocess compatibility with high-throughput and limited effort.
Collapse
Affiliation(s)
- Johannes Pastoors
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Chris Baltin
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Jens Bettmer
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Alexander Deitert
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Tobias Götzen
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Carina Michel
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Jeff Deischter
- ITMC - Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Isabel Schroll
- Chemical Technology II, Department of Chemistry, TU Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Andreas Biselli
- AVT - Fluid Process Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Regina Palkovits
- ITMC - Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Marcus Rose
- Chemical Technology II, Department of Chemistry, TU Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Andreas Jupke
- AVT - Fluid Process Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Jochen Büchs
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany.
| |
Collapse
|
2
|
Decker JS, Menacho-Melgar R, Lynch MD. Integrated autolysis, DNA hydrolysis and precipitation enables an improved bioprocess for Q-Griffithsin, a broad-spectrum antiviral and clinical-stage anti-COVID-19 candidate. Biochem Eng J 2022; 181:108403. [PMID: 35308834 PMCID: PMC8917701 DOI: 10.1016/j.bej.2022.108403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 12/03/2022]
Abstract
Across the biomanufacturing industry, innovations are needed to improve efficiency and flexibility, especially in the face of challenges such as the COVID-19 pandemic. Here we report an improved bioprocess for Q-Griffithsin, a broad-spectrum antiviral currently in clinical trials for COVID-19. Q-Griffithsin is produced at high titer in E. coli and purified to anticipated clinical grade without conventional chromatography or the need for any fixed downstream equipment. The process is thus both low-cost and highly flexible, facilitating low sales prices and agile modifications of production capacity, two key features for pandemic response. The simplicity of this process is enabled by a novel unit operation that integrates cellular autolysis, autohydrolysis of nucleic acids, and contaminant precipitation, giving essentially complete removal of host cell DNA as well as reducing host cell proteins and endotoxin by 3.6 and 2.4 log10 units, respectively. This unit operation can be performed rapidly and in the fermentation vessel, such that Q-GRFT is obtained with 100% yield and > 99.9% purity immediately after fermentation and requires only a flow-through membrane chromatography step for further contaminant removal. Using this operation or variations of it may enable improved bioprocesses for a range of other high-value proteins in E. coli.
Collapse
Affiliation(s)
- John S Decker
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Michael D Lynch
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
3
|
Decker JS, Menacho-Melgar R, Lynch MD. Integrated Autolysis, DNA Hydrolysis and Precipitation Enables an Improved Bioprocess for Q-Griffithsin, a Broad-Spectrum Antiviral and Clinical-Stage anti-COVID-19 Candidate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.12.30.474602. [PMID: 35018377 PMCID: PMC8750652 DOI: 10.1101/2021.12.30.474602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
UNLABELLED Across the biomanufacturing industry, innovations are needed to improve efficiency and flexibility, especially in the face of challenges such as the COVID-19 pandemic. Here we report an improved bioprocess for Q-Griffithsin, a broad-spectrum antiviral currently in clinical trials for COVID-19. Q-Griffithsin is produced at high titer in E. coli and purified to anticipated clinical grade without conventional chromatography or the need for any fixed downstream equipment. The process is thus both low-cost and highly flexible, facilitating low sales prices and agile modifications of production capacity, two key features for pandemic response. The simplicity of this process is enabled by a novel unit operation that integrates cellular autolysis, autohydrolysis of nucleic acids, and contaminant precipitation, giving essentially complete removal of host cell DNA as well as reducing host cell proteins and endotoxin by 3.6 and 2.4 log 10 units, respectively. This unit operation can be performed rapidly and in the fermentation vessel, such that Q-GRFT is obtained with 100% yield and >99.9% purity immediately after fermentation and requires only a flow-through membrane chromatography step for further contaminant removal. Using this operation or variations of it may enable improved bioprocesses for a range of other high-value proteins in E. coli . HIGHLIGHTS Integrating autolysis, DNA hydrolysis and precipitation enables process simplificationAutolysis reduces endotoxin release and burden to purificationQ-Griffithsin recovered from fermentation vessel at >99.9% purity and 100% yieldQ-Griffithsin purified to anticipated clinical grade without conventional chromatographyThe resulting bioprocess is 100% disposables-compatible, scalable, and low-cost.
Collapse
|
4
|
Varga V, Štefuca V, Mihálová L, Levarski Z, Struhárňanská E, Blaško J, Kubinec R, Farkaš P, Sitkey V, Turňa J, Rosenberg M, Stuchlík S. Recombinant Enzymatic Redox Systems for Preparation of Aroma Compounds by Biotransformation. Front Microbiol 2021; 12:684640. [PMID: 34248905 PMCID: PMC8264508 DOI: 10.3389/fmicb.2021.684640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/03/2021] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to develop immobilized enzyme systems that reduce carbonyl compounds to their corresponding alcohols. The demand for natural aromas and food additives has been constantly growing in recent years. However, it can no longer be met by extraction and isolation from natural materials. One way to increase the availability of natural aromas is to prepare them by the enzymatic transformation of suitable precursors. Recombinant enzymes are currently being used for this purpose. We investigated trans-2-hexenal bioreduction by recombinant Saccharomyces cerevisiae alcohol dehydrogenase (ScADH1) with simultaneous NADH regeneration by recombinant Candida boidinii formate dehydrogenase (FDH). In a laboratory bioreactor with two immobilized enzymes, 88% of the trans-2-hexenal was transformed to trans-2-hexenol. The initial substrate concentration was 3.7 mM. The aldehyde destabilized ScADH1 by eluting Zn2+ ions from the enzyme. A fed-batch operation was used and the trans-2-hexenal concentration was maintained at a low level to limit the negative effect of Zn2+ ion elution from the immobilized ScADH1. Another immobilized two-enzyme system was used to reduce acetophenone to (S)-1-phenylethanol. To this end, the recombinant alcohol dehydrogenase (RrADH) from Rhodococcus ruber was used. This biocatalytic system converted 61% of the acetophenone to (S)-1-phenylethanol. The initial substrate concentration was 8.3 mM. All enzymes were immobilized by poly-His tag to Ni2+, which formed strong but reversible bonds that enabled carrier reuse after the loss of enzyme activity.
Collapse
Affiliation(s)
- Viktor Varga
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Vladimír Štefuca
- Institute of Biotechnology, Faculty of Food and Chemical Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Lenka Mihálová
- Institute of Biotechnology, Faculty of Food and Chemical Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Zdenko Levarski
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.,Science Park of Comenius University, Bratislava, Slovakia
| | - Eva Struhárňanská
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Jaroslav Blaško
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Robert Kubinec
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | | | | | - Ján Turňa
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.,Science Park of Comenius University, Bratislava, Slovakia
| | - Michal Rosenberg
- Institute of Biotechnology, Faculty of Food and Chemical Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Stanislav Stuchlík
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.,Science Park of Comenius University, Bratislava, Slovakia
| |
Collapse
|
5
|
Lee KZ, Basnayake Pussepitiyalage V, Lee YH, Loesch-Fries LS, Harris MT, Hemmati S, Solomon KV. Engineering Tobacco Mosaic Virus and Its Virus-Like-Particles for Synthesis of Biotemplated Nanomaterials. Biotechnol J 2021; 16:e2000311. [PMID: 33135368 DOI: 10.1002/biot.202000311] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/27/2020] [Indexed: 12/12/2022]
Abstract
Biomolecules are increasingly attractive templates for the synthesis of functional nanomaterials. Chief among them is the plant tobacco mosaic virus (TMV) due to its high aspect ratio, narrow size distribution, diverse biochemical functionalities presented on the surface, and compatibility with a number of chemical conjugations. These properties are also easily manipulated by genetic modification to enable the synthesis of a range of metallic and non-metallic nanomaterials for diverse applications. This article reviews the characteristics of TMV and related viruses, and their virus-like particle (VLP) derivatives, and how these may be manipulated to extend their use and function. A focus of recent efforts has been on greater understanding and control of the self-assembly processes that drive biotemplate formation. How these features have been exploited in engineering applications such as, sensing, catalysis, and energy storage are briefly outlined. While control of VLP surface features is well-established, fewer tools exist to control VLP self-assembly, which limits efforts to control template uniformity and synthesis of certain templated nanomaterials. However, emerging advances in synthetic biology, machine learning, and other fields promise to accelerate efforts to control template uniformity and nanomaterial synthesis enabling more widescale industrial use of VLP-based biotemplates.
Collapse
Affiliation(s)
- Kok Zhi Lee
- Agricultural & Biological Engineering, Purdue University, 225 S University St, West Lafayette, IN, 47907, USA
| | | | - Yu-Hsuan Lee
- School of Chemical Engineering, Purdue University, 480 W Stadium Ave, West Lafayette, IN, 47907, USA
| | - L Sue Loesch-Fries
- Department of Botany and Plant Pathology, Purdue University, 915 W State St, West Lafayette, IN, 47907, USA
| | - Michael T Harris
- School of Chemical Engineering, Purdue University, 480 W Stadium Ave, West Lafayette, IN, 47907, USA
| | - Shohreh Hemmati
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA
| | - Kevin V Solomon
- Agricultural & Biological Engineering, Purdue University, 225 S University St, West Lafayette, IN, 47907, USA
- Laboratory of Renewable Resources Engineering (LORRE), Purdue University, 500 Central Drive, West Lafayette, IN, 47907, USA
| |
Collapse
|
6
|
Löfgren A, Gomis-Fons J, Andersson N, Nilsson B, Berghard L, Lagerquist Hägglund C. An integrated continuous downstream process with real-time control: A case study with periodic countercurrent chromatography and continuous virus inactivation. Biotechnol Bioeng 2021; 118:1664-1676. [PMID: 33459355 DOI: 10.1002/bit.27681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/19/2020] [Accepted: 01/12/2021] [Indexed: 11/11/2022]
Abstract
Integrated continuous downstream processes with process analytical technology offer a promising opportunity to reduce production costs and increase process flexibility and adaptability. In this case study, an integrated continuous process was used to purify a recombinant protein on laboratory scale in a two-system setup that can be used as a general downstream setup offering multiproduct and multipurpose manufacturing capabilities. The process consisted of continuous solvent/detergent virus inactivation followed by periodic countercurrent chromatography in the capture step, and a final chromatographic polishing step. A real-time controller was implemented to ensure stable operation by adapting the downstream process to external changes. A concentration disturbance was introduced to test the controller. After the disturbance was applied, the product output recovered within 6 h, showing the effectiveness of the controller. In a comparison of the process with and without the controller, the product output per cycle increased by 27%, the resin utilization increased from 71.4% to 87.9%, and the specific buffer consumption was decreased by 21% with the controller, while maintaining a similar yield and purity as in the process without the disturbance. In addition, the integrated continuous process outperformed the batch process, increasing the productivity by 95% and the yield by 28%.
Collapse
Affiliation(s)
- Anton Löfgren
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Joaquín Gomis-Fons
- Department of Chemical Engineering, Lund University, Lund, Sweden.,Royal Institute of Technology, Competence Centre for Advanced BioProduction by Continuous Processing, Stockholm, Sweden
| | - Niklas Andersson
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Bernt Nilsson
- Department of Chemical Engineering, Lund University, Lund, Sweden.,Royal Institute of Technology, Competence Centre for Advanced BioProduction by Continuous Processing, Stockholm, Sweden
| | | | | |
Collapse
|
7
|
Abstract
This special issue is devoted to new developments in measurement technologies for upstream and downstream bioprocessing [...]
Collapse
|
8
|
Navale GR, Dharne MS, Shinde SS. Metabolic engineering and synthetic biology for isoprenoid production in Escherichia coli and Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2021; 105:457-475. [PMID: 33394155 DOI: 10.1007/s00253-020-11040-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 12/29/2022]
Abstract
Isoprenoids, often called terpenoids, are the most abundant and highly diverse family of natural organic compounds. In plants, they play a distinct role in the form of photosynthetic pigments, hormones, electron carrier, structural components of membrane, and defence. Many isoprenoids have useful applications in the pharmaceutical, nutraceutical, and chemical industries. They are synthesized by various isoprenoid synthase enzymes by several consecutive steps. Recent advancement in metabolic engineering and synthetic biology has enabled the production of these isoprenoids in the heterologous host systems like Escherichia coli and Saccharomyces cerevisiae. Both heterologous systems have been engineered for large-scale production of value-added isoprenoids. This review article will provide the detailed description of various approaches used for engineering of methyl-D-erythritol-4-phosphate (MEP) and mevalonate (MVA) pathway for synthesizing isoprene units (C5) and ultimate production of diverse isoprenoids. The review particularly highlighted the efforts taken for the production of C5-C20 isoprenoids by metabolic engineering techniques in E. coli and S. cerevisiae over a decade. The challenges and strategies are also discussed in detail for scale-up and engineering of isoprenoids in the heterologous host systems.Key points• Isoprenoids are beneficial and valuable natural products.• E. coli and S. cerevisiae are the promising host for isoprenoid biosynthesis.• Emerging techniques in synthetic biology enabled the improved production.• Need to expand the catalogue and scale-up of un-engineered isoprenoids. Metabolic engineering and synthetic biology for isoprenoid production in Escherichia coli and Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Govinda R Navale
- NCIM Resource Centre, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 001, India
| | - Mahesh S Dharne
- NCIM Resource Centre, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 001, India.
| | - Sandip S Shinde
- NCIM Resource Centre, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India. .,Department Industrial and Chemical Engineering, Institute of Chemical Technology Mumbai Marathwada Campus, Jalna, 431213, India.
| |
Collapse
|
9
|
Femmer C, Bechtold M, Panke S. Semi‐rational engineering of an amino acid racemase that is stabilized in aqueous/organic solvent mixtures. Biotechnol Bioeng 2020; 117:2683-2693. [DOI: 10.1002/bit.27449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/26/2020] [Accepted: 05/31/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Christian Femmer
- Department of Biosystems Science and EngineeringETH Zurich Basel Switzerland
| | - Matthias Bechtold
- Department of Biosystems Science and EngineeringETH Zurich Basel Switzerland
| | - Sven Panke
- Department of Biosystems Science and EngineeringETH Zurich Basel Switzerland
| |
Collapse
|
10
|
Aguilar F, Scheper T, Beutel S. Improved Production and In Situ Recovery of Sesquiterpene (+)-Zizaene from Metabolically-Engineered E. coli. Molecules 2019; 24:E3356. [PMID: 31540161 PMCID: PMC6767195 DOI: 10.3390/molecules24183356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 02/08/2023] Open
Abstract
The sesquiterpene (+)-zizaene is the direct precursor of khusimol, the main fragrant compound of the vetiver essential oil from Chrysopogon zizanioides and used in nearly 20% of men's fine perfumery. The biotechnological production of such fragrant sesquiterpenes is a promising alternative towards sustainability; nevertheless, product recovery from fermentation is one of the main constraints. In an effort to improve the (+)-zizaene recovery from a metabolically-engineered Escherichia coli, we developed an integrated bioprocess by coupling fermentation and (+)-zizaene recovery using adsorber extractants. Initially, (+)-zizaene volatilization was confirmed from cultivations with no extractants but application of liquid-liquid phase partitioning cultivation (LLPPC) improved (+)-zizaene recovery nearly 4-fold. Furthermore, solid-liquid phase partitioning cultivation (SLPPC) was evaluated by screening polymeric adsorbers, where Diaion HP20 reached the highest recovery. Bioprocess was scaled up to 2 L bioreactors and in situ recovery configurations integrated to fermentation were evaluated. External recovery configuration was performed with an expanded bed adsorption column and improved (+)-zizaene titers 2.5-fold higher than LLPPC. Moreover, internal recovery configuration (IRC) further enhanced the (+)-zizaene titers 2.2-fold, whereas adsorption velocity was determined as critical parameter for recovery efficiency. Consequently, IRC improved the (+)-zizaene titer 8.4-fold and productivity 3-fold from our last report, achieving a (+)-zizaene titer of 211.13 mg L-1 and productivity of 3.2 mg L-1 h-1. This study provides further knowledge for integration of terpene bioprocesses by in situ product recovery, which could be applied for many terpene studies towards the industrialization of fragrant molecules.
Collapse
Affiliation(s)
- Francisco Aguilar
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, 30167 Hannover, Germany.
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, 30167 Hannover, Germany.
| | - Sascha Beutel
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, 30167 Hannover, Germany.
| |
Collapse
|
11
|
Fellechner O, Blatkiewicz M, Smirnova I. Reactive Separations for In Situ Product Removal of Enzymatic Reactions: A Review. CHEM-ING-TECH 2019. [DOI: 10.1002/cite.201900027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Oliver Fellechner
- Hamburg University of Technology Institute of Thermal Separation Processes Eißendorfer Straße 38 21073 Hamburg Germany
| | - Michał Blatkiewicz
- Hamburg University of Technology Institute of Thermal Separation Processes Eißendorfer Straße 38 21073 Hamburg Germany
| | - Irina Smirnova
- Hamburg University of Technology Institute of Thermal Separation Processes Eißendorfer Straße 38 21073 Hamburg Germany
| |
Collapse
|
12
|
Integration of a complete downstream process for the automated lab-scale production of a recombinant protein. J Biotechnol 2019; 301:45-51. [DOI: 10.1016/j.jbiotec.2019.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/26/2019] [Accepted: 05/26/2019] [Indexed: 11/21/2022]
|
13
|
Ebeler M, Pilgram F, Wellhöfer T, Frankenfeld K, Franzreb M. First comprehensive view on a magnetic separation based protein purification processes: From process development to cleaning validation of a GMP-ready magnetic separator. Eng Life Sci 2019; 19:591-601. [PMID: 32625035 DOI: 10.1002/elsc.201800183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/09/2019] [Accepted: 07/01/2019] [Indexed: 11/06/2022] Open
Abstract
Magnetic separation processes are known as integrated bioanalytical protein purification method since decades and are well described. However, use of magnetic separation processes in a regulated industrial production environment has been prevented by the lack of suitable process equipment and prejudice against the productivity of the process and its qualification for cleaning-in-place operation. With the aim of overcoming this prejudice, a comprehensive process development approach is presented, based on a GMP-compliant magnetic separator, including an optimization of the batch adsorption process, implementation into a technical-scale, and the development and validation of cleaning routines for the device. By the implementation of a two-step counter-current binding process, it was possible to raise the yields of the magnetic separation process even for very low concentrated targets in a vast surplus of competing proteins, like the hormone equine chorionic gonadotropin in serum, from 74% to over 95%. For the validation of the cleaning process, a direct surface swabbing method combined with a total organic carbon analysis was established for the determination of two model contaminants. The cleanability of the process equipment was proven for both model contaminants by reliably meeting the 10 ppm criteria.
Collapse
Affiliation(s)
- Moritz Ebeler
- Institute of Functional Interfaces Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
| | - Florian Pilgram
- Institute of Functional Interfaces Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
| | - Thomas Wellhöfer
- fzmb GmbH, Forschungszentrum für Medizintechnik und Biotechnologie Bad Langensalza Germany
| | - Katrin Frankenfeld
- fzmb GmbH, Forschungszentrum für Medizintechnik und Biotechnologie Bad Langensalza Germany
| | - Matthias Franzreb
- Institute of Functional Interfaces Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
| |
Collapse
|
14
|
Lenzen C, Wynands B, Otto M, Bolzenius J, Mennicken P, Blank LM, Wierckx N. High-Yield Production of 4-Hydroxybenzoate From Glucose or Glycerol by an Engineered Pseudomonas taiwanensis VLB120. Front Bioeng Biotechnol 2019; 7:130. [PMID: 31245364 PMCID: PMC6581684 DOI: 10.3389/fbioe.2019.00130] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 05/14/2019] [Indexed: 12/19/2022] Open
Abstract
Aromatic compounds such as 4-hydroxybenzoic acid are broadly applied in industry for a myriad of applications used in everyday life. However, their industrial production currently relies heavily on fossil resources and involves environmentally unfriendly production conditions, thus creating the need for more sustainable biotechnological alternatives. In this study, synthetic biology was applied to metabolically engineer Pseudomonas taiwanensis VLB120 to produce 4-hydroxybenzoate from glucose, xylose, or glycerol as sole carbon sources. Genes encoding a 4-hydroxybenzoate production pathway were integrated into the host genome and the flux toward the central precursor tyrosine was enhanced by overexpressing genes encoding key enzymes of the shikimate pathway. The flux toward tryptophan biosynthesis was decreased by introducing a P290S point mutation in the trpE gene, and degradation pathways for 4-hydroxybenzoate, 4-hydroxyphenylpyruvate and 3-dehydroshikimate were knocked out. The resulting production strains were tailored for the utilization of glucose and glycerol through the rational modification of central carbon metabolism. In batch cultivations with a completely mineral medium, the best strain produced 1.37 mM 4-hydroxybenzoate from xylose with a C-mol yield of 8% and 3.3 mM from glucose with a C-mol yield of 19.0%. Using glycerol as a sole carbon source, the C-mol yield increased to 29.6%. To our knowledge, this is the highest yield achieved by any species in a fully mineral medium. In all, the efficient conversion of bio-based substrates into 4-hydroxybenzoate by these deeply engineered P. taiwanensis strains brings the renewable production of aromatics one step closer.
Collapse
Affiliation(s)
- Christoph Lenzen
- Institute of Applied Microbiology iAMB, RWTH Aachen University, Aachen, Germany
| | - Benedikt Wynands
- Institute of Applied Microbiology iAMB, RWTH Aachen University, Aachen, Germany.,Forschungszentrum Jülich, Institute of Bio- and Geosciences IBG-1: Biotechnology, Jülich, Germany
| | - Maike Otto
- Institute of Applied Microbiology iAMB, RWTH Aachen University, Aachen, Germany.,Forschungszentrum Jülich, Institute of Bio- and Geosciences IBG-1: Biotechnology, Jülich, Germany
| | - Johanna Bolzenius
- Institute of Applied Microbiology iAMB, RWTH Aachen University, Aachen, Germany
| | - Philip Mennicken
- Institute of Applied Microbiology iAMB, RWTH Aachen University, Aachen, Germany
| | - Lars M Blank
- Institute of Applied Microbiology iAMB, RWTH Aachen University, Aachen, Germany
| | - Nick Wierckx
- Institute of Applied Microbiology iAMB, RWTH Aachen University, Aachen, Germany.,Forschungszentrum Jülich, Institute of Bio- and Geosciences IBG-1: Biotechnology, Jülich, Germany
| |
Collapse
|
15
|
Singh N, Herzer S. Downstream Processing Technologies/Capturing and Final Purification : Opportunities for Innovation, Change, and Improvement. A Review of Downstream Processing Developments in Protein Purification. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 165:115-178. [PMID: 28795201 DOI: 10.1007/10_2017_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increased pressure on upstream processes to maximize productivity has been crowned with great success, although at the cost of shifting the bottleneck to purification. As drivers were economical, focus is on now on debottlenecking downstream processes as the main drivers of high manufacturing cost. Devising a holistically efficient and economical process remains a key challenge. Traditional and emerging protein purification strategies with particular emphasis on methodologies implemented for the production of recombinant proteins of biopharmaceutical importance are reviewed. The breadth of innovation is addressed, as well as the challenges the industry faces today, with an eye to remaining impartial, fair, and balanced. In addition, the scope encompasses both chromatographic and non-chromatographic separations directed at the purification of proteins, with a strong emphasis on antibodies. Complete solutions such as integrated USP/DSP strategies (i.e., continuous processing) are discussed as well as gains in data quantity and quality arising from automation and high-throughput screening (HTS). Best practices and advantages through design of experiments (DOE) to access a complex design space such as multi-modal chromatography are reviewed with an outlook on potential future trends. A discussion of single-use technology, its impact and opportunities for further growth, and the exciting developments in modeling and simulation of DSP rounds out the overview. Lastly, emerging trends such as 3D printing and nanotechnology are covered. Graphical Abstract Workflow of high-throughput screening, design of experiments, and high-throughput analytics to understand design space and design space boundaries quickly. (Reproduced with permission from Gregory Barker, Process Development, Bristol-Myers Squibb).
Collapse
Affiliation(s)
- Nripen Singh
- Bristol-Myers Squibb, Global Manufacturing and Supply, Devens, MA, 01434, USA.
| | - Sibylle Herzer
- Bristol-Myers Squibb, Global Manufacturing and Supply, Hopewell, NJ, 01434, USA
| |
Collapse
|
16
|
Brechmann NA, Eriksson PO, Eriksson K, Oscarsson S, Buijs J, Shokri A, Hjälm G, Chotteau V. Pilot-scale process for magnetic bead purification of antibodies directly from non-clarified CHO cell culture. Biotechnol Prog 2019; 35:e2775. [PMID: 30629859 PMCID: PMC6617771 DOI: 10.1002/btpr.2775] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/31/2018] [Accepted: 12/31/2018] [Indexed: 11/20/2022]
Abstract
High capacity magnetic protein A agarose beads, LOABeads PrtA, were used in the development of a new process for affinity purification of monoclonal antibodies (mAbs) from non‐clarified CHO cell broth using a pilot‐scale magnetic separator. The LOABeads had a maximum binding capacity of 65 mg/mL and an adsorption capacity of 25–42 mg IgG/mL bead in suspension for an IgG concentration of 1 to 8 g/L. Pilot‐scale separation was initially tested in a mAb capture step from 26 L clarified harvest. Small‐scale experiments showed that similar mAb adsorptions were obtained in cell broth containing 40 × 106 cells/mL as in clarified supernatant. Two pilot‐scale purification runs were then performed on non‐clarified cell broth from fed‐batch runs of 16 L, where a rapid mAb adsorption ≥96.6% was observed after 1 h. This process using 1 L of magnetic beads had an overall mAb yield of 86% and 16 times concentration factor. After this single protein A capture step, the mAb purity was similar to the one obtained by column chromatography, while the host cell protein content was very low, <10 ppm. Our results showed that this magnetic bead mAb purification process, using a dedicated pilot‐scale separation device, was a highly efficient single step, which directly connected the culture to the downstream process without cell clarification. Purification of mAb directly from non‐clarified cell broth without cell separation can provide significant savings in terms of resources, operation time, and equipment, compared to legacy procedure of cell separation followed by column chromatography step. © 2019 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2775, 2019.
Collapse
Affiliation(s)
- Nils A Brechmann
- AdBIOPRO, VINNOVA Competence Centre for Advanced BioProduction by Continuous Processing, Stockholm, Sweden.,Cell Technology Group (CETEG), Dept. of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Inst. of Technology, Stockholm, Sweden
| | | | - Kristofer Eriksson
- AdBIOPRO, VINNOVA Competence Centre for Advanced BioProduction by Continuous Processing, Stockholm, Sweden.,Lab-on-a-Bead AB, Uppsala, Sweden
| | - Sven Oscarsson
- Dept. of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | - Jos Buijs
- Dept. of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Atefeh Shokri
- AdBIOPRO, VINNOVA Competence Centre for Advanced BioProduction by Continuous Processing, Stockholm, Sweden.,Cell Technology Group (CETEG), Dept. of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Inst. of Technology, Stockholm, Sweden
| | - Göran Hjälm
- AdBIOPRO, VINNOVA Competence Centre for Advanced BioProduction by Continuous Processing, Stockholm, Sweden.,Lab-on-a-Bead AB, Uppsala, Sweden
| | - Véronique Chotteau
- AdBIOPRO, VINNOVA Competence Centre for Advanced BioProduction by Continuous Processing, Stockholm, Sweden.,Cell Technology Group (CETEG), Dept. of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Inst. of Technology, Stockholm, Sweden
| |
Collapse
|
17
|
Kulkarni P, Uversky VN. Intrinsically Disordered Proteins: The Dark Horse of the Dark Proteome. Proteomics 2018; 18:e1800061. [DOI: 10.1002/pmic.201800061] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/07/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research; City of Hope National Medical Center; Duarte CA 91010 USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine; Morsani College of Medicine; University of South Florida; Tampa FL 33612 USA
- Laboratory of New methods in Biology; Institute for Biological Instrumentation; Russian Academy of Sciences; Pushchino Moscow Region 142290 Russia
| |
Collapse
|
18
|
Kreyenschulte D, Heyman B, Eggert A, Maßmann T, Kalvelage C, Kossack R, Regestein L, Jupke A, Büchs J. In situ reactive extraction of itaconic acid during fermentation of Aspergillus terreus. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.04.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
The solvent side of proteinaceous membrane-less organelles in light of aqueous two-phase systems. Int J Biol Macromol 2018; 117:1224-1251. [PMID: 29890250 DOI: 10.1016/j.ijbiomac.2018.06.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/07/2018] [Indexed: 12/29/2022]
Abstract
Water represents a common denominator for liquid-liquid phase transitions leading to the formation of the polymer-based aqueous two-phase systems (ATPSs) and a set of the proteinaceous membrane-less organelles (PMLOs). ATPSs have a broad range of biotechnological applications, whereas PMLOs play a number of crucial roles in cellular compartmentalization and often represent a cellular response to the stress. Since ATPSs and PMLOs contain high concentrations of polymers (such as polyethylene glycol (PEG), polypropylene glycol (PPG), Ucon, and polyvinylpyrrolidone (PVP), Dextran, or Ficoll) or biopolymers (peptides, proteins and nucleic acids), it is expected that the separated phases of these systems are characterized by the noticeable changes in the solvent properties of water. These changes in solvent properties can drive partitioning of various compounds (proteins, nucleic acids, organic low-molecular weight molecules, metal ions, etc.) between the phases of ATPSs or between the PMLOs and their surroundings. Although there is a sizable literature on the properties of the ATPS phases, much less is currently known about PMLOs. In this perspective article, we first represent liquid-liquid phase transitions in water, discuss different types of biphasic (or multiphasic) systems in water, and introduce various PMLOs and some of their properties. Then, some basic characteristics of polymer-based ATPSs are presented, with the major focus being on the current understanding of various properties of ATPS phases and solvent properties of water inside them. Finally, similarities and differences between the polymer-based ATPSs and biological PMLOs are discussed.
Collapse
|
20
|
Ebeler M, Lind O, Norrman N, Palmgren R, Franzreb M. One-step integrated clarification and purification of a monoclonal antibody using Protein A Mag Sepharose beads and a cGMP-compliant high-gradient magnetic separator. N Biotechnol 2018; 42:48-55. [DOI: 10.1016/j.nbt.2018.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/18/2018] [Accepted: 02/18/2018] [Indexed: 11/24/2022]
|
21
|
Gädke J, Thies JW, Kleinfeldt L, Kalinin A, Starke G, Lakowitz A, Biedendieck R, Garnweitner G, Dietzel A, Krull R. Integrated in situ -purification of recombinant proteins from Bacillus megaterium cultivation using SPION in stirred tank reactors. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Gädke J, Kleinfeldt L, Schubert C, Rohde M, Biedendieck R, Garnweitner G, Krull R. In situ affinity purification of his-tagged protein A from Bacillus megaterium cultivation using recyclable superparamagnetic iron oxide nanoparticles. J Biotechnol 2017; 242:55-63. [DOI: 10.1016/j.jbiotec.2016.11.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 10/20/2022]
|
23
|
Rangarajan V, Clarke KG. Towards bacterial lipopeptide products for specific applications — a review of appropriate downstream processing schemes. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.08.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Evaluation of magnetic particles modified with a hydrophobic charge-induction ligand for antibody capture. J Chromatogr A 2016; 1460:61-7. [DOI: 10.1016/j.chroma.2016.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/30/2016] [Accepted: 07/03/2016] [Indexed: 11/21/2022]
|
25
|
Venugopalan A, Srivastava S. Endophytes as in vitro production platforms of high value plant secondary metabolites. Biotechnol Adv 2015. [PMID: 26225453 DOI: 10.1016/j.biotechadv.2015.07.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many reports have been published on bioprospecting of endophytic fungi capable of producing high value bioactive molecules like, paclitaxel, vincristine, vinblastine, camptothecin and podophyllotoxin. However, commercial exploitation of endophytes for high value-low volume plant secondary metabolites remains elusive due to widely reported genomic instability of endophytes in the axenic culture. While most of the endophyte research focuses on screening endophytes for novel or existing high value biomolecules, very few reports seek to explore the possible mechanisms of production of host-plant associated or novel secondary metabolites in these organisms. With an overview of host-endophyte relationship and its possible impact on the secondary metabolite production potential of endophytes, the review highlights the evidence reported for and against the presence of host-independent biosynthetic machinery in endophytes. The review aims to address the question, why should and how can endophytes be exploited for large scale in vitro production of high value phytochemicals? In this regard, various bioprocess optimization strategies that have been applied to sustain and enhance the product yield from the endophytes have also been described in detail. Further, techniques like mixed fermentation/co-cultivation and use of epigenetic modifiers have also been discussed as potential strategies to activate cryptic gene clusters in endophytes, thereby aiding in novel metabolite discovery and overcoming the limitations associated with axenic culture of endophytes.
Collapse
Affiliation(s)
- Aarthi Venugopalan
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Smita Srivastava
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India.
| |
Collapse
|
26
|
Buyel JF, Twyman RM, Fischer R. Extraction and downstream processing of plant-derived recombinant proteins. Biotechnol Adv 2015; 33:902-13. [PMID: 25922318 DOI: 10.1016/j.biotechadv.2015.04.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/15/2015] [Accepted: 04/22/2015] [Indexed: 12/11/2022]
Abstract
Plants offer the tantalizing prospect of low-cost automated manufacturing processes for biopharmaceutical proteins, but several challenges must be addressed before such goals are realized and the most significant hurdles are found during downstream processing (DSP). In contrast to the standardized microbial and mammalian cell platforms embraced by the biopharmaceutical industry, there are many different plant-based expression systems vying for attention, and those with the greatest potential to provide inexpensive biopharmaceuticals are also the ones with the most significant drawbacks in terms of DSP. This is because the most scalable plant systems are based on the expression of intracellular proteins in whole plants. The plant tissue must therefore be disrupted to extract the product, challenging the initial DSP steps with an unusually high load of both particulate and soluble contaminants. DSP platform technologies can accelerate and simplify process development, including centrifugation, filtration, flocculation, and integrated methods that combine solid-liquid separation, purification and concentration, such as aqueous two-phase separation systems. Protein tags can also facilitate these DSP steps, but they are difficult to transfer to a commercial environment and more generic, flexible and scalable strategies to separate target and host cell proteins are preferable, such as membrane technologies and heat/pH precipitation. In this context, clarified plant extracts behave similarly to the feed stream from microbes or mammalian cells and the corresponding purification methods can be applied, as long as they are adapted for plant-specific soluble contaminants such as the superabundant protein RuBisCO. Plant-derived pharmaceutical proteins cannot yet compete directly with established platforms but they are beginning to penetrate niche markets that allow the beneficial properties of plants to be exploited, such as the ability to produce 'biobetters' with tailored glycans, the ability to scale up production rapidly for emergency responses and the ability to produce commodity recombinant proteins on an agricultural scale.
Collapse
Affiliation(s)
- J F Buyel
- Institute for Molecular Biotechnology, Worringerweg 1, RWTH Aachen University, 52074 Aachen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany.
| | - R M Twyman
- TRM Ltd, PO Box 463, York, United Kingdom.
| | - R Fischer
- Institute for Molecular Biotechnology, Worringerweg 1, RWTH Aachen University, 52074 Aachen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany.
| |
Collapse
|
27
|
Effio CL, Hubbuch J. Next generation vaccines and vectors: Designing downstream processes for recombinant protein-based virus-like particles. Biotechnol J 2015; 10:715-27. [PMID: 25880158 DOI: 10.1002/biot.201400392] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/11/2015] [Accepted: 03/19/2015] [Indexed: 12/28/2022]
Abstract
In recent years, the development of novel recombinant virus-like particles (VLPs) has been generating new perspectives for the prevention of untreated and arising infectious diseases. However, cost-reduction and acceleration of manufacturing processes for VLP-based vaccines or vectors are key challenges for the global health system. In particular, the design of rapid and cost-efficient purification processes is a critical bottleneck. In this review, we describe and evaluate new concepts, development strategies and unit operations for the downstream processing of VLPs. A special focus is placed on purity requirements and current trends, as well as chances and limitations of novel technologies. The discussed methods and case studies demonstrate the advances and remaining challenges in both rational process development and purification tools for large biomolecules. The potential of a new era of VLP-based products is highlighted by the progress of various VLPs in clinical phases.
Collapse
Affiliation(s)
- Christopher Ladd Effio
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe, Germany
| | | |
Collapse
|
28
|
Production and purification of recombinant human hepcidin-25 with authentic N and C-termini. J Biotechnol 2015; 195:89-92. [DOI: 10.1016/j.jbiotec.2014.12.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 12/11/2014] [Accepted: 12/18/2014] [Indexed: 11/22/2022]
|
29
|
Schewe H, Mirata MA, Schrader J. Bioprocess engineering for microbial synthesis and conversion of isoprenoids. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 148:251-86. [PMID: 25893480 DOI: 10.1007/10_2015_321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Isoprenoids represent a natural product class essential to living organisms. Moreover, industrially relevant isoprenoid molecules cover a wide range of products such as pharmaceuticals, flavors and fragrances, or even biofuels. Their often complex structure makes chemical synthesis a difficult and expensive task and extraction from natural sources is typically low yielding. This has led to intense research for biotechnological production of isoprenoids by microbial de novo synthesis or biotransformation. Here, metabolic engineering, including synthetic biology approaches, is the key technology to develop efficient production strains in the first place. Bioprocess engineering, particularly in situ product removal (ISPR), is the second essential technology for the development of industrial-scale bioprocesses. A number of elaborate bioreactor and ISPR designs have been published to target the problems of isoprenoid synthesis and conversion, such as toxicity and product inhibition. However, despite the many exciting applications of isoprenoids, research on isoprenoid-specific bioprocesses has mostly been, and still is, limited to small-scale proof-of-concept approaches. This review presents and categorizes different ISPR solutions for biotechnological isoprenoid production and also addresses the main challenges en route towards industrial application.
Collapse
Affiliation(s)
- Hendrik Schewe
- DECHEMA Research Institute, Biochemical Engineering, Frankfurt, Germany
| | | | | |
Collapse
|
30
|
Li Q, Xing J. Microbial Succinic Acid Production Using Different Bacteria Species. MICROORGANISMS IN BIOREFINERIES 2015. [DOI: 10.1007/978-3-662-45209-7_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Insaidoo FK, Rauscher MA, Smithline SJ, Kaarsholm NC, Feuston BP, Ortigosa AD, Linden TO, Roush DJ. Targeted purification development enabled by computational biophysical modeling. Biotechnol Prog 2014; 31:154-64. [DOI: 10.1002/btpr.2023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/02/2014] [Indexed: 01/12/2023]
Affiliation(s)
| | | | | | - Niels C. Kaarsholm
- Merck Research Laboratories, Merck & Co., Inc; Whitehouse Station NJ 08889
| | - Bradley P. Feuston
- Merck Research Laboratories, Merck & Co., Inc; Whitehouse Station NJ 08889
| | | | - Thomas O. Linden
- Merck Research Laboratories, Merck & Co., Inc; Whitehouse Station NJ 08889
| | - David J. Roush
- Merck Research Laboratories, Merck & Co., Inc; Whitehouse Station NJ 08889
| |
Collapse
|
32
|
Chen A, Li Y, Liu X, Long Q, Yang Y, Bai Z. Soluble expression of pullulanase from Bacillus acidopullulyticus in Escherichia coli by tightly controlling basal expression. ACTA ACUST UNITED AC 2014; 41:1803-10. [DOI: 10.1007/s10295-014-1523-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/27/2014] [Indexed: 11/27/2022]
Abstract
Abstract
Bacillus acidopullulyticus pullulanase (BaPul13A) is a widely used debranching enzyme in the starch industry. A few details have been reported on the heterologous expression of BaPul13A in Escherichia coli (E. coli). This study compares different E. coli expression systems to improve the soluble expression level of BaPul13A. When pET22b(+)/pET28a(+) was used as the expression vector, the soluble expression of BaPul13A can be achieved by tightly controlling basal expression, whereas pET-20b(+)/pGEX4T2 leads to insoluble inclusion bodies. An efficient process control strategy aimed at minimizing the formation of inclusion bodies and enhancing the production of pullulanase was developed by a step decrease of the temperature in a 5-L fermentor. The highest total enzyme activity of BaPul13A reached 1,156.32 U/mL. This work reveals that the T7 promoter with lac operator and lacI gene collectively contribute to the soluble expression of BaPul13A, whereas either a T7 promoter alone or combined with the lac operator and lacI gene results in poor solubility. Basal expression in the initial growth phase of the host significantly affects the solubility of BaPul13A in E. coli.
Collapse
Affiliation(s)
- Ana Chen
- grid.258151.a 0000000107081323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi China
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
- grid.461986.4 0000000417607968 School of Biochemical Engineering Anhui Polytechnic University 241000 Wuhu China
| | - Yamei Li
- grid.258151.a 0000000107081323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi China
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
| | - Xiuxia Liu
- grid.258151.a 0000000107081323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi China
| | - Quan Long
- grid.258151.a 0000000107081323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi China
| | - Yankun Yang
- grid.258151.a 0000000107081323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi China
| | - Zhonghu Bai
- grid.258151.a 0000000107081323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi China
| |
Collapse
|
33
|
Van Hecke W, Kaur G, De Wever H. Advances in in-situ product recovery (ISPR) in whole cell biotechnology during the last decade. Biotechnol Adv 2014; 32:1245-1255. [DOI: 10.1016/j.biotechadv.2014.07.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 07/07/2014] [Accepted: 07/18/2014] [Indexed: 12/27/2022]
|
34
|
Luo H, Liu H, Cao Y, Xu D, Mao Z, Mou Y, Meng J, Lai D, Liu Y, Zhou L. Enhanced production of botrallin and TMC-264 with in situ macroporous resin adsorption in mycelial liquid culture of the endophytic fungus Hyalodendriella sp. Ponipodef12. Molecules 2014; 19:14221-34. [PMID: 25211003 PMCID: PMC6271592 DOI: 10.3390/molecules190914221] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/01/2014] [Accepted: 09/03/2014] [Indexed: 01/16/2023] Open
Abstract
Hyalodendriella sp. Ponipodef12, an endophytic fungus from the hybrid "Neva" of Populus deltoides × P. nigra, is a high producer of the bioactive dibenzo-α-pyrones botrallin and TMC-264. However, both the botrallin and TMC-264 produced by Hyalodendriella sp. Ponipodef12 were retained as both intracellular and extracellular products. The aim of this study was to evaluate an in situ macroporous resin adsorption for enhancement of botrallin and TMC-264 production in mycelial liquid culture of Hyalodendriella sp. Ponipodef12. Production of botrallin and TMC-264 was most effectively enhanced by macroporous resin DM-301 among the thirteen nonionic macroporous resins tested. The highest botrallin yield (51.47 mg/L, which was 2.29-fold higher than the control at 22.49 mg/L) was obtained by adding resin DM-301 at 4.38% (g/mL) to the culture broth on day 24 and allowing a period of 4 days for adsorption. The highest TMC-264 yield reached 47.74 mg/L, which was 11.76-fold higher than that of the control (4.06 mg/L), and was achieved by adding DM-301 resin at 4.38% (w/v) in the culture broth on day 24 and allowing a period of 6 days for adsorption. The results show that in situ resin adsorption is an effective strategy for enhancing production of botrallin and TMC-264, and also for facilitating their recovery from mycelial liquid culture of Hyalodendriella sp. Ponipodef12.
Collapse
Affiliation(s)
- Haiyu Luo
- MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Hongwei Liu
- MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Yuheng Cao
- MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Dan Xu
- MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Ziling Mao
- MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Yan Mou
- MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Jiajia Meng
- MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Daowan Lai
- MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Yang Liu
- Institute of Agro-products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Ligang Zhou
- MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
35
|
Fresewinkel M, Rosello R, Wilhelm C, Kruse O, Hankamer B, Posten C. Integration in microalgal bioprocess development: Design of efficient, sustainable, and economic processes. Eng Life Sci 2014. [DOI: 10.1002/elsc.201300153] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Mark Fresewinkel
- Institute of Process Engineering in Life Sciences; Section III Bioprocess Engineering, Karlsruhe Institute of Technology; Karlsruhe Germany
| | - Rosa Rosello
- Institute of Process Engineering in Life Sciences; Section III Bioprocess Engineering, Karlsruhe Institute of Technology; Karlsruhe Germany
| | - Christian Wilhelm
- Department of Plant Physiology; Institute of Biology I, University of Leipzig; Leipzig Germany
| | - Olaf Kruse
- Algae Biotechnology and Bioenergy Group, Department of Biology; Center for Biotechnology, Bielefeld University; Bielefeld Germany
| | - Ben Hankamer
- Institute for Molecular Bioscience; The University of Queensland; St Lucia Queensland Australia
| | - Clemens Posten
- Institute of Process Engineering in Life Sciences; Section III Bioprocess Engineering, Karlsruhe Institute of Technology; Karlsruhe Germany
| |
Collapse
|
36
|
Extractive Fermentation of Xylanase from Aspergillus tamarii URM 4634 in a Bioreactor. Appl Biochem Biotechnol 2014; 173:1652-66. [DOI: 10.1007/s12010-014-0953-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
|
37
|
Galván D’Alessandro L, Vauchel P, Przybylski R, Chataigné G, Nikov I, Dimitrov K. Integrated process extraction–adsorption for selective recovery of antioxidant phenolics from Aronia melanocarpa berries. Sep Purif Technol 2013. [DOI: 10.1016/j.seppur.2013.09.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Emerging technologies for the integration and intensification of downstream bioprocesses. ACTA ACUST UNITED AC 2013. [DOI: 10.4155/pbp.13.55] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Wiehn M, Staggs K, Wang Y, Nielsen DR. In situ butanol recovery fromClostridium acetobutylicumfermentations by expanded bed adsorption. Biotechnol Prog 2013; 30:68-78. [DOI: 10.1002/btpr.1841] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/18/2013] [Indexed: 01/19/2023]
Affiliation(s)
- Michael Wiehn
- Chemical Engineering; School for Engineering of Matter, Transport, and Energy, Arizona State University; Tempe AZ 85287-6106
| | - Kyle Staggs
- Chemical Engineering; School for Engineering of Matter, Transport, and Energy, Arizona State University; Tempe AZ 85287-6106
| | - Yuchen Wang
- Chemical Engineering; School for Engineering of Matter, Transport, and Energy, Arizona State University; Tempe AZ 85287-6106
| | - David R. Nielsen
- Chemical Engineering; School for Engineering of Matter, Transport, and Energy, Arizona State University; Tempe AZ 85287-6106
| |
Collapse
|
40
|
Molino JVD, Viana Marques DDA, Júnior AP, Mazzola PG, Gatti MSV. Different types of aqueous two-phase systems for biomolecule and bioparticle extraction and purification. Biotechnol Prog 2013; 29:1343-53. [DOI: 10.1002/btpr.1792] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 06/28/2013] [Indexed: 12/19/2022]
Affiliation(s)
- João Vitor Dutra Molino
- Dept. of Biochemical and Pharmaceutical Technology; Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Block 16, Cidade Universitária; São Paulo 05508-000 Brazil
| | - Daniela de Araújo Viana Marques
- Dept. of Biochemical and Pharmaceutical Technology; Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Block 16, Cidade Universitária; São Paulo 05508-000 Brazil
| | - Adalberto Pessoa Júnior
- Dept. of Biochemical and Pharmaceutical Technology; Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Block 16, Cidade Universitária; São Paulo 05508-000 Brazil
| | - Priscila Gava Mazzola
- Dept. of Clinical Patology; Faculty of Medical Sciences; University of Campinas, Rua: Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz, Campinas; São Paulo 13083-887 Brazil
| | - Maria Silvia Viccari Gatti
- Genetics; Evolution and Bioagents Dept.; Biology Institute; University of Campinas, Rua: Monteiro Lobato, 255, Cidade Universitária “Zeferino Vaz,” Campinas; São Paulo 13083-862 Brazil
| |
Collapse
|
41
|
|
42
|
Ylitervo P, Akinbomia J, Taherzadeha MJ. Membrane bioreactors' potential for ethanol and biogas production: a review. ENVIRONMENTAL TECHNOLOGY 2013; 34:1711-1723. [PMID: 24350429 DOI: 10.1080/09593330.2013.813559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Companies developing and producing membranes for different separation purposes, as well as the market for these, have markedly increased in numbers over the last decade. Membrane and separation technology might well contribute to making fuel ethanol and biogas production from lignocellulosic materials more economically viable and productive. Combining biological processes with membrane separation techniques in a membrane bioreactor (MBR) increases cell concentrations extensively in the bioreactor. Such a combination furthermore reduces product inhibition during the biological process, increases product concentration and productivity, and simplifies the separation of product and/or cells. Various MBRs have been studied over the years, where the membrane is either submerged inside the liquid to be filtered, or placed in an external loop outside the bioreactor. All configurations have advantages and drawbacks, as reviewed in this paper. The current review presents an account of the membrane separation technologies, and the research performed on MBRs, focusing on ethanol and biogas production. The advantages and potentials of the technology are elucidated.
Collapse
Affiliation(s)
- Päivi Ylitervo
- School of Engineering, University of Borås, Borås, Sweden
| | | | | |
Collapse
|
43
|
Cerff M, Scholz A, Franzreb M, Batalha IL, Roque ACA, Posten C. In situ magnetic separation of antibody fragments from Escherichia coli in complex media. BMC Biotechnol 2013; 13:44. [PMID: 23688064 PMCID: PMC3750846 DOI: 10.1186/1472-6750-13-44] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 03/15/2013] [Indexed: 12/03/2022] Open
Abstract
Background In situ magnetic separation (ISMS) has emerged as a powerful tool to overcome process constraints such as product degradation or inhibition of target production. In the present work, an integrated ISMS process was established for the production of his-tagged single chain fragment variable (scFv) D1.3 antibodies (“D1.3”) produced by E. coli in complex media. This study investigates the impact of ISMS on the overall product yield as well as its biocompatibility with the bioprocess when metal-chelate and triazine-functionalized magnetic beads were used. Results Both particle systems are well suited for separation of D1.3 during cultivation. While the triazine beads did not negatively impact the bioprocess, the application of metal-chelate particles caused leakage of divalent copper ions in the medium. After the ISMS step, elevated copper concentrations above 120 mg/L in the medium negatively influenced D1.3 production. Due to the stable nature of the model protein scFv D1.3 in the biosuspension, the application of ISMS could not increase the overall D1.3 yield as was shown by simulation and experiments. Conclusions We could demonstrate that triazine-functionalized beads are a suitable low-cost alternative to selectively adsorb D1.3 fragments, and measured maximum loads of 0.08 g D1.3 per g of beads. Although copper-loaded metal-chelate beads did adsorb his-tagged D1.3 well during cultivation, this particle system must be optimized by minimizing metal leakage from the beads in order to avoid negative inhibitory effects on growth of the microorganisms and target production. Hereby, other types of metal chelate complexes should be tested to demonstrate biocompatibility. Such optimized particle systems can be regarded as ISMS platform technology, especially for the production of antibodies and their fragments with low stability in the medium. The proposed model can be applied to design future ISMS experiments in order to maximize the overall product yield while the amount of particles being used is minimized as well as the number of required ISMS steps.
Collapse
|
44
|
Tan JS, Ling TC, Mustafa S, Tam YJ, Ramanan RN, Ariff AB. An integrated bioreactor-expanded bed adsorption system for the removal of acetate to enhance the production of alpha-interferon-2b by Escherichia coli. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.02.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Cerff M, Scholz A, Käppler T, Ottow KE, Hobley TJ, Posten C. Semi-continuous in situ magnetic separation for enhanced extracellular protease production-modeling and experimental validation. Biotechnol Bioeng 2013; 110:2161-72. [PMID: 23475553 DOI: 10.1002/bit.24893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/17/2013] [Accepted: 02/25/2013] [Indexed: 11/09/2022]
Abstract
In modern biotechnology proteases play a major role as detergent ingredients. Especially the production of extracellular protease by Bacillus species facilitates downstream processing because the protease can be directly harvested from the biosuspension. In situ magnetic separation (ISMS) constitutes an excellent adsorptive method for efficient extracellular protease removal during cultivation. In this work, the impact of semi-continuous ISMS on the overall protease yield has been investigated. Results reveal significant removal of the protease from Bacillus licheniformis cultivations. Bacitracin-functionalized magnetic particles were successfully applied, regenerated and reused up to 30 times. Immediate reproduction of the protease after ISMS proved the biocompatibility of this integrated approach. Six subsequent ISMS steps significantly increased the overall protease yield up to 98% because proteolytic degradation and potential inhibition of the protease in the medium could be minimized. Furthermore, integration of semi-continuous ISMS increased the overall process efficiency due to reduction of the medium consumption. Process simulation revealed a deeper insight into protease production, and was used to optimize ISMS steps to obtain the maximum overall protease yield.
Collapse
Affiliation(s)
- Martin Cerff
- Institute of Process Engineering in Life Sciences, Division of Bioprocess Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 2, Karlsruhe 76131, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Xue YP, Xu M, Chen HS, Liu ZQ, Wang YJ, Zheng YG. A Novel Integrated Bioprocess for Efficient Production of (R)-(−)-Mandelic Acid with Immobilized Alcaligenes faecalis ZJUTB10. Org Process Res Dev 2013. [DOI: 10.1021/op3001993] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ya-Ping Xue
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou
310014, Zhejiang, China
- Engineering Research
Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou
310014, Zhejiang, China
| | - Ming Xu
- Zhejiang Laiyi Biotechnology Co., Ltd., Shengzhou 312400, Zhejiang, China
| | - Hong-Sheng Chen
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou
310014, Zhejiang, China
- Engineering Research
Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou
310014, Zhejiang, China
| | - Zhi-Qiang Liu
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou
310014, Zhejiang, China
- Engineering Research
Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou
310014, Zhejiang, China
| | - Ya-Jun Wang
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou
310014, Zhejiang, China
- Engineering Research
Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou
310014, Zhejiang, China
| | - Yu-Guo Zheng
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou
310014, Zhejiang, China
- Engineering Research
Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou
310014, Zhejiang, China
| |
Collapse
|
47
|
Rodríguez-Durán LV, Spelzini D, Boeris V, Aguilar CN, Picó GA. Partition in aqueous two-phase system: Its application in downstream processing of tannase from Aspergillus niger. Colloids Surf B Biointerfaces 2013; 101:392-7. [DOI: 10.1016/j.colsurfb.2012.07.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 06/04/2012] [Accepted: 07/18/2012] [Indexed: 11/26/2022]
|
48
|
Zhu S, Gong C, Ren L, Li X, Song D, Zheng G. A simple and effective strategy for solving the problem of inclusion bodies in recombinant protein technology: His-tag deletions enhance soluble expression. Appl Microbiol Biotechnol 2012; 97:837-45. [PMID: 23250226 DOI: 10.1007/s00253-012-4630-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/28/2012] [Accepted: 11/30/2012] [Indexed: 11/28/2022]
Abstract
The formation of inclusion bodies (IBs) in recombinant protein biotechnology has become one of the most frequent undesirable occurrences in both research and industrial applications. So far, the pET System is the most powerful system developed for the production of recombinant proteins when Escherichia coli is used as the microbial cell factory. Also, using fusion tags to facilitate detection and purification of the target protein is a commonly used tactic. However, there is still a large fraction of proteins that cannot be produced in E. coli in a soluble (and hence functional) form. Intensive research efforts have tried to address this issue, and numerous parameters have been modulated to avoid the formation of inclusion bodies. However, hardly anyone has noticed that adding fusion tags to the recombinant protein to facilitate purification is a key factor that affects the formation of inclusion bodies. To test this idea, the industrial biocatalysts uridine phosphorylase from Aeropyrum pernix K1 and (+)-γ-lactamase and (-)-γ-lactamase from Bradyrhizobium japonicum USDA 6 were expressed in E. coli by using the pET System and then examined. We found that using a histidine tag as a fusion partner for protein expression did affect the formation of inclusion bodies in these examples, suggesting that removing the fusion tag can promote the solubility of heterologous proteins. The production of soluble and highly active uridine phosphorylase, (+)-γ-lactamase, and (-)-γ-lactamase in our results shows that the traditional process needs to be reconsidered. Accordingly, a simple and efficient structure-based strategy for the production of valuable soluble recombinant proteins in E. coli is proposed.
Collapse
Affiliation(s)
- Shaozhou Zhu
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | | | | | | | | | | |
Collapse
|
49
|
Liu H, Yu C, Feng D, Cheng T, Meng X, Liu W, Zou H, Xian M. Production of extracellular fatty acid using engineered Escherichia coli. Microb Cell Fact 2012; 11:41. [PMID: 22471973 PMCID: PMC3428649 DOI: 10.1186/1475-2859-11-41] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/03/2012] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND As an alternative for economic biodiesel production, the microbial production of extracellular fatty acid from renewable resources is receiving more concerns recently, since the separation of fatty acid from microorganism cells is normally involved in a series of energy-intensive steps. Many attempts have been made to construct fatty acid producing strains by targeting genes in the fatty acid biosynthetic pathway, while few studies focused on the cultivation process and the mass transfer kinetics. RESULTS In this study, both strain improvements and cultivation process strategies were applied to increase extracellular fatty acid production by engineered Escherichia coli. Our results showed overexpressing 'TesA and the deletion of fadL in E. coli BL21 (DE3) improved extracellular fatty acid production, while deletion of fadD didn't strengthen the extracellular fatty acid production for an undetermined mechanism. Moreover, the cultivation process controls contributed greatly to extracellular fatty acid production with respect to titer, cell growth and productivity by adjusting the temperature, adding ampicillin and employing on-line extraction. Under optimal conditions, the E. coli strain (pACY-'tesA-ΔfadL) produced 4.8 g L⁻¹ extracellular fatty acid, with the specific productivity of 0.02 g h⁻¹ g⁻¹ dry cell mass, and the yield of 4.4% on glucose, while the ratios of cell-associated fatty acid versus extracellular fatty acid were kept below 0.5 after 15 h of cultivation. The fatty acids included C12:1, C12:0, C14:1, C14:0, C16:1, C16:0, C18:1, C18:0. The composition was dominated by C14 and C16 saturated and unsaturated fatty acids. Using the strain pACY-'tesA, similar results appeared under the same culture conditions and the titer was also much higher than that ever reported previously, which suggested that the supposedly superior strain did not necessarily perform best for the efficient production of desired product. The strain pACY-'tesA could also be chosen as the original strain for the next genetic manipulations. CONCLUSIONS The general strategy of metabolic engineering for the extracellular fatty acid production should be the cyclic optimization between cultivation performance and strain improvements. On the basis of our cultivation process optimization, strain improvements should be further carried out for the effective and cost-effective production process.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Chao Yu
- Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Dexin Feng
- Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Tao Cheng
- Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Xin Meng
- Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Wei Liu
- Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Huibin Zou
- Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Mo Xian
- Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| |
Collapse
|
50
|
Carstensen F, Apel A, Wessling M. In situ product recovery: Submerged membranes vs. external loop membranes. J Memb Sci 2012. [DOI: 10.1016/j.memsci.2011.11.029] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|