1
|
Mykchaylova O, Besarab A, Negriyko A, Lomberg M, Poyedinok N. Influence of low-intensity artificial light on the fatty acid profile of the biotechnologically important culinary mushroom Pleurotus eryngii in vitro. BMC Biotechnol 2025; 25:24. [PMID: 40128685 PMCID: PMC11934681 DOI: 10.1186/s12896-025-00957-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 03/13/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND The problem of searching for environmentally friendly regulators of the biosynthetic activity of edible and medicinal mushrooms is crucial for creating highly effective biotechnologies. One such regulator is light. This study aimed to compare and evaluate the fatty acid profile and fat quality indices of lipids from the mycelial mass of Pleurotus eryngii under various light-emitting diode (LED) and laser light irradiation regimes. METHODS To determine the effect of artificial light on the biosynthetic activity of P. eryngii, an artificial lighting system based on LED matrices with wavelengths of 470 nm (blue), 530 nm (green), and 650 nm (red), as well as an argon gas laser as a coherent visible light source at 488 nm, was used. For all experimental variants, the energy density on the surface of the samples was set to the same, providing an energy dose of 240 mJ/cm2. Irradiation was carried continuously. RESULTS Twenty-seven fatty acids were identified in the studied P. eryngii mycelial mass samples, including nine saturated fatty acids (SFAs), eight monounsaturated fatty acids (MUFAs) and ten polyunsaturated fatty acids (PUFAs). The control sample (without irradiation) contained the lowest number of fatty acids (fourteen). With irradiation in all modes, a decrease in the amount of SFA and the formation of new MUFA and PUFA with a chain length of C20-C24, which were absent in the control, were observed. Blue light stimulated the synthesis of significant amounts of α-linolenic acid (C18:3ω-3). The ratios of ΣPUFA/ΣSFA, ΣPUFA/ΣMUFA and ΣPUFAω-6/ω-3 in the mass of mycelium irradiated with blue light were within the optimal values for the human diet. CONCLUSIONS The selected mycelial photoactivation modes using low-intensity laser and LED light of different spectral composition and coherence may have potential in the biotechnology of submerged cultivation of P. eryngii to obtain mycelial mass with an improved fatty acid profile, which can be considered as a useful source of lipids.
Collapse
Affiliation(s)
- Oksana Mykchaylova
- Faculty Biomedical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, 37, Beresteisky Avenue, Kyiv, 03056, Ukraine
- Department of Mycology, M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, 2, Tereshchenkivska, Kyiv, 01601, Ukraine
| | - Aleksander Besarab
- Faculty Biomedical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, 37, Beresteisky Avenue, Kyiv, 03056, Ukraine
| | - Anatoliy Negriyko
- Department of Laser Spectroscopy, Institute of Physics of the National Academy of Sciences of Ukraine, 46, Prospect Nauki, Kyiv, 03039, Ukraine
- Institute of Physics and Technology, Igor Sikorsky Kyiv Polytechnic Institute, 37, Beresteisky Avenue, Kyiv, 03056, Ukraine
| | - Margarita Lomberg
- Department of Mycology, M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, 2, Tereshchenkivska, Kyiv, 01601, Ukraine.
| | - Natalia Poyedinok
- Faculty Biomedical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, 37, Beresteisky Avenue, Kyiv, 03056, Ukraine
| |
Collapse
|
2
|
Tian T, Hu HY, Ma YS, Qin JW, Li CT, Li Y. Effects of light quality on agronomic traits, antioxidant capacity and nutritional composition of Sarcomyxa Edulis. Sci Rep 2024; 14:24762. [PMID: 39433842 PMCID: PMC11494199 DOI: 10.1038/s41598-024-76833-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024] Open
Abstract
Sarcomyxa edulis, a notable edible and medicinal mushroom indigenous to northeast China, is celebrated for its high nutritional value and delightful taste. In this study, white light as a control and examined the effects of red, green, and blue light on the agronomic traits, antioxidant capabilities, and nutritional composition of S. edulis. The results showed that different monochromatic light qualities affected the color of S. edulis pileus, with blue light demonstrating particular efficacy. Furthermore, blue light also regulated pileus length, whereas red light was instrumental in significantly increasing stalk length. Regarding antioxidant capacity, compared with red and green light, the activities of POD, SOD, and CAT were significantly improved by blue light irradiation, decreased MDA levels, and improved free radical scavenging potential. Additionally, blue light exposure led to an increase in the contents of 15 amino acids. Green light treatment reduced the crude fat content. For the first time, we found that light quality is a key factor in controlling the color of S. edulis. Blue light is an effective way to regulate the color and pileus size of S. edulis, and improve the antioxidant properties. The photobiological characteristics and the response of nutritional quality to light environment of S. edulis were clarified.
Collapse
Affiliation(s)
- Tian Tian
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning Province, China
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin Province, China
| | - Hui-Yue Hu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin Province, China
| | - Yong-Sheng Ma
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin Province, China
| | - Jia-Wen Qin
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin Province, China
| | - Chang-Tian Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin Province, China.
| | - Yu Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning Province, China.
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin Province, China.
| |
Collapse
|
3
|
Suthaparan A, Stensvand A. Shedding the Light on Powdery Mildew: The Use of Optical Irradiation in Management of the Disease. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:289-308. [PMID: 38876113 DOI: 10.1146/annurev-phyto-021622-115201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Ultraviolet (UV) irradiation below 300 nm may control powdery mildew in numerous crops. Depending on disease pressure, wavelength, and crop growth stage, one to three applications of 100-200 J/m2 per week at night are as effective or better than the best fungicides. Higher doses may harm the plants and reduce yields. Although red light alone or in combination with UV has a suppressive effect on powdery mildew, concomitant or subsequent exposure to blue light or UV-A strongly reduces the efficacy of UV treatments. To be effective, direct exposure of the pathogen/infection sites to UV/red light is important, but there are clear indications for the involvement of induced resistance in the host. Other pathogens and pests are susceptible to UV, but the effective dose may be phytotoxic. Although there are certain limitations, this technology is gradually becoming more used in both protected and open-field commercial production systems.
Collapse
Affiliation(s)
- Aruppillai Suthaparan
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås, Norway;
| | - Arne Stensvand
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway;
| |
Collapse
|
4
|
Lim CL, Yang CH, Pan XY, Tsai HY, Chen CY, Chen WL. Different wavelengths of LED irradiation promote secondary metabolite production in Pycnoporus sanguineus for antioxidant and immunomodulatory applications. Photochem Photobiol Sci 2024; 23:987-996. [PMID: 38662174 DOI: 10.1007/s43630-024-00569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Pycnoporus sanguineus is a fungus of the phylum Basidiomycota that has many applications in traditional medicine, modern pharmaceuticals, and agricultural industries. Light plays an essential role in the metabolism, growth, and development of fungi. This study evaluated the mycelial growth and antioxidant and anti-inflammatory activities in P. sanguineus fermentation broth (PFB) cultured under different wavelengths of LED irradiation or in the dark. Compared to the dark cultures, the dry weight of mycelia in red- and yellow-light cultures decreased by 37 and 35% and the yields of pigments increased by 30.92 ± 2.18 mg and 31.75 ± 3.06 mg, respectively. Compared with the dark culture, the DPPH free radical scavenging ability, ABTS+ free radical scavenging capacity, and reducing power of yellow-light cultures increased significantly, and their total phenolic content peaked at 180.0 ± 8.34 μg/mL. However, the reducing power in blue-light cultures was significantly reduced, though the total phenol content did not vary with that of dark cultures. In LPS- and IFN-γ-stimulated RAW 264.7 cells, nitrite release was significantly reduced in the red and yellow light-irradiated PFB compared with the dark culture. In the dark, yellow-, and green-light cultures, TNF-α production in the inflamed RAW 264.7 cells was inhibited by 62, 46, and 14%, respectively. With red-, blue-, and white-light irradiation, TNF-α production was significantly enhanced. Based on these results, we propose that by adjusting the wavelength of the light source during culture, one can effectively modulate the growth, development, and metabolism of P. sanguineus.
Collapse
Affiliation(s)
- Chui Li Lim
- Department of Cosmetic Science, Providence University, Taichung, 43301, Taiwan
| | - Chao-Hsun Yang
- Department of Cosmetic Science, Providence University, Taichung, 43301, Taiwan
- Cosmetic Industry Research & Development Center, Providence University, Taichung, 43301, Taiwan
| | - Xin-Yu Pan
- Department of Cosmetic Science, Providence University, Taichung, 43301, Taiwan
| | - Hsiao-Yun Tsai
- Department of Cosmetic Science, Providence University, Taichung, 43301, Taiwan
| | - Cheng-Yu Chen
- Cosmetic Industry Research & Development Center, Providence University, Taichung, 43301, Taiwan
- Xtremes Pure Company, Taipei, 10652, Taiwan
| | - Wei-Lin Chen
- Department of Cosmetic Science, Providence University, Taichung, 43301, Taiwan.
- Cosmetic Industry Research & Development Center, Providence University, Taichung, 43301, Taiwan.
| |
Collapse
|
5
|
Gan PT, Lim YY, Ting ASY. Influence of light regulation on growth and enzyme production in rare endolichenic fungi. Folia Microbiol (Praha) 2023; 68:741-755. [PMID: 37022636 DOI: 10.1007/s12223-023-01050-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/28/2023] [Indexed: 04/07/2023]
Abstract
The influence of light regulation on the growth and enzyme production of three endolichenic fungal isolates, i.e. Pseudopestalotiopsis theae (EF13), Fusarium solani (EF5), and Xylaria venustula (PH22), was determined. The isolates were exposed to blue, red, green, yellow, white fluorescent light (12 h light-12 h dark photoperiod) (test), and 24 h dark (control) conditions. Results revealed that the alternating light-dark conditions resulted in the formation of dark rings in most fungal isolates but was absent in PH22. Red light induced sporulation while yellow light elicited higher biomass in all isolates (0.19 ± 0.01 g, 0.07 ± 0.00 g, and 0.11 ± 0.00 g, for EF13, PH22, and EF5, respectively) as compared to incubation in the dark. Results also showed that blue light induced higher amylase activity in PH22 (15.31 ± 0.45 U/mL) and L-asparaginase activity in all isolates (0.45 ± 0.01 U/mL, 0.55 ± 0.39 U/mL, and 0.38 ± 0.01 U/mL, for EF13, PH22, and EF5, respectively) compared to both control conditions. Green light enhanced the production of xylanase (6.57 ± 0.42 U/mL, 10.64 ± 0.12 U/mL, and 7.55 ± 0.56 U/mL for EF13, PH22, and EF5, respectively) and cellulase (6.49 ± 0.48 U/mL, 9.57 ± 0.25 U/mL, and 7.28 ± 0.63 U/mL, for EF13, PH22, and EF5, respectively). In contrast, red light was the least effective light treatment as production of enzymes was the least, with lower levels of amylase, cellulase, xylanase, and L-asparaginase detected. To conclude, all three endolichenic fungi are light-responsive, with fungal growth regulated with the use of red light and yellow light, and manipulation of enzyme production via blue and green light.
Collapse
Affiliation(s)
- Peck Ting Gan
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Selangor Darul Ehsan, 47500, Bandar Sunway, Malaysia
| | - Yau Yan Lim
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Selangor Darul Ehsan, 47500, Bandar Sunway, Malaysia
| | - Adeline Su Yien Ting
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Selangor Darul Ehsan, 47500, Bandar Sunway, Malaysia.
| |
Collapse
|
6
|
Mohri M, Moghadam A, Burketova L, Ryšánek P. Genome-wide identification of the opsin protein in Leptosphaeria maculans and comparison with other fungi (pathogens of Brassica napus). Front Microbiol 2023; 14:1193892. [PMID: 37692395 PMCID: PMC10485269 DOI: 10.3389/fmicb.2023.1193892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/28/2023] [Indexed: 09/12/2023] Open
Abstract
The largest family of transmembrane receptors are G-protein-coupled receptors (GPCRs). These receptors respond to perceived environmental signals and infect their host plants. Family A of the GPCR includes opsin. However, there is little known about the roles of GPCRs in phytopathogenic fungi. We studied opsin in Leptosphaeria maculans, an important pathogen of oilseed rape (Brassica napus) that causes blackleg disease, and compared it with six other fungal pathogens of oilseed rape. A phylogenetic tree analysis of 31 isoforms of the opsin protein showed six major groups and six subgroups. All three opsin isoforms of L. maculans are grouped in the same clade in the phylogenetic tree. Physicochemical analysis revealed that all studied opsin proteins are stable and hydrophobic. Subcellular localization revealed that most isoforms were localized in the endoplasmic reticulum membrane except for several isoforms in Verticillium species, which were localized in the mitochondrial membrane. Most isoforms comprise two conserved domains. One conserved motif was observed across all isoforms, consisting of the BACTERIAL_OPSIN_1 domain, which has been hypothesized to have an identical sensory function. Most studied isoforms showed seven transmembrane helices, except for one isoform of V. longisporum and four isoforms of Fusarium oxysporum. Tertiary structure prediction displayed a conformational change in four isoforms of F. oxysporum that presumed differences in binding to other proteins and sensing signals, thereby resulting in various pathogenicity strategies. Protein-protein interactions and binding site analyses demonstrated a variety of numbers of ligands and pockets across all isoforms, ranging between 0 and 13 ligands and 4 and 10 pockets. According to the phylogenetic analysis in this study and considerable physiochemically and structurally differences of opsin proteins among all studied fungi hypothesized that this protein acts in the pathogenicity, growth, sporulation, and mating of these fungi differently.
Collapse
Affiliation(s)
- Marzieh Mohri
- Department of Plant Protection, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | - Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Lenka Burketova
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Pavel Ryšánek
- Department of Plant Protection, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| |
Collapse
|
7
|
Tang Y, Tang Y, Ren D, Wang C, Qu Y, Huang L, Xue Y, Jiang Y, Wang Y, Xu L, Zhu P. White Collar 1 Modulates Oxidative Sensitivity and Virulence by Regulating the HOG1 Pathway in Fusarium asiaticum. Microbiol Spectr 2023; 11:e0520622. [PMID: 37195224 PMCID: PMC10269464 DOI: 10.1128/spectrum.05206-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/21/2023] [Indexed: 05/18/2023] Open
Abstract
Fusarium asiaticum is an epidemiologically important pathogen of cereal crops in east Asia, accounting for both yield losses and mycotoxin contamination problems in food and feed products. FaWC1, a component of the blue-light receptor White Collar complex (WCC), relies on its transcriptional regulatory zinc finger domain rather than the light-oxygen-voltage domain to regulate pathogenicity of F. asiaticum, although the downstream mechanisms remain obscure. In this study, the pathogenicity factors regulated by FaWC1 were analyzed. It was found that loss of FaWC1 resulted in higher sensitivity to reactive oxygen species (ROS) than in the wild type, while exogenous application of the ROS quencher ascorbic acid restored the pathogenicity of the ΔFawc1 strain to the level of the wild type, indicating that the reduced pathogenicity of the ΔFawc1 strain is due to a defect in ROS tolerance. Moreover, the expression levels of the high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway genes and their downstream genes encoding ROS scavenging enzymes were downregulated in the ΔFawc1 mutant. Upon ROS stimulation, the FaHOG1-green fluorescent protein (GFP)-expressing signal driven by the native promoter was inducible in the wild type but negligible in the ΔFawc1 strain. Overexpressing Fahog1 in the ΔFawc1 strain could recover the ROS tolerance and pathogenicity of the ΔFawc1 mutant, but it remained defective in light responsiveness. In summary, this study dissected the roles of the blue-light receptor component FaWC1 in regulating expression levels of the intracellular HOG-MAPK signaling pathway to affect ROS sensitivity and pathogenicity in F. asiaticum. IMPORTANCE The well-conserved fungal blue-light receptor White Collar complex (WCC) is known to regulate virulence of several pathogenic species for either plant or human hosts, but how WCC determines fungal pathogenicity remains largely unknown. The WCC component FaWC1 in the cereal pathogen Fusarium asiaticum was previously found to be required for full virulence. The present study dissected the roles of FaWC1 in regulating the intracellular HOG MAPK signaling pathway to affect ROS sensitivity and pathogenicity in F. asiaticum. This work thus extends knowledge of the association between fungal light receptors and the intracellular stress signaling pathway to regulate oxidative stress tolerance and pathogenicity in an epidemiologically important fungal pathogen of cereal crops.
Collapse
Affiliation(s)
- Ying Tang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yan Tang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Dandan Ren
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Congcong Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yao Qu
- School of Life Sciences, East China Normal University, Shanghai, China
- No. 2 High School of East China Normal University, Shanghai, China
| | - Li Huang
- School of Life Sciences, East China Normal University, Shanghai, China
- Suzhou Industrial Park Xingyang School, Suzhou, China
| | - Yongjun Xue
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yina Jiang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yiwen Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Ling Xu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Pinkuan Zhu
- School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
8
|
Zuo H, Ji L, Pan J, Chen X, Gao C, Liu J, Wei W, Wu J, Song W, Liu L. Engineering growth phenotypes of Aspergillus oryzae for L-malate production. BIORESOUR BIOPROCESS 2023; 10:25. [PMID: 38647943 PMCID: PMC10991988 DOI: 10.1186/s40643-023-00642-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/09/2023] [Indexed: 04/09/2023] Open
Abstract
Improving the growth status of Aspergillus oryzae is an efficient way to enhance L-malate production. However, the growth mechanism of filamentous fungi is relatively complex, which limits A. oryzae as a cell factory to produce L-malate industrially. This study determined the relationship between growth status and L-malate production. The optimal ranges of colony diameter, percentage of vegetative mycelia, and pellet number of A. oryzae were determined to be 26-30 mm, 35-40%, and 220-240/mL, respectively. To achieve this optimum range, adaptive evolution was used to obtain the evolved strain Z07 with 132.54 g/L L-malate and a productivity of 1.1 g/L/h. Finally, a combination of transcriptome analysis and morphological characterization was used to identify the relevant pathway genes that affect the growth mechanism of A. oryzae. The strategies used in this study and the growth mechanism provide a good basis for efficient L-malate production by filamentous fungi.
Collapse
Affiliation(s)
- Huiyun Zuo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Lihao Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Jingyu Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Wanqing Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wei Song
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
9
|
Feng Y, Xu H, Fan Y, Ma F, Du B, Li Y, Xia R, Hou Z, Xin G. Effects of different monochromatic lights on umami and aroma of dried Suillus granulatus. Food Chem 2023; 404:134524. [DOI: 10.1016/j.foodchem.2022.134524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/17/2022] [Accepted: 10/02/2022] [Indexed: 11/22/2022]
|
10
|
Mphy gene reveals the involvement of light source in the regulation of pigment metabolism in Monascus ruber. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Gabriel E, Krauß N, Lamparter T. Evidence for evolutionary relationship between archaeplastidal and cyanobacterial phytochromes based on their chromophore pockets. Photochem Photobiol Sci 2022; 21:1961-1974. [PMID: 35906526 DOI: 10.1007/s43630-022-00271-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Phytochromes are photoreceptor proteins with a bilin chromophore that undergo photoconversion between two spectrally different forms, Pr and Pfr. In plants, phytochromes play a central role in growth and differentiation during the entire life cycle. Phytochromes of plants and other groups of archaeplastida have a common evolutionary origin in prokaryotes, but the exact prokaryotic origin is as yet uncertain. Two possibilities are presently discussed: either, archaeplastidal phytochromes arose from the last eukaryotic common ancestor (LECA) or they arose from the cyanobacterial endosymbiont that gave rise to plastids. We first constructed standard phylogenetic trees based on N-terminal protein sequences of the chromophore module. As usual, variation of algorithms and parameters led to different trees. A relationship between cyanobacteria and archaeplastida was observed in 7 out of 36 trees. The lack of consistency between results obtained from variation of parameters of tree constructions reflects the uncertainty of archaeplastidal origin. To gain more information about a possible cyanobacterial and archaeplastidal relationship, we performed phylogenetic studies based on the amino acids that line the chromophore pockets. These amino acids are highly conserved and could provide more accurate information about long evolutionary time scales, but the reduction of traits could also lead to insignificant results. From 30 selected chromophore-binding amino acids, 6 were invariant. The subsequent studies were thus based on the information dependent on 24 or fewer amino acid positions. Again, multiple trees were constructed to get information about the robustness of relationships. The very low number of information-containing traits resulted in low bootstrap values and many indistinguishable leaves. However, the major groups fungi, bacteria, cyanobacteria, and plants remained united. Without exception, cyanobacteria and archaeplastida were always closely linked. In this respect, the results were more robust than those of the classic approach, based on long contiguous sequences. We therefore consider cyanobacteria as the most likely origin of archaeplastidal phytochromes.
Collapse
Affiliation(s)
- Eva Gabriel
- Karlsruhe Institute of Technology KIT, Botanical Institute, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Norbert Krauß
- Karlsruhe Institute of Technology KIT, Botanical Institute, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Tilman Lamparter
- Karlsruhe Institute of Technology KIT, Botanical Institute, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
| |
Collapse
|
12
|
De Novo Assembly Transcriptome Analysis Reveals the Preliminary Molecular Mechanism of Primordium Formation in Pleurotus tuoliensis. Genes (Basel) 2022; 13:genes13101747. [PMID: 36292631 PMCID: PMC9601356 DOI: 10.3390/genes13101747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Primordium formation is extremely important for yield of Pleurotus tuoliensis. However, the molecular mechanism underlying primordium formation is largely unknown. This study investigated the transcriptional properties during primordium formation of P. tuoliensis by comparing transcriptome. Clean reads were assembled into 57,075 transcripts and 6874 unigenes. A total of 1397 differentially expressed genes were identified (26 DEGs altered in all stages). GO and KEGG enrichment analysis showed that these DEGs were involved in “oxidoreductase activity”, “glycolysis/gluconeogenesis”, “MAPK signaling pathways”, and “ribosomes”. Our results support further understanding of the transcriptional changes and molecular processes underlying primordium formation and differentiation of P. tuoliensis.
Collapse
|
13
|
Borovskii GB, Gornostai TG, Polyakova MS, Lozovskaya EA, Nikiforov SB. Antitumor Properties of Aqueous Extracts from Inonotus rheades Mycelium and Their Evaluation under Various Cultivation Conditions. DOKL BIOCHEM BIOPHYS 2022; 505:151-155. [DOI: 10.1134/s1607672922040019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022]
|
14
|
Lam MI, Vojnits K, Zhao M, MacNaughton P, Pakpour S. The effect of indoor daylight spectrum and intensity on viability of indoor pathogens on different surface materials. INDOOR AIR 2022; 32:e13076. [PMID: 35904390 DOI: 10.1111/ina.13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Built environments play a key role in the transmission of infectious diseases. Ventilation rates, air temperature, and humidity affect airborne transmission while cleaning protocols, material properties and light exposure can influence viability of pathogens on surfaces. We investigated how indoor daylight intensity and spectrum through electrochromic (EC) windows can impact the growth rate and viability of indoor pathogens on different surface materials (polyvinyl chloride [PVC] fabric, polystyrene, and glass) compared to traditional blinds. Results showed that tinted EC windows let in higher energy, shorter wavelength daylight than those with clear window and blind. The growth rates of pathogenic bacteria and fungi were significantly lower in spaces with EC windows compared to blinds: nearly 100% growth rate reduction was observed when EC windows were in their clear state followed by 41%-100% reduction in bacterial growth rate and 26%-42% reduction in fungal growth rate when EC windows were in their darkest tint. Moreover, bacterial viabilities were significantly lower on PVC fabric when they were exposed to indoor light at EC-tinted window. These findings are deemed fundamental to the design of healthy modern buildings, especially those that encompass sick and vulnerable individuals.
Collapse
Affiliation(s)
- Man In Lam
- Faculty of Applied Science, School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Kinga Vojnits
- Faculty of Applied Science, School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Michael Zhao
- Faculty of Applied Science, School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Piers MacNaughton
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sepideh Pakpour
- Faculty of Applied Science, School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
15
|
Shen L, Chapeland-Leclerc F, Ruprich-Robert G, Chen Q, Chen S, Adnan M, Wang J, Liu G, Xie N. Involvement of VIVID in white light-responsive pigmentation, sexual development and sterigmatocystin biosynthesis in the filamentous fungus Podospora anserina. Environ Microbiol 2022; 24:2907-2923. [PMID: 35315561 DOI: 10.1111/1462-2920.15978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/15/2022] [Indexed: 11/29/2022]
Abstract
Light serves as a source of information and regulates diverse physiological processes in living organisms. Fungi perceive and respond to light through a complex photosensory system. Fungi have evolved the desensitization mechanism to adapt to the changing light signal in a natural environment. White light exerts multiple essential impacts on the model filamentous fungus P. anserina. However, the light sensing and response in this species has not been investigated. In this study, we demonstrated that the loss of function of the light desensitization protein VIVID (VVD) in P. anserina triggered exacerbated light responses, and therefore led to drastic morphological and physiological changes. The white light-sensitive mutant Δvvd showed growth reduction, spermatia overproduction, enhanced hyphae pigmentation and reduced oxidative stress tolerance. We observed the decreased expression level of sterigmatocystin gene cluster by transcriptome analysis, and finally detected the reduced production of sterigmatocystin in Δvvd in response to white light. Our data indicate that VVD acts as a repressor of white collar complex. This study exhibits a vital role of VVD in governing white light-responsive gene expression and secondary metabolite production, and contributes to a better understanding of the photoreceptor VVD in P. anserina. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ling Shen
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Florence Chapeland-Leclerc
- Laboratoire Interdisciplinaire des Energies de Demain (LIED), Université de Paris, CNRS UMR 8236, F-75013, Paris, France
| | - Gwenaël Ruprich-Robert
- Laboratoire Interdisciplinaire des Energies de Demain (LIED), Université de Paris, CNRS UMR 8236, F-75013, Paris, France
| | - Qiyi Chen
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China
| | - Siyu Chen
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China
| | - Muhammad Adnan
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China
| | - Jiangxin Wang
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China
| | - Gang Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China
| | - Ning Xie
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China
| |
Collapse
|
16
|
Wang L, Wang M, Jiao J, Liu H. Roles of AaVeA on Mycotoxin Production via Light in Alternaria alternata. Front Microbiol 2022; 13:842268. [PMID: 35250954 PMCID: PMC8894881 DOI: 10.3389/fmicb.2022.842268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Alternaria alternata is a principal plant pathogen responsible for the biosynthesis of mycotoxins, including tenuazonic acid (TeA), alternariol (AOH), and alternariol monomethyl ether (AME). The velvet gene VeA is involved in fungal growth, development, and secondary metabolism, including mycotoxin biosynthesis via light regulation. In this study, the detailed regulatory roles of AaVeA in A. alternata with various light sources were investigated from the comparative analyses between the wild type and the gene knockout strains. In fungal growth and conidiation, mycelial extension was independent of light regulation in A. alternata. Red light favored conidiation, but blue light repressed it. The absence of AaVeA caused the marked reduction of hyphae extension and conidiophore formation even though red light could not induce more spores in ΔAaVeA mutant. The differentially expressed genes (DEGs) enriched in hyphal growth and conidiation were drastically transcribed from the comparatively transcriptomic profile between the wild type and ΔAaVeA mutant strains with or without light. In mycotoxin production, TeA biosynthesis seems no obvious effect by light regulation, but AOH and AME formation was significantly stimulated by blue light. Nevertheless, the disruption of AaVeA resulted in a marked decrease in mycotoxin production and the action of the stimulation was lost via blue light for the abundant accumulation of AOH and AME in the ΔAaVeA strain. From DEG expression and further verification by RT-qPCR, the loss of AaVeA caused the discontinuous supply of the substrates for mycotoxin biosynthesis and the drastic decline of biosynthetic gene expression. In addition, pathogenicity depends on AaVeA regulation in tomato infected by A. alternata in vivo. These findings provide a distinct understanding of the roles of AaVeA in fungal growth, development, mycotoxin biosynthesis, and pathogenicity in response to various light sources.
Collapse
Affiliation(s)
- Liuqing Wang
- Institute of Quality Standard and Testing Technology of BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing, China
| | - Meng Wang
- Institute of Quality Standard and Testing Technology of BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing, China
- *Correspondence: Meng Wang,
| | - Jian Jiao
- Institutes of Science and Development, Chinese Academy of Sciences, Beijing, China
| | - Hongmei Liu
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| |
Collapse
|
17
|
Yu Z, Streng C, Seibeld RF, Igbalajobi OA, Leister K, Ingelfinger J, Fischer R. Genome-wide analyses of light-regulated genes in Aspergillus nidulans reveal a complex interplay between different photoreceptors and novel photoreceptor functions. PLoS Genet 2021; 17:e1009845. [PMID: 34679095 PMCID: PMC8535378 DOI: 10.1371/journal.pgen.1009845] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/28/2021] [Indexed: 12/04/2022] Open
Abstract
Fungi sense light of different wavelengths using blue-, green-, and red-light photoreceptors. Blue light sensing requires the “white-collar” proteins with flavin as chromophore, and red light is sensed through phytochrome. Here we analyzed genome-wide gene expression changes caused by short-term, low-light intensity illumination with blue-, red- or far-red light in Aspergillus nidulans and found that more than 1100 genes were differentially regulated. The largest number of up- and downregulated genes depended on the phytochrome FphA and the attached HOG pathway. FphA and the white-collar orthologue LreA fulfill activating but also repressing functions under all light conditions and both appear to have roles in the dark. Additionally, we found about 100 genes, which are red-light induced in the absence of phytochrome, suggesting alternative red-light sensing systems. We also found blue-light induced genes in the absence of the blue-light receptor LreA. We present evidence that cryptochrome may be part of this regulatory cue, but that phytochrome is essential for the response. In addition to in vivo data showing that FphA is involved in blue-light sensing, we performed spectroscopy of purified phytochrome and show that it responds indeed to blue light. Fungi are microorganisms with important roles in the environment, as symbionts, as pathogens, or as workhorses in biotechnology. They constantly need to adapt to changing environmental conditions, often far away from their optima. One important environmental factor, fungi respond to is ambient light. The presence of light tells them if they are exposed to a surface and thus potentially to heat, harmful irradiation, or desiccation or other stressful conditions, or whether they are growing inside soil or litter with more constant conditions. Interestingly, many fungi harbor photosensors for blue-, green- and red light. We show here that in the model fungus Aspergillus nidulans a large proportion of the genome is under light control, and many genes are regulated through phytochrome and thus by red light. However, phytochrome is also used for blue-light sensing. Many genes are controlled by blue- and by red light signaling systems, but many also respond only to specific wavelengths. The study provides important groundwork for future research to unravel how different genes are regulated at the molecular level and to decipher the biological meaning for the complex light-regulatory systems found in fungi.
Collapse
Affiliation(s)
- Zhenzhong Yu
- Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany
- Nanjing Agricultural University, Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, China
- * E-mail: (ZY); (RF)
| | - Christian Streng
- Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany
| | - Ramon F. Seibeld
- Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany
| | - Olumuyiwa A. Igbalajobi
- Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany
| | - Kai Leister
- Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany
| | - Julian Ingelfinger
- Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany
- * E-mail: (ZY); (RF)
| |
Collapse
|
18
|
Gallé Á, Czékus Z, Tóth L, Galgóczy L, Poór P. Pest and disease management by red light. PLANT, CELL & ENVIRONMENT 2021; 44:3197-3210. [PMID: 34191305 DOI: 10.1111/pce.14142] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 05/22/2023]
Abstract
Light is essential for plant life. It provides a source of energy through photosynthesis and regulates plant growth and development and other cellular processes, such as by controlling the endogenous circadian clock. Light intensity, quality, duration and timing are all important determinants of plant responses, especially to biotic stress. Red light can positively influence plant defence mechanisms against different pathogens, but the molecular mechanism behind this phenomenon is not fully understood. Therefore, we reviewed the impact of red light on plant biotic stress responses against viruses, bacteria, fungi and nematodes, with a focus on the physiological effects of red light treatment and hormonal crosstalk under biotic stress in plants. We found evidence suggesting that exposing plants to red light increases levels of salicylic acid (SA) and induces SA signalling mediating the production of reactive oxygen species, with substantial differences between species and plant organs. Such changes in SA levels could be vital for plants to survive infections. Therefore, the application of red light provides a multidimensional aspect to developing innovative and environmentally friendly approaches to plant and crop disease management.
Collapse
Affiliation(s)
- Ágnes Gallé
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Zalán Czékus
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Liliána Tóth
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - László Galgóczy
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Péter Poór
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| |
Collapse
|
19
|
Liu G, Shan Y, Zheng R, Liu R, Sun C. Growth promotion of a deep-sea bacterium by sensing infrared light through a bacteriophytochrome photoreceptor. Environ Microbiol 2021; 23:4466-4477. [PMID: 34121298 DOI: 10.1111/1462-2920.15639] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/10/2021] [Indexed: 11/29/2022]
Abstract
Photoreceptors are found in all kingdoms of life and bacteriophytochromes (Bphps) are the most abundant photo-sensing receptors in bacteria. Interestingly, BphPs have been linked to some bacterial physiological responses, yet most of the biological processes they regulate are still elusive, especially in non-photosynthetic bacteria. Here, we show that a bacteriophytochrome (CmoBphp) from a deep-sea bacterium Croceicoccus marinus OT19 perceives infrared light (wavelength at 940 nm) and transduces photo-sensing signals to a downstream intracellular transduction cascade for better growth. We discover that the infrared light-mediated growth promotion of C. marinus OT19 is attributed partly to the enhancement of pyruvate and propanoate metabolism. Further study suggests that CmoBphp plays a crucial role in integrating infrared light with intracellular signalling to control the bacterial growth and metabolism. This is the first report that deep-sea non-photosynthetic bacteria can sense infrared light to control growth through a bacteriophytochrome photoreceptor, thus providing new understandings towards light energy utilization by microorganisms.
Collapse
Affiliation(s)
- Ge Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yeqi Shan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Rikuan Zheng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Rui Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chaomin Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
20
|
Effects of Light on the Ochratoxigenic Fungi Aspergillus ochraceus and A. carbonarius. Toxins (Basel) 2021; 13:toxins13040251. [PMID: 33807312 PMCID: PMC8065527 DOI: 10.3390/toxins13040251] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 11/18/2022] Open
Abstract
Ochratoxin A (OTA) usually contaminates agricultural products such as grapes, oatmeal, coffee and spices. Light was reported as an effective strategy to control spoilage fungi and mycotoxins. This research investigated the effects of light with different wavelengths on the growth and the production of OTA in Aspergillus ochraceus and Aspergillus carbonarius. The results showed that the growth of both fungi were extremely inhibited by UV-B. Short-wavelength (blue, violet) significantly inhibited the production of OTA in both fungi, while the inhibitory effect of white was only demonstrated on A. ochraceus. These results were supported by the expression profiles of OTA biosynthetic genes of A. ochraceus and A. carbonarius. To clarify, the decrease in OTA production is induced by inhibition or degradation; therefore, the degradation of OTA under different wavelengths of light was tested. Under UV-B, the degradation rate of 10 μg/mL OTA standard pure-solution samples could reach 96.50% in 15 days, and the degradation effect of blue light was relatively weak. Furthermore, infection experiments of pears showed that the pathogenicity of both fungi was significantly decreased under UV-B radiation. Thus, these results suggested that light could be used as a potential target for strategies in the prevention and control of ochratoxigenic fungi.
Collapse
|
21
|
Loi M, Villani A, Paciolla F, Mulè G, Paciolla C. Challenges and Opportunities of Light-Emitting Diode (LED) as Key to Modulate Antioxidant Compounds in Plants. A Review. Antioxidants (Basel) 2020; 10:antiox10010042. [PMID: 33396461 PMCID: PMC7824119 DOI: 10.3390/antiox10010042] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 02/08/2023] Open
Abstract
Plant antioxidants are important compounds involved in plant defense, signaling, growth, and development. The quantity and quality of such compounds is genetically driven; nonetheless, light is one of the factors that strongly influence their synthesis and accumulation in plant tissues. Indeed, light quality affects the fitness of the plant, modulating its antioxidative profile, a key element to counteract the biotic and abiotic stresses. With this regard, light-emitting diodes (LEDs) are emerging as a powerful technology which allows the selection of specific wavelengths and intensities, and therefore the targeted accumulation of plant antioxidant compounds. Despite the unique advantages of such technology, LED application in the horticultural field is still at its early days and several aspects still need to be investigated. This review focused on the most recent outcomes of LED application to modulate the antioxidant compounds of plants, with particular regard to vitamin C, phenols, chlorophyll, carotenoids, and glucosinolates. Additionally, future challenges and opportunities in the use of LED technology in the growth and postharvest storage of fruits and vegetables were also addressed to give a comprehensive overview of the future applications and trends of research.
Collapse
Affiliation(s)
- Martina Loi
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
| | - Alessandra Villani
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Francesco Paciolla
- Automation Engineering, Polytechnic of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Giuseppina Mulè
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
| | - Costantino Paciolla
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
22
|
Reshetnyk K, Prysedsky Y. Growth, cultural and morphological characteristics of strains of Laetiporus sulphureus (Polyporales, Basidiomycota) under the influence of laser irradiation. UKRAINIAN BOTANICAL JOURNAL 2020. [DOI: 10.15407/ukrbotj77.06.472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The article provides growth, cultural and morphological characteristics of the vegetative mycelium on agar nutrient medium under the influence of laser irradiation for three strains of Laetiporus sulphureus from the Collection of basidiomycete cultures of the Department of Botany and Ecology of Vasyl' Stus Donetsk National University. The study was performed on potatoglucose agar (PGA) at a temperature of 26 ± 1 °C. It has been found that cultural and morphological characteristics of the colonies and the radial rate of their growth depend on the duration of irradiation (5 and 10 s) and the wavelength of light – green (532 nm), blue (405 nm) and red light (635 nm). For all studied strains of L. sulphureus, the most effective irradiation is that with green light (irradiation energy 51.1 mJ/cm2) lasting 10 s. Under the influence of this regime, the rate of radial mycelium growth increased from 23.4% to 66.7%, respectively, and the inoculum and the central zone of the surrounding colony formed a denser and higher mycelium of a pale sandy color. In general, the cultural and morphological features of the mycelial colonies of L. sulphureus strains under different conditions were somewhat different, but they were typical for this species.
Collapse
|
23
|
Lueangjaroenkit P, Kunitake E, Sakka M, Kimura T, Teerapatsakul C, Sakka K, Chitradon L. Light Regulation of Two New Manganese Peroxidase-Encoding Genes in Trametes polyzona KU-RNW027. Microorganisms 2020; 8:microorganisms8060852. [PMID: 32517022 PMCID: PMC7355636 DOI: 10.3390/microorganisms8060852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/02/2022] Open
Abstract
To better understand the light regulation of ligninolytic systems in Trametes polyzona KU-RNW027, ligninolytic enzymes-encoding genes were identified and analyzed to determine their transcriptional regulatory elements. Elements of light regulation were investigated in submerged culture. Three ligninolytic enzyme-encoding genes, mnp1, mnp2, and lac1, were found. Cloning of the genes encoding MnP1 and MnP2 revealed distinct deduced amino acid sequences with 90% and 86% similarity to MnPs in Lenzites gibbosa, respectively. These were classified as new members of short-type hybrid MnPs in subfamily A.2 class II fungal secretion heme peroxidase. A light responsive element (LRE), composed of a 5′-CCRCCC-3′ motif in both mnp promoters, is reported. Light enhanced MnP activity 1.5 times but not laccase activity. The mnp gene expressions under light condition increased 6.5- and 3.8-fold, respectively. Regulation of laccase gene expression by light was inconsistent with the absence of LREs in their promoter. Blue light did not affect gene expressions but impacted their stability. Reductions of MnP and laccase production under blue light were observed. The details of the molecular mechanisms underlying enzyme production in this white-rot fungus provide useful knowledge for wood degradation relative to illumination condition. These novel observations demonstrate the potential of enhancing ligninolytic enzyme production by this fungus for applications with an eco-friendly approach to bioremediation.
Collapse
Affiliation(s)
- Piyangkun Lueangjaroenkit
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (P.L.); (C.T.)
| | - Emi Kunitake
- Laboratory of Applied Microbiology, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan; (E.K.); (M.S.); (T.K.); (K.S.)
| | - Makiko Sakka
- Laboratory of Applied Microbiology, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan; (E.K.); (M.S.); (T.K.); (K.S.)
| | - Tetsuya Kimura
- Laboratory of Applied Microbiology, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan; (E.K.); (M.S.); (T.K.); (K.S.)
| | - Churapa Teerapatsakul
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (P.L.); (C.T.)
| | - Kazuo Sakka
- Laboratory of Applied Microbiology, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan; (E.K.); (M.S.); (T.K.); (K.S.)
| | - Lerluck Chitradon
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (P.L.); (C.T.)
- Correspondence: ; Tel.: +66-(0)2-562-5555 (ext. 646624)
| |
Collapse
|
24
|
Dual effect of blue light on Fusariumsolani clinical corneal isolates in vitro. Lasers Med Sci 2020; 35:1299-1305. [PMID: 32112251 DOI: 10.1007/s10103-019-02911-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/25/2019] [Indexed: 10/24/2022]
Abstract
The purpose was to investigate the effect of daylight-intensity blue light on F. solani isolated from the cornea of patients with fungal keratitis. Spore suspensions of 5 F. solani strains (one standard strain and 4 clinical corneal isolates) were prepared in 6-well plates. Blue light groups were irradiated by a light-emitting diode (LED) device with a peak wavelength of 454 nm at 0.5 mW/cm2 for 0 to 48 h, while the controls were maintained in darkness. Hyphal morphology in the 6-well plates was recorded at 0, 12, 24, 36, 48 h. One hundred microliters of spore suspensions of each strain at these five time points was transferred to SGA plates and cultured for 36 h at 29 °C; the number of colonies formed was counted as a measure of conidia quality and viability. Blue light has dual effects on F. solani. The hyphal length of F. solani exposed to blue light was significantly shorter than that of the control (P < 0.01), indicating that fungal growth was inhibited. Meanwhile, instead of reducing the viability of spores, blue light significantly enhanced the conidia quality and viability after at least 24 h irradiation. Daylight-intensity blue light exposure will inhibit the hyphal growth of F. solani but promote conidiation, which would be more harmful to fungal keratitis. Eliminating the influence of blue light for these patients should be taken into account.
Collapse
|
25
|
Wang H, Tong X, Tian F, Jia C, Li C, Li Y. Transcriptomic profiling sheds light on the blue-light and red-light response of oyster mushroom (Pleurotus ostreatus). AMB Express 2020; 10:10. [PMID: 31955301 PMCID: PMC6969877 DOI: 10.1186/s13568-020-0951-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 01/07/2020] [Indexed: 01/09/2023] Open
Abstract
Blue light is an important environmental factor that induces mushroom primordium differentiation and fruiting body development. Although blue-light treatment has been applied for the production of oyster mushroom (Pleurotus ostreatus), the blue-light response mechanisms of P. ostreatus still remain unclear. In the present study, we exposed the primordium of P. ostreatus to blue-light, red-light, and dark conditions for 7 days. Subsequently, comparative transcriptomics analysis of the stipe, pileus, and gill under the three light conditions was performed to reveal the gene expression response mechanism of P. ostreatus to blue light and red light. The results showed that blue light enhanced the growth and development of all the three organs of P. ostreatus, especially the pileus. In contrast, red light slightly (non-significantly) inhibited pileus growth. When compared with red-light and dark treatments, blue-light treatment significantly upregulated gene expression involved in glycolysis/gluconeogenesis, the pentose phosphate pathway and the peroxisome in the pileus, but not in the gill or stipe. Most of the glycolysis and pentose phosphate pathway genes were upregulated in the pileus by blue light. When compared with dark treatment, red-light treatment downregulated the expression of many respiration metabolism genes in the pileus. These results revealed that blue light enhanced the activation of glycolysis and the pentose phosphate pathway, whereas red light weakened glycolysis and pentose phosphate pathway activation. The conclusion can be drawn that blue light improved P. ostreatus fruiting body (particularly, the pileus) growth rate via enhancement of glycolysis and the pentose phosphate pathway.
Collapse
|
26
|
Tong X, Zhang H, Wang F, Xue Z, Cao J, Peng C, Guo J. Comparative transcriptome analysis revealed genes involved in the fruiting body development of Ophiocordyceps sinensis. PeerJ 2020; 8:e8379. [PMID: 31988806 PMCID: PMC6970007 DOI: 10.7717/peerj.8379] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
Ophiocordyceps sinensis is a highly valued fungus that has been used as traditional Asian medicine. This fungus is one of the most important sources of income for the nomadic populations of the Tibetan Plateau. With global warming and excessive collection, the wild O. sinensis resources declined dramatically. The cultivation of O. sinensis hasn’t been fully operational due to the unclear genetic basis of the fruiting body development. Here, our study conducted pairwise comparisons between transcriptomes acquired from different growth stages of O. sinensis including asexual mycelium (CM), developing fruiting body (DF) and mature fruiting body (FB). All RNA-Seq reads were aligned to the genome of O. sinensis CO18 prior to comparative analyses. Cluster analysis showed that the expression profiles of FB and DF were highly similar compared to CM. Alternative splicing analysis (AS) revealed that the stage-specific splicing genes may have important functions in the development of fruiting body. Functional enrichment analyses showed that differentially expressed genes (DEGs) were enriched in protein synthesis and baseline metabolism during fruiting body development, indicating that more protein and energy might be required for fruiting body development. In addition, some fruiting body development-associated genes impacted by ecological factors were up-regulated in FB samples, such as the nucleoside diphosphate kinase gene (ndk), β subunit of the fatty acid synthase gene (cel-2) and the superoxide dismutase gene (sod). Moreover, the expression levels of several cytoskeletons genes were significantly altered during all these growth stages, suggesting that these genes play crucial roles in both vegetative growth and the fruiting body development. Quantitative PCR (qPCR) was used to validate the gene expression profile and the results supported the accuracy of the RNA-Seq and DEGs analysis. Our study offers a novel perspective to understand the underlying growth stage-specific molecular differences and the biology of O. sinensis fruiting body development.
Collapse
Affiliation(s)
- Xinxin Tong
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Han Zhang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fang Wang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhengyao Xue
- Department of Food Science and Technology, University of California, Davis, CA, United States of America
| | - Jing Cao
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Cheng Peng
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jinlin Guo
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
27
|
Sánchez-Arreguin JA, Cabrera-Ponce JL, León-Ramírez CG, Camargo-Escalante MO, Ruiz-Herrera J. Analysis of the photoreceptors involved in the light-depending basidiocarp formation in Ustilago maydis. Arch Microbiol 2019; 202:93-103. [DOI: 10.1007/s00203-019-01725-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/15/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
|
28
|
Dias LP, Pedrini N, Braga GUL, Ferreira PC, Pupin B, Araújo CAS, Corrochano LM, Rangel DEN. Outcome of blue, green, red, and white light on Metarhizium robertsii during mycelial growth on conidial stress tolerance and gene expression. Fungal Biol 2019; 124:263-272. [PMID: 32389288 DOI: 10.1016/j.funbio.2019.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 01/25/2023]
Abstract
Fungi sense light and utilize it as a source of environmental information to prepare against many stressful conditions in nature. In this study, Metarhizium robertsii was grown on: 1) potato dextrose agar medium (PDA) in the dark (control); 2) under nutritive stress in the dark; and 3) PDA under continuous (A) white light; (B) blue light lower irradiance = LI; (C) blue light higher irradiance = HI; (D) green light; and (E) red light. Conidia produced under these treatments were tested against osmotic stress and UV radiation. In addition, a suite of genes usually involved in different stress responses were selected to study their expression patterns. Conidia produced under nutritive stress in the dark were the most tolerant to both osmotic stress and UV radiation, and the majority of their stress- and virulence-related genes were up-regulated. For osmotic stress tolerance, conidia produced under white, blue LI, and blue HI lights were the second most tolerant, followed by conidia produced under green light. Conidia produced under red light were the least tolerant to osmotic stress and less tolerant than conidia produced on PDA medium in the dark. For UV tolerance, conidia produced under blue light LI were the second most tolerant to UV radiation, followed by the UV tolerances of conidia produced under white light. Conidia produced under blue HI, green, and red lights were the least UV tolerant and less tolerant than conidia produced in the dark. The superoxide dismutases (sod1 and sod2), photolyases (6-4phr and CPDphr), trehalose-phosphate synthase (tps), and protease (pr1) genes were highly up-regulated under white light condition, suggesting a potential role of these proteins in stress protection as well as virulence after fungal exposure to visible spectrum components.
Collapse
Affiliation(s)
- Luciana P Dias
- Escola de Engenharia de Lorena, Universidade de São Paulo (EEL/USP), Lorena, SP, 12602-810, Brazil
| | - Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (CCT La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de La Plata), Facultad de Ciencias Médicas, La Plata, 1900, Argentina
| | - Gilberto U L Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Paulo C Ferreira
- Universidade do Vale do Paraíba, São José dos Campos, SP, 12244-000, Brazil
| | - Breno Pupin
- Universidade do Vale do Paraíba, São José dos Campos, SP, 12244-000, Brazil
| | | | - Luis M Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, Apartado 1095, 41080, Seville, Spain
| | | |
Collapse
|
29
|
Lee SJ, Kong M, Morse D, Hijri M. Expression of putative circadian clock components in the arbuscular mycorrhizal fungus Rhizoglomus irregulare. MYCORRHIZA 2018; 28:523-534. [PMID: 29931403 DOI: 10.1007/s00572-018-0843-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligatory plant symbionts that live underground, so few studies have examined their response to light. Responses to blue light by other fungi can be mediated by White Collar-1 (WC-1) and WC-2 proteins. These wc genes, together with the frequency gene (frq), also form part of the endogenous circadian clock. The clock mechanism has never been studied in AMF, although circadian growth of their hyphae in the field has been reported. Using both genomic and transcriptomic data, we have found homologs of wc-1, wc-2, and frq and related circadian clock genes in the arbuscular mycorrhizal fungus Rhizoglomus irregulare (synonym Rhizophagus irregularis). Gene expression of wc-1, wc-2, and frq was analyzed using RT-qPCR on RNA extracted from germinating spores and from fungal material cultivated in vitro with transformed carrot roots. We found that all three core clock genes were expressed in both pre- and post-mycorrhizal stages of R. irregulare growth. Similar to the model fungus Neurospora crassa, the core circadian oscillator gene frq was induced by brief light stimulation. The presence of circadian clock and output genes in R. irregulare opens the door to the study of circadian clocks in the fungal partner of plant-AMF symbiosis. Our finding also provides new insight into the evolution of the circadian frq gene in fungi.
Collapse
Affiliation(s)
- Soon-Jae Lee
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada
| | - Mengxuan Kong
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada
| | - David Morse
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada.
| |
Collapse
|
30
|
Di Maria F, Lodola F, Zucchetti E, Benfenati F, Lanzani G. The evolution of artificial light actuators in living systems: from planar to nanostructured interfaces. Chem Soc Rev 2018; 47:4757-4780. [PMID: 29663003 DOI: 10.1039/c7cs00860k] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Artificially enhancing light sensitivity in living cells allows control of neuronal paths or vital functions avoiding the wiring associated with the use of stimulation electrodes. Many possible strategies can be adopted for reaching this goal, including the direct photoexcitation of biological matter, the genetic modification of cells or the use of opto-bio interfaces. In this review we describe different light actuators based on both inorganic and organic semiconductors, from planar abiotic/biotic interfaces to nanoparticles, that allow transduction of a light signal into a signal which in turn affects the biological activity of the hosting system. In particular, we will focus on the application of thiophene-based materials which, thanks to their unique chemical-physical properties, geometrical adaptability, great biocompatibility and stability, have allowed the development of a new generation of fully organic light actuators for in vivo applications.
Collapse
|
31
|
Thind TS, Schilder AC. Understanding photoreception in fungi and its role in fungal development with focus on phytopathogenic fungi. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s42360-018-0025-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Fuller KK, Dunlap JC, Loros JJ. Light-regulated promoters for tunable, temporal, and affordable control of fungal gene expression. Appl Microbiol Biotechnol 2018; 102:3849-3863. [PMID: 29569180 DOI: 10.1007/s00253-018-8887-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 01/08/2023]
Abstract
Regulatable promoters are important genetic tools, particularly for assigning function to essential and redundant genes. They can also be used to control the expression of enzymes that influence metabolic flux or protein secretion, thereby optimizing product yield in bioindustry. This review will focus on regulatable systems for use in filamentous fungi, an important group of organisms whose members include key research models, devastating pathogens of plants and animals, and exploitable cell factories. Though we will begin by cataloging those promoters that are controlled by nutritional or chemical means, our primary focus will rest on those who can be controlled by a literal flip-of-the-switch: promoters of light-regulated genes. The vvd promoter of Neurospora will first serve as a paradigm for how light-driven systems can provide tight, robust, tunable, and temporal control of either autologous or heterologous fungal proteins. We will then discuss a theoretical approach to, and practical considerations for, the development of such promoters in other species. To this end, we have compiled genes from six previously published light-regulated transcriptomic studies to guide the search for suitable photoregulatable promoters in your fungus of interest.
Collapse
Affiliation(s)
- Kevin K Fuller
- Department of Molecular and Systems Biology, Geisel School of Medicine, Hanover, NH, USA.
| | - Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine, Hanover, NH, USA
| | - Jennifer J Loros
- Department of Molecular and Systems Biology, Geisel School of Medicine, Hanover, NH, USA. .,Department of Biochemistry and Cell Biology, Geisel School of Medicine, Hanover, NH, USA.
| |
Collapse
|
33
|
Giordano L, Sillo F, Garbelotto M, Gonthier P. Mitonuclear interactions may contribute to fitness of fungal hybrids. Sci Rep 2018; 8:1706. [PMID: 29374209 PMCID: PMC5786003 DOI: 10.1038/s41598-018-19922-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 01/05/2018] [Indexed: 12/15/2022] Open
Abstract
Hybridization between species is being recognized as a major force in the rapid adaptive evolution of fungal plant pathogens. The first stages of interspecific hybridization necessarily involve nuclear-mitochondrial chimeras. In their 2001 publication, Olson and Stenlid reported that mitochondria control the virulence of first generation hybrids between the North American fungal pathogen Heterobasidion irregulare and its congeneric H. occidentale. By assessing saprobic ability and gene expression of H. irregulare × H. annosum sensu stricto hybrids and of their parental genotypes, we demonstrate that mitochondria also influence saprobic growth of hybrids. Moreover, gene expression data suggest that fungal fitness is modulated by an intimate interplay between nuclear genes and mitochondrial type, and is dependent on the specific mitonuclear combination.
Collapse
Affiliation(s)
- Luana Giordano
- University of Torino, Department of Agricultural, Forest and Food Sciences (DISAFA), Largo Paolo Braccini 2, I-10095, Grugliasco (TO), Italy.,Centre of Competence for the Innovation in the Agro-Environmental Field (AGROINNOVA), University of Torino, Largo Paolo Braccini 2, I-10095, Grugliasco (TO), Italy
| | - Fabiano Sillo
- University of Torino, Department of Agricultural, Forest and Food Sciences (DISAFA), Largo Paolo Braccini 2, I-10095, Grugliasco (TO), Italy.
| | - Matteo Garbelotto
- University of California, Berkeley, Department of Environmental Science, Policy and Management, Forest Pathology and Mycology Laboratory, 54 Mulford Hall, 94720, Berkeley, California, USA
| | - Paolo Gonthier
- University of Torino, Department of Agricultural, Forest and Food Sciences (DISAFA), Largo Paolo Braccini 2, I-10095, Grugliasco (TO), Italy
| |
Collapse
|
34
|
Oliveira AS, Braga GUL, Rangel DEN. Metarhizium robertsii illuminated during mycelial growth produces conidia with increased germination speed and virulence. Fungal Biol 2017; 122:555-562. [PMID: 29801800 DOI: 10.1016/j.funbio.2017.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/23/2022]
Abstract
Light conditions during fungal growth are well known to cause several physiological adaptations in the conidia produced. In this study, conidia of the entomopathogenic fungi Metarhizium robertsii were produced on: 1) potato dextrose agar (PDA) medium in the dark; 2) PDA medium under white light (4.98 W m-2); 3) PDA medium under blue light (4.8 W m-2); 4) PDA medium under red light (2.8 W m-2); and 5) minimum medium (Czapek medium without sucrose) supplemented with 3 % lactose (MML) in the dark. The conidial production, the speed of conidial germination, and the virulence to the insect Tenebrio molitor (Coleoptera: Tenebrionidae) were evaluated. Conidia produced on MML or PDA medium under white or blue light germinated faster than conidia produced on PDA medium in the dark. Conidia produced under red light germinated slower than conidia produced on PDA medium in the dark. Conidia produced on MML were the most virulent, followed by conidia produced on PDA medium under white light. The fungus grown under blue light produced more conidia than the fungus grown in the dark. The quantity of conidia produced for the fungus grown in the dark, under white, and red light was similar. The MML afforded the least conidial production. In conclusion, white light produced conidia that germinated faster and killed the insects faster; in addition, blue light afforded the highest conidial production.
Collapse
Affiliation(s)
- Ariel S Oliveira
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO 74605-050, Brazil
| | - Gilberto U L Braga
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Drauzio E N Rangel
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO 74605-050, Brazil; Instituto de Ciências e Tecnologia, Universidade Brasil, São Paulo, SP 08230-030, Brazil.
| |
Collapse
|
35
|
Xie C, Gong W, Zhu Z, Yan L, Hu Z, Peng Y. Comparative transcriptomics of Pleurotus eryngii reveals blue-light regulation of carbohydrate-active enzymes (CAZymes) expression at primordium differentiated into fruiting body stage. Genomics 2017; 110:201-209. [PMID: 28970048 DOI: 10.1016/j.ygeno.2017.09.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/10/2017] [Accepted: 09/27/2017] [Indexed: 02/03/2023]
Abstract
Blue light is an important environmental factor which could induce mushroom primordium differentiation and fruiting body development. However, the mechanisms of Pleurotus eryngii primordium differentiation and development induced by blue light are still unclear. The CAZymes (carbohydrate-active enzymes) play important roles in degradation of renewable lignocelluloses to provide carbohydrates for fungal growth, development and reproduction. In the present research, the expression profiles of genes were measured by comparison between the Pleurotus eryngii at primordium differentiated into fruiting body stage after blue light stimulation and dark using high-throughput sequencing approach. After assembly and compared to the Pleurotus eryngii reference genome, 11,343 unigenes were identified. 539 differentially expressed genes including white collar 2 type of transcription factor gene, A mating type protein gene, MAP kinase gene, oxidative phosphorylation associated genes, CAZymes genes and other metabolism related genes were identified during primordium differentiated into fruiting body stage after blue light stimulation. KEGG results showed that carbon metabolism, glycolysis/gluconeogenesis and biosynthesis of amino acids pathways were affected during blue light inducing primordia formation. Most importantly, 319 differentially expressed CAZymes participated in carbon metabolism were identified. The expression patterns of six representative CAZymes and laccase genes were further confirmed by qRT-PCR. Enzyme activity results indicated that the activities of CAZymes and laccase were affected in primordium differentiated into fruiting body under blue light stimulation. In conclusion, the comprehensive transcriptome and CAZymes of Pleurotus eryngii at primordium differentiated into fruiting body stage after blue light stimulation were obtained. The biological insights gained from this integrative system represent a valuable resource for future genomic studies on this commercially important mushroom.
Collapse
Affiliation(s)
- Chunliang Xie
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, People's Republic of China
| | - Wenbing Gong
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, People's Republic of China
| | - Zuohua Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, People's Republic of China
| | - Li Yan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, People's Republic of China
| | - Zhenxiu Hu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, People's Republic of China
| | - Yuande Peng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, People's Republic of China.
| |
Collapse
|
36
|
Liu J, Tong SM, Qiu L, Ying SH, Feng MG. Two histidine kinases can sense different stress cues for activation of the MAPK Hog1 in a fungal insect pathogen. Environ Microbiol 2017; 19:4091-4102. [DOI: 10.1111/1462-2920.13851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 06/20/2017] [Accepted: 06/25/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Jing Liu
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou, Zhejiang 310058 China
| | - Sen-Miao Tong
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou, Zhejiang 310058 China
| | - Lei Qiu
- School of Bioengineering; Qilu University of Technology; Jinan, Shandong 250353 China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou, Zhejiang 310058 China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou, Zhejiang 310058 China
| |
Collapse
|
37
|
Simmel J, Bässler C, Poschlod P. Ellenberg indicator values for macromycetes – a methodological approach and first applications. FUNGAL ECOL 2017. [DOI: 10.1016/j.funeco.2016.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Abstract
ABSTRACT
Life, as we know it, would not be possible without light. Light is not only a primary source of energy, but also an important source of information for many organisms. To sense light, only a few photoreceptor systems have developed during evolution. They are all based on an organic molecule with conjugated double bonds that allows energy transfer from visible (or UV) light to its cognate protein to translate the primary physical photoresponse to cell-biological actions. The three main classes of receptors are flavin-based blue-light, retinal-based green-light (such as rhodopsin), and linear tetrapyrrole-based red-light sensors. Light not only controls the behavior of motile organisms, but is also important for many sessile microorganisms including fungi. In fungi, light controls developmental decisions and physiological adaptations as well as the circadian clock. Although all major classes of photoreceptors are found in fungi, a good level of understanding of the signaling processes at the molecular level is limited to some model fungi. However, current knowledge suggests a complex interplay between light perception systems, which goes far beyond the simple sensing of light and dark. In this article we focus on recent results in several fungi, which suggest a strong link between light-sensing and stress-activated mitogen-activated protein kinases.
Collapse
|
39
|
Fanelli F, Reveglia P, Masi M, Mulè G, Zonno MC, Cimmino A, Vurro M, Evidente A. Influence of light on the biosynthesis of ophiobolin A by Bipolaris maydis. Nat Prod Res 2016; 31:909-917. [PMID: 27820961 DOI: 10.1080/14786419.2016.1253084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ophiobolin A (O-A) is a sesterpenoid with numerous biological activities, including potential anticancer effects. Its production at an industrial level is hampered due to inability of fungus Bipolaris maydis to biosynthesise it in vitro in large amount. Among the environmental factors regulating fungal metabolism, light plays a crucial role. In this study, the use of different light wavelength (light emitting diodes (LEDs)) was evaluated to increase the O-A production. The white light allowed the highest production of the metabolite. The blue and green lights showed an inhibitory effect, reducing the production to 50%, as well as red and yellow but at a lower level. No correlation between fungal growth and metabolite production was found in relation to the light type. A novel application of LED technologies, which can be optimised to foster specific pathways and promote the production of metabolites having scientific and industrial interest was proposed.
Collapse
Affiliation(s)
- Francesca Fanelli
- a Institute of Sciences of Food Production , National Research Council , Bari , Italy
| | - Pierluigi Reveglia
- b Department of Chemical Sciences , University of Naples "Federico II", Complesso Universitario Monte S. Angelo , Napoli , Italy
| | - Marco Masi
- b Department of Chemical Sciences , University of Naples "Federico II", Complesso Universitario Monte S. Angelo , Napoli , Italy
| | - Giuseppina Mulè
- a Institute of Sciences of Food Production , National Research Council , Bari , Italy
| | - Maria Chiara Zonno
- a Institute of Sciences of Food Production , National Research Council , Bari , Italy
| | - Alessio Cimmino
- b Department of Chemical Sciences , University of Naples "Federico II", Complesso Universitario Monte S. Angelo , Napoli , Italy
| | - Maurizio Vurro
- a Institute of Sciences of Food Production , National Research Council , Bari , Italy
| | - Antonio Evidente
- b Department of Chemical Sciences , University of Naples "Federico II", Complesso Universitario Monte S. Angelo , Napoli , Italy
| |
Collapse
|
40
|
Zhang Z, Li H, Qin G, He C, Li B, Tian S. The MADS-Box transcription factor Bcmads1 is required for growth, sclerotia production and pathogenicity of Botrytis cinerea. Sci Rep 2016; 6:33901. [PMID: 27658442 PMCID: PMC5034256 DOI: 10.1038/srep33901] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/02/2016] [Indexed: 02/08/2023] Open
Abstract
MADS-box transcription factors are highly conserved in eukaryotic species and involved in a variety of biological processes. Little is known, however, regarding the function of MADS-box genes in Botrytis cinerea, a fungal pathogen with a wide host range. Here, the functional role of the B. cinerea MADS-box gene, Bcmads1, was characterized in relation to the development, pathogenicity and production of sclerotia. The latter are formed upon incubation in darkness and serve as survival structures during winter and as the female parent in sexual reproduction. Bcmads1 is indispensable for sclerotia production. RT-qPCR analysis suggested that Bcmads1 modulated sclerotia formation by regulating the expression of light-responsive genes. Bcmads1 is required for the full virulence potential of B. cinerea on apple fruit. A comparative proteomic analysis identified 63 proteins, representing 55 individual genes that are potential targets of Bcmads1. Among them, Bcsec14 and Bcsec31 are associated with vesicle transport. Deletion of Bcsec14 and Bcsec31 resulted in a reduction in the virulence and protein secretion of B. cinerea. These results suggest that Bcmads1 may influence sclerotia formation by modulating light responsive gene expression and regulate pathogenicity by its effect on the protein secretion process.
Collapse
Affiliation(s)
- Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hua Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Chang He
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Bai Y, Rottwinkel G, Feng J, Liu Y, Lamparter T. Bacteriophytochromes control conjugation in Agrobacterium fabrum. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:192-9. [PMID: 27261700 DOI: 10.1016/j.jphotobiol.2016.05.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/11/2016] [Indexed: 10/21/2022]
Abstract
Bacterial conjugation, the transfer of single stranded plasmid DNA from donor to recipient cell, is mediated through the type IV secretion system. We performed conjugation assays using a transmissible artificial plasmid as reporter. With this assay, conjugation in Agrobacterium fabrum was modulated by the phytochromes Agp1 and Agp2, photoreceptors that are most sensitive in the red region of visible light. In conjugation studies with wild-type donor cells carrying a pBIN-GUSINT plasmid as reporter that lacked the Ti (tumor inducing) plasmid, no conjugation was observed. When either agp1(-) or agp2(-) knockout donor strains were used, plasmid DNA was delivered to the recipient, indicating that both phytochromes suppress conjugation in the wild type donor. In the recipient strains, the loss of Agp1 or Agp2 led to diminished conjugation. When wild type cells with Ti plasmid and pBIN-GUS reporter plasmid were used as donor, a high rate of conjugation was observed. The DNA transfer was down regulated by red or far-red light by a factor of 3.5. With agp1(-) or agp2(-) knockout donor cells, conjugation in the dark was about 10 times lower than with the wild type donor, and with the double knockout donor no conjugation was observed. These results imply that the phytochrome system has evolved to inhibit conjugation in the light. The decrease of conjugation under different temperature correlated with the decrease of phytochrome autophosphorylation.
Collapse
Affiliation(s)
- Yingnan Bai
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Kaiserstr. 2, D-76131 Karlsruhe, Germany; University of Electronic Science and Technology of China (UESTC), School of Science and Technology, No. 4, Sections 2, North Jianshe Road, Chengdu 610054, China
| | - Gregor Rottwinkel
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Kaiserstr. 2, D-76131 Karlsruhe, Germany
| | - Juan Feng
- University of Electronic Science and Technology of China (UESTC), School of Science and Technology, No. 4, Sections 2, North Jianshe Road, Chengdu 610054, China
| | - Yiyao Liu
- University of Electronic Science and Technology of China (UESTC), School of Science and Technology, No. 4, Sections 2, North Jianshe Road, Chengdu 610054, China
| | - Tilman Lamparter
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Kaiserstr. 2, D-76131 Karlsruhe, Germany.
| |
Collapse
|
42
|
Assessing the relevance of light for fungi: Implications and insights into the network of signal transmission. ADVANCES IN APPLIED MICROBIOLOGY 2016; 76:27-78. [PMID: 21924971 DOI: 10.1016/b978-0-12-387048-3.00002-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Light represents an important environmental cue, which provides information enabling fungi to prepare and react to the different ambient conditions between day and night. This adaptation requires both anticipation of the changing conditions, which is accomplished by daily rhythmicity of gene expression brought about by the circadian clock, and reaction to sudden illumination. Besides perception of the light signal, also integration of this signal with other environmental cues, most importantly nutrient availability, necessitates light-dependent regulation of signal transduction pathways and metabolic pathways. An influence of light and/or the circadian clock is known for the cAMP pathway, heterotrimeric G-protein signaling, mitogen-activated protein kinases, two-component phosphorelays, and Ca(2+) signaling. Moreover, also the target of rapamycin signaling pathway and reactive oxygen species as signal transducing elements are assumed to be connected to the light-response pathway. The interplay of the light-response pathway with signaling cascades results in light-dependent regulation of primary and secondary metabolism, morphology, development, biocontrol activity, and virulence. The frequent use of fungi in biotechnology as well as analysis of fungi in the artificial environment of a laboratory therefore requires careful consideration of still operative evolutionary heritage of these organisms. This review summarizes the diverse effects of light on fungi and the mechanisms they apply to deal both with the information content and with the harmful properties of light. Additionally, the implications of the reaction of fungi to light in a laboratory environment for experimental work and industrial applications are discussed.
Collapse
|
43
|
The Fast-Evolving phy-2 Gene Modulates Sexual Development in Response to Light in the Model Fungus Neurospora crassa. mBio 2016; 7:e02148. [PMID: 26956589 PMCID: PMC4810495 DOI: 10.1128/mbio.02148-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Rapid responses to changes in incident light are critical to the guidance of behavior and development in most species. Phytochrome light receptors in particular play key roles in bacterial physiology and plant development, but their functions and regulation are less well understood in fungi. Nevertheless, genome-wide expression measurements provide key information that can guide experiments that reveal how genes respond to environmental signals and clarify their role in development. We performed functional genomic and phenotypic analyses of the two phytochromes in Neurospora crassa, a fungal model adapted to a postfire environment that experiences dramatically variable light conditions. Expression of phy-1 and phy-2 was low in early sexual development and in the case of phy-2 increased in late sexual development. Under light stimulation, strains with the phytochromes deleted exhibited increased expression of sexual development-related genes. Moreover, under red light, the phy-2 knockout strain commenced sexual development early. In the evolution of phytochromes within ascomycetes, at least two duplications have occurred, and the faster-evolving phy-2 gene has frequently been lost. Additionally, the three key cysteine sites that are critical for bacterial and plant phytochrome function are not conserved within fungal phy-2 homologs. Through the action of phytochromes, transitions between asexual and sexual reproduction are modulated by light level and light quality, presumably as an adaptation for fast asexual growth and initiation of sexual reproduction of N. crassa in exposed postfire ecosystems. Environmental signals, including light, play critical roles in regulating fungal growth and pathogenicity, and balance of asexual and sexual reproduction is critical in fungal pathogens’ incidence, virulence, and distribution. Red light sensing by phytochromes is well known to play critical roles in bacterial physiology and plant development. Homologs of phytochromes were first discovered in the fungal model Neurospora crassa and then subsequently in diverse other fungi, including many plant pathogens. Our study investigated the evolution of red light sensors in ascomycetes and confirmed—using the model fungus Neurospora crassa—their roles in modulating the asexual-sexual reproduction balance in fungi. Our findings also provide a key insight into one of the most poorly understood aspects of fungal biology, suggesting that further study of the function of phytochromes in fungi is critical to reveal the genetic basis of the asexual-sexual switch responsible for fungal growth and distribution, including diverse and destructive plant pathogens.
Collapse
|
44
|
Fanelli F, Geisen R, Schmidt-Heydt M, Logrieco A, Mulè G. Light regulation of mycotoxin biosynthesis: new perspectives for food safety. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2014.1860] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mycotoxins are secondary metabolites produced by toxigenic fungi contaminating foods and feeds in pre-, post-harvest and processing, and represent a great concern worldwide, both for the economic implications and for the health of the consumers. Many environmental conditions are involved in the regulation of mycotoxin biosynthesis. Among these, light represents one of the most important signals for fungi, influencing several physiological responses such as pigmentation, sexual development and asexual conidiation, primary and secondary metabolism, including mycotoxin biosynthesis. In this review we summarise some recent findings on the effect of specific light wavelength and intensity on mycotoxin biosynthesis in the main toxigenic fungal genera. We describe the molecular mechanism underlying light perception and its involvement in the regulation of secondary metabolism, focusing on VeA, global regulator in Aspergillus nidulans, and the White-Collar proteins, key components of light response in Neurospora crassa. Light of specific wavelength and intensity exerts different effects both on growth and on toxin production depending on the fungal genus. In Penicillium spp. red (627 nm) and blue wavelengths (455-470 nm) reduce ochratoxin A (OTA) biosynthesis by modulating the level of expression of the ochratoxin polyketide synthase. Furthermore a mutual regulation between citrinin and OTA production is reported in Penicillium toxigenic species. In Aspergillus spp. the effect of light treatment is strongly dependent on the species and culture conditions. Royal blue wavelength (455 nm) of high intensity (1,700 Lux) is capable of completely inhibit fungal growth and OTA production in Aspergillus stenyii and Penicillum verrucosum. In Fusarium spp. the effect of light exposure is less effective; mycotoxin-producing species, such as Fusarium verticillioides and Fusarium proliferatum, grow better under light conditions, and fumonisin production increased. This review provides a comprehensive picture on light regulation of mycotoxin biosynthesis and discusses possible new applications of this resource in food safety.
Collapse
Affiliation(s)
- F. Fanelli
- Institute of Sciences of Food Production, CNR, via Amendola 122/0, 70126 Bari, Italy
| | - R. Geisen
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Haid-und-Neu-Str. 9, 76131 Karlsruhe, Germany
| | - M. Schmidt-Heydt
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Haid-und-Neu-Str. 9, 76131 Karlsruhe, Germany
| | - A.F. Logrieco
- Institute of Sciences of Food Production, CNR, via Amendola 122/0, 70126 Bari, Italy
| | - G. Mulè
- Institute of Sciences of Food Production, CNR, via Amendola 122/0, 70126 Bari, Italy
| |
Collapse
|
45
|
Lyu X, Shen C, Fu Y, Xie J, Jiang D, Li G, Cheng J. The Microbial Opsin Homolog Sop1 is involved in Sclerotinia sclerotiorum Development and Environmental Stress Response. Front Microbiol 2016; 6:1504. [PMID: 26779159 PMCID: PMC4703900 DOI: 10.3389/fmicb.2015.01504] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/14/2015] [Indexed: 11/29/2022] Open
Abstract
Microbial opsins play a crucial role in responses to various environmental signals. Here, we report that the microbial opsin homolog gene sop1 from the necrotrophic phytopathogenic fungus Sclerotinia sclerotiorum was dramatically up-regulated during infection and sclerotial development compared with the vegetative growth stage. Further, study showed that sop1 was essential for growth, sclerotial development and full virulence of S. sclerotiorum. Sop1-silenced transformants were more sensitive to high salt stress, fungicides and high osmotic stress. However, they were more tolerant to oxidative stress compared with the wild-type strain, suggesting that sop1 is involved in different stress responses and fungicide resistance, which plays a role in the environmental adaptability of S. sclerotiorum. Furthermore, a Delta blast search showed that microbial opsins are absent from the genomes of animals and most higher plants, indicating that sop1 is a potential drug target for disease control of S. sclerotiorum.
Collapse
Affiliation(s)
- Xueliang Lyu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Cuicui Shen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Jiatao Xie
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
46
|
Díaz NM, Morera LP, Guido ME. Melanopsin and the Non-visual Photochemistry in the Inner Retina of Vertebrates. Photochem Photobiol 2015; 92:29-44. [DOI: 10.1111/php.12545] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/09/2015] [Indexed: 01/28/2023]
Affiliation(s)
- Nicolás M. Díaz
- Departamento de Química Biológica-CIQUIBIC (CONICET); Facultad de Ciencias Químicas; Universidad Nacional de Córdoba (UNC); Córdoba Argentina
| | - Luis P. Morera
- Departamento de Química Biológica-CIQUIBIC (CONICET); Facultad de Ciencias Químicas; Universidad Nacional de Córdoba (UNC); Córdoba Argentina
| | - Mario E. Guido
- Departamento de Química Biológica-CIQUIBIC (CONICET); Facultad de Ciencias Químicas; Universidad Nacional de Córdoba (UNC); Córdoba Argentina
| |
Collapse
|
47
|
Hedtke M, Rauscher S, Röhrig J, Rodríguez-Romero J, Yu Z, Fischer R. Light-dependent gene activation inAspergillus nidulansis strictly dependent on phytochrome and involves the interplay of phytochrome and white collar-regulated histone H3 acetylation. Mol Microbiol 2015; 97:733-45. [DOI: 10.1111/mmi.13062] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Maren Hedtke
- Department of Microbiology; Karlsruhe Institute of Technology; Institute for Applied Biosciences; Hertzstrasse 16 D-76187 Karlsruhe Germany
| | - Stefan Rauscher
- Department of Microbiology; Karlsruhe Institute of Technology; Institute for Applied Biosciences; Hertzstrasse 16 D-76187 Karlsruhe Germany
| | - Julian Röhrig
- Department of Microbiology; Karlsruhe Institute of Technology; Institute for Applied Biosciences; Hertzstrasse 16 D-76187 Karlsruhe Germany
| | - Julio Rodríguez-Romero
- Centre for Plant Biotechnology and Genomics (CBGP) U.P.M. - I.N.I.A.; Campus de Montegancedo; Autopista M-40 (Km 38) 28223 Pozuelo de Alarcón, Madrid Spain
| | - Zhenzhong Yu
- Department of Microbiology; Karlsruhe Institute of Technology; Institute for Applied Biosciences; Hertzstrasse 16 D-76187 Karlsruhe Germany
| | - Reinhard Fischer
- Department of Microbiology; Karlsruhe Institute of Technology; Institute for Applied Biosciences; Hertzstrasse 16 D-76187 Karlsruhe Germany
| |
Collapse
|
48
|
Buchberger T, Lamparter T. Streptophyte phytochromes exhibit an N-terminus of cyanobacterial origin and a C-terminus of proteobacterial origin. BMC Res Notes 2015; 8:144. [PMID: 25886068 PMCID: PMC4422448 DOI: 10.1186/s13104-015-1082-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/23/2015] [Indexed: 11/10/2022] Open
Abstract
Background Phytochromes are red light-sensitive photoreceptors that control a variety of developmental processes in plants, algae, bacteria and fungi. Prototypical phytochromes exhibit an N-terminal tridomain (PGP) consisting of PAS, GAF and PHY domains and a C-terminal histidine kinase (HK). Results The mode of evolution of streptophyte, fungal and diatom phytochromes from bacteria is analyzed using two programs for sequence alignment and six programs for tree construction. Our results suggest that Bacteroidetes present the most ancient types of phytochromes. We found many examples of lateral gene transfer and rearrangements of PGP and HK sequences. The PGP and HK of streptophyte phytochromes seem to have different origins. In the most likely scenario, PGP was inherited from cyanobacteria, whereas the C-terminal portion originated from a proteobacterial protein with multiple PAS domains and a C-terminal HK. The plant PhyA and PhyB lineages go back to an early gene duplication event before the diversification of streptophytes. Fungal and diatom PGPs could have a common prokaryotic origin within proteobacteria. Early gene duplication is also obvious in fungal phytochromes. Conclusions The dominant question of the origin of plant phytochromes is difficult to tackle because the patterns differ among phylogenetic trees. We could partially overcome this problem by combining several alignment and tree construction algorithms and comparing many trees. A rearrangement of PGP and HK can directly explain the insertion of the two PAS domains by which streptophyte phytochromes are distinguished from all other phytochromes. Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1082-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thorsten Buchberger
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Kaiserstr. 2, Karlsruhe, D-76128, Germany.
| | - Tilman Lamparter
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Kaiserstr. 2, Karlsruhe, D-76128, Germany.
| |
Collapse
|
49
|
Braga GUL, Rangel DEN, Fernandes ÉKK, Flint SD, Roberts DW. Molecular and physiological effects of environmental UV radiation on fungal conidia. Curr Genet 2015; 61:405-25. [PMID: 25824285 DOI: 10.1007/s00294-015-0483-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/05/2015] [Accepted: 03/13/2015] [Indexed: 02/07/2023]
Abstract
Conidia are specialized structures produced at the end of the asexual life cycle of most filamentous fungi. They are responsible for fungal dispersal and environmental persistence. In pathogenic species, they are also involved in host recognition and infection. Conidial production, survival, dispersal, germination, pathogenicity and virulence can be strongly influenced by exposure to solar radiation, although its effects are diverse and often species dependent. UV radiation is the most harmful and mutagenic waveband of the solar spectrum. Direct exposure to solar radiation for a few hours can kill conidia of most fungal species. Conidia are killed both by solar UV-A and UV-B radiation. In addition to killing conidia, which limits the size of the fungal population and its dispersion, exposures to sublethal doses of UV radiation can reduce conidial germination speed and virulence. The focus of this review is to provide an overview of the effects of solar radiation on conidia and on the major systems involved in protection from and repair of damage induced by solar UV radiation. The efforts that have been made to obtain strains of fungi of interest such as entomopathogens more tolerant to solar radiation will also be reviewed.
Collapse
Affiliation(s)
- Gilberto U L Braga
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil,
| | | | | | | | | |
Collapse
|
50
|
Sancar C, Ha N, Yilmaz R, Tesorero R, Fisher T, Brunner M, Sancar G. Combinatorial control of light induced chromatin remodeling and gene activation in Neurospora. PLoS Genet 2015; 11:e1005105. [PMID: 25822411 PMCID: PMC4378982 DOI: 10.1371/journal.pgen.1005105] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/25/2015] [Indexed: 02/07/2023] Open
Abstract
Light is an important environmental cue that affects physiology and development of Neurospora crassa. The light-sensing transcription factor (TF) WCC, which consists of the GATA-family TFs WC1 and WC2, is required for light-dependent transcription. SUB1, another GATA-family TF, is not a photoreceptor but has also been implicated in light-inducible gene expression. To assess regulation and organization of the network of light-inducible genes, we analyzed the roles of WCC and SUB1 in light-induced transcription and nucleosome remodeling. We show that SUB1 co-regulates a fraction of light-inducible genes together with the WCC. WCC induces nucleosome eviction at its binding sites. Chromatin remodeling is facilitated by SUB1 but SUB1 cannot activate light-inducible genes in the absence of WCC. We identified FF7, a TF with a putative O-acetyl transferase domain, as an interaction partner of SUB1 and show their cooperation in regulation of a fraction of light-inducible and a much larger number of non light-inducible genes. Our data suggest that WCC acts as a general switch for light-induced chromatin remodeling and gene expression. SUB1 and FF7 synergistically determine the extent of light-induction of target genes in common with WCC but have in addition a role in transcription regulation beyond light-induced gene expression. In this study we have investigated the roles of the Neurospora transcription factors (TFs) WCC and SUB1 in light-activation of transcription. In principle TFs could exert identical functions for transcriptional activation and the extent of transcription will be determined by the sum of activity of the TFs. In this case however, we found that the activity of the main blue-light photoreceptor WCC is essential for the activation of light-inducible genes. SUB1 cooperates synergistically with the WCC to enhance expression of a subset of genes controlled directly by the light-activated WCC but cannot activate its light-inducible target genes in the absence of WCC. WCC evicts nucleosomes at its binding sites. This process is supported by SUB1 at a subset of common target genes. Light-dependent nucleosome loss generally correlates with but is not dependent on induction of transcription. Light-induced nucleosome eviction by the WCC/SUB1 could sensitize promoters for activation via endogenous and exogenous cues other than light, which may modulate the plasticity of the light-responsive transcriptome.
Collapse
Affiliation(s)
- Cigdem Sancar
- Biochemistry Center, University of Heidelberg, Heidelberg, Germany
| | - Nati Ha
- Biochemistry Center, University of Heidelberg, Heidelberg, Germany
| | - Rüstem Yilmaz
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Rafael Tesorero
- Biochemistry Center, University of Heidelberg, Heidelberg, Germany
| | - Tamas Fisher
- Biochemistry Center, University of Heidelberg, Heidelberg, Germany
| | - Michael Brunner
- Biochemistry Center, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| | - Gencer Sancar
- Biochemistry Center, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|