1
|
Canning JS, Laucirica DR, Ling KM, Nicol MP, Stick SM, Kicic A. Phage therapy to treat cystic fibrosis Burkholderia cepacia complex lung infections: perspectives and challenges. Front Microbiol 2024; 15:1476041. [PMID: 39493847 PMCID: PMC11527634 DOI: 10.3389/fmicb.2024.1476041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
Burkholderia cepacia complex is a cause of serious lung infections in people with cystic fibrosis, exhibiting extremely high levels of antimicrobial resistance. These infections are difficult to treat and are associated with high morbidity and mortality. With a notable lack of new antibiotic classes currently in development, exploring alternative antimicrobial strategies for Burkholderia cepacia complex is crucial. One potential alternative seeing renewed interest is the use of bacteriophage (phage) therapy. This review summarises what is currently known about Burkholderia cepacia complex in cystic fibrosis, as well as challenges and insights for using phages to treat Burkholderia cepacia complex lung infections.
Collapse
Affiliation(s)
- Jack S. Canning
- Division of Infection and Immunity, School of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, WA, Australia
- Wal-Yan Respiratory Research Centre, The Kids Research Institute Australia, The University of Western Australia, Nedlands, WA, Australia
| | - Daniel R. Laucirica
- Wal-Yan Respiratory Research Centre, The Kids Research Institute Australia, The University of Western Australia, Nedlands, WA, Australia
| | - Kak-Ming Ling
- Wal-Yan Respiratory Research Centre, The Kids Research Institute Australia, The University of Western Australia, Nedlands, WA, Australia
- School of Population Health, Curtin University, Bentley, WA, Australia
| | - Mark P. Nicol
- Division of Infection and Immunity, School of Biomedical Sciences, Marshall Centre, University of Western Australia, Perth, WA, Australia
| | - Stephen M. Stick
- Wal-Yan Respiratory Research Centre, The Kids Research Institute Australia, The University of Western Australia, Nedlands, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA, Australia
- School of Medicine and Pharmacology, Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Anthony Kicic
- Wal-Yan Respiratory Research Centre, The Kids Research Institute Australia, The University of Western Australia, Nedlands, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA, Australia
- School of Medicine and Pharmacology, Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| |
Collapse
|
2
|
Abdelaziz MNS, Maung AT, El-Telbany M, Lwin SZC, Noor Mohammadi T, Zayda M, Wang C, Damaso CH, Lin Y, Masuda Y, Honjoh KI, Miyamoto T. Applications of bacteriophage in combination with nisin for controlling multidrug-resistant Bacillus cereus in broth and various food matrices. Food Res Int 2024; 191:114685. [PMID: 39059942 DOI: 10.1016/j.foodres.2024.114685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
This study focused on the isolation and characterization of bacteriophages with specific activity against toxin-producing and multidrug-resistant strains of Bacillus cereus sensu stricto (B. cereus s. s.). Ten different samples yielded six bacteriophages by utilizing the double-layer agar technique. The most promising phage, vB_BceS-M2, was selected based on its broad host range and robust lytic activity against various B. cereus s. s. strains. The phage vB_BceS-M2 had a circular double-stranded DNA genome of 56,482 bp. This phage exhibited stability over a wide range of temperatures and pH values, which is crucial for its potential application in food matrices. The combined effect of phage vB_BceS-M2 and nisin, a widely used antimicrobial peptide, was investigated to enhance antimicrobial efficacy against B. cereus in food. The results suggested that nisin showed synergy and combined effect with the phage, potentially overcoming the growth of phage-resistant bacteria in the broth. Furthermore, practical applications were conducted in various liquid and solid food matrices, including whole and skimmed milk, boiled rice, cheese, and frozen meatballs, both at 4 and 25 °C. Phage vB_BceS-M2, either alone or in combination with nisin, reduced the growth rate of B. cereus in foods other than whole milk. The combination of bacteriophage and nisin showed promise for the development of effective antimicrobial interventions to counteract toxigenic and antibiotic-resistant B. cereus in food.
Collapse
Affiliation(s)
- Marwa Nabil Sayed Abdelaziz
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Food Hygiene, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Aye Thida Maung
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Mohamed El-Telbany
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Su Zar Chi Lwin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | | | - Mahmoud Zayda
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Monofiya 32897, Egypt
| | - Chen Wang
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Catherine Hofilena Damaso
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yunzhi Lin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshimitsu Masuda
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ken-Ichi Honjoh
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
3
|
Ngalimat MS, Mohd Hata E, Zulperi D, Ismail SI, Ismail MR, Mohd Zainudin NAI, Saidi NB, Yusof MT. A laudable strategy to manage bacterial panicle blight disease of rice using biocontrol agents. J Basic Microbiol 2023; 63:1180-1195. [PMID: 37348082 DOI: 10.1002/jobm.202300182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023]
Abstract
Bacterial panicle blight (BPB) disease is a dreadful disease in rice-producing countries. Burkholderia glumae, a Gram-negative, rod-shaped, and flagellated bacterium was identified as the primary culprit for BPB disease. In 2019, the disease was reported in 18 countries, and to date, it has been spotted in 26 countries. Rice yield has been reduced by up to 75% worldwide due to this disease. Interestingly, the biocontrol strategy offers a promising alternative to manage BPB disease. This review summarizes the management status of BPB disease using biological control agents (BCA). Bacteria from the genera Bacillus, Burkholderia, Enterobacter, Pantoea, Pseudomonas, and Streptomyces have been examined as BCA under in vitro, glasshouse, and field conditions. Besides bacteria, bacteriophages have also been reported to reduce BPB pathogens under in vitro and glasshouse conditions. Here, the overview of the mechanisms of bacteria and bacteriophages in controlling BPB pathogens is addressed. The applications of BCA using various delivery methods could effectively manage BPB disease to benefit the agroecosystems and food security.
Collapse
Affiliation(s)
- Mohamad S Ngalimat
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Erneeza Mohd Hata
- Sustainable Agronomy and Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Dzarifah Zulperi
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Siti I Ismail
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd R Ismail
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nur A I Mohd Zainudin
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Noor B Saidi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd T Yusof
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Stanton CR, Batinovic S, Petrovski S. Burkholderia contaminans Bacteriophage CSP3 Requires O-Antigen Polysaccharides for Infection. Microbiol Spectr 2023; 11:e0533222. [PMID: 37199610 PMCID: PMC10269572 DOI: 10.1128/spectrum.05332-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/20/2023] [Indexed: 05/19/2023] Open
Abstract
The Burkholderia cepacia complex is a group of opportunistic pathogens that cause both severe acute and chronic respiratory infections. Due to their large genomes containing multiple intrinsic and acquired antimicrobial resistance mechanisms, treatment is often difficult and prolonged. One alternative to traditional antibiotics for treatment of bacterial infections is bacteriophages. Therefore, the characterization of bacteriophages infective for the Burkholderia cepacia complex is critical to determine their suitability for any future use. Here, we describe the isolation and characterization of novel phage, CSP3, infective against a clinical isolate of Burkholderia contaminans. CSP3 is a new member of the Lessievirus genus that targets various Burkholderia cepacia complex organisms. Single nucleotide polymorphism (SNP) analysis of CSP3-resistant B. contaminans showed that mutations to the O-antigen ligase gene, waaL, consequently inhibited CSP3 infection. This mutant phenotype is predicted to result in the loss of cell surface O-antigen, contrary to a related phage that requires the inner core of the lipopolysaccharide for infection. Additionally, liquid infection assays showed that CSP3 provides suppression of B. contaminans growth for up to 14 h. Despite the inclusion of genes that are typical of the phage lysogenic life cycle, we saw no evidence of CSP3's ability to lysogenize. Continuation of phage isolation and characterization is crucial in developing large and diverse phage banks for global usage in cases of antibiotic-resistant bacterial infections. IMPORTANCE Amid the global antibiotic resistance crisis, novel antimicrobials are needed to treat problematic bacterial infections, including those from the Burkholderia cepacia complex. One such alternative is the use of bacteriophages; however, a lot is still unknown about their biology. Bacteriophage characterization studies are of high importance for building phage banks, as future work in developing treatments such as phage cocktails should require well-characterized phages. Here, we report the isolation and characterization of a novel Burkholderia contaminans phage that requires the O-antigen for infection, a distinct phenotype seen among other related phages. Our findings presented in this article expand on the ever-evolving phage biology field, uncovering unique phage-host relationships and mechanisms of infection.
Collapse
Affiliation(s)
- Cassandra R. Stanton
- Department of Microbiology, Anatomy, Physiology & Pharmacology, La Trobe University, Bundoora, Australia
| | - Steven Batinovic
- Department of Microbiology, Anatomy, Physiology & Pharmacology, La Trobe University, Bundoora, Australia
- Division of Materials Science and Chemical Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Steve Petrovski
- Department of Microbiology, Anatomy, Physiology & Pharmacology, La Trobe University, Bundoora, Australia
| |
Collapse
|
5
|
Greenrod STE, Stoycheva M, Elphinstone J, Friman VP. Global diversity and distribution of prophages are lineage-specific within the Ralstonia solanacearum species complex. BMC Genomics 2022; 23:689. [PMID: 36199029 PMCID: PMC9535894 DOI: 10.1186/s12864-022-08909-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background Ralstonia solanacearum species complex (RSSC) strains are destructive plant pathogenic bacteria and the causative agents of bacterial wilt disease, infecting over 200 plant species worldwide. In addition to chromosomal genes, their virulence is mediated by mobile genetic elements including integrated DNA of bacteriophages, i.e., prophages, which may carry fitness-associated auxiliary genes or modulate host gene expression. Although experimental studies have characterised several prophages that shape RSSC virulence, the global diversity, distribution, and wider functional gene content of RSSC prophages are unknown. In this study, prophages were identified in a diverse collection of 192 RSSC draft genome assemblies originating from six continents. Results Prophages were identified bioinformatically and their diversity investigated using genetic distance measures, gene content, GC, and total length. Prophage distributions were characterised using metadata on RSSC strain geographic origin and lineage classification (phylotypes), and their functional gene content was assessed by identifying putative prophage-encoded auxiliary genes. In total, 313 intact prophages were identified, forming ten genetically distinct clusters. These included six prophage clusters with similarity to the Inoviridae, Myoviridae, and Siphoviridae phage families, and four uncharacterised clusters, possibly representing novel, previously undescribed phages. The prophages had broad geographical distributions, being present across multiple continents. However, they were generally host phylogenetic lineage-specific, and overall, prophage diversity was proportional to the genetic diversity of their hosts. The prophages contained many auxiliary genes involved in metabolism and virulence of both phage and bacteria. Conclusions Our results show that while RSSC prophages are highly diverse globally, they make lineage-specific contributions to the RSSC accessory genome, which could have resulted from shared coevolutionary history. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08909-7.
Collapse
Affiliation(s)
| | | | - John Elphinstone
- Fera Science Ltd, National Agri-Food Innovation Campus, Sand Hutton, York, UK
| | | |
Collapse
|
6
|
Medvedeva S, Sun J, Yutin N, Koonin EV, Nunoura T, Rinke C, Krupovic M. Three families of Asgard archaeal viruses identified in metagenome-assembled genomes. Nat Microbiol 2022; 7:962-973. [PMID: 35760839 PMCID: PMC11165672 DOI: 10.1038/s41564-022-01144-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
Asgardarchaeota harbour many eukaryotic signature proteins and are widely considered to represent the closest archaeal relatives of eukaryotes. Whether similarities between Asgard archaea and eukaryotes extend to their viromes remains unknown. Here we present 20 metagenome-assembled genomes of Asgardarchaeota from deep-sea sediments of the basin off the Shimokita Peninsula, Japan. By combining a CRISPR spacer search of metagenomic sequences with phylogenomic analysis, we identify three family-level groups of viruses associated with Asgard archaea. The first group, verdandiviruses, includes tailed viruses of the class Caudoviricetes (realm Duplodnaviria); the second, skuldviruses, consists of viruses with predicted icosahedral capsids of the realm Varidnaviria; and the third group, wyrdviruses, is related to spindle-shaped viruses previously identified in other archaea. More than 90% of the proteins encoded by these viruses of Asgard archaea show no sequence similarity to proteins encoded by other known viruses. Nevertheless, all three proposed families consist of viruses typical of prokaryotes, providing no indication of specific evolutionary relationships between viruses infecting Asgard archaea and eukaryotes. Verdandiviruses and skuldviruses are likely to be lytic, whereas wyrdviruses potentially establish chronic infection and are released without host cell lysis. All three groups of viruses are predicted to play important roles in controlling Asgard archaea populations in deep-sea ecosystems.
Collapse
Affiliation(s)
- Sofia Medvedeva
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow, Russia
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Evolutionary Biology of the Microbial Cell Unit, Paris, France
| | - Jiarui Sun
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.
| | - Christian Rinke
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France.
| |
Collapse
|
7
|
Davis CM, Ruest MK, Cole JH, Dennis JJ. The Isolation and Characterization of a Broad Host Range Bcep22-like Podovirus JC1. Viruses 2022; 14:938. [PMID: 35632679 PMCID: PMC9144972 DOI: 10.3390/v14050938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Bacteriophage JC1 is a Podoviridae phage with a C1 morphotype, isolated on host strain Burkholderia cenocepacia Van1. Phage JC1 is capable of infecting an expansive range of Burkholderia cepacia complex (Bcc) species. The JC1 genome exhibits significant similarity and synteny to Bcep22-like phages and to many Ralstonia phages. The genome of JC1 was determined to be 61,182 bp in length with a 65.4% G + C content and is predicted to encode 76 proteins and 1 tRNA gene. Unlike the other Lessieviruses, JC1 encodes a putative helicase gene in its replication module, and it is in a unique organization not found in previously analyzed phages. The JC1 genome also harbours 3 interesting moron genes, that encode a carbon storage regulator (CsrA), an N-acetyltransferase, and a phosphoadenosine phosphosulfate (PAPS) reductase. JC1 can stably lysogenize its host Van1 and integrates into the 5' end of the gene rimO. This is the first account of stable integration identified for Bcep22-like phages. JC1 has a higher global virulence index at 37 °C than at 30 °C (0.8 and 0.21, respectively); however, infection efficiency and lysogen stability are not affected by a change in temperature, and no observable temperature-sensitive switch between lytic and lysogenic lifestyle appears to exist. Although JC1 can stably lysogenize its host, it possesses some desirable characteristics for use in phage therapy. Phage JC1 has a broad host range and requires the inner core of the bacterial LPS for infection. Bacteria that mutate to evade infection by JC1 may develop a fitness disadvantage as seen in previously characterized LPS mutants lacking inner core.
Collapse
Affiliation(s)
| | | | | | - Jonathan J. Dennis
- Department of Biological Sciences, University of Alberta, CW 405 Biological Sciences Building, Edmonton, AB T6G 2E9, Canada; (C.M.D.); (M.K.R.); (J.H.C.)
| |
Collapse
|
8
|
Hall CM, Baker AL, Sahl JW, Mayo M, Scholz HC, Kaestli M, Schupp J, Martz M, Settles EW, Busch JD, Sidak-Loftis L, Thomas A, Kreutzer L, Georgi E, Schweizer HP, Warner JM, Keim P, Currie BJ, Wagner DM. Expanding the Burkholderia pseudomallei Complex with the Addition of Two Novel Species: Burkholderia mayonis sp. nov. and Burkholderia savannae sp. nov. Appl Environ Microbiol 2022; 88:e0158321. [PMID: 34644162 PMCID: PMC8752149 DOI: 10.1128/aem.01583-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022] Open
Abstract
Distinct Burkholderia strains were isolated from soil samples collected in tropical northern Australia (Northern Territory and the Torres Strait Islands, Queensland). Phylogenetic analysis of 16S rRNA and whole genome sequences revealed these strains were distinct from previously described Burkholderia species and assigned them to two novel clades within the B. pseudomallei complex (Bpc). Because average nucleotide identity and digital DNA-DNA hybridization calculations are consistent with these clades representing distinct species, we propose the names Burkholderia mayonis sp. nov. and Burkholderia savannae sp. nov. Strains assigned to B. mayonis sp. nov. include type strain BDU6T (=TSD-80; LMG 29941; ASM152374v2) and BDU8. Strains assigned to B. savannae sp. nov. include type strain MSMB266T (=TSD-82; LMG 29940; ASM152444v2), MSMB852, BDU18, and BDU19. Comparative genomics revealed unique coding regions for both putative species, including clusters of orthologous genes associated with phage. Type strains of both B. mayonis sp. nov. and B. savannae sp. nov. yielded biochemical profiles distinct from each other and from other species in the Bpc, and profiles also varied among strains within B. mayonis sp. nov. and B. savannae sp. nov. Matrix-assisted laser desorption ionization time-of-flight (MLST) analysis revealed a B. savannae sp. nov. cluster separate from other species, whereas B. mayonis sp. nov. strains did not form a distinct cluster. Neither B. mayonis sp. nov. nor B. savannae sp. nov. caused mortality in mice when delivered via the subcutaneous route. The addition of B. mayonis sp. nov. and B. savannae sp. nov. results in a total of eight species currently within the Bpc. IMPORTANCEBurkholderia species can be important sources of novel natural products, and new species are of interest to diverse scientific disciplines. Although many Burkholderia species are saprophytic, Burkholderia pseudomallei is the causative agent of the disease melioidosis. Understanding the genomics and virulence of the closest relatives to B. pseudomallei, i.e., the other species within the B. pseudomallei complex (Bpc), is important for identifying robust diagnostic targets specific to B. pseudomallei and for understanding the evolution of virulence in B. pseudomallei. Two proposed novel species, B. mayonis sp. nov. and B. savannae sp. nov., were isolated from soil samples collected from multiple locations in northern Australia. The two proposed species belong to the Bpc but are phylogenetically distinct from all other members of this complex. The addition of B. mayonis sp. nov. and B. savannae sp. nov. results in a total of eight species within this significant complex of bacteria that are available for future studies.
Collapse
Affiliation(s)
- Carina M. Hall
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Anthony L. Baker
- Discipline of Biomedicine and Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Jason W. Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Mark Mayo
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | | | - Mirjam Kaestli
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - James Schupp
- Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Madison Martz
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Erik W. Settles
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Joseph D. Busch
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Lindsay Sidak-Loftis
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Astrid Thomas
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Lisa Kreutzer
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Enrico Georgi
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Herbert P. Schweizer
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Jeffrey M. Warner
- Discipline of Biomedicine and Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Paul Keim
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Bart J. Currie
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - David M. Wagner
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
9
|
Moya-Beltrán A, Makarova KS, Acuña LG, Wolf YI, Covarrubias PC, Shmakov SA, Silva C, Tolstoy I, Johnson DB, Koonin EV, Quatrini R. Evolution of Type IV CRISPR-Cas Systems: Insights from CRISPR Loci in Integrative Conjugative Elements of Acidithiobacillia. CRISPR J 2021; 4:656-672. [PMID: 34582696 DOI: 10.1089/crispr.2021.0051] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Type IV CRISPR-Cas are a distinct variety of highly derived CRISPR-Cas systems that appear to have evolved from type III systems through the loss of the target-cleaving nuclease and partial deterioration of the large subunit of the effector complex. All known type IV CRISPR-Cas systems are encoded on plasmids, integrative and conjugative elements (ICEs), or prophages, and are thought to contribute to competition between these elements, although the mechanistic details of their function remain unknown. There is a clear parallel between the compositions and likely origin of type IV and type I systems recruited by Tn7-like transposons and mediating RNA-guided transposition. We investigated the diversity and evolutionary relationships of type IV systems, with a focus on those in Acidithiobacillia, where this variety of CRISPR is particularly abundant and always found on ICEs. Our analysis revealed remarkable evolutionary plasticity of type IV CRISPR-Cas systems, with adaptation and ancillary genes originating from different ancestral CRISPR-Cas varieties, and extensive gene shuffling within the type IV loci. The adaptation module and the CRISPR array apparently were lost in the type IV ancestor but were subsequently recaptured by type IV systems on several independent occasions. We demonstrate a high level of heterogeneity among the repeats with type IV CRISPR arrays, which far exceed the heterogeneity of any other known CRISPR repeats and suggest a unique adaptation mechanism. The spacers in the type IV arrays, for which protospacers could be identified, match plasmid genes, in particular those encoding the conjugation apparatus components. Both the biochemical mechanism of type IV CRISPR-Cas function and their role in the competition among mobile genetic elements remain to be investigated.
Collapse
Affiliation(s)
- Ana Moya-Beltrán
- Fundación Ciencia y Vida, Santiago, Chile; Universidad San Sebastián, Santiago, Chile.,ANID-Millennium Science Initiative Program, Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile; Universidad San Sebastián, Santiago, Chile
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA; Universidad San Sebastián, Santiago, Chile
| | - Lillian G Acuña
- Fundación Ciencia y Vida, Santiago, Chile; Universidad San Sebastián, Santiago, Chile
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA; Universidad San Sebastián, Santiago, Chile
| | - Paulo C Covarrubias
- Fundación Ciencia y Vida, Santiago, Chile; Universidad San Sebastián, Santiago, Chile
| | - Sergey A Shmakov
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA; Universidad San Sebastián, Santiago, Chile
| | - Cristian Silva
- Fundación Ciencia y Vida, Santiago, Chile; Universidad San Sebastián, Santiago, Chile
| | - Igor Tolstoy
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA; Universidad San Sebastián, Santiago, Chile
| | - D Barrie Johnson
- School of Natural Sciences, Bangor University, Bangor, United Kingdom; Universidad San Sebastián, Santiago, Chile.,Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom; and Universidad San Sebastián, Santiago, Chile
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA; Universidad San Sebastián, Santiago, Chile
| | - Raquel Quatrini
- Fundación Ciencia y Vida, Santiago, Chile; Universidad San Sebastián, Santiago, Chile.,ANID-Millennium Science Initiative Program, Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile; Universidad San Sebastián, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
10
|
Higgins KV, Woodie LN, Hallowell H, Greene MW, Schwartz EH. Integrative Longitudinal Analysis of Metabolic Phenotype and Microbiota Changes During the Development of Obesity. Front Cell Infect Microbiol 2021; 11:671926. [PMID: 34414128 PMCID: PMC8370388 DOI: 10.3389/fcimb.2021.671926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/15/2021] [Indexed: 01/04/2023] Open
Abstract
Obesity has increased at an alarming rate over the past two decades in the United States. In addition to increased body mass, obesity is often accompanied by comorbidities such as Type II Diabetes Mellitus and metabolic dysfunction-associated fatty liver disease, with serious impacts on public health. Our understanding of the role the intestinal microbiota in obesity has rapidly advanced in recent years, especially with respect to the bacterial constituents. However, we know little of when changes in these microbial populations occur as obesity develops. Further, we know little about how other domains of the microbiota, namely bacteriophage populations, are affected during the progression of obesity. Our goal in this study was to monitor changes in the intestinal microbiome and metabolic phenotype following western diet feeding. We accomplished this by collecting metabolic data and fecal samples for shotgun metagenomic sequencing in a mouse model of diet-induced obesity. We found that after two weeks of consuming a western diet (WD), the animals weighed significantly more and were less metabolically stable than their chow fed counterparts. The western diet induced rapid changes in the intestinal microbiome with the most pronounced dissimilarity at 12 weeks. Our study highlights the dynamic nature of microbiota composition following WD feeding and puts these events in the context of the metabolic status of the mammalian host.
Collapse
Affiliation(s)
- Keah V Higgins
- Department of Biological Sciences Auburn University, Auburn, AL, United States
| | - Lauren N Woodie
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL, United States
| | - Haley Hallowell
- Department of Biological Sciences Auburn University, Auburn, AL, United States
| | - Michael W Greene
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL, United States
| | | |
Collapse
|
11
|
Jacobson TB, Callaghan MM, Amador-Noguez D. Hostile Takeover: How Viruses Reprogram Prokaryotic Metabolism. Annu Rev Microbiol 2021; 75:515-539. [PMID: 34348026 DOI: 10.1146/annurev-micro-060621-043448] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To reproduce, prokaryotic viruses must hijack the cellular machinery of their hosts and redirect it toward the production of viral particles. While takeover of the host replication and protein synthesis apparatus has long been considered an essential feature of infection, recent studies indicate that extensive reprogramming of host primary metabolism is a widespread phenomenon among prokaryotic viruses that is required to fulfill the biosynthetic needs of virion production. In this review we provide an overview of the most significant recent findings regarding virus-induced reprogramming of prokaryotic metabolism and suggest how quantitative systems biology approaches may be used to provide a holistic understanding of metabolic remodeling during lytic viral infection. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Tyler B Jacobson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , .,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Melanie M Callaghan
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , .,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , .,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
12
|
Sasaki R, Miyashita S, Ando S, Ito K, Fukuhara T, Kormelink R, Takahashi H. Complete genomic sequence of a novel phytopathogenic Burkholderia phage isolated from fallen leaf compost. Arch Virol 2020; 166:313-316. [PMID: 33125584 PMCID: PMC7815583 DOI: 10.1007/s00705-020-04811-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022]
Abstract
In contrast to most Burkholderia species, which affect humans or animals, Burkholderia glumae is a bacterial pathogen of plants that causes panicle blight disease in rice seedlings, resulting in serious damage to rice cultivation. Attempts to combat this disease would benefit from research involving a phage known to attack this type of bacterium. Some Burkholderia phages have been isolated from soil or bacterial species in the order Burkholderiales, but so far there has been no report of a complete genome nucleotide sequence of a phage of B. glumae. In this study, a novel phage, FLC5, of the phytopathogen B. glumae was isolated from leaf compost, and its complete genome nucleotide sequence was determined. The genome consists of a 32,090-bp circular DNA element and exhibits a phylogenetic relationship to members of the genus Peduovirus, with closest similarity to B. multivorans phage KS14. In addition to B. glumae, FLC5 was also able to lyse B. plantarii, a pathogen causing rice bacterial damping-off disease. This is the first report of isolation of a P2-like phage from phytopathogenic Burkholderia, determination of its complete genomic sequence, and the finding of its potential to infect two Burkholderia species: B. glumae and B. plantarii.
Collapse
Affiliation(s)
- Ryota Sasaki
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Shuhei Miyashita
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Sugihiro Ando
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Kumiko Ito
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Toshiyuki Fukuhara
- Department of Applied Biological Sciences and Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8538, Japan
| | - Richard Kormelink
- Laboratory of Virology, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Hideki Takahashi
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan.
| |
Collapse
|
13
|
Hammerl JA, Volkmar S, Jacob D, Klein I, Jäckel C, Hertwig S. The Burkholderia thailandensis Phages ΦE058 and ΦE067 Represent Distinct Prototypes of a New Subgroup of Temperate Burkholderia Myoviruses. Front Microbiol 2020; 11:1120. [PMID: 32528458 PMCID: PMC7266877 DOI: 10.3389/fmicb.2020.01120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/05/2020] [Indexed: 12/03/2022] Open
Abstract
Burkholderia mallei and B. pseudomallei are highly pathogenic species which are closely related, but diverse regarding their prophage content. While temperate phages have not yet been isolated from B. mallei, several phages of B. pseudomallei, and its non-pathogenic relative B. thailandensis have been described. In this study we isolated two phages from B. pseudomallei and three phages from B. thailandensis and determined their morphology, host range, and relationship. All five phages belong to the family Myoviridae, but some of them revealed different host specificities. DNA-DNA hybridization experiments indicated that the phages belong to two groups. One group, composed of ΦE058 (44,121 bp) and ΦE067 (43,649 bp), represents a new subgroup of Burkholderia myoviruses that is not related to known phages. The genomes of ΦE058 and ΦE067 are similar but also show some striking differences. Repressor proteins differ clearly allowing the phages to form plaques on hosts containing the respective other phage. The tail fiber proteins exhibited some minor deviations in the C-terminal region, which may account for the ability of ΦE058, but not ΦE067, to lyse B. mallei, B. pseudomallei, and B. thailandensis. In addition, the integrases and attachment sites of the phages are not related. While ΦE058 integrates into the Burkholderia chromosome within an intergenic region, the ΦE067 prophage resides in the selC tRNA gene for selenocysteine. Experiments on the structure of phage DNA isolated from particles suggest that the ΦE058 and ΦE067 genomes have a circular conformation.
Collapse
Affiliation(s)
- Jens A Hammerl
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | | | - Daniela Jacob
- Centre for Biological Threats and Special Pathogens (ZBS 2), Robert Koch Institute, Berlin, Germany
| | - Iris Klein
- Centre for Biological Threats and Special Pathogens (ZBS 2), Robert Koch Institute, Berlin, Germany
| | - Claudia Jäckel
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Stefan Hertwig
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
14
|
A Novel Inducible Prophage from Burkholderia Vietnamiensis G4 is Widely Distributed across the Species and Has Lytic Activity against Pathogenic Burkholderia. Viruses 2020; 12:v12060601. [PMID: 32486377 PMCID: PMC7354579 DOI: 10.3390/v12060601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/30/2022] Open
Abstract
Burkholderia species have environmental, industrial and medical significance, and are important opportunistic pathogens in individuals with cystic fibrosis (CF). Using a combination of existing and newly determined genome sequences, this study investigated prophage carriage across the species B. vietnamiensis, and also isolated spontaneously inducible prophages from a reference strain, G4. Eighty-one B. vietnamiensis genomes were bioinformatically screened for prophages using PHASTER (Phage Search Tool Enhanced Release) and prophage regions were found to comprise up to 3.4% of total genetic material. Overall, 115 intact prophages were identified and there was evidence of polylysogeny in 32 strains. A novel, inducible Mu-like phage (vB_BvM-G4P1) was isolated from B. vietnamiensis G4 that had lytic activity against strains of five Burkholderia species prevalent in CF infections, including the Boston epidemic B. dolosa strain SLC6. The cognate prophage to vB_BvM-G4P1 was identified in the lysogen genome and was almost identical (>93.5% tblastx identity) to prophages found in 13 other B. vietnamiensis strains (17% of the strain collection). Phylogenomic analysis determined that the G4P1-like prophages were widely distributed across the population structure of B. vietnamiensis. This study highlights how genomic characterization of Burkholderia prophages can lead to the discovery of novel bacteriophages with potential therapeutic or biotechnological applications.
Collapse
|
15
|
Okazaki Y, Nishimura Y, Yoshida T, Ogata H, Nakano SI. Genome-resolved viral and cellular metagenomes revealed potential key virus-host interactions in a deep freshwater lake. Environ Microbiol 2019; 21:4740-4754. [PMID: 31608575 DOI: 10.1111/1462-2920.14816] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 01/21/2023]
Abstract
Metagenomics has dramatically expanded the known virosphere, but freshwater viral diversity and their ecological interaction with hosts remain poorly understood. Here, we conducted a metagenomic exploration of planktonic dsDNA prokaryotic viruses by sequencing both virion (<0.22 μm) and cellular (0.22-5.0 μm) fractions collected spatiotemporally from a deep freshwater lake (Lake Biwa, Japan). This simultaneously reconstructed 183 complete (i.e., circular) viral genomes and 57 bacterioplankton metagenome-assembled genomes. Analysis of metagenomic read coverage revealed vertical partitioning of the viral community analogous to the vertically stratified bacterioplankton community. The hypolimnetic community was generally stable during stratification, but occasionally shifted abruptly, presumably due to lysogenic induction. Genes involved in assimilatory sulfate reduction were encoded in 20 (10.9%) viral genomes, including those of dominant viruses, and may aid viral propagation in sulfur-limited freshwater systems. Hosts were predicted for 40 (21.9%) viral genomes, encompassing 10 phyla (or classes of Proteobacteria) including ubiquitous freshwater bacterioplankton lineages (e.g., Ca. Fonsibacter and Ca. Nitrosoarchaeum). Comparison with viral genomes derived from published metagenomes revealed viral phylogeographic connectivity in geographically isolated habitats. Notably, analogous to their hosts, actinobacterial viruses were among the most diverse, ubiquitous and abundant viral groups in freshwater systems, with potential high lytic activity in surface waters.
Collapse
Affiliation(s)
- Yusuke Okazaki
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 520-2113, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Yosuke Nishimura
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan.,Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.,Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shin-Ichi Nakano
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 520-2113, Japan
| |
Collapse
|
16
|
Martin‐Cuadrado A, Senel E, Martínez‐García M, Cifuentes A, Santos F, Almansa C, Moreno‐Paz M, Blanco Y, García‐Villadangos M, Cura MÁG, Sanz‐Montero ME, Rodríguez‐Aranda JP, Rosselló‐Móra R, Antón J, Parro V. Prokaryotic and viral community of the sulfate‐rich crust from Peñahueca ephemeral lake, an astrobiology analogue. Environ Microbiol 2019; 21:3577-3600. [DOI: 10.1111/1462-2920.14680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 11/29/2022]
Affiliation(s)
| | - Ece Senel
- Department of Physiology, Genetics and MicrobiologyUniversity of Alicante Alicante Spain
- Department of BiologyGraduate School of Sciences, Eskisehir Technical University Yunusemre Campus, Eskisehir 26470 Turkey
| | - Manuel Martínez‐García
- Department of Physiology, Genetics and MicrobiologyUniversity of Alicante Alicante Spain
| | - Ana Cifuentes
- Department of Ecology and Marine Resources, Marine Microbiology GroupMediterranean Institute for Advanced Studies (IMEDEA, CSIC‐UIB) Esporles Spain
| | - Fernando Santos
- Department of Physiology, Genetics and MicrobiologyUniversity of Alicante Alicante Spain
| | - Cristina Almansa
- Research Technical Services (SSTTI), Microscopy UnitUniversity of Alicante Alicante Spain
| | - Mercedes Moreno‐Paz
- Department of Molecular EvolutionCentro de Astrobiología (INTA‐CSIC) Madrid Spain
| | - Yolanda Blanco
- Department of Molecular EvolutionCentro de Astrobiología (INTA‐CSIC) Madrid Spain
| | | | | | | | | | - Ramon Rosselló‐Móra
- Department of BiologyGraduate School of Sciences, Eskisehir Technical University Yunusemre Campus, Eskisehir 26470 Turkey
| | - Josefa Antón
- Department of Physiology, Genetics and MicrobiologyUniversity of Alicante Alicante Spain
| | - Víctor Parro
- Department of Molecular EvolutionCentro de Astrobiología (INTA‐CSIC) Madrid Spain
| |
Collapse
|
17
|
Genomic characterization of three novel Basilisk-like phages infecting Bacillus anthracis. BMC Genomics 2018; 19:685. [PMID: 30227847 PMCID: PMC6145125 DOI: 10.1186/s12864-018-5056-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/06/2018] [Indexed: 01/05/2023] Open
Abstract
Background In the present study, we sequenced the complete genomes of three novel bacteriophages v_B-Bak1, v_B-Bak6, v_B-Bak10 previously isolated from historical anthrax burial sites in the South Caucasus country of Georgia. We report here major trends in the molecular evolution of these phages, which we designate as “Basilisk-Like-Phages” (BLPs), and illustrate patterns in their evolution, genomic plasticity and core genome architecture. Results Comparative whole genome sequence analysis revealed a close evolutionary relationship between our phages and two unclassified Bacillus cereus group phages, phage Basilisk, a broad host range phage (Grose JH et al., J Vir. 2014;88(20):11846-11860) and phage PBC4, a highly host-restricted phage and close relative of Basilisk (Na H. et al. FEMS Microbiol. letters. 2016;363(12)). Genome comparisons of phages v_B-Bak1, v_B-Bak6, and v_B-Bak10 revealed significant similarity in sequence, gene content, and synteny with both Basilisk and PBC4. Transmission electron microscopy (TEM) confirmed the three phages belong to the Siphoviridae family. In contrast to the broad host range of phage Basilisk and the single-strain specificity of PBC4, our three phages displayed host specificity for Bacillus anthracis. Bacillus species including Bacillus cereus, Bacillus subtilis, Bacillus anthracoides, and Bacillus megaterium were refractory to infection. Conclusions Data reported here provide further insight into the shared genomic architecture, host range specificity, and molecular evolution of these rare B. cereus group phages. To date, the three phages represent the only known close relatives of the Basilisk and PBC4 phages and their shared genetic attributes and unique host specificity for B. anthracis provides additional insight into candidate host range determinants. Electronic supplementary material The online version of this article (10.1186/s12864-018-5056-4) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Roszniowski B, McClean S, Drulis-Kawa Z. Burkholderia cenocepacia Prophages-Prevalence, Chromosome Location and Major Genes Involved. Viruses 2018; 10:v10060297. [PMID: 29857552 PMCID: PMC6024312 DOI: 10.3390/v10060297] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/21/2022] Open
Abstract
Burkholderia cenocepacia, is a Gram-negative opportunistic pathogen that belongs to Burkholderia cepacia complex (BCC) group. BCC representatives carry various pathogenicity factors and can infect humans and plants. Phages as bacterial viruses play a significant role in biodiversity and ecological balance in the environment. Specifically, horizontal gene transfer (HGT) and lysogenic conversion (temperate phages) influence microbial diversification and fitness. In this study, we describe the prevalence and gene content of prophages in 16 fully sequenced B. cenocepacia genomes stored in NCBI database. The analysis was conducted in silico by manual and automatic approaches. Sixty-three potential prophage regions were found and classified as intact, incomplete, questionable, and artifacts. The regions were investigated for the presence of known virulence factors, resulting in the location of sixteen potential pathogenicity mechanisms, including toxin–antitoxin systems (TA), Major Facilitator Superfamily (MFS) transporters and responsible for drug resistance. Investigation of the region’s closest neighborhood highlighted three groups of genes with the highest occurrence—tRNA-Arg, dehydrogenase family proteins, and ABC transporter substrate-binding proteins. Searches for antiphage systems such as BacteRiophage EXclusion (BREX) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in the analyzed strains suggested 10 sequence sets of CRISPR elements. Our results suggest that intact B. cenocepacia prophages may provide an evolutionary advantage to the bacterium, while domesticated prophages may help to maintain important genes.
Collapse
Affiliation(s)
- Bartosz Roszniowski
- Institute of Genetics and Microbiology, University of Wroclaw, 51-148 Wroclaw, Poland.
| | - Siobhán McClean
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Zuzanna Drulis-Kawa
- Institute of Genetics and Microbiology, University of Wroclaw, 51-148 Wroclaw, Poland.
| |
Collapse
|
19
|
Bodilis J, Denet E, Brothier E, Graindorge A, Favre-Bonté S, Nazaret S. Comparative Genomics of Environmental and Clinical Burkholderia cenocepacia Strains Closely Related to the Highly Transmissible Epidemic ET12 Lineage. Front Microbiol 2018; 9:383. [PMID: 29559964 PMCID: PMC5845691 DOI: 10.3389/fmicb.2018.00383] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/20/2018] [Indexed: 01/14/2023] Open
Abstract
The Burkholderia cenocepacia epidemic ET12 lineage belongs to the genomovar IIIA including the reference strain J2315, a highly transmissible epidemic B. cenocepacia lineage. Members of this lineage are able to cause lung infections in immunocompromised and cystic fibrosis patients. In this study, we describe the genome of F01, an environmental B. cenocepacia strain isolated from soil in Burkina Faso that is, to our knowledge, the most closely related strain to this epidemic lineage. A comparative genomic analysis was performed on this new isolate, in association with five clinical and one environmental B. cenocepacia strains whose genomes were previously sequenced. Antibiotic resistances, virulence phenotype, and genomic contents were compared and discussed with an emphasis on virulent and antibiotic determinants. Surprisingly, no significant differences in antibiotic resistance and virulence were found between clinical and environmental strains, while the most important genomic differences were related to the number of prophages identified in their genomes. The ET12 lineage strains showed a noticeable greater number of prophages (partial or full-length), especially compared to the phylogenetically related environmental F01 strain (i.e., 5–6 and 3 prophages, respectively). Data obtained suggest possible involvements of prophages in the clinical success of opportunistic pathogens.
Collapse
Affiliation(s)
- Josselin Bodilis
- Research Group on Environmental Multi-Resistance and Efflux Pump, INRA 1418, UMR CNRS 5557, Laboratoire Ecologie Microbienne, Ecole Nationale Vétérinaire de Lyon, Université de Lyon 1, Villeurbanne, France.,EA 4312 Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen, Mont-Saint-Aignan, France
| | - Elodie Denet
- Research Group on Environmental Multi-Resistance and Efflux Pump, INRA 1418, UMR CNRS 5557, Laboratoire Ecologie Microbienne, Ecole Nationale Vétérinaire de Lyon, Université de Lyon 1, Villeurbanne, France
| | - Elisabeth Brothier
- Research Group on Environmental Multi-Resistance and Efflux Pump, INRA 1418, UMR CNRS 5557, Laboratoire Ecologie Microbienne, Ecole Nationale Vétérinaire de Lyon, Université de Lyon 1, Villeurbanne, France
| | - Arnault Graindorge
- Research Group on Environmental Multi-Resistance and Efflux Pump, INRA 1418, UMR CNRS 5557, Laboratoire Ecologie Microbienne, Ecole Nationale Vétérinaire de Lyon, Université de Lyon 1, Villeurbanne, France
| | - Sabine Favre-Bonté
- Research Group on Environmental Multi-Resistance and Efflux Pump, INRA 1418, UMR CNRS 5557, Laboratoire Ecologie Microbienne, Ecole Nationale Vétérinaire de Lyon, Université de Lyon 1, Villeurbanne, France
| | - Sylvie Nazaret
- Research Group on Environmental Multi-Resistance and Efflux Pump, INRA 1418, UMR CNRS 5557, Laboratoire Ecologie Microbienne, Ecole Nationale Vétérinaire de Lyon, Université de Lyon 1, Villeurbanne, France
| |
Collapse
|
20
|
Anderson CL, Sullivan MB, Fernando SC. Dietary energy drives the dynamic response of bovine rumen viral communities. MICROBIOME 2017; 5:155. [PMID: 29179741 PMCID: PMC5704599 DOI: 10.1186/s40168-017-0374-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 11/14/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND Rumen microbes play a greater role in host energy acquisition than that of gut-associated microbes in monogastric animals. Although genome-enabled advancements are providing access to the vast diversity of uncultivated microbes, our understanding of variables shaping rumen microbial communities is in its infancy. Viruses have been shown to impact microbial populations through a myriad of processes, including cell lysis and reprogramming of host metabolism. However, little is known about the processes shaping the distribution of rumen viruses or how viruses may modulate microbial-driven processes in the rumen. To this end, we investigated how rumen bacterial and viral community structure and function responded in five steers fed four randomized dietary treatments in a crossover design. RESULTS Total digestible nutrients (TDN), a measure of dietary energy, best explained the variation in bacterial and viral communities. Additional ecological drivers of viral communities included dietary zinc content and microbial functional diversity. Using partial least squares regression, we demonstrate significant associations between the abundances of 267 viral populations and variables driving the variation in rumen viral communities. While rumen viruses were dynamic, 14 near ubiquitous viral populations were identified, suggesting the presence of a core rumen virome largely comprised of novel viruses. Moreover, analysis of virally encoded auxiliary metabolic genes (AMGs) indicates rumen viruses have glycosidic hydrolases to potentially augment the breakdown of complex carbohydrates to increase energy production. Other AMGs identified have a role in redirecting carbon to the pentose phosphate pathway and one carbon pools by folate to boost viral replication. CONCLUSIONS We demonstrate that rumen bacteria and viruses have differing responses and ecological drivers to dietary perturbation. Our results show that rumen viruses have implications for understanding the structuring of the previously identified core rumen microbiota and impacting microbial metabolism through a vast array of AMGs. AMGs in the rumen appear to have consequences for microbial metabolism that are largely in congruence with the current paradigm established in marine systems. This study provides a foundation for future hypotheses regarding the dynamics of viral-mediated processes in the rumen.
Collapse
Affiliation(s)
- Christopher L. Anderson
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588 USA
- Department of Animal Science, University of Nebraska-Lincoln, C220K Animal Science Complex, Lincoln, NE 68583-0908 USA
| | - Matthew B. Sullivan
- Departments of Microbiology, and Civil, Environmental and Geodetic Engineering, The Ohio State University, Riffe Building 266, 496 W 12th Ave, Columbus, OH 43210 USA
| | - Samodha C. Fernando
- Department of Animal Science, University of Nebraska-Lincoln, C220K Animal Science Complex, Lincoln, NE 68583-0908 USA
| |
Collapse
|
21
|
Swain DM, Yadav SK, Tyagi I, Kumar R, Kumar R, Ghosh S, Das J, Jha G. A prophage tail-like protein is deployed by Burkholderia bacteria to feed on fungi. Nat Commun 2017; 8:404. [PMID: 28864820 PMCID: PMC5581363 DOI: 10.1038/s41467-017-00529-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 07/05/2017] [Indexed: 11/09/2022] Open
Abstract
Some bacteria can feed on fungi, a phenomenon known as mycophagy. Here we show that a prophage tail-like protein (Bg_9562) is essential for mycophagy in Burkholderia gladioli strain NGJ1. The purified protein causes hyphal disintegration and inhibits growth of several fungal species. Disruption of the Bg_9562 gene abolishes mycophagy. Bg_9562 is a potential effector secreted by a type III secretion system (T3SS) and is translocated into fungal mycelia during confrontation. Heterologous expression of Bg_9562 in another bacterial species, Ralstonia solanacearum, confers mycophagous ability in a T3SS-dependent manner. We propose that the ability to feed on fungi conferred by Bg_9562 may help the bacteria to survive in certain ecological niches. Furthermore, considering its broad-spectrum antifungal activity, the protein may be potentially useful in biotechnological applications to control fungal diseases.Some bacteria can feed on live fungi through unclear mechanisms. Here, the authors show that a T3SS-secreted protein, which is homologous to phage tail proteins, allows a Burkholderia gladioli strain to kill and feed on various fungal species.
Collapse
Affiliation(s)
- Durga Madhab Swain
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sunil Kumar Yadav
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Isha Tyagi
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rahul Kumar
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rajeev Kumar
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Srayan Ghosh
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Joyati Das
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gopaljee Jha
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
22
|
Roszniowski B, Latka A, Maciejewska B, Vandenheuvel D, Olszak T, Briers Y, Holt GS, Valvano MA, Lavigne R, Smith DL, Drulis-Kawa Z. The temperate Burkholderia phage AP3 of the Peduovirinae shows efficient antimicrobial activity against B. cenocepacia of the IIIA lineage. Appl Microbiol Biotechnol 2017; 101:1203-1216. [PMID: 27770178 PMCID: PMC5247547 DOI: 10.1007/s00253-016-7924-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/02/2016] [Accepted: 10/09/2016] [Indexed: 01/17/2023]
Abstract
Burkholderia phage AP3 (vB_BceM_AP3) is a temperate virus of the Myoviridae and the Peduovirinae subfamily (P2likevirus genus). This phage specifically infects multidrug-resistant clinical Burkholderia cenocepacia lineage IIIA strains commonly isolated from cystic fibrosis patients. AP3 exhibits high pairwise nucleotide identity (61.7 %) to Burkholderia phage KS5, specific to the same B. cenocepacia host, and has 46.7-49.5 % identity to phages infecting other species of Burkholderia. The lysis cassette of these related phages has a similar organization (putative antiholin, putative holin, endolysin, and spanins) and shows 29-98 % homology between specific lysis genes, in contrast to Enterobacteria phage P2, the hallmark phage of this genus. The AP3 and KS5 lysis genes have conserved locations and high amino acid sequence similarity. The AP3 bacteriophage particles remain infective up to 5 h at pH 4-10 and are stable at 60 °C for 30 min, but are sensitive to chloroform, with no remaining infective particles after 24 h of treatment. AP3 lysogeny can occur by stable genomic integration and by pseudo-lysogeny. The lysogenic bacterial mutants did not exhibit any significant changes in virulence compared to wild-type host strain when tested in the Galleria mellonella moth wax model. Moreover, AP3 treatment of larvae infected with B. cenocepacia revealed a significant increase (P < 0.0001) in larvae survival in comparison to AP3-untreated infected larvae. AP3 showed robust lytic activity, as evidenced by its broad host range, the absence of increased virulence in lysogenic isolates, the lack of bacterial gene disruption conditioned by bacterial tRNA downstream integration site, and the absence of detected toxin sequences. These data suggest that the AP3 phage is a promising potent agent against bacteria belonging to the most common B. cenocepacia IIIA lineage strains.
Collapse
Affiliation(s)
- Bartosz Roszniowski
- Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland
| | - Agnieszka Latka
- Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland
| | - Barbara Maciejewska
- Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland
| | - Dieter Vandenheuvel
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, box 2462, 3001, Leuven, Belgium
| | - Tomasz Olszak
- Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland
| | - Yves Briers
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, box 2462, 3001, Leuven, Belgium
- Department of Applied Biosciences, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Giles S Holt
- Applied Sciences, University of Northumbria, Ellison Building EBD222, Newcastle upon Tyne, NE1 8ST, UK
| | - Miguel A Valvano
- Center for Experimental Medicine, Queen's University of Belfast, 97 Lisburn Rd., Belfast, BT9 7BL, UK
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, box 2462, 3001, Leuven, Belgium
| | - Darren L Smith
- Applied Sciences, University of Northumbria, Ellison Building EBD222, Newcastle upon Tyne, NE1 8ST, UK
| | - Zuzanna Drulis-Kawa
- Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland.
| |
Collapse
|
23
|
Withatanung P, Chantratita N, Muangsombut V, Saiprom N, Lertmemongkolchai G, Klumpp J, Clokie MRJ, Galyov EE, Korbsrisate S. Analyses of the Distribution Patterns of Burkholderia pseudomallei and Associated Phages in Soil Samples in Thailand Suggest That Phage Presence Reduces the Frequency of Bacterial Isolation. PLoS Negl Trop Dis 2016; 10:e0005005. [PMID: 27668750 PMCID: PMC5036839 DOI: 10.1371/journal.pntd.0005005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 08/25/2016] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Burkholderia pseudomallei is a soil saprophytic bacterium that causes melioidosis. The infection occurs through cutaneous inoculation, inhalation or ingestion. Bacteriophages (phages) in the same ecosystem may significantly impact the biology of this bacterium in the environment, and in their culturability in the laboratory. METHODS/PRINCIPAL FINDINGS The soil samples were analysed for the presence of bacteria using culture methods, and for phages using plaque assays on B. pseudomallei strain 1106a lawns. Of the 86 soil samples collected from northeastern Thailand, B. pseudomallei was cultured from 23 (26.7%) samples; no phage capable of infecting B. pseudomallei was detected in these samples. In contrast, phages capable of infecting B. pseudomallei, but no bacteria, were present in 10 (11.6%) samples. B. pseudomallei and their phages were co-isolated from only 3 (3.5%) of soil samples. Since phage capable of infecting B. pseudomallei could not have appeared in the samples without the prior presence of bacteria, or exposure to bacteria nearby, our data suggest that all phage-positive/bacteria-negative samples have had B. pseudomallei in or in a close proximity to them. Taken together, these findings indicate that the presence of phages may influence the success of B. pseudomallei isolation. Transmission electron microscopy revealed that the isolated phages are podoviruses. The temperate phages residing in soil-isolated strains of B. pseudomallei that were resistant to the dominant soil borne phages could be induced by mitomycin C. These induced-temperate phages were closely related, but not identical, to the more dominant soil-isolated phage type. CONCLUSION/SIGNIFICANCE The presence of podoviruses capable of infecting B. pseudomallei may affect the success of the pathogen isolation from the soil. The currently used culture-based methods of B. pseudomallei isolation appear to under-estimate the bacterial abundance. The detection of phage capable of infecting B. pseudomallei from environmental samples could be a useful preliminary test to indicate the likely presence of B. pseudomallei in environmental samples.
Collapse
Affiliation(s)
- Patoo Withatanung
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Veerachat Muangsombut
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Natnaree Saiprom
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ganjana Lertmemongkolchai
- Department of Clinical Immunology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Jochen Klumpp
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Martha R. J. Clokie
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Edouard E. Galyov
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
24
|
Kato H, Mori H, Maruyama F, Toyoda A, Oshima K, Endo R, Fuchu G, Miyakoshi M, Dozono A, Ohtsubo Y, Nagata Y, Hattori M, Fujiyama A, Kurokawa K, Tsuda M. Time-series metagenomic analysis reveals robustness of soil microbiome against chemical disturbance. DNA Res 2015; 22:413-24. [PMID: 26428854 PMCID: PMC4675710 DOI: 10.1093/dnares/dsv023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/03/2015] [Indexed: 11/18/2022] Open
Abstract
Soil microbial communities have great potential for bioremediation of recalcitrant aromatic compounds. However, it is unclear which taxa and genes in the communities, and how they contribute to the bioremediation in the polluted soils. To get clues about this fundamental question here, time-course (up to 24 weeks) metagenomic analysis of microbial community in a closed soil microcosm artificially polluted with four aromatic compounds, including phenanthrene, was conducted to investigate the changes in the community structures and gene pools. The pollution led to drastic changes in the community structures and the gene sets for pollutant degradation. Complete degradation of phenanthrene was strongly suggested to occur by the syntrophic metabolism by Mycobacterium and the most proliferating genus, Burkholderia. The community structure at Week 24 (∼12 weeks after disappearance of the pollutants) returned to the structure similar to that before pollution. Our time-course metagenomic analysis of phage genes strongly suggested the involvement of the ‘kill-the-winner’ phenomenon (i.e. phage predation of Burkholderia cells) for the returning of the microbial community structure. The pollution resulted in a decrease in taxonomic diversity and a drastic increase in diversity of gene pools in the communities, showing the functional redundancy and robustness of the communities against chemical disturbance.
Collapse
Affiliation(s)
- Hiromi Kato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Hiroshi Mori
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 2-12-1 Ookayama, Tokyo 152-8550, Japan
| | - Fumito Maruyama
- Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics, Mishima 411-8540, Japan
| | - Kenshiro Oshima
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Ryo Endo
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Genki Fuchu
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Masatoshi Miyakoshi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Ayumi Dozono
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 2-12-1 Ookayama, Tokyo 152-8550, Japan
| | - Yoshiyuki Ohtsubo
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Yuji Nagata
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Masahira Hattori
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Asao Fujiyama
- Center for Information Biology, National Institute of Genetics, Mishima 411-8540, Japan Principles of Informatics Research Division, National Institute of Informatics, Hitotsubashi, Tokyo 101-8430, Japan
| | - Ken Kurokawa
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 2-12-1 Ookayama, Tokyo 152-8550, Japan Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Tokyo 152-8550, Japan
| | - Masataka Tsuda
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| |
Collapse
|
25
|
A proposed new bacteriophage subfamily: “Jerseyvirinae”. Arch Virol 2015; 160:1021-33. [DOI: 10.1007/s00705-015-2344-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/17/2015] [Indexed: 01/21/2023]
|
26
|
Lynch KH, Liang Y, Eberl L, Wishart DS, Dennis JJ. Identification and characterization of ϕH111-1: A novel myovirus with broad activity against clinical isolates of Burkholderia cenocepacia.. BACTERIOPHAGE 2014; 3:e26649. [PMID: 24265978 DOI: 10.4161/bact.26649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/27/2013] [Accepted: 09/28/2013] [Indexed: 12/18/2022]
Abstract
Characterization of prophages in sequenced bacterial genomes is important for virulence assessment, evolutionary analysis, and phage application development. The objective of this study was to identify complete, inducible prophages in the cystic fibrosis (CF) clinical isolate Burkholderia cenocepacia H111. Using the prophage-finding program PHAge Search Tool (PHAST), we identified three putative intact prophages in the H111 sequence. Virions were readily isolated from H111 culture supernatants following extended incubation. Using shotgun cloning and sequencing, one of these virions (designated ϕH111-1 [vB_BceM_ϕH111-1]) was identified as the infective particle of a PHAST-detected intact prophage. ϕH111-1 has an extremely broad host range with respect to B. cenocepacia strains and is predicted to use lipopolysaccharide (LPS) as a receptor. Bioinformatics analysis indicates that the prophage is 42,972 base pairs in length, encodes 54 proteins, and shows relatedness to the virion morphogenesis modules of AcaML1 and "Vhmllikevirus" myoviruses. As ϕH111-1 is active against a broad panel of clinical strains and encodes no putative virulence factors, it may be therapeutically effective for Burkholderia infections.
Collapse
Affiliation(s)
- Karlene H Lynch
- Department of Biological Sciences; University of Alberta; Edmonton, Alberta Canada
| | | | | | | | | |
Collapse
|
27
|
Lynch KH, Dennis JJ. Cangene Gold Medal Award Lecture — Genomic analysis and modification ofBurkholderia cepaciacomplex bacteriophages1This article is based on a presentation by Dr. Karlene Lynch at the 61st Annual Meeting of the Canadian Society of Microbiologists in St. John’s, Newfoundland and Labrador, on 21 June 2011. Dr. Lynch was the recipient of the 2011 Cangene Gold Medal as the Canadian Graduate Student Microbiologist of the Year, an annual award sponsored by Cangene Corporation intended to recognize excellence in graduate research. Can J Microbiol 2012; 58:221-35. [DOI: 10.1139/w11-135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Burkholderia cepacia complex (Bcc) is a group of 17 Gram-negative predominantly environmental bacterial species that cause potentially fatal opportunistic infections in cystic fibrosis (CF) patients. Although its prevalence in these individuals is lower than that of Staphylococcus aureus and Pseudomonas aeruginosa , the Bcc remains a serious problem in the CF community because of the pathogenicity, transmissibility, and inherent antibiotic resistance of these organisms. An alternative treatment for Bcc infections that is currently being developed is phage therapy, the clinical use of viruses that infect bacteria. To assess the suitability of individual phage isolates for therapeutic use, the complete genome sequences of a panel of Bcc‐specific phages were determined and analyzed. These sequences encode a broad range of proteins with a gradient of relatedness to phage and bacterial gene products from Burkholderia and other genera. The majority of these phages were found not to encode virulence factors, and despite their predominantly temperate nature, a proof-of-principle experiment has shown that they may be modified to a lytic form. Both the genomic characterization and subsequent engineering of Bcc‐specific phages are fundamental to the development of an effective phage therapy strategy for these bacteria.
Collapse
Affiliation(s)
- Karlene H. Lynch
- 6-008 Centennial Centre for Interdisciplinary Science, Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Jonathan J. Dennis
- 6-008 Centennial Centre for Interdisciplinary Science, Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
28
|
Semler DD, Lynch KH, Dennis JJ. The promise of bacteriophage therapy for Burkholderia cepacia complex respiratory infections. Front Cell Infect Microbiol 2012; 1:27. [PMID: 22919592 PMCID: PMC3417384 DOI: 10.3389/fcimb.2011.00027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 12/31/2011] [Indexed: 11/13/2022] Open
Abstract
In recent times, increased attention has been given to evaluating the efficacy of phage therapy, especially in scenarios where the bacterial infectious agent of interest is highly antibiotic resistant. In this regard, phage therapy is especially applicable to infections caused by the Burkholderia cepacia complex (BCC) since members of the BCC are antibiotic pan-resistant. Current studies in BCC phage therapy are unique from many other avenues of phage therapy research in that the investigation is not only comprised of phage isolation, in vitro phage characterization and assessment of in vivo infection model efficacy, but also adapting aerosol drug delivery techniques to aerosol phage formulation delivery and storage.
Collapse
Affiliation(s)
- Diana D. Semler
- Department of Biological Sciences, Centennial Centre for Interdisciplinary Science, University of AlbertaEdmonton, AB, Canada
| | - Karlene H. Lynch
- Department of Biological Sciences, Centennial Centre for Interdisciplinary Science, University of AlbertaEdmonton, AB, Canada
| | - Jonathan J. Dennis
- Department of Biological Sciences, Centennial Centre for Interdisciplinary Science, University of AlbertaEdmonton, AB, Canada
| |
Collapse
|
29
|
Cresawn SG, Bogel M, Day N, Jacobs-Sera D, Hendrix RW, Hatfull GF. Phamerator: a bioinformatic tool for comparative bacteriophage genomics. BMC Bioinformatics 2011; 12:395. [PMID: 21991981 PMCID: PMC3233612 DOI: 10.1186/1471-2105-12-395] [Citation(s) in RCA: 406] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 10/12/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacteriophage genomes have mosaic architectures and are replete with small open reading frames of unknown function, presenting challenges in their annotation, comparative analysis, and representation. RESULTS We describe here a bioinformatic tool, Phamerator, that assorts protein-coding genes into phamilies of related sequences using pairwise comparisons to generate a database of gene relationships. This database is used to generate genome maps of multiple phages that incorporate nucleotide and amino acid sequence relationships, as well as genes containing conserved domains. Phamerator also generates phamily circle representations of gene phamilies, facilitating analysis of the different evolutionary histories of individual genes that migrate through phage populations by horizontal genetic exchange. CONCLUSIONS Phamerator represents a useful tool for comparative genomic analysis and comparative representations of bacteriophage genomes.
Collapse
Affiliation(s)
- Steven G Cresawn
- Department of Biology, James Madison University, 820 Madison Dr, MSC 7801, Harrisonburg, VA 22807 USA.
| | | | | | | | | | | |
Collapse
|
30
|
Genomes and characterization of phages Bcep22 and BcepIL02, founders of a novel phage type in Burkholderia cenocepacia. J Bacteriol 2011; 193:5300-13. [PMID: 21804006 DOI: 10.1128/jb.05287-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Within the Burkholderia cepacia complex, B. cenocepacia is the most common species associated with aggressive infections in the lungs of cystic fibrosis patients, causing disease that is often refractive to treatment by antibiotics. Phage therapy may be a potential alternative form of treatment for these infections. Here we describe the genome of the previously described therapeutic B. cenocepacia podophage BcepIL02 and its close relative, Bcep22. Phage Bcep22 was found to contain a circularly permuted genome of 63,882 bp containing 77 genes; BcepIL02 was found to be 62,714 bp and contains 76 predicted genes. Major virion-associated proteins were identified by proteomic analysis. We propose that these phages comprise the founding members of a novel podophage lineage, the Bcep22-like phages. Among the interesting features of these phages are a series of tandemly repeated putative tail fiber genes that are similar to each other and also to one or more such genes in the other phages. Both phages also contain an extremely large (ca. 4,600-amino-acid), virion-associated, multidomain protein that accounts for over 20% of the phages' coding capacity, is widely distributed among other bacterial and phage genomes, and may be involved in facilitating DNA entry in both phage and other mobile DNA elements. The phages, which were previously presumed to be virulent, show evidence of a temperate lifestyle but are apparently unable to form stable lysogens in their hosts. This ambiguity complicates determination of a phage lifestyle, a key consideration in the selection of therapeutic phages.
Collapse
|
31
|
Pope WH, Jacobs-Sera D, Russell DA, Peebles CL, Al-Atrache Z, Alcoser TA, Alexander LM, Alfano MB, Alford ST, Amy NE, Anderson MD, Anderson AG, Ang AAS, Ares M, Barber AJ, Barker LP, Barrett JM, Barshop WD, Bauerle CM, Bayles IM, Belfield KL, Best AA, Borjon A, Bowman CA, Boyer CA, Bradley KW, Bradley VA, Broadway LN, Budwal K, Busby KN, Campbell IW, Campbell AM, Carey A, Caruso SM, Chew RD, Cockburn CL, Cohen LB, Corajod JM, Cresawn SG, Davis KR, Deng L, Denver DR, Dixon BR, Ekram S, Elgin SCR, Engelsen AE, English BEV, Erb ML, Estrada C, Filliger LZ, Findley AM, Forbes L, Forsyth MH, Fox TM, Fritz MJ, Garcia R, George ZD, Georges AE, Gissendanner CR, Goff S, Goldstein R, Gordon KC, Green RD, Guerra SL, Guiney-Olsen KR, Guiza BG, Haghighat L, Hagopian GV, Harmon CJ, Harmson JS, Hartzog GA, Harvey SE, He S, He KJ, Healy KE, Higinbotham ER, Hildebrandt EN, Ho JH, Hogan GM, Hohenstein VG, Holz NA, Huang VJ, Hufford EL, Hynes PM, Jackson AS, Jansen EC, Jarvik J, Jasinto PG, Jordan TC, Kasza T, Katelyn MA, Kelsey JS, Kerrigan LA, Khaw D, Kim J, Knutter JZ, Ko CC, Larkin GV, Laroche JR, Latif A, et alPope WH, Jacobs-Sera D, Russell DA, Peebles CL, Al-Atrache Z, Alcoser TA, Alexander LM, Alfano MB, Alford ST, Amy NE, Anderson MD, Anderson AG, Ang AAS, Ares M, Barber AJ, Barker LP, Barrett JM, Barshop WD, Bauerle CM, Bayles IM, Belfield KL, Best AA, Borjon A, Bowman CA, Boyer CA, Bradley KW, Bradley VA, Broadway LN, Budwal K, Busby KN, Campbell IW, Campbell AM, Carey A, Caruso SM, Chew RD, Cockburn CL, Cohen LB, Corajod JM, Cresawn SG, Davis KR, Deng L, Denver DR, Dixon BR, Ekram S, Elgin SCR, Engelsen AE, English BEV, Erb ML, Estrada C, Filliger LZ, Findley AM, Forbes L, Forsyth MH, Fox TM, Fritz MJ, Garcia R, George ZD, Georges AE, Gissendanner CR, Goff S, Goldstein R, Gordon KC, Green RD, Guerra SL, Guiney-Olsen KR, Guiza BG, Haghighat L, Hagopian GV, Harmon CJ, Harmson JS, Hartzog GA, Harvey SE, He S, He KJ, Healy KE, Higinbotham ER, Hildebrandt EN, Ho JH, Hogan GM, Hohenstein VG, Holz NA, Huang VJ, Hufford EL, Hynes PM, Jackson AS, Jansen EC, Jarvik J, Jasinto PG, Jordan TC, Kasza T, Katelyn MA, Kelsey JS, Kerrigan LA, Khaw D, Kim J, Knutter JZ, Ko CC, Larkin GV, Laroche JR, Latif A, Leuba KD, Leuba SI, Lewis LO, Loesser-Casey KE, Long CA, Lopez AJ, Lowery N, Lu TQ, Mac V, Masters IR, McCloud JJ, McDonough MJ, Medenbach AJ, Menon A, Miller R, Morgan BK, Ng PC, Nguyen E, Nguyen KT, Nguyen ET, Nicholson KM, Parnell LA, Peirce CE, Perz AM, Peterson LJ, Pferdehirt RE, Philip SV, Pogliano K, Pogliano J, Polley T, Puopolo EJ, Rabinowitz HS, Resiss MJ, Rhyan CN, Robinson YM, Rodriguez LL, Rose AC, Rubin JD, Ruby JA, Saha MS, Sandoz JW, Savitskaya J, Schipper DJ, Schnitzler CE, Schott AR, Segal JB, Shaffer CD, Sheldon KE, Shepard EM, Shepardson JW, Shroff MK, Simmons JM, Simms EF, Simpson BM, Sinclair KM, Sjoholm RL, Slette IJ, Spaulding BC, Straub CL, Stukey J, Sughrue T, Tang TY, Tatyana LM, Taylor SB, Taylor BJ, Temple LM, Thompson JV, Tokarz MP, Trapani SE, Troum AP, Tsay J, Tubbs AT, Walton JM, Wang DH, Wang H, Warner JR, Weisser EG, Wendler SC, Weston-Hafer KA, Whelan HM, Williamson KE, Willis AN, Wirtshafter HS, Wong TW, Wu P, Yang YJ, Yee BC, Zaidins DA, Zhang B, Zúniga MY, Hendrix RW, Hatfull GF. Expanding the diversity of mycobacteriophages: insights into genome architecture and evolution. PLoS One 2011; 6:e16329. [PMID: 21298013 PMCID: PMC3029335 DOI: 10.1371/journal.pone.0016329] [Show More Authors] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 12/09/2010] [Indexed: 11/25/2022] Open
Abstract
Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and comparatively analyzed, these likely represent only a small portion of the diversity of the mycobacteriophage population at large. Here we report the isolation, sequencing and comparative genomic analysis of 18 new mycobacteriophages isolated from geographically distinct locations within the United States. Although no clear correlation between location and genome type can be discerned, these genomes expand our knowledge of mycobacteriophage diversity and enhance our understanding of the roles of mobile elements in viral evolution. Expansion of the number of mycobacteriophages grouped within Cluster A provides insights into the basis of immune specificity in these temperate phages, and we also describe a novel example of apparent immunity theft. The isolation and genomic analysis of bacteriophages by freshman college students provides an example of an authentic research experience for novice scientists.
Collapse
Affiliation(s)
- Welkin H. Pope
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Deborah Jacobs-Sera
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Daniel A. Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Craig L. Peebles
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Zein Al-Atrache
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, Virginia, United States of America
| | - Turi A. Alcoser
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Lisa M. Alexander
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Matthew B. Alfano
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, Virginia, United States of America
| | - Samantha T. Alford
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Nichols E. Amy
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Marie D. Anderson
- Department of Biology, Spelman College, Atlanta, Georgia, United States of America
| | - Alexander G. Anderson
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Andrew A. S. Ang
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Manuel Ares
- Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Amanda J. Barber
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Lucia P. Barker
- Howard Hughes Medical Institute, Science Education Alliance, Chevy Chase, Maryland United States of America
| | - Jonathan M. Barrett
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - William D. Barshop
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Cynthia M. Bauerle
- Department of Biology, Spelman College, Atlanta, Georgia, United States of America
| | - Ian M. Bayles
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Katherine L. Belfield
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, Virginia, United States of America
| | - Aaron A. Best
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Agustin Borjon
- Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Charles A. Bowman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Christine A. Boyer
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, Virginia, United States of America
| | - Kevin W. Bradley
- Howard Hughes Medical Institute, Science Education Alliance, Chevy Chase, Maryland United States of America
| | - Victoria A. Bradley
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Lauren N. Broadway
- Department of Biology, University of Louisiana at Monroe, Monroe, Louisiana, United States of America
| | - Keshav Budwal
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Kayla N. Busby
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Ian W. Campbell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Anne M. Campbell
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, Virginia, United States of America
| | - Alyssa Carey
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Steven M. Caruso
- Department of Biological Sciences, University of Maryland, Baltimore, Maryland, United States of America
| | - Rebekah D. Chew
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Chelsea L. Cockburn
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Lianne B. Cohen
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Jeffrey M. Corajod
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Steven G. Cresawn
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Kimberly R. Davis
- Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Lisa Deng
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Dee R. Denver
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Breyon R. Dixon
- Department of Biology, Spelman College, Atlanta, Georgia, United States of America
| | - Sahrish Ekram
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Sarah C. R. Elgin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Angela E. Engelsen
- Department of Biology, University of Louisiana at Monroe, Monroe, Louisiana, United States of America
| | - Belle E. V. English
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Marcella L. Erb
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Crystal Estrada
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Laura Z. Filliger
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Ann M. Findley
- Department of Biology, University of Louisiana at Monroe, Monroe, Louisiana, United States of America
| | - Lauren Forbes
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Mark H. Forsyth
- Biology Department, College of William & Mary, Williamsburg, Virginia, United States of America
| | - Tyler M. Fox
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Melissa J. Fritz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Roberto Garcia
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Zindzi D. George
- Department of Biology, Spelman College, Atlanta, Georgia, United States of America
| | - Anne E. Georges
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | | | - Shannon Goff
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Rebecca Goldstein
- Department of Biological Sciences, University of Maryland, Baltimore, Maryland, United States of America
| | - Kobie C. Gordon
- Biology Department, College of William & Mary, Williamsburg, Virginia, United States of America
| | - Russell D. Green
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Stephanie L. Guerra
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Krysta R. Guiney-Olsen
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, Virginia, United States of America
| | - Bridget G. Guiza
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Leila Haghighat
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Garrett V. Hagopian
- Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Catherine J. Harmon
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Jeremy S. Harmson
- Department of Biology, University of Louisiana at Monroe, Monroe, Louisiana, United States of America
| | - Grant A. Hartzog
- Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Samuel E. Harvey
- Biology Department, College of William & Mary, Williamsburg, Virginia, United States of America
| | - Siping He
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Kevin J. He
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Kaitlin E. Healy
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Ellen R. Higinbotham
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, Virginia, United States of America
| | - Erin N. Hildebrandt
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Jason H. Ho
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Gina M. Hogan
- Department of Biology, University of Louisiana at Monroe, Monroe, Louisiana, United States of America
| | - Victoria G. Hohenstein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nathan A. Holz
- Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Vincent J. Huang
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Ericka L. Hufford
- Department of Biology, University of Louisiana at Monroe, Monroe, Louisiana, United States of America
| | - Peter M. Hynes
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Arrykka S. Jackson
- Biology Department, College of William & Mary, Williamsburg, Virginia, United States of America
| | - Erica C. Jansen
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Jonathan Jarvik
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Paul G. Jasinto
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Tuajuanda C. Jordan
- Howard Hughes Medical Institute, Science Education Alliance, Chevy Chase, Maryland United States of America
| | - Tomas Kasza
- Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Murray A. Katelyn
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Jessica S. Kelsey
- Department of Biological Sciences, University of Maryland, Baltimore, Maryland, United States of America
| | - Larisa A. Kerrigan
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, Virginia, United States of America
| | - Daryl Khaw
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Junghee Kim
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Justin Z. Knutter
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Ching-Chung Ko
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Gail V. Larkin
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, Virginia, United States of America
| | - Jennifer R. Laroche
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Asma Latif
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, Virginia, United States of America
| | - Kohana D. Leuba
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sequoia I. Leuba
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Lynn O. Lewis
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, Virginia, United States of America
| | - Kathryn E. Loesser-Casey
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, Virginia, United States of America
| | - Courtney A. Long
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - A. Javier Lopez
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Nicholas Lowery
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Tina Q. Lu
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Victor Mac
- Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Isaac R. Masters
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Jazmyn J. McCloud
- Department of Biology, Spelman College, Atlanta, Georgia, United States of America
| | - Molly J. McDonough
- Biology Department, College of William & Mary, Williamsburg, Virginia, United States of America
| | - Andrew J. Medenbach
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Anjali Menon
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Rachel Miller
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Brandon K. Morgan
- Department of Biology, University of Louisiana at Monroe, Monroe, Louisiana, United States of America
| | - Patrick C. Ng
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Elvis Nguyen
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Katrina T. Nguyen
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Emilie T. Nguyen
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Kaylee M. Nicholson
- Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Lindsay A. Parnell
- Department of Biology, Spelman College, Atlanta, Georgia, United States of America
| | - Caitlin E. Peirce
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Allison M. Perz
- Biology Department, College of William & Mary, Williamsburg, Virginia, United States of America
| | - Luke J. Peterson
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Rachel E. Pferdehirt
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Seegren V. Philip
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Kit Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Joe Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Tamsen Polley
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Erica J. Puopolo
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Hannah S. Rabinowitz
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Michael J. Resiss
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Corwin N. Rhyan
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Yetta M. Robinson
- Department of Biology, Spelman College, Atlanta, Georgia, United States of America
| | - Lauren L. Rodriguez
- Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Andrew C. Rose
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Jeffrey D. Rubin
- Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jessica A. Ruby
- Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Margaret S. Saha
- Biology Department, College of William & Mary, Williamsburg, Virginia, United States of America
| | - James W. Sandoz
- Department of Biological Sciences, University of Maryland, Baltimore, Maryland, United States of America
| | - Judith Savitskaya
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Dale J. Schipper
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | | | - Amanda R. Schott
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - J. Bradley Segal
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Christopher D. Shaffer
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Kathryn E. Sheldon
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Erica M. Shepard
- Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jonathan W. Shepardson
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Madav K. Shroff
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Jessica M. Simmons
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Erika F. Simms
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Brandy M. Simpson
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, Virginia, United States of America
| | - Kathryn M. Sinclair
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Robert L. Sjoholm
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Ingrid J. Slette
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Blaire C. Spaulding
- Department of Biology, Spelman College, Atlanta, Georgia, United States of America
| | - Clark L. Straub
- Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Joseph Stukey
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Trevor Sughrue
- Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Tin-Yun Tang
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Lyons M. Tatyana
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Stephen B. Taylor
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Barbara J. Taylor
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Louise M. Temple
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Jasper V. Thompson
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Michael P. Tokarz
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, Virginia, United States of America
| | - Stephanie E. Trapani
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Alexander P. Troum
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Jonathan Tsay
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Anthony T. Tubbs
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Jillian M. Walton
- Biology Department, College of William & Mary, Williamsburg, Virginia, United States of America
| | - Danielle H. Wang
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Hannah Wang
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - John R. Warner
- Department of Biology, University of Louisiana at Monroe, Monroe, Louisiana, United States of America
| | - Emilie G. Weisser
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Samantha C. Wendler
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, Virginia, United States of America
| | - Kathleen A. Weston-Hafer
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Hilary M. Whelan
- Biology Department, College of William & Mary, Williamsburg, Virginia, United States of America
| | - Kurt E. Williamson
- Biology Department, College of William & Mary, Williamsburg, Virginia, United States of America
| | - Angelica N. Willis
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Hannah S. Wirtshafter
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Theresa W. Wong
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Phillip Wu
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Yun jeong Yang
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Brandon C. Yee
- Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - David A. Zaidins
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Bo Zhang
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Melina Y. Zúniga
- Department of Biology, Spelman College, Atlanta, Georgia, United States of America
| | - Roger W. Hendrix
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
32
|
Popa O, Hazkani-Covo E, Landan G, Martin W, Dagan T. Directed networks reveal genomic barriers and DNA repair bypasses to lateral gene transfer among prokaryotes. Genome Res 2011; 21:599-609. [PMID: 21270172 DOI: 10.1101/gr.115592.110] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lateral gene transfer (LGT) plays a major role in prokaryote evolution with only a few genes that are resistant to it; yet the nature and magnitude of barriers to lateral transfer are still debated. Here, we implement directed networks to investigate donor-recipient events of recent lateral gene transfer among 657 sequenced prokaryote genomes. For 2,129,548 genes investigated, we detected 446,854 recent lateral gene transfer events through nucleotide pattern analysis. Among these, donor-recipient relationships could be specified through phylogenetic reconstruction for 7% of the pairs, yielding 32,028 polarized recent gene acquisition events, which constitute the edges of our directed networks. We find that the frequency of recent LGT is linearly correlated both with genome sequence similarity and with proteome similarity of donor-recipient pairs. Genome sequence similarity accounts for 25% of the variation in gene-transfer frequency, with proteome similarity adding only 1% to the variability explained. The range of donor-recipient GC content similarity within the network is extremely narrow, with 86% of the LGTs occurring between donor-recipient pairs having ≤5% difference in GC content. Hence, genome sequence similarity and GC content similarity are strong barriers to LGT in prokaryotes. But they are not insurmountable, as we detected 1530 recent transfers between distantly related genomes. The directed network revealed that recipient genomes of distant transfers encode proteins of nonhomologous end-joining (NHEJ; a DNA repair mechanism) far more frequently than the recipient lacking that mechanism. This implicates NHEJ in genes spread across distantly related prokaryotes through bypassing the donor-recipient sequence similarity barrier.
Collapse
Affiliation(s)
- Ovidiu Popa
- Institute of Botany III, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
33
|
Genomic and functional analyses of Rhodococcus equi phages ReqiPepy6, ReqiPoco6, ReqiPine5, and ReqiDocB7. Appl Environ Microbiol 2010; 77:669-83. [PMID: 21097585 DOI: 10.1128/aem.01952-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The isolation and results of genomic and functional analyses of Rhodococcus equi phages ReqiPepy6, ReqiDocB7, ReqiPine5, and ReqiPoco6 (hereafter referred to as Pepy6, DocB7, Pine5, and Poco6, respectively) are reported. Two phages, Pepy6 and Poco6, more than 75% identical, exhibited genome organization and protein sequence likeness to Lactococcus lactis phage 1706 and clostridial prophage elements. An unusually high fraction, 27%, of Pepy6 and Poco6 proteins were predicted to possess at least one transmembrane domain, a value much higher than the average of 8.5% transmembrane domain-containing proteins determined from a data set of 36,324 phage protein entries. Genome organization and protein sequence comparisons place phage Pine5 as the first nonmycobacteriophage member of the large Rosebush cluster. DocB7, which had the broadest host range among the four isolates, was not closely related to any phage or prophage in the database, and only 23 of 105 predicted encoded proteins could be assigned a functional annotation. Because of the relationship of Rhodococcus to Mycobacterium, it was anticipated that these phages should exhibit some of the features characteristic of mycobacteriophages. Traits that were identified as shared by the Rhodococcus phages and mycobacteriophages include the prevalent long-tailed morphology and the presence of genes encoding LysB-like mycolate-hydrolyzing lysis proteins. Application of DocB7 lysates to soils amended with a host strain of R. equi reduced recoverable bacterial CFU, suggesting that phage may be useful in limiting R. equi load in the environment while foals are susceptible to infection.
Collapse
|
34
|
Ronning CM, Losada L, Brinkac L, Inman J, Ulrich RL, Schell M, Nierman WC, Deshazer D. Genetic and phenotypic diversity in Burkholderia: contributions by prophage and phage-like elements. BMC Microbiol 2010; 10:202. [PMID: 20667135 PMCID: PMC2920897 DOI: 10.1186/1471-2180-10-202] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 07/28/2010] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Burkholderia species exhibit enormous phenotypic diversity, ranging from the nonpathogenic, soil- and water-inhabiting Burkholderia thailandensis to the virulent, host-adapted mammalian pathogen B. mallei. Genomic diversity is evident within Burkholderia species as well. Individual isolates of Burkholderia pseudomallei and B. thailandensis, for example, carry a variety of strain-specific genomic islands (GIs), including putative pathogenicity and metabolic islands, prophage-like islands, and prophages. These GIs may provide some strains with a competitive advantage in the environment and/or in the host relative to other strains. RESULTS Here we present the results of analysis of 37 prophages, putative prophages, and prophage-like elements from six different Burkholderia species. Five of these were spontaneously induced to form bacteriophage particles from B. pseudomallei and B. thailandensis strains and were isolated and fully sequenced; 24 were computationally predicted in sequenced Burkholderia genomes; and eight are previously characterized prophages or prophage-like elements. The results reveal numerous differences in both genome structure and gene content among elements derived from different species as well as from strains within species, due in part to the incorporation of additional DNA, or 'morons' into the prophage genomes. Implications for pathogenicity are also discussed. Lastly, RNAseq analysis of gene expression showed that many of the genes in varphi1026b that appear to contribute to phage and lysogen fitness were expressed independently of the phage structural and replication genes. CONCLUSIONS This study provides the first estimate of the relative contribution of prophages to the vast phenotypic diversity found among the Burkholderiae.
Collapse
Affiliation(s)
- Catherine M Ronning
- J Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Peeters E, Sass A, Mahenthiralingam E, Nelis H, Coenye T. Transcriptional response of Burkholderia cenocepacia J2315 sessile cells to treatments with high doses of hydrogen peroxide and sodium hypochlorite. BMC Genomics 2010; 11:90. [PMID: 20137066 PMCID: PMC2830190 DOI: 10.1186/1471-2164-11-90] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 02/05/2010] [Indexed: 12/29/2022] Open
Abstract
Background Burkholderia cepacia complex bacteria are opportunistic pathogens, which can cause severe respiratory tract infections in patients with cystic fibrosis (CF). As treatment of infected CF patients is problematic, multiple preventive measures are taken to reduce the infection risk. Besides a stringent segregation policy to prevent patient-to-patient transmission, clinicians also advise patients to clean and disinfect their respiratory equipment on a regular basis. However, problems regarding the efficacy of several disinfection procedures for the removal and/or killing of B. cepacia complex bacteria have been reported. In order to unravel the molecular mechanisms involved in the resistance of biofilm-grown Burkholderia cenocepacia cells against high concentrations of reactive oxygen species (ROS), the present study focussed on the transcriptional response in sessile B. cenocepacia J2315 cells following exposure to high levels of H2O2 or NaOCl. Results The exposure to H2O2 and NaOCl resulted in an upregulation of the transcription of 315 (4.4%) and 386 (5.4%) genes, respectively. Transcription of 185 (2.6%) and 331 (4.6%) genes was decreased in response to the respective treatments. Many of the upregulated genes in the NaOCl- and H2O2-treated biofilms are involved in oxidative stress as well as general stress response, emphasizing the importance of the efficient neutralization and scavenging of ROS. In addition, multiple upregulated genes encode proteins that are necessary to repair ROS-induced cellular damage. Unexpectedly, a prolonged treatment with H2O2 also resulted in an increased transcription of multiple phage-related genes. A closer inspection of hybridisation signals obtained with probes targeting intergenic regions led to the identification of a putative 6S RNA. Conclusion Our results reveal that the transcription of a large fraction of B. cenocepacia J2315 genes is altered upon exposure of sessile cells to ROS. These observations have highlighted that B. cenocepacia may alter several pathways in response to exposure to ROS and they have led to the identification of many genes not previously implicated in the stress response of this pathogen.
Collapse
Affiliation(s)
- Elke Peeters
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | | | | | | | | |
Collapse
|
36
|
Inactivation of Burkholderia cepacia complex phage KS9 gp41 identifies the phage repressor and generates lytic virions. J Virol 2009; 84:1276-88. [PMID: 19939932 DOI: 10.1128/jvi.01843-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Burkholderia cepacia complex (BCC) is made up of at least 17 species of gram-negative opportunistic bacterial pathogens that cause fatal infections in patients with cystic fibrosis and chronic granulomatous disease. KS9 (vB_BcenS_KS9), one of a number of temperate phages isolated from BCC species, is a prophage of Burkholderia pyrrocinia LMG 21824. Transmission electron micrographs indicate that KS9 belongs to the family Siphoviridae and exhibits the B1 morphotype. The 39,896-bp KS9 genome, comprised of 50 predicted genes, integrates into the 3' end of the LMG 21824 GTP cyclohydrolase II open reading frame. The KS9 genome is most similar to uncharacterized prophage elements in the genome of B. cenocepacia PC184 (vB_BcenZ_ PC184), as well as Burkholderia thailandensis phage phiE125 and Burkholderia pseudomallei phage phi1026b. Using molecular techniques, we have disrupted KS9 gene 41, which exhibits similarity to genes encoding phage repressors, producing a lytic mutant named KS9c. This phage is incapable of stable lysogeny in either LMG 21824 or B. cenocepacia strain K56-2 and rescues a Galleria mellonella infection model from experimental B. cenocepacia K56-2 infections at relatively low multiplicities of infection. These results readily demonstrate that temperate phages can be genetically engineered to lytic form and that these modified phages can be used to treat bacterial infections in vivo.
Collapse
|
37
|
Functional genomic analysis of two Staphylococcus aureus phages isolated from the dairy environment. Appl Environ Microbiol 2009; 75:7663-73. [PMID: 19837832 DOI: 10.1128/aem.01864-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genomes of the two lytic mutant Staphylococcus aureus bacteriophages, vB_SauS-phiIPLA35 (phiIPLA35) and vB_SauS-phiIPLA88 (phiIPLA88), isolated from milk have been analyzed. Their genomes are 45,344 bp and 42,526 bp long, respectively, and contain 62 and 61 open reading frames (ORFS). Enzymatic analyses and sequencing revealed that the phiIPLA35 DNA molecule has 3'-protruding cohesive ends (cos) 10 bp long, whereas phiIPLA88 DNA is 4.5% terminally redundant and most likely is packaged by a headful mechanism. N-terminal amino acid sequencing, mass spectrometry, bioinformatic analyses, and functional analyses enabled the assignment of putative functions to 58 gene products, including DNA packaging proteins, morphogenetic proteins, lysis components, and proteins necessary for DNA recombination, modification, and replication. Point mutations in their lysogeny control-associated genes explain their strictly lytic behavior. Muralytic activity associated with other structural components has been detected in virions of both phages. Comparative analysis of phiIPLA35 and phiIPLA88 genome structures shows that they resemble those of phi12 and phi11, respectively, both representatives of large genomic groupings within the S. aureus-infecting phages.
Collapse
|
38
|
Isolation of new Stenotrophomonas bacteriophages and genomic characterization of temperate phage S1. Appl Environ Microbiol 2008; 74:7552-60. [PMID: 18952876 DOI: 10.1128/aem.01709-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Twenty-two phages that infect Stenotrophomonas species were isolated through sewage enrichment and prophage induction. Of them, S1, S3, and S4 were selected due to their wide host ranges compared to those of the other phages. S1 and S4 are temperate siphoviruses, while S3 is a virulent myovirus. The genomes of S3 and S4, about 33 and 200 kb, were resistant to restriction digestion. The lytic cycles lasted 30 min for S3 and about 75 min for S1 and S4. The burst size for S3 was 100 virions/cell, while S1 and S4 produced about 75 virus particles/cell. The frequency of bacteriophage-insensitive host mutants, calculated by dividing the number of surviving colonies by the bacterial titer of a parallel, uninfected culture, ranged between 10(-5) and 10(-6) for S3 and 10(-3) and 10(-4) for S1 and S4. The 40,287-bp genome of S1 contains 48 open reading frames (ORFs) and 12-bp 5' protruding cohesive ends. By using a combination of bioinformatics and experimental evidence, functions were ascribed to 21 ORFs. The morphogenetic and lysis modules are well-conserved, but no lysis-lysogeny switch or DNA replication gene clusters were recognized. Two major clusters of genes with respect to transcriptional orientation were observed. Interspersed among them were lysogenic conversion genes encoding phosphoadenosine phosphosulfate reductase and GspM, a protein involved in the general secretion system II. The attP site of S1 may be located within a gene that presents over 75% homology to a Stenotrophomonas chromosomal determinant.
Collapse
|