1
|
Peedikayil-Kurien S, Haque R, Gat A, Oren-Suissa M. Modulation by NPY/NPF-like receptor underlies experience-dependent, sexually dimorphic learning. Nat Commun 2025; 16:662. [PMID: 39809755 PMCID: PMC11733012 DOI: 10.1038/s41467-025-55950-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
The evolutionary paths taken by each sex within a given species sometimes diverge, resulting in behavioral differences. Given their distinct needs, the mechanism by which each sex learns from a shared experience is still an open question. Here, we reveal sexual dimorphism in learning: C. elegans males do not learn to avoid the pathogenic bacteria PA14 as efficiently and rapidly as hermaphrodites. Notably, neuronal activity following pathogen exposure was dimorphic: hermaphrodites generate robust representations, while males, in line with their behavior, exhibit contrasting representations. Transcriptomic and behavioral analysis revealed that the neuropeptide receptor npr-5, an ortholog of the mammalian NPY/NPF-like receptor, regulates male learning by modulating neuronal activity. Furthermore, we show the dependency of the males' decision-making on their sexual status and demonstrate the role of npr-5 as a modulator of incoming sensory cues. Taken together, these findings illustrate how neuromodulators drive sex-specific behavioral plasticity in response to a shared experience.
Collapse
Affiliation(s)
- Sonu Peedikayil-Kurien
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Rizwanul Haque
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Asaf Gat
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
2
|
Zhao Y, Zhong C, Li Y, Zhou W, Huang X. Novel Genes and Key Signaling Molecules Involved in the Repulsive Response of Meloidogyne incognita against Biocontrol Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19445-19456. [PMID: 38033160 DOI: 10.1021/acs.jafc.3c06074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The ability of the model organism, Caenorhabditis elegans, to distinguish and escape from pathogenic bacteria has been extensively studied; however, studies on the repulsive response of Meloidogyne incognita are still in their infancy. We have recently demonstrated that biocontrol bacteria induce a repulsive response in M. incognita via two classical signaling pathways. The present study aimed to identify the novel genes and signaling molecules of M. incognita that potentially contribute to its defense reaction. Analysis of the transcriptome data of M. incognita with and without a repulsive response against Bacillus nematocida B16 obtained 15 candidate genes, of which the novel genes Minc3s01748g26034 and Minc3s02548g30585 were found to regulate the aversive behavior of M. incognita, and their functions were further validated. To further confirm the neuronal localization of the two novel genes in M. incognita, in situ hybridization was conducted using the digoxin-labeled probes of ten tag genes, and preferentially profiled the localization of amphid sensory neurons of M. incognita. Analysis of the overviewed neuronal map suggested that Minc3s01748g26034 and Minc3s02548g30585 functioned in ASK/ASI and CEPD/V neurons, respectively. During their interactions, the volatile compounds 3-methyl-butyric acid and 2-methyl-butyric acid produced by the biocontrol bacteria were predicted as the primary signaling molecules that promoted the repulsive behavior of M. incognita against biocontrol bacteria. The findings provided novel insights into the mechanisms underlying the repulsive response of M. incognita that are different from the canonical molecular pathways previously found in C. elegans and can aid in developing novel strategies for controlling root-knot nematodes.
Collapse
Affiliation(s)
- Yanli Zhao
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Chidi Zhong
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Yixin Li
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Wenhui Zhou
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Xiaowei Huang
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| |
Collapse
|
3
|
Wu N, Chen YA, Zhu Q, Son CH, Gu KZ, Zou CG, Wu QY, Ma YC. The EGL-30 pathway regulates experience-dependent aversive behavior of Caenorhabditis elegans to the pathogenic bacterium Pseudomonas aeruginosa. Biochem Biophys Res Commun 2023; 642:107-112. [PMID: 36566561 DOI: 10.1016/j.bbrc.2022.12.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Avoidance of harmful substances is survival strategy used cross invertebrates and vertebrates. For example, the nematode Caenorhabditis elegans evolves a sufficient avoidance response to pathogenic bacteria. Despite G protein has been found to exert neural plasticity for avoidance behaviours in C. elegans, the function of Gi/o and Gq subunit signalling in experience-dependent aversive behaviour remains unclear. In this study, we show that EGL-30/Gq coupled with EGL-8/UNC-13 regulates aversive behaviour of C. elegans to pathogenic bacterium Pseudomonas aeruginosa PA01 via acetylcholine and its receptor nAChR. Pyocyanin, a toxin secreted from P. aeruginosa, acts as a signal molecule to trigger aversive behaviour. ODR-3 and ODR-7 in AWA and AWC neurons function as upstream of EGL-30 to induce experience-dependent aversive behaviour to P. aeruginosa, respectively. These results suggested that a novel signalling pathway to regulate a behavioural response.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Yu-An Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Qian Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Cai-Hua Son
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Kun-Ze Gu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Cheng-Gang Zou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Qin-Yi Wu
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China.
| | - Yi-Cheng Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China.
| |
Collapse
|
4
|
Li Y, Wu Y, Wu L, Qin L, Liu T. The effects of probiotic administration on patients with prediabetes: a meta-analysis and systematic review. J Transl Med 2022; 20:498. [PMID: 36324119 PMCID: PMC9632036 DOI: 10.1186/s12967-022-03695-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND This paper aimed to examine the effects of probiotics on eight factors in the prediabetic population by meta-analysis, namely, fasting blood glucose (FBG), glycated haemoglobin A1c (HbA1c), homeostatic model assessment of insulin resistance (HOMA-IR), quantitative insulin sensitivity check index (QUICKI), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C), and the mechanisms of action are summarized from the existing studies. METHODS Seven databases (PubMed, Web of Science, Embase, Cochrane Library, SinoMed, CNKI, and Wanfang Med) were searched until March 2022. Review Manager 5.4 was used for meta-analysis. The data were analysed using weighted mean differences (WMDs) or standardized mean differences (SMDs) under a fixed effect model to observe the efficacy of probiotic supplementation on the included indicators. RESULTS Seven publications with a total of 460 patients were included. According to the meta-analysis, probiotics were able to significantly decrease the levels of HbA1c (WMD, -0.07; 95% CI -0.11, -0.03; P = 0.001), QUICKI (WMD, 0.01; 95% CI 0.00, 0.02; P = 0.04), TC (SMD, -0.28; 95% CI -0.53, -0.22; P = 0.03), TG (SMD, -0.26; 95% CI -0.52, -0.01; P = 0.04), and LDL-C (WMD, -8.94; 95% CI -14.91, -2.97; P = 0.003) compared to levels in the placebo group. The effects on FBG (WMD, -0.53; 95% CI -2.31, 1.25; P = 0.56), HOMA-IR (WMD, -0.21; 95% CI -0.45, 0.04; P = 0.10), and HDL-C (WMD, 2.05; 95% CI -0.28, 4.38; P = 0.08) were not different from those of the placebo group. CONCLUSION The present study clearly indicated that probiotics may fulfil an important role in the regulation of HbA1c, QUICKI, TC, TG and LDL-C in patients with prediabetes. In addition, based on existing studies, we concluded that probiotics may regulate blood glucose homeostasis in a variety of ways. TRIAL REGISTRATION This meta-analysis has been registered at PROSPERO with ID: CRD42022321995.
Collapse
Affiliation(s)
- Ya Li
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - You Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Lili Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Lingling Qin
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, 100029, Beijing, China.
| |
Collapse
|
5
|
Deficiency of innate immunity against P. aeruginosa enhances behavioral avoidance via the HECW-1/NPR-1 module in C. elegans. Infect Immun 2021; 89:e0006721. [PMID: 34310887 DOI: 10.1128/iai.00067-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To antagonize infection of pathogenic bacteria in soil and confer increased survival, Caenorhabditis elegans employs innate immunity and behavioral avoidance synchronously as the two main defensive strategies. Although both biological processes and their individual signaling pathways have been partially elucidated, knowledge of their interrelationship remains limited. The current study reveals that deficiency of innate immunity triggered by mutation of the classic immune gene pmk-1 promotes avoidance behavior in C. elegans; and vice versa. Restoration of pmk-1 expression using the tissue-specific promoters suggested that the functional loss of both intestinal and neuronal pmk-1 is necessary for the enhanced avoidance. Additionally, PMK-1 co-localized with the E3 ubiquitin ligase HECW-1 in OLL neurons and regulated the expressional level of the latter, which consequently affected the production of NPR-1, a G-protein-coupled receptor homologous to the mammalian neuropeptide Y receptor, in RMG neurons in a non-cell-autonomous manner. Collectively, our study illustrates, once the innate immunity is impaired when C. elegans antagonizes bacterial infection, the other defensive strategy of behavioral avoidance can be enhanced accordingly via the HECW-1/NPR-1 module, suggesting that GPCRs in neural circuits may receive the inputs from immune system and integrate those two systems for better adapting to the real-time status.
Collapse
|
6
|
Radeke LJ, Herman MA. Take a Walk to the Wild Side of Caenorhabditis elegans-Pathogen Interactions. Microbiol Mol Biol Rev 2021; 85:e00146-20. [PMID: 33731489 PMCID: PMC8139523 DOI: 10.1128/mmbr.00146-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Microbiomes form intimate functional associations with their hosts. Much has been learned from correlating changes in microbiome composition to host organismal functions. However, in-depth functional studies require the manipulation of microbiome composition coupled with the precise interrogation of organismal physiology-features available in few host study systems. Caenorhabditis elegans has proven to be an excellent genetic model organism to study innate immunity and, more recently, microbiome interactions. The study of C. elegans-pathogen interactions has provided in depth understanding of innate immune pathways, many of which are conserved in other animals. However, many bacteria were chosen for these studies because of their convenience in the lab setting or their implication in human health rather than their native interactions with C. elegans In their natural environment, C. elegans feed on a variety of bacteria found in rotting organic matter, such as rotting fruits, flowers, and stems. Recent work has begun to characterize the native microbiome and has identified a common set of bacteria found in the microbiome of C. elegans While some of these bacteria are beneficial to C. elegans health, others are detrimental, leading to a complex, multifaceted understanding of bacterium-nematode interactions. Current research on nematode-bacterium interactions is focused on these native microbiome components, both their interactions with each other and with C. elegans We will summarize our knowledge of bacterial pathogen-host interactions in C. elegans, as well as recent work on the native microbiome, and explore the incorporation of these bacterium-nematode interactions into studies of innate immunity and pathogenesis.
Collapse
Affiliation(s)
- Leah J Radeke
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Michael A Herman
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
7
|
Abstract
Although Caenorhabditis elegans has been used as a model host for studying host-pathogen interactions for more than 20 years, the mechanisms by which it identifies pathogens are not well understood. This is largely due to its lack of most known pattern recognition receptors (PRRs) that recognize pathogen-derived molecules. Recent behavioral research in C. elegans indicates that its nervous system plays a major role in microbe sensing. With the increasing integration of neurobiology in immunological research, future studies may find that neuronal detection of pathogens is an integral part of C. elegans-pathogen interactions. Similar to that of mammals, the C. elegans nervous system regulates its immune system to maintain immunological homeostasis. Studies in the nematode have revealed unprecedented details regarding the molecules, cells, and signaling pathways involved in neural regulation of immunity. Notably, some of the studies indicate that some neuroimmune regulatory circuits need not be "activated" by pathogen infection because they are tonically active and that there could be a predetermined set point for internal immunity, around which the nervous system adjusts immune responses to internal or external environmental changes. Here, we review recent progress on the roles of the C. elegans nervous system in pathogen detection and immune regulation. Because of its advantageous characteristics, we expect that the C. elegans model will be critical for deciphering complex neuroimmune signaling mechanisms that integrate and process multiple sensory cues.
Collapse
Affiliation(s)
- Yiyong Liu
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
- Genomics Core, Washington State University, Spokane, Washington, USA
| | - Jingru Sun
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| |
Collapse
|
8
|
Radeke LJ, Herman MA. Identification and characterization of differentially expressed genes in Caenorhabditis elegans in response to pathogenic and nonpathogenic Stenotrophomonas maltophilia. BMC Microbiol 2020; 20:170. [PMID: 32560629 PMCID: PMC7304212 DOI: 10.1186/s12866-020-01771-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/29/2020] [Indexed: 12/27/2022] Open
Abstract
Background Stenotrophomonas maltophilia is an emerging nosocomial pathogen that causes infection in immunocompromised patients. S. maltophilia isolates are genetically diverse, contain diverse virulence factors, and are variably pathogenic within several host species. Members of the Stenotrophomonas genus are part of the native microbiome of C. elegans, being found in greater relative abundance within the worm than its environment, suggesting that these bacteria accumulate within C. elegans. Thus, study of the C. elegans-Stenotrophomonas interaction is of both medical and ecological significance. To identify host defense mechanisms, we analyzed the C. elegans transcriptomic response to S. maltophilia strains of varying pathogenicity: K279a, an avirulent clinical isolate, JCMS, a virulent strain isolated in association with soil nematodes near Manhattan, KS, and JV3, an even more virulent environmental isolate. Results Overall, we found 145 genes that are commonly differentially expressed in response to pathogenic S. maltophilia strains, 89% of which are upregulated, with many even further upregulated in response to JV3 as compared to JCMS. There are many more JV3-specific differentially expressed genes (225, 11% upregulated) than JCMS-specific differentially expressed genes (14, 86% upregulated), suggesting JV3 has unique pathogenic mechanisms that could explain its increased virulence. We used connectivity within a gene network model to choose pathogen-specific and strain-specific differentially expressed candidate genes for functional analysis. Mutations in 13 of 22 candidate genes caused significant differences in C. elegans survival in response to at least one S. maltophilia strain, although not always the strain that induced differential expression, suggesting a dynamic response to varying levels of pathogenicity. Conclusions Variation in observed pathogenicity and differences in host transcriptional responses to S. maltophilia strains reveal that strain-specific mechanisms play important roles in S. maltophilia pathogenesis. Furthermore, utilizing bacteria closely related to strains found in C. elegans natural environment provides a more realistic interaction for understanding host-pathogen response.
Collapse
Affiliation(s)
- Leah J Radeke
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Michael A Herman
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
9
|
Zhang L, Wei Y, Tao Y, Zhao S, Wei X, Yin X, Liu S, Niu Q. Molecular mechanism of the smart attack of pathogenic bacteria on nematodes. Microb Biotechnol 2020; 13:683-705. [PMID: 31730281 PMCID: PMC7111092 DOI: 10.1111/1751-7915.13508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 11/28/2022] Open
Abstract
Nematode-bacterial associations are far-reaching subjects in view of their impact on ecosystems, economies, agriculture and human health. There is still no conclusion regarding which pathogenic bacteria sense nematodes. Here, we found that the pathogenic bacterium Bacillus nematocida B16 was sensitive to C. elegans and could launch smart attacks to kill the nematodes. Further analysis revealed that the spores of B. nematocida B16 are essential virulence factors. Once gaseous molecules (morpholine) produced from C. elegans were sensed, the sporulation of B16 was greatly accelerated. Then, B16 showed maximum attraction to C. elegans during the spore-forming process but had no attraction until all the spores were formed. The disruption of either the spore formation gene spo0A or the germination gene gerD impaired colonization and attenuated infection in B16. In contrast, complementation with the intact genes restored most of the above-mentioned deficient phenotypes, which indicated that the spo0A gene was a key factor in the smart attack of B16 on C. elegans. Further, transcriptome, molecular simulations and quantitative PCR analysis showed that morpholine from C. elegans could promote sporulation and initiate infection by increasing the transcription of the spo0A gene by decreasing the transcription of the rapA and spo0E genes. The overexpression of rapA or spo0E decreased the induced sporulation effect, and morpholine directly reduced the level of phosphorylation of purified recombinant RapA and Spo0E compared to that of Spo0A. Collectively, these findings further support a 'Trojan horse-like' infection model. The significance of our paper is that we showed that the soil-dwelling bacterium B. nematocida B16 has the ability to actively detect, attract and attack their host C. elegans. These studies are the first report on the behaviours, signalling molecules and mechanism of the smart attack of B16 on nematodes and also reveal new insights into microbe-host interactions.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Life Science and BiotechnologyNanyang Normal UniversityNanyang473000China
- State Key Laboratory of Cotton BiologyHenan Key Laboratory of Plant Stress BiologySchool of Life SciencesHenan UniversityKaifengHenan475001China
| | - Yuping Wei
- Department of Life Science and BiotechnologyNanyang Normal UniversityNanyang473000China
| | - Ye Tao
- Department of Life Science and BiotechnologyNanyang Normal UniversityNanyang473000China
| | - Suya Zhao
- Department of Life Science and BiotechnologyNanyang Normal UniversityNanyang473000China
| | - Xuyang Wei
- Department of Life Science and BiotechnologyNanyang Normal UniversityNanyang473000China
| | - Xiaoyan Yin
- Department of Life Science and BiotechnologyNanyang Normal UniversityNanyang473000China
| | - Suyao Liu
- Department of Life Science and BiotechnologyNanyang Normal UniversityNanyang473000China
| | - Qiuhong Niu
- Department of Life Science and BiotechnologyNanyang Normal UniversityNanyang473000China
| |
Collapse
|
10
|
Sellegounder D, Liu Y, Wibisono P, Chen CH, Leap D, Sun J. Neuronal GPCR NPR-8 regulates C. elegans defense against pathogen infection. SCIENCE ADVANCES 2019; 5:eaaw4717. [PMID: 31799388 PMCID: PMC6867885 DOI: 10.1126/sciadv.aaw4717] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 09/17/2019] [Indexed: 05/18/2023]
Abstract
Increasing evidence indicates that infection-triggered host defenses are regulated by the nervous system. However, the precise mechanisms of this regulation are not well understood. Here, we demonstrate that neuronal G protein-coupled receptor NPR-8 negatively regulates Caenorhabditis elegans defense against pathogen infection by suppressing cuticular collagen expression. NPR-8 controls the dynamics of cuticle structure in response to infection, likely through its regulation of cuticular collagen genes which, in turn, affects the nematode's defense. We further show that the defense activity of NPR-8 is confined to amphid sensory neurons AWB, ASJ, and AWC. It is generally believed that physical barrier defenses are not a response to infections but are part of the body's basic innate defense against pathogens. Our results challenge this view by showing not only that C. elegans cuticle structure dynamically changes in response to infection but also that the cuticle barrier defense is regulated by the nervous system.
Collapse
Affiliation(s)
- Durai Sellegounder
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Yiyong Liu
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
- Genomics Core, Washington State University, Spokane, WA, USA
| | - Phillip Wibisono
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Chia-Hui Chen
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - David Leap
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Jingru Sun
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| |
Collapse
|
11
|
Schulenburg H, Félix MA. The Natural Biotic Environment of Caenorhabditis elegans. Genetics 2017; 206:55-86. [PMID: 28476862 PMCID: PMC5419493 DOI: 10.1534/genetics.116.195511] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/28/2017] [Indexed: 01/05/2023] Open
Abstract
Organisms evolve in response to their natural environment. Consideration of natural ecological parameters are thus of key importance for our understanding of an organism's biology. Curiously, the natural ecology of the model species Caenorhabditis elegans has long been neglected, even though this nematode has become one of the most intensively studied models in biological research. This lack of interest changed ∼10 yr ago. Since then, an increasing number of studies have focused on the nematode's natural ecology. Yet many unknowns still remain. Here, we provide an overview of the currently available information on the natural environment of C. elegans We focus on the biotic environment, which is usually less predictable and thus can create high selective constraints that are likely to have had a strong impact on C. elegans evolution. This nematode is particularly abundant in microbe-rich environments, especially rotting plant matter such as decomposing fruits and stems. In this environment, it is part of a complex interaction network, which is particularly shaped by a species-rich microbial community. These microbes can be food, part of a beneficial gut microbiome, parasites and pathogens, and possibly competitors. C. elegans is additionally confronted with predators; it interacts with vector organisms that facilitate dispersal to new habitats, and also with competitors for similar food environments, including competitors from congeneric and also the same species. Full appreciation of this nematode's biology warrants further exploration of its natural environment and subsequent integration of this information into the well-established laboratory-based research approaches.
Collapse
Affiliation(s)
- Hinrich Schulenburg
- Zoological Institute, Christian-Albrechts Universitaet zu Kiel, 24098 Kiel, Germany
| | - Marie-Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, École Normale Supérieure, L'université de Recherche Paris Sciences et Lettres, 75005, France
| |
Collapse
|
12
|
Yang NJ, Chiu IM. Bacterial Signaling to the Nervous System through Toxins and Metabolites. J Mol Biol 2017; 429:587-605. [PMID: 28065740 PMCID: PMC5325782 DOI: 10.1016/j.jmb.2016.12.023] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/21/2016] [Accepted: 12/29/2016] [Indexed: 12/31/2022]
Abstract
Mammalian hosts interface intimately with commensal and pathogenic bacteria. It is increasingly clear that molecular interactions between the nervous system and microbes contribute to health and disease. Both commensal and pathogenic bacteria are capable of producing molecules that act on neurons and affect essential aspects of host physiology. Here we highlight several classes of physiologically important molecular interactions that occur between bacteria and the nervous system. First, clostridial neurotoxins block neurotransmission to or from neurons by targeting the SNARE complex, causing the characteristic paralyses of botulism and tetanus during bacterial infection. Second, peripheral sensory neurons-olfactory chemosensory neurons and nociceptor sensory neurons-detect bacterial toxins, formyl peptides, and lipopolysaccharides through distinct molecular mechanisms to elicit smell and pain. Bacteria also damage the central nervous system through toxins that target the brain during infection. Finally, the gut microbiota produces molecules that act on enteric neurons to influence gastrointestinal motility, and metabolites that stimulate the "gut-brain axis" to alter neural circuits, autonomic function, and higher-order brain function and behavior. Furthering the mechanistic and molecular understanding of how bacteria affect the nervous system may uncover potential strategies for modulating neural function and treating neurological diseases.
Collapse
Affiliation(s)
- Nicole J Yang
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Lee JH, Kim YG, Kim M, Kim E, Choi H, Kim Y, Lee J. Indole-associated predator-prey interactions between the nematode Caenorhabditis elegans and bacteria. Environ Microbiol 2017; 19:1776-1790. [PMID: 28028877 DOI: 10.1111/1462-2920.13649] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/14/2016] [Accepted: 12/17/2016] [Indexed: 12/29/2022]
Abstract
Indole is an intercellular and interkingdom signalling molecule found in diverse ecological niches. Caenorhabditis elegans is a bacterivorous nematode that lives in soil and compost environments and a useful model host for studies of host-microbe interactions. Although various bacteria and some plants produce large quantities of extracellular indole, little is known about the effects of indole, its derivatives, or of indole-producing bacteria on the behaviours of C. elegans or other animals. Here, they show that C. elegans senses and moves toward indole and several indole-producing bacteria, but avoids non-indole producing pathogenic bacteria. Furthermore, it was found indole-producing and non-indole-producing bacteria exert divergent effects on the egg-laying behaviour of C. elegans, and that various indole derivatives also modulate chemotaxis, egg-laying behaviour and the survival of C. elegans. In contrast, indole at high concentration can kill C. elegans, which in turn, has the ability to detoxify indole by oxidation and glucosylation. Transcriptional analysis showed indole markedly up-regulated the gene expressions of cytochrome P450s, UDP-glucuronosyltransferases and glutathione S-transferase, which well explained the modification of indole by C. elegans while indole down-regulated the expressions of collagen and F-box genes. Their findings suggest that indole and its derivatives are important signalling molecules during bacteria-nematode interactions.
Collapse
Affiliation(s)
- Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Minsu Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Eonmi Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Younghoon Kim
- Department of Animal Science, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
14
|
Ballestriero F, Nappi J, Zampi G, Bazzicalupo P, Di Schiavi E, Egan S. Caenorhabditis elegans employs innate and learned aversion in response to bacterial toxic metabolites tambjamine and violacein. Sci Rep 2016; 6:29284. [PMID: 27384057 PMCID: PMC4935850 DOI: 10.1038/srep29284] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/14/2016] [Indexed: 12/19/2022] Open
Abstract
Bacteriovorus eukaryotes such as nematodes are one of the major natural predators of bacteria. In their defense bacteria have evolved a number of strategies to avoid predation, including the production of deterrent or toxic metabolites, however little is known regarding the response of predators towards such bacterial defenses. Here we use the nematode C. elegans as a model to study a predators’ behavioral response towards two toxic bacterial metabolites, tambjamine YP1 and violacein. We found that C. elegans displays an innate avoidance behavior towards tambjamine YP1, however requires previous exposure to violacein before learning to avoid this metabolite. The learned avoidance of violacein is specific, reversible, is mediated via the nematode olfactory apparatus (aversive olfactory learning) and is reduced in the absence of the neurotransmitter serotonin. These multiple strategies to evade bacterial toxic metabolites represent a valuable behavioral adaptation allowing bacteriovorus predators to distinguish between good and bad food sources, thus contributing to the understanding of microbial predator-prey interactions.
Collapse
Affiliation(s)
- Francesco Ballestriero
- School of Biological, Earth and Environmental Science and Centre for Marine Bio-Innovation, University of New South Wales, Australia
| | - Jadranka Nappi
- School of Biological, Earth and Environmental Science and Centre for Marine Bio-Innovation, University of New South Wales, Australia
| | - Giuseppina Zampi
- Institute of Biosciences and BioResources, National Research Council, Naples, Italy
| | - Paolo Bazzicalupo
- Institute of Biosciences and BioResources, National Research Council, Naples, Italy.,Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources, National Research Council, Naples, Italy.,Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | - Suhelen Egan
- School of Biological, Earth and Environmental Science and Centre for Marine Bio-Innovation, University of New South Wales, Australia
| |
Collapse
|
15
|
Doroquez DB, Berciu C, Anderson JR, Sengupta P, Nicastro D. A high-resolution morphological and ultrastructural map of anterior sensory cilia and glia in Caenorhabditis elegans. eLife 2014; 3:e01948. [PMID: 24668170 PMCID: PMC3965213 DOI: 10.7554/elife.01948] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 02/17/2014] [Indexed: 12/22/2022] Open
Abstract
Many primary sensory cilia exhibit unique architectures that are critical for transduction of specific sensory stimuli. Although basic ciliogenic mechanisms are well described, how complex ciliary structures are generated remains unclear. Seminal work performed several decades ago provided an initial but incomplete description of diverse sensory cilia morphologies in C. elegans. To begin to explore the mechanisms that generate these remarkably complex structures, we have taken advantage of advances in electron microscopy and tomography, and reconstructed three-dimensional structures of fifty of sixty sensory cilia in the C. elegans adult hermaphrodite at high resolution. We characterize novel axonemal microtubule organization patterns, clarify structural features at the ciliary base, describe new aspects of cilia-glia interactions, and identify structures suggesting novel mechanisms of ciliary protein trafficking. This complete ultrastructural description of diverse cilia in C. elegans provides the foundation for investigations into underlying ciliogenic pathways, as well as contributions of defined ciliary structures to specific neuronal functions. DOI: http://dx.doi.org/10.7554/eLife.01948.001.
Collapse
Affiliation(s)
- David B Doroquez
- Department of Biology, Brandeis University, Waltham, United States
- National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Cristina Berciu
- Department of Biology, Brandeis University, Waltham, United States
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, United States
| | - James R Anderson
- Department of Ophthalmology, John A Moran Eye Center, University of Utah School of Medicine, Salt Lake City, United States
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, United States
- National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Daniela Nicastro
- Department of Biology, Brandeis University, Waltham, United States
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, United States
| |
Collapse
|
16
|
Brechbühl J, Moine F, Broillet MC. Mouse Grueneberg ganglion neurons share molecular and functional features with C. elegans amphid neurons. Front Behav Neurosci 2013; 7:193. [PMID: 24367309 PMCID: PMC3856774 DOI: 10.3389/fnbeh.2013.00193] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/20/2013] [Indexed: 01/29/2023] Open
Abstract
The mouse Grueneberg ganglion (GG) is an olfactory subsystem located at the tip of the nose close to the entry of the naris. It comprises neurons that are both sensitive to cold temperature and play an important role in the detection of alarm pheromones (APs). This chemical modality may be essential for species survival. Interestingly, GG neurons display an atypical mammalian olfactory morphology with neurons bearing deeply invaginated cilia mostly covered by ensheathing glial cells. We had previously noticed their morphological resemblance with the chemosensory amphid neurons found in the anterior region of the head of Caenorhabditis elegans (C. elegans). We demonstrate here further molecular and functional similarities. Thus, we found an orthologous expression of molecular signaling elements that was furthermore restricted to similar specific subcellular localizations. Calcium imaging also revealed a ligand selectivity for the methylated thiazole odorants that amphid neurons are known to detect. Cellular responses from GG neurons evoked by chemical or temperature stimuli were also partially cGMP-dependent. In addition, we found that, although behaviors depending on temperature sensing in the mouse, such as huddling and thermotaxis did not implicate the GG, the thermosensitivity modulated the chemosensitivity at the level of single GG neurons. Thus, the striking similarities with the chemosensory amphid neurons of C. elegans conferred to the mouse GG neurons unique multimodal sensory properties.
Collapse
Affiliation(s)
- Julien Brechbühl
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland
| | - Fabian Moine
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland
| | - Marie-Christine Broillet
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland
| |
Collapse
|
17
|
Grooming Behavior as a Mechanism of Insect Disease Defense. INSECTS 2013; 4:609-30. [PMID: 26462526 PMCID: PMC4553506 DOI: 10.3390/insects4040609] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/20/2013] [Accepted: 10/22/2013] [Indexed: 11/17/2022]
Abstract
Grooming is a well-recognized, multipurpose, behavior in arthropods and vertebrates. In this paper, we review the literature to highlight the physical function, neurophysiological mechanisms, and role that grooming plays in insect defense against pathogenic infection. The intricate relationships between the physical, neurological and immunological mechanisms of grooming are discussed to illustrate the importance of this behavior when examining the ecology of insect-pathogen interactions.
Collapse
|
18
|
Hahm JH, Kim S, Paik YK. GPA-9 is a novel regulator of innate immunity against Escherichia coli foods in adult Caenorhabditis elegans. Aging Cell 2011; 10:208-19. [PMID: 21108728 DOI: 10.1111/j.1474-9726.2010.00655.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Innate immune responses to pathogens are governed by the nervous system. Here, we investigated the molecular mechanism underlying innate immunity in Caenorhabditis elegans against Escherichia coli OP50, a standard laboratory C. elegans food. Longevity was compared in worms fed live or UV-killed OP50 at low or high density food condition (HDF). Expression of the antimicrobial gene lys-8 was approximately 5-fold higher in worms fed live OP50, suggesting activation of innate immunity upon recognition of OP50 metabolites. Lifespan was extended and SOD-3 mRNA levels were increased in gpa-9-overexpressing gpa-9XS worms under HDF in association with robust induction of insulin/IGF-1 signaling (IIS). Expression of ins-7 and daf-28 that control lys-8 expression was reduced in gpa-9XS, indicating that GPA-9-mediated immunity is due in part to ins-7 and daf-28 downregulation. Our results suggest that OP50 metabolites in amphid neurons elicit innate immunity through the IIS pathway, and identify GPA-9 as a novel regulator of both the immune system and aging in C. elegans.
Collapse
Affiliation(s)
- Jeong-Hoon Hahm
- Yonsei Proteome Research Center Department of Biochemistry and Integrated Omics for Biomedical Science, College of Life Science and Biotechnology, World Class University Program, Graduate School, Yonsei University, Seoul, Korea
| | | | | |
Collapse
|
19
|
Identification of compounds with bioactivity against the nematode Caenorhabditis elegans by a screen based on the functional genomics of the marine bacterium Pseudoalteromonas tunicata D2. Appl Environ Microbiol 2010; 76:5710-7. [PMID: 20601498 DOI: 10.1128/aem.00695-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Marine bacteria are a rich, yet underexplored, resource of compounds with inhibitory bioactivity against a range of eukaryotic target organisms. Identification of those inhibitors, however, requires a culturable or genetically tractable producer strain, a prerequisite that is not often fulfilled. This study describes a novel functional genomic screen that is based on expression of inhibitors in a heterogeneous recombinant host (i.e., Escherichia coli). Functional libraries were screened by selective grazing by the nematode Caenorhabditis elegans, in a simple, rapid, high-throughput manner. We applied our approach to discover inhibitors of C. elegans produced by the marine bacterium Pseudoalteromonas tunicata D2, a model organism for exploring a range of antagonistic activities between bacteria and eukaryotes and a known producer of several toxic compounds. Expression of P. tunicata DNA in E. coli and grazing selection by the nematode Caenorhabditis elegans identified two clones, with slow- and fast-killing modes of action. Genomic analysis of the slow-killing clone revealed that the activity was due to a small molecule, tambjamine, while the fast-killing activity involved a gene encoding for a novel protein. Microscopic analysis showed substantial colonization of the intestinal lumen, or rapid death of the nematode without colonization, for the two activities, respectively. The novel functional genomic screen presented here therefore detects new eukaryotic inhibitors with different chemical structures, kinetics, and predicted modes of actions.
Collapse
|
20
|
|
21
|
Ziegler K, Kurz CL, Cypowyj S, Couillault C, Pophillat M, Pujol N, Ewbank JJ. Antifungal Innate Immunity in C. elegans: PKCδ Links G Protein Signaling and a Conserved p38 MAPK Cascade. Cell Host Microbe 2009; 5:341-52. [DOI: 10.1016/j.chom.2009.03.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 03/02/2009] [Accepted: 03/24/2009] [Indexed: 10/20/2022]
|
22
|
Neuroimmune regulation of antimicrobial peptide expression by a noncanonical TGF-beta signaling pathway in Caenorhabditis elegans epidermis. Nat Immunol 2009; 10:249-56. [PMID: 19198592 DOI: 10.1038/ni.1700] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 01/08/2009] [Indexed: 02/04/2023]
Abstract
After being infected by the fungus Drechmeria coniospora, Caenorhabditis elegans produces antimicrobial peptides in its epidermis, some regulated by a signaling cascade involving a p38 mitogen-activated protein kinase. Here we show that infection-induced expression of peptides of the Caenacin family occurred independently of the p38 pathway. The caenacin (cnc) genes enhanced survival after fungal infection, and neuronal expression of the transforming growth factor-beta homolog DBL-1 promoted cnc-2 expression in the epidermis in a dose-dependent paracrine way. Our results lead to a model in which antifungal defenses are coordinately regulated by a cell-autonomous p38 cascade and a distinct cytokine-like transforming growth factor-beta signal from the nervous system, each of which controls distinct sets of antimicrobial peptide-encoding genes in the epidermis.
Collapse
|
23
|
Neuroendocrine signals modulate the innate immunity of Caenorhabditis elegans through insulin signaling. Nat Immunol 2008; 9:1415-24. [PMID: 18854822 DOI: 10.1038/ni.1672] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 10/07/2008] [Indexed: 02/02/2023]
Abstract
Communication between the immune and nervous systems, each of which is able to react rapidly to environmental stimuli, may confer a survival advantage. However, precisely how the nervous system influences the immune response and whether neural modulation of immune function is biologically important are not well understood. Here we report that neuronal exocytosis of neuropeptides from dense core vesicles suppressed the survival of Caenorhabditis elegans and their clearance of infection with the human bacterial pathogen Pseudomonas aeruginosa. This immunomodulatory function was mediated by INS-7, an insulin-like neuropeptide whose induction was associated with Pseudomonas virulence. INS-7 secreted from the nervous system functioned in a non-cell autonomous way to activate the insulin pathway and alter basal and inducible expression of immunity-related genes in intestinal cells.
Collapse
|