1
|
Gottesman S. Bacterial Regulatory Circuits are Linked and Extended by Small RNAs. J Mol Biol 2025; 437:169059. [PMID: 40043836 PMCID: PMC12021557 DOI: 10.1016/j.jmb.2025.169059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/16/2025]
Abstract
I was lucky to start my research career as the molecular biology revolution was taking hold, providing a constantly increasing set of tools and questions to investigate. Starting from a fascination with bacteria and their ability to adapt to different conditions, I've investigated post-translational mechanisms and their role in the ability of E. coli to respond to stress. My research career has been primarily at the National Institutes of Health, where I run a group within the Laboratory of Molecular Biology, NCI and hold the title of NIH Distinguished Investigator. Our lab has been interested in both energy-dependent proteolysis, discussed very briefly here, and small regulatory RNAs (sRNAs). The major group of such sRNAs act by pairing with target mRNAs with the aid of the RNA chaperone Hfq, mediating both positive and negative regulation of translation and mRNA stability. Both in our own lab and in a continuing and highly productive collaboration with the laboratory of Gisela (Gigi) Storz, we have used global approaches to identify novel sRNAs, identified how many of them are regulated, both at the level of transcription and stability, and worked on understanding the role of these sRNAs in regulatory networks. Our continued work explores regulators of sRNA and Hfq function. Here, Gigi and I have split summaries of our findings, and hope that our two chapters will be read together.
Collapse
|
2
|
Wen ZT, Ellepola K, Wu H. MecA: A Multifunctional ClpP-Dependent and Independent Regulator in Gram-Positive Bacteria. Mol Microbiol 2025; 123:433-438. [PMID: 40070161 PMCID: PMC12121503 DOI: 10.1111/mmi.15356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/19/2025]
Abstract
MecA is a broadly conserved adaptor protein in Gram-positive bacteria, mediating the recognition and degradation of specific target proteins by ClpCP protease complexes. MecA binds target proteins, often through recognition of degradation tags or motifs, and delivers them to the ClpC ATPase, which unfolds and translocates the substrates into the ClpP protease barrel for degradation. MecA activity is tightly regulated through interactions with ClpC ATPase and other factors, ensuring precise control over protein degradation and cellular homeostasis. Beyond proteolysis, emerging evidence highlights a ClpP-independent role of MecA in modulating the function of its targets, including key enzymes and transcriptional factors involved in biosynthetic and metabolic pathways. However, the full scope and mechanisms of ClpP-independent MecA regulation remain unclear, warranting further investigation.
Collapse
Affiliation(s)
- Zezhang T. Wen
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Department of Microbiology, Immunology and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Kassapa Ellepola
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, Illinois, USA
| | - Hui Wu
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
3
|
Feng Y, Goncalves MM, Jitkova Y, Keszei AFA, Yan Y, Sarathy C, St-Germain J, Kenney TMG, Tcheng M, Trudel V, Mancini RS, Upadhyay R, Hurren R, Gronda M, Schultz M, Soriano K, Lees K, Pomroy NC, Currie SQW, Privé GG, Reed MA, Yudin AK, Penn LZ, Arrowsmith CH, Raught B, Mazhab-Jafari MT, Vahidi S, Schimmer AD. Serine phosphorylation facilitates protein degradation by the human mitochondrial ClpXP protease. Proc Natl Acad Sci U S A 2025; 122:e2422447122. [PMID: 39879245 PMCID: PMC11804671 DOI: 10.1073/pnas.2422447122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025] Open
Abstract
ClpXP is a two-component mitochondrial matrix protease. The caseinolytic mitochondrial matrix peptidase chaperone subunit X (ClpX) recognizes and translocates protein substrates into the degradation chamber of the caseinolytic protease P (ClpP) for proteolysis. ClpXP degrades damaged respiratory chain proteins and is necessary for cancer cell survival. Despite the critical role of ClpXP in mitochondrial protein quality control, the specific degrons, or modifications that tag substrate proteins for degradation by human ClpXP, are still unknown. We demonstrated that phosphorylated serine (pSer) targets substrates to ClpX and facilitates their degradation by ClpXP in biochemical assays. In contrast, ClpP hyperactivated by the small-molecule drug ONC201 lost the preference for phosphorylated substrates. Hydrogen deuterium exchange mass spectrometry combined with biochemical assays showed that pSer binds the RKL loop of ClpX. ClpX variants with substitutions in the RKL loop failed to recognize phosphorylated substrates. In intact cells, ClpXP also preferentially degraded substrates with pSer. Moreover, ClpX substrates with the pSer were selectively found in aggregated mitochondrial proteins. Our work uncovers a mechanism for substrate recognition by ClpXP, with implications for targeting acute myeloid leukemia and other disorders involving ClpXP dysfunction.
Collapse
Affiliation(s)
- Yue Feng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ONM5G 1L7, Canada
| | - Monica M. Goncalves
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Yulia Jitkova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | | | - Yongran Yan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Chaitra Sarathy
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Jonathan St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Tristan M. G. Kenney
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ONM5G 1L7, Canada
| | - Matthew Tcheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Vincent Trudel
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
| | - Ross S. Mancini
- Krembil Brain Institute, University Health Network, Toronto, ONM5T 1M8, Canada
| | - Rahul Upadhyay
- Krembil Brain Institute, University Health Network, Toronto, ONM5T 1M8, Canada
| | - Rose Hurren
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Marcela Gronda
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Matthew Schultz
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Kaylen Soriano
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Kaitlin Lees
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Neil C. Pomroy
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - S. Quinn W. Currie
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Gilbert G. Privé
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ONM5G 1L7, Canada
| | - Mark A. Reed
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Krembil Brain Institute, University Health Network, Toronto, ONM5T 1M8, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Andrei K. Yudin
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
| | - Linda Z. Penn
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ONM5G 1L7, Canada
| | - Cheryl H. Arrowsmith
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ONM5G 1L7, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ONM5G 1L7, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ONM5G 1L7, Canada
| | - Mohammad T. Mazhab-Jafari
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ONM5G 1L7, Canada
| | - Siavash Vahidi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Aaron D. Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ONM5G 1L7, Canada
| |
Collapse
|
4
|
Mao M, He L, Yan Q. An updated overview on the bacterial PhoP/PhoQ two-component signal transduction system. Front Cell Infect Microbiol 2025; 15:1509037. [PMID: 39958932 PMCID: PMC11825808 DOI: 10.3389/fcimb.2025.1509037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/08/2025] [Indexed: 02/18/2025] Open
Abstract
The PhoP response regulator and the cognate sensor kinase PhoQ form one of the two-component signal transduction systems that is highly conserved in bacteria. The PhoP/PhoQ system is a crucial mediator of signal transduction. It regulates the expression of bacterial environmental tolerance genes, virulence factors, adhesion, and invasion-related genes by sensing various environmental signals in the host, including Mg2+, low pH, antimicrobial peptides, and osmotic pressure. In this review, we describe the PhoP/PhoQ system-induced signal composition and its feedback mechanism, and the abundance of PhoP phosphorylation in the activated state directly or indirectly controls the transcription and expression of related genes, regulating bacterial stability. Then, we discuss the relationship between the PhoP/PhoQ system and other components of the TCS system. Under the same induction conditions, their interaction relationship determines whether bacteria can quickly restore their homeostasis and exert virulence effects. Finally, we investigate the coordinated role of the PhoP/PhoQ system in acquiring pathogenic virulence.
Collapse
Affiliation(s)
| | | | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, Fujian, China
| |
Collapse
|
5
|
Ellepola K, Shields RC, Kajfasz JK, Zhang H, Lemos JA, Wu H, Wen ZT. MecA in Streptococcus mutans is a multi-functional protein. mSphere 2024; 9:e0030824. [PMID: 39530674 PMCID: PMC11656736 DOI: 10.1128/msphere.00308-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/09/2024] [Indexed: 11/16/2024] Open
Abstract
Our recent studies have shown that deficiency of MecA in Streptococcus mutans significantly affects cell division, growth, and biofilm formation. In this study, an in vitro mixed-species model, proteomics, and affinity pull-down assays were used to further characterize the MecA-mediated regulation in S. mutans. The results showed that compared with the wild type, UA159, the mecA mutant significantly reduced its production of glucans and weakened its ability to facilitate mixed-species biofilm formation. Relative to the wild type, the mecA mutant also displayed unique characteristics, including colony morphology, growth rate, and biofilm formation that did not fully resemble any of the clpP, clpX, clpE, clpCE, and clpC individual or combinational mutants. Deletion of mecA was shown to result in alteration of >337 proteins, including down expression of GtfBC&D and adhesin P1. More than 277 proteins were differentially expressed in response to clpP deletion, including increased expression of GtfB. By cross-referencing the two proteomes, a distinctive set of proteins was found to be altered in the mecA mutant, indicating a ClpP-independent role of MecA in the regulation of S. mutans. When analyzed using affinity pull-down, ClpC, ClpX, ClpE, and CcpA were among the members identified in the MecA-associated complex. Further analysis using a bacterial two-hybrid system confirmed CcpA, ClpX, and ClpE as members of the MecA interactome. These results further suggest that MecA in S. mutans is more than an adapter of the Clp-proteolytic machinery, although the mechanism that underlies the Clp-independent regulation and its impact on S. mutans pathophysiology await further investigation. IMPORTANCE MecA is known as an adaptor protein that works in concerto with ATPase ClpC and protease ClpP in the regulated proteolysis machinery. The results presented here provide further evidence that MecA in S. mutans, a keystone cariogenic bacterium, plays a significant role in its ability to facilitate mixed-species biofilm formation, a trait critical to its cariogenicity. Proteomics analysis, along with affinity pull-down and bacterial two-hybrid system, further confirm that MecA can also regulate S. mutans physiology and biofilm formation through pathways independent of the Clp proteolytic machinery, although how it functions independently of Clp awaits further investigation.
Collapse
Affiliation(s)
- Kassapa Ellepola
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Robert C. Shields
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Jessica K. Kajfasz
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Hua Zhang
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Jose A. Lemos
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Hui Wu
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Zezhang T. Wen
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Department of Microbiology, Immunology and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
6
|
Zhang Z, Chen G, Hussain W, Pan Y, Yang Z, Liu Y, Li E. Machine learning and network analysis with focus on the biofilm in Staphylococcus aureus. Comput Struct Biotechnol J 2024; 23:4148-4160. [PMID: 39640530 PMCID: PMC11617897 DOI: 10.1016/j.csbj.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Research on biofilm formation in Staphylococcus aureus has greatly benefited from the generation of high-throughput sequencing data to drive molecular analysis. The accumulation of high-throughput sequencing data, particularly transcriptomic data, offers a unique opportunity to unearth the network and constituent genes involved in biofilm formation using machine learning strategies and co-expression analysis. Herein, the available RNA sequencing data related to Staphylococcus aureus biofilm studies and identified influenced functional pathways and corresponding genes in the process of the transition of bacteria from planktonic to biofilm state by employing machine learning and differential expression analysis. Using weighted gene co-expression analysis and previously developed online prediction platform, important functional modules, potential biofilm-associated proteins, and subnetworks of the biofilm-formation pathway were uncovered. Additionally, several novel protein interactions within these functional modules were identified by constructing a protein-protein interaction (PPI) network. To make this data more straightforward for experimental biologists, an online database named SAdb was developed (http://sadb.biownmcli.info/), which integrates gene annotations, transcriptomics, and proteomics data. Thus, the current study will be of interest to researchers in the field of bacteriology, particularly those studying biofilms, which play a crucial role in bacterial growth, pathogenicity, and drug resistance.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Department of Medical Information Engineering, School of Medical Information, Wannan Medical College, Wuhu 241000, China
| | - Guozhong Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Wajid Hussain
- Advanced Biomaterials and Tissue Engineering Center, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuanyuan Pan
- Department of Medical Information Engineering, School of Medical Information, Wannan Medical College, Wuhu 241000, China
| | - Zhu Yang
- Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui, China
| | - Yin Liu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Erguang Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
7
|
Ishikawa F, Uchida C, Tanabe G. Proteolytic Regulation in the Biosynthesis of Natural Product Via a ClpP Protease System. ACS Chem Biol 2024; 19:1794-1802. [PMID: 39096241 DOI: 10.1021/acschembio.4c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Protein degradation is a tightly regulated biological process that maintains bacterial proteostasis. ClpPs are a highly conserved family of serine proteases that associate with the AAA + ATPase (an ATPase associated with diverse cellular activities) to degrade protein substrates. Identification and biochemical characterization of protein substrates for the AAA + ATPase-dependent ClpP degradation systems are considered essential for gaining an understanding of the molecular operation of the complex ClpP degradation machinery. Consequently, expanding the repertoire of protein substrates that can be degraded in vitro and within bacterial cells is necessary. Here, we report that AAA + ATPase-ClpP proteolytic complexes promote degradation of the secondary metabolite surfactin synthetases SrfAA, SrfAB, and SrfAC in Bacillus subtilis. On the basis of in vitro and in-cell studies coupled with activity-based protein profiling of nonribosomal peptide synthetases, we showed that SrfAC is targeted to the ClpC-ClpP proteolytic complex, whereas SrfAA is hydrolyzed not only by the ClpC-ClpP proteolytic complex but also by different ClpP proteolytic complexes. Furthermore, SrfAB does not appear to be a substrate for the ClpC-ClpP proteolytic complex, thereby implying that other ClpP proteolytic complexes are involved in the degradation of this surfactin synthetase. Natural product biosynthesis is regulated by the AAA + ATPase-ClpP degradation system, indicating that protein degradation plays a role in the regulatory stages of biosynthesis. However, few studies have examined the regulation of protein degradation levels. Furthermore, SrfAA, SrfAB, and SrfAC were identified as protein substrates for AAA + ATPase-ClpP degradation systems, thereby contributing to a better understanding of the complex ClpP degradation machinery.
Collapse
Affiliation(s)
- Fumihiro Ishikawa
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Chiharu Uchida
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Genzoh Tanabe
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| |
Collapse
|
8
|
Brugger C, Srirangam S, Deaconescu AM. IraM remodels the RssB segmented helical linker to stabilize σ s against degradation by ClpXP. J Biol Chem 2024; 300:105568. [PMID: 38103640 PMCID: PMC10844676 DOI: 10.1016/j.jbc.2023.105568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023] Open
Abstract
Upon Mg2+ starvation, a condition often associated with virulence, enterobacteria inhibit the ClpXP-dependent proteolysis of the master transcriptional regulator, σs, via IraM, a poorly understood antiadaptor that prevents RssB-dependent loading of σs onto ClpXP. This inhibition results in σs accumulation and expression of stress resistance genes. Here, we report on the structural analysis of RssB bound to IraM, which reveals that IraM induces two folding transitions within RssB, amplified via a segmented helical linker. These conformational changes result in an open, yet inhibited RssB structure in which IraM associates with both the C-terminal and N-terminal domains of RssB and prevents binding of σs to the 4-5-5 face of the N-terminal receiver domain. This work highlights the remarkable structural plasticity of RssB and reveals how a stress-specific RssB antagonist modulates a core stress response pathway that could be leveraged to control biofilm formation, virulence, and the development of antibiotic resistance.
Collapse
Affiliation(s)
- Christiane Brugger
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Srinivas Srirangam
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Alexandra M Deaconescu
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
9
|
Brugger C, Schwartz J, Novick S, Tong S, Hoskins JR, Majdalani N, Kim R, Filipovski M, Wickner S, Gottesman S, Griffin PR, Deaconescu AM. Structure of phosphorylated-like RssB, the adaptor delivering σ s to the ClpXP proteolytic machinery, reveals an interface switch for activation. J Biol Chem 2023; 299:105440. [PMID: 37949227 PMCID: PMC10755785 DOI: 10.1016/j.jbc.2023.105440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023] Open
Abstract
In enterobacteria such as Escherichia coli, the general stress response is mediated by σs, the stationary phase dissociable promoter specificity subunit of RNA polymerase. σs is degraded by ClpXP during active growth in a process dependent on the RssB adaptor, which is thought to be stimulated by the phosphorylation of a conserved aspartate in its N-terminal receiver domain. Here we present the crystal structure of full-length RssB bound to a beryllofluoride phosphomimic. Compared to the structure of RssB bound to the IraD anti-adaptor, our new RssB structure with bound beryllofluoride reveals conformational differences and coil-to-helix transitions in the C-terminal region of the RssB receiver domain and in the interdomain segmented helical linker. These are accompanied by masking of the α4-β5-α5 (4-5-5) "signaling" face of the RssB receiver domain by its C-terminal domain. Critically, using hydrogen-deuterium exchange mass spectrometry, we identify σs-binding determinants on the 4-5-5 face, implying that this surface needs to be unmasked to effect an interdomain interface switch and enable full σs engagement and hand-off to ClpXP. In activated receiver domains, the 4-5-5 face is often the locus of intermolecular interactions, but its masking by intramolecular contacts upon phosphorylation is unusual, emphasizing that RssB is a response regulator that undergoes atypical regulation.
Collapse
Affiliation(s)
- Christiane Brugger
- Laboratories of Molecular Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Jacob Schwartz
- Laboratories of Molecular Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Scott Novick
- Department of Molecular Medicine, The Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, Florida, USA
| | - Song Tong
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Joel R Hoskins
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Nadim Majdalani
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rebecca Kim
- Laboratories of Molecular Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Martin Filipovski
- Laboratories of Molecular Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Patrick R Griffin
- Department of Molecular Medicine, The Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, Florida, USA
| | - Alexandra M Deaconescu
- Laboratories of Molecular Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
10
|
Abstract
Mitochondria are multifunctional organelles that play a central role in a wide range of life-sustaining tasks in eukaryotic cells, including adenosine triphosphate (ATP) production, calcium storage and coenzyme generation pathways such as iron-sulfur cluster biosynthesis. The wide range of mitochondrial functions is carried out by a diverse array of proteins comprising approximately 1500 proteins or polypeptides. Degradation of these proteins is mainly performed by four AAA+ proteases localized in mitochondria. These AAA+ proteases play a quality control role in degrading damaged or misfolded proteins and perform various other functions. This chapter describes previously identified roles for these AAA+ proteases that are localized in the mitochondria of animal cells.
Collapse
Affiliation(s)
- Yuichi Matsushima
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| |
Collapse
|
11
|
Song H, Choi E, Lee EJ. Membrane-Bound Protease FtsH Protects PhoP from the Proteolysis by Cytoplasmic ClpAP Protease in Salmonella Typhimurium. J Microbiol Biotechnol 2023; 33:1130-1140. [PMID: 37330414 PMCID: PMC10580885 DOI: 10.4014/jmb.2306.06016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Among the AAA+ proteases in bacteria, FtsH is a membrane-bound ATP-dependent metalloprotease, which is known to degrade many membrane proteins as well as some cytoplasmic proteins. In the intracellular pathogen Salmonella enterica serovar Typhimurium, FtsH is responsible for the proteolysis of several proteins including MgtC virulence factor and MgtA/MgtB Mg2+ transporters, the transcription of which is controlled by the PhoP/PhoQ two-component regulatory system. Given that PhoP response regulator itself is a cytoplasmic protein and also degraded by the cytoplasmic ClpAP protease, it seems unlikely that FtsH affects PhoP protein levels. Here we report an unexpected role of the FtsH protease protecting PhoP proteolysis from cytoplasmic ClpAP protease. In FtsH-depleted condition, PhoP protein levels decrease by ClpAP proteolysis, lowering protein levels of PhoP-controlled genes. This suggests that FtsH is required for normal activation of PhoP transcription factor. FtsH does not degrade PhoP protein but directly binds to PhoP, thus sequestering PhoP from ClpAP-mediated proteolysis. FtsH's protective effect on PhoP can be overcome by providing excess ClpP. Because PhoP is required for Salmonella's survival inside macrophages and mouse virulence, these data implicate that FtsH's sequestration of PhoP from ClpAP-mediated proteolysis is a mechanism ensuring the amount of PhoP protein during Salmonella infection.
Collapse
Affiliation(s)
- Hyungkeun Song
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Eunna Choi
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Eun-Jin Lee
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
12
|
Majdalani N, Chattopadhyay M, Keller C, Gottesman S. Lack of polyamines leads to cotranslational degradation of the general stress factor RpoS in Escherichia coli. J Biol Chem 2023; 299:104943. [PMID: 37343699 PMCID: PMC10372455 DOI: 10.1016/j.jbc.2023.104943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023] Open
Abstract
The specialized sigma factor RpoS mediates a general stress response in Escherichia coli and related bacteria, activating promoters that allow cells to survive stationary phase and many stresses. RpoS synthesis and stability are regulated at multiple levels. Translation of RpoS is positively regulated by multiple small RNAs in response to stress. Degradation of RpoS, dependent upon the adaptor protein RssB, is rapid during exponential growth and ceases upon starvation or other stresses, increasing accumulation of RpoS. E. coli carrying mutations that block the synthesis of polyamines were previously found to have low levels of RpoS, while levels increased rapidly when polyamines were added. We have used a series of reporters to examine the basis for the lack of RpoS in polyamine-deficient cells. The polyamine requirement was independent of small RNA-mediated positive regulation of RpoS translation. Mutations in rssB stabilize RpoS and significantly bypassed the polyamine deficit, suggesting that lack of polyamines might lead to rapid RpoS degradation. However, rates of degradation of mature RpoS were unaffected by polyamine availability. Codon optimization in rpoS partially relieved the polyamine dependence, suggesting a defect in RpoS translation in the absence of polyamines. Consistent with this, a hyperproofreading allele of ribosomal protein S12, encoded by rpsL, showed a decrease in RpoS levels, and this decrease was also suppressed by either codon optimization or blocking RpoS degradation. We suggest that rpoS codon usage leads it to be particularly sensitive to slowed translation, due to either lack of polyamines or hyperproofreading, leading to cotranslational degradation. We dedicate this study to Herb Tabor and his foundational work on polyamines, including the basis for this study.
Collapse
Affiliation(s)
- Nadim Majdalani
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Manas Chattopadhyay
- Laboratory of Biochemistry and Genetics, NIDDK, NIH, Bethesda, Maryland, USA
| | - Christopher Keller
- Laboratory of Biochemistry and Genetics, NIDDK, NIH, Bethesda, Maryland, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA.
| |
Collapse
|
13
|
Li A, Fan J, Jia Y, Tang X, Chen J, Shen C. Phenotype and metabolism alterations in PCB-degrading Rhodococcus biphenylivorans TG9 T under acid stress. J Environ Sci (China) 2023; 127:441-452. [PMID: 36522076 DOI: 10.1016/j.jes.2022.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 06/17/2023]
Abstract
Environmental acidification impairs microorganism diversity and their functions on substance transformation. Rhodococcus is a ubiquitously distributed genus for contaminant detoxification in the environment, and it can also adapt a certain range of pH. This work interpreted the acid responses from both phenotype and metabolism in strain Rhodococcus biphenylivorans TG9T (TG9) induced at pH 3. The phenotype alterations were described with the number of culturable and viable cells, intracellular ATP concentrations, cell shape and entocyte, degradation efficiency of polychlorinated biphenyl (PCB) 31 and biphenyl. The number of culturable cells maintained rather stable within the first 10 days, even though the other phenotypes had noticeable alterations, indicating that TG9 possesses certain capacities to survive under acid stress. The metabolism responses were interpreted based on transcription analyses with four treatments including log phase (LP), acid-induced (PER), early recovery after removing acid (RE) and later recovery (REL). With the overview on the expression regulations among the 4 treatments, the RE sample presented more upregulated and less downregulated genes, suggesting that its metabolism was somehow more active after recovering from acid stress. In addition, the response mechanism was interpreted on 10 individual metabolism pathways mainly covering protein modification, antioxidation, antipermeability, H+ consumption, neutralization and extrusion. Furthermore, the transcription variations were verified with RT-qPCR on 8 genes with 24-hr, 48-hr and 72-hr acid treatment. Taken together, TG9 possesses comprehensive metabolism strategies defending against acid stress. Consequently, a model was built to provide an integrate insight to understand the acid resistance/tolerance metabolisms in microorganisms.
Collapse
Affiliation(s)
- Aili Li
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahui Fan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yangyang Jia
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianjin Tang
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingwen Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Schwarz M, Hübner I, Sieber SA. Tailored phenyl esters inhibit ClpXP and attenuate Staphylococcus aureus α-hemolysin secretion. Chembiochem 2022; 23:e202200253. [PMID: 35713329 PMCID: PMC9544270 DOI: 10.1002/cbic.202200253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/15/2022] [Indexed: 11/14/2022]
Abstract
Novel strategies against multidrug‐resistant bacteria are urgently needed in order to overcome the current silent pandemic. Manipulation of toxin production in pathogenic species serves as a promising approach to attenuate virulence and prevent infections. In many bacteria such as Staphylococcus aureus or Listeria monocyotgenes, serine protease ClpXP is a key contributor to virulence and thus represents a prime target for antimicrobial drug discovery. The limited stability of previous electrophilic warheads has prevented a sustained effect of virulence attenuation in bacterial culture. Here, we systematically tailor the stability and inhibitory potency of phenyl ester ClpXP inhibitors by steric shielding of the ester bond and fine‐tuning the phenol leaving group. Out of 17 derivatives, two (MAS‐19 and MAS‐30) inhibited S. aureus ClpP peptidase and ClpXP protease activities by >60 % at 1 μM. Furthermore, the novel inhibitors did not exhibit pronounced cytotoxicity against human and bacterial cells. Unlike the first generation phenylester AV170, these molecules attenuated S. aureus virulence markedly and displayed increased stability in aqueous buffer compared to the previous benchmark AV170.
Collapse
Affiliation(s)
- Markus Schwarz
- Technical University Munich: Technische Universitat Munchen, Chemistry, Ernst-Otto-Fischer-Straße 8, 85748, Garching bei München, GERMANY
| | - Ines Hübner
- Technical University of Munich: Technische Universitat Munchen, Chemistry, GERMANY
| | - Stephan Axel Sieber
- Technische Universitat Munchen, Department of Chemistry, Lichtenbergstr. 4, 85747, Garching, GERMANY
| |
Collapse
|
15
|
SmiA is a hybrid priming/scaffolding adaptor for the LonA protease in Bacillus subtilis. J Biol Chem 2022; 298:102045. [PMID: 35595098 PMCID: PMC9204741 DOI: 10.1016/j.jbc.2022.102045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
Regulatory proteolysis targets properly folded clients via a combination of cis-encoded degron sequences and trans-expressed specificity factors called adaptors. SmiA of Bacillus subtilis was identified as the first adaptor protein for the Lon family of proteases, but the mechanism of SmiA-dependent proteolysis is unknown. Here, we develop a fluorescence-based assay to measure the kinetics of SmiA-dependent degradation of its client SwrA and show that SmiA–SwrA interaction and the SwrA degron were both necessary, but not sufficient, for proteolysis. Consistent with a scaffolding adaptor mechanism, we found that stoichiometric excess of SmiA caused substrate-independent inhibition of LonA-dependent turnover. Furthermore, SmiA was strictly required even when SwrA levels were high suggesting that a local increase in substrate concentration mediated by the scaffold was not sufficient for proteolysis. Moreover, SmiA function could not be substituted by thermal denaturation of the substrate, consistent with a priming adaptor mechanism. Taken together, we conclude that SmiA functions via a mechanism that is a hybrid between scaffolding and priming models.
Collapse
|
16
|
Whitman BT, Murray CRA, Whitford DS, Paul SS, Fahlman RP, Glover MJN, Owttrim GW. Degron-mediated proteolysis of CrhR-like DEAD-box RNA helicases in cyanobacteria. J Biol Chem 2022; 298:101925. [PMID: 35413287 PMCID: PMC9117542 DOI: 10.1016/j.jbc.2022.101925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/18/2022] Open
Abstract
Conditional proteolytic degradation is an irreversible and highly regulated process that fulfills crucial regulatory functions in all organisms. As proteolytic targets tend to be critical metabolic or regulatory proteins, substrates are targeted for degradation only under appropriate conditions through the recognition of an amino acid sequence referred to as a “degron”. DEAD-box RNA helicases mediate all aspects of RNA metabolism, contributing to cellular fitness. However, the mechanism by which abiotic-stress modulation of protein stability regulates bacterial helicase abundance has not been extensively characterized. Here, we provide in vivo evidence that proteolytic degradation of the cyanobacterial DEAD-box RNA helicase CrhR is conditional, being initiated by a temperature upshift from 20 to 30 °C in the model cyanobacterium, Synechocystis sp. PCC 6803. We show degradation requires a unique, highly conserved, inherently bipartite degron located in the C-terminal extension found only in CrhR-related RNA helicases in the phylum Cyanobacteria. However, although necessary, the degron is not sufficient for proteolysis, as disruption of RNA helicase activity and/or translation inhibits degradation. These results suggest a positive feedback mechanism involving a role for CrhR in expression of a crucial factor required for degradation. Furthermore, AlphaFold structural prediction indicated the C-terminal extension is a homodimerization domain with homology to other bacterial RNA helicases, and mass photometry data confirmed that CrhR exists as a dimer in solution at 22 °C. These structural data suggest a model wherein the CrhR degron is occluded at the dimerization interface but could be exposed if dimerization was disrupted by nonpermissive conditions.
Collapse
Affiliation(s)
- Brendan T Whitman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Cameron R A Murray
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Denise S Whitford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Simanta S Paul
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Richard P Fahlman
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mark J N Glover
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - George W Owttrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
17
|
Matavacas J, von Wachenfeldt C. Update on the Protein Homeostasis Network in Bacillus subtilis. Front Microbiol 2022; 13:865141. [PMID: 35350626 PMCID: PMC8957991 DOI: 10.3389/fmicb.2022.865141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Protein homeostasis is fundamental to cell function and survival. It relies on an interconnected network of processes involving protein synthesis, folding, post-translational modification and degradation as well as regulators of these processes. Here we provide an update on the roles, regulation and subcellular localization of the protein homeostasis machinery in the Gram-positive model organism Bacillus subtilis. We discuss emerging ideas and current research gaps in the field that, if tackled, increase our understanding of how Gram-positive bacteria, including several human pathogens, maintain protein homeostasis and cope with stressful conditions that challenge their survival.
Collapse
|
18
|
Abstract
Regulated proteolysis is where AAA+ ATPases (ClpX, ClpC, and ClpE) are coupled to a protease subunit (ClpP) to facilitate degradation of misfolded and native regulatory proteins in the cell. The process is intricately linked to protein quality control and homeostasis and modulates several biological processes. In streptococci, regulated proteolysis is vital to various functions, including virulence expression, competence development, bacteriocin production, biofilm formation, and stress responses. Among the various Clp ATPases, ClpX is the major one that recognizes specific amino acid residues in its substrates and delivers them to the ClpP proteolytic chamber for degradation. While multiple ClpX substrates have been identified in Escherichia coli and other bacteria, little is known about the identity of these substrates in streptococci. Here, we used a preliminary proteomic analysis to identify putative ClpX substrates using Streptococcus mutans as a model organism. SMU.961 is one such putative substrate where we identified the Glu-Lue-Gln (ELQ) motif at the C terminus that is recognized by ClpX/P. We identified several other proteins, including MecA, which also harbor ELQ and are degraded by ClpX/P. This is surprising since MecA is known to be degraded by ClpC/P in Bacillus subtilis; however, ClpX/P-mediated MecA degradation is unknown. We also identified Glu and Gln as the crucial residues for ClpX recognition. Our data indicate a species and perhaps strain-specific recognition of ELQ by streptococcal ClpX/P. At present, we do not know whether this species-dependent degradation by ClpX/P is unique to S. mutans, and we are currently examining the phenomenon in other pathogenic streptococci. IMPORTANCE ClpX/P is a major intracellular proteolytic complex that is responsible for protein quality control in the cell. ClpX, an AAA+ ATPase, distinguishes the potential substrates by recognizing short motifs at the C-terminal end of proteins and delivers the substrates for degradation by ClpP protease. The identity of these ClpX substrates, which varies greatly among bacteria, is known only for a few well-studied species. Here, we used Streptococcus mutans as a model organism to identify ClpX substrates. We found that a short motif of three residues is successfully recognized by ClpX/P. Interestingly, the motif is not present at the ultimate C-terminal end; rather it is present close to the end. This result suggests that streptococcal ClpX ATPase can recognize internal motifs.
Collapse
|
19
|
Mabanglo MF, Houry WA. Recent structural insights into the mechanism of ClpP protease regulation by AAA+ chaperones and small molecules. J Biol Chem 2022; 298:101781. [PMID: 35245501 PMCID: PMC9035409 DOI: 10.1016/j.jbc.2022.101781] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/19/2022] Open
Abstract
ClpP is a highly conserved serine protease that is a critical enzyme in maintaining protein homeostasis and is an important drug target in pathogenic bacteria and various cancers. In its functional form, ClpP is a self-compartmentalizing protease composed of two stacked heptameric rings that allow protein degradation to occur within the catalytic chamber. ATPase chaperones such as ClpX and ClpA are hexameric ATPases that form larger complexes with ClpP and are responsible for the selection and unfolding of protein substrates prior to their degradation by ClpP. Although individual structures of ClpP and ATPase chaperones have offered mechanistic insights into their function and regulation, their structures together as a complex have only been recently determined to high resolution. Here, we discuss the cryoelectron microscopy structures of ClpP-ATPase complexes and describe findings previously inaccessible from individual Clp structures, including how a hexameric ATPase and a tetradecameric ClpP protease work together in a functional complex. We then discuss the consensus mechanism for substrate unfolding and translocation derived from these structures, consider alternative mechanisms, and present their strengths and limitations. Finally, new insights into the allosteric control of ClpP gained from studies using small molecules and gain or loss-of-function mutations are explored. Overall, this review aims to underscore the multilayered regulation of ClpP that may present novel ideas for structure-based drug design.
Collapse
Affiliation(s)
- Mark F Mabanglo
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Abstract
Mg2+ is the most abundant divalent cation in living cells. It is essential for charge neutralization, macromolecule stabilization, and the assembly and activity of ribosomes and as a cofactor for enzymatic reactions. When experiencing low cytoplasmic Mg2+, bacteria adopt two main strategies: They increase the abundance and activity of Mg2+ importers and decrease the abundance of Mg2+-chelating ATP and rRNA. These changes reduce regulated proteolysis by ATP-dependent proteases and protein synthesis in a systemic fashion. In many bacterial species, the transcriptional regulator PhoP controls expression of proteins mediating these changes. The 5' leader region of some mRNAs responds to low cytoplasmic Mg2+ or to disruptions in translation of open reading frames in the leader regions by furthering expression of the associated coding regions, which specify proteins mediating survival when the cytoplasmic Mg2+ concentration is low. Microbial species often utilize similar adaptation strategies to cope with low cytoplasmic Mg2+ despite relying on different genes to do so.
Collapse
Affiliation(s)
- Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, USA; .,Yale Microbial Sciences Institute, West Haven, Connecticut 06516, USA
| | - Carissa Chan
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, USA;
| |
Collapse
|
21
|
Harwood CR, Kikuchi Y. The ins and outs of Bacillus proteases: activities, functions and commercial significance. FEMS Microbiol Rev 2021; 46:6354784. [PMID: 34410368 PMCID: PMC8767453 DOI: 10.1093/femsre/fuab046] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/17/2021] [Indexed: 12/23/2022] Open
Abstract
Because the majority of bacterial species divide by binary fission, and do not have distinguishable somatic and germline cells, they could be considered to be immortal. However, bacteria ‘age’ due to damage to vital cell components such as DNA and proteins. DNA damage can often be repaired using efficient DNA repair mechanisms. However, many proteins have a functional ‘shelf life’; some are short lived, while others are relatively stable. Specific degradation processes are built into the life span of proteins whose activities are required to fulfil a specific function during a prescribed period of time (e.g. cell cycle, differentiation process, stress response). In addition, proteins that are irreparably damaged or that have come to the end of their functional life span need to be removed by quality control proteases. Other proteases are involved in performing a variety of specific functions that can be broadly divided into three categories: processing, regulation and feeding. This review presents a systematic account of the proteases of Bacillus subtilis and their activities. It reviews the proteases found in, or associated with, the cytoplasm, the cell membrane, the cell wall and the external milieu. Where known, the impacts of the deletion of particular proteases are discussed, particularly in relation to industrial applications.
Collapse
Affiliation(s)
- Colin R Harwood
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University NE2 4AX, Newcastle upon Tyne, UK
| | - Yoshimi Kikuchi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki 210-8681, JAPAN
| |
Collapse
|
22
|
Groisman EA, Duprey A, Choi J. How the PhoP/PhoQ System Controls Virulence and Mg 2+ Homeostasis: Lessons in Signal Transduction, Pathogenesis, Physiology, and Evolution. Microbiol Mol Biol Rev 2021; 85:e0017620. [PMID: 34191587 PMCID: PMC8483708 DOI: 10.1128/mmbr.00176-20] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The PhoP/PhoQ two-component system governs virulence, Mg2+ homeostasis, and resistance to a variety of antimicrobial agents, including acidic pH and cationic antimicrobial peptides, in several Gram-negative bacterial species. Best understood in Salmonella enterica serovar Typhimurium, the PhoP/PhoQ system consists o-regulated gene products alter PhoP-P amounts, even under constant inducing conditions. PhoP-P controls the abundance of hundreds of proteins both directly, by having transcriptional effects on the corresponding genes, and indirectly, by modifying the abundance, activity, or stability of other transcription factors, regulatory RNAs, protease regulators, and metabolites. The investigation of PhoP/PhoQ has uncovered novel forms of signal transduction and the physiological consequences of regulon evolution.
Collapse
Affiliation(s)
- Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| | - Alexandre Duprey
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
23
|
Feng Y, Nouri K, Schimmer AD. Mitochondrial ATP-Dependent Proteases-Biological Function and Potential Anti-Cancer Targets. Cancers (Basel) 2021; 13:2020. [PMID: 33922062 PMCID: PMC8122244 DOI: 10.3390/cancers13092020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/11/2021] [Accepted: 04/18/2021] [Indexed: 12/20/2022] Open
Abstract
Cells must eliminate excess or damaged proteins to maintain protein homeostasis. To ensure protein homeostasis in the cytoplasm, cells rely on the ubiquitin-proteasome system and autophagy. In the mitochondria, protein homeostasis is regulated by mitochondria proteases, including four core ATP-dependent proteases, m-AAA, i-AAA, LonP, and ClpXP, located in the mitochondrial membrane and matrix. This review will discuss the function of mitochondrial proteases, with a focus on ClpXP as a novel therapeutic target for the treatment of malignancy. ClpXP maintains the integrity of the mitochondrial respiratory chain and regulates metabolism by degrading damaged and misfolded mitochondrial proteins. Inhibiting ClpXP genetically or chemically impairs oxidative phosphorylation and is toxic to malignant cells with high ClpXP expression. Likewise, hyperactivating the protease leads to increased degradation of ClpXP substrates and kills cancer cells. Thus, targeting ClpXP through inhibition or hyperactivation may be novel approaches for patients with malignancy.
Collapse
Affiliation(s)
- Yue Feng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; (Y.F.); (K.N.)
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Kazem Nouri
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; (Y.F.); (K.N.)
| | - Aaron D. Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; (Y.F.); (K.N.)
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
24
|
Schwartz J, Son J, Brugger C, Deaconescu AM. Phospho-dependent signaling during the general stress response by the atypical response regulator and ClpXP adaptor RssB. Protein Sci 2021; 30:899-907. [PMID: 33599047 DOI: 10.1002/pro.4047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 11/05/2022]
Abstract
In the model organism Escherichia coli and related species, the general stress response relies on tight regulation of the intracellular levels of the promoter specificity subunit RpoS. RpoS turnover is exclusively dependent on RssB, a two-domain response regulator that functions as an adaptor that delivers RpoS to ClpXP for proteolysis. Here, we report crystal structures of the receiver domain of RssB both in its unphosphorylated form and bound to the phosphomimic BeF3 - . Surprisingly, we find only modest differences between these two structures, suggesting that truncating RssB may partially activate the receiver domain to a "meta-active" state. Our structural and sequence analysis points to RssB proteins not conforming to either the Y-T coupling scheme for signaling seen in prototypical response regulators, such as CheY, or to the signaling model of the less understood FATGUY proteins.
Collapse
Affiliation(s)
- Jacob Schwartz
- Department of Molecular Biology, Cell Biology and Biochemistry, Laboratories of Molecular Medicine Brown University, Providence, Rhode Island, USA
| | - Jonghyeon Son
- Department of Molecular Biology, Cell Biology and Biochemistry, Laboratories of Molecular Medicine Brown University, Providence, Rhode Island, USA
| | - Christiane Brugger
- Department of Molecular Biology, Cell Biology and Biochemistry, Laboratories of Molecular Medicine Brown University, Providence, Rhode Island, USA
| | - Alexandra M Deaconescu
- Department of Molecular Biology, Cell Biology and Biochemistry, Laboratories of Molecular Medicine Brown University, Providence, Rhode Island, USA
| |
Collapse
|
25
|
Wang Z, Zhao S, Li Y, Zhang K, Mo F, Zhang J, Hou Y, He L, Liu Z, Wang Y, Xu Y, Wang H, Buck M, Matthews SJ, Liu B. RssB-mediated σ S Activation is Regulated by a Two-Tier Mechanism via Phosphorylation and Adaptor Protein - IraD. J Mol Biol 2021; 433:166757. [PMID: 33346011 DOI: 10.1016/j.jmb.2020.166757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 11/15/2022]
Abstract
Regulation of bacterial stress responding σS is a sophisticated process and mediated by multiple interacting partners. Controlled proteolysis of σS is regulated by RssB which maintains minimal level of σS during exponential growth but then elevates σS level while facing stresses. Bacteria developed different strategies to regulate activity of RssB, including phosphorylation of itself and production of anti-adaptors. However, the function of phosphorylation is controversial and the mechanism of anti-adaptors preventing RssB-σS interaction remains elusive. Here, we demonstrated the impact of phosphorylation on the activity of RssB and built the RssB-σS complex model. Importantly, we showed that the phosphorylation site - D58 is at the interface of RssB-σS complex. Hence, mutation or phosphorylation of D58 would weaken the interaction of RssB with σS. We found that the anti-adaptor protein IraD has higher affinity than σS to RssB and its binding interface on RssB overlaps with that for σS. And IraD-RssB complex is preferred over RssB-σS in solution, regardless of the phosphorylation state of RssB. Our study suggests that RssB possesses a two-tier mechanism for regulating σS. First, phosphorylation of RssB provides a moderate and reversible tempering of its activity, followed by a specific and robust inhibition via the anti-adaptor interaction.
Collapse
Affiliation(s)
- Zhihao Wang
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Siyu Zhao
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China
| | - Yanqing Li
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China
| | - Kaining Zhang
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China
| | - Fei Mo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiye Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yajing Hou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Langchong He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhijun Liu
- National Facility for Protein Science, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yawen Wang
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China
| | - Yingqi Xu
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Hongliang Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Martin Buck
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Steve J Matthews
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Bing Liu
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, SW7 2AZ London, United Kingdom; Instrument Analysis Center of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| |
Collapse
|
26
|
Yeom J, Groisman EA. Reduced ATP-dependent proteolysis of functional proteins during nutrient limitation speeds the return of microbes to a growth state. Sci Signal 2021; 14:14/667/eabc4235. [PMID: 33500334 DOI: 10.1126/scisignal.abc4235] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
When cells run out of nutrients, the growth rate greatly decreases. Here, we report that microorganisms, such as the bacterium Salmonella enterica serovar Typhimurium, speed up the return to a rapid growth state by preventing the proteolysis of functional proteins by ATP-dependent proteases while in the slow-growth state or stationary phase. This reduction in functional protein degradation resulted from a decrease in the intracellular concentration of ATP that was nonetheless sufficient to allow the continued degradation of nonfunctional proteins by the same proteases. Protein preservation occurred under limiting magnesium, carbon, or nitrogen conditions, indicating that this response was not specific to low availability of a particular nutrient. Nevertheless, the return to rapid growth required proteins that mediate responses to the specific nutrient limitation conditions, because the transcriptional regulator PhoP was necessary for rapid recovery only after magnesium starvation. Reductions in intracellular ATP and in ATP-dependent proteolysis also enabled the yeast Saccharomyces cerevisiae to recover faster from stationary phase. Our findings suggest that protein preservation during a slow-growth state is a conserved microbial strategy that facilitates the return to a growth state once nutrients become available.
Collapse
Affiliation(s)
- Jinki Yeom
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.,Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore.,Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 03080, Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA. .,Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT 06516, USA
| |
Collapse
|
27
|
Nouri K, Feng Y, Schimmer AD. Mitochondrial ClpP serine protease-biological function and emerging target for cancer therapy. Cell Death Dis 2020; 11:841. [PMID: 33037181 PMCID: PMC7547079 DOI: 10.1038/s41419-020-03062-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Mitochondrial ClpP is a serine protease located in the mitochondrial matrix. This protease participates in mitochondrial protein quality control by degrading misfolded or damaged proteins, thus maintaining normal metabolic function. Mitochondrial ClpP is a stable heptamer ring with peptidase activity that forms a multimeric complex with the ATP-dependent unfoldase ClpX (ClpXP) leading to proteolytic activity. Emerging evidence demonstrates that ClpXP is over-expressed in hematologic malignancies and solid tumors and is necessary for the viability of a subset of tumors. In addition, both inhibition and hyperactivation of ClpXP leads to impaired respiratory chain activity and causes cell death in cancer cells. Therefore, targeting mitochondrial ClpXP could be a novel therapeutic strategy for the treatment of malignancy. Here, we review the structure and function of mitochondrial ClpXP as well as strategies to target this enzyme complex as a novel therapeutic approach for malignancy.
Collapse
Affiliation(s)
- Kazem Nouri
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Yue Feng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
28
|
Dougan DA, Alver R, Turgay K. Exploring a potential Achilles heel of Mycobacterium tuberculosis: defining the ClpC1 interactome. FEBS J 2020; 288:95-98. [PMID: 32571006 DOI: 10.1111/febs.15430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/20/2020] [Indexed: 01/06/2023]
Abstract
Protein degradation plays a vital role in the correct maintenance of a cell, not only under normal physiological conditions but also in response to stress. In the human pathogen Mtb, this crucial cellular task is performed by several ATPase associated with diverse cellular activities proteases including ClpC1P. Ziemski et al. performed a bacterial adenylate cyclase two-hybrid screen to identify ClpC1 substrates and showed the Type II TA systems represent a major group of ClpC1-interacting proteins. Comment on: https://doi.org/10.1111/febs.15335.
Collapse
Affiliation(s)
- David A Dougan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Vic., Australia
| | - Regina Alver
- Max Planck Unit for the Science of Pathogens, Berlin, Germany.,Institute of Microbiology, Leibniz University Hannover, Hannover, Germany
| | - Kürşad Turgay
- Max Planck Unit for the Science of Pathogens, Berlin, Germany.,Institute of Microbiology, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
29
|
Ziemski M, Leodolter J, Taylor G, Kerschenmeyer A, Weber-Ban E. Genome-wide interaction screen for Mycobacterium tuberculosis ClpCP protease reveals toxin-antitoxin systems as a major substrate class. FEBS J 2020; 288:111-126. [PMID: 32301575 DOI: 10.1111/febs.15335] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/12/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022]
Abstract
In Mycobacterium tuberculosis (Mtb), the Clp protease degradation pathway, mediated by the modular ClpCP and ClpXP protease complexes, is essential for growth and presents an attractive drug target. Employing a bacterial adenylate cyclase two-hybrid (BACTH) screening approach that we adapted to screen the proteome of an Mtb ORF library, we identify protein interaction partners of the ClpC1 chaperone on a genome-wide level. Our results demonstrate that bipartite type II toxin-antitoxin (TA) systems represent a major substrate class. Out of the 67 type II TA systems known in Mtb, 25 appear as ClpC1 interaction partners in the BACTH screen, including members of the VapBC, MazEF, and ParDE families, as well as a RelBE member that was identified biochemically. We show that antitoxins of the Vap and Rel families are degraded by ClpCP in vitro. We also demonstrate that ClpCP is responsible for mediating the N-end rule pathway, since the adaptor protein ClpS supports ClpC-dependent degradation of an N-end rule model substrate in vitro.
Collapse
Affiliation(s)
- Michal Ziemski
- Institute of Molecular Biology & Biophysics, ETH Zurich, Switzerland
| | - Julia Leodolter
- Institute of Molecular Biology & Biophysics, ETH Zurich, Switzerland
| | - Gabrielle Taylor
- Institute of Molecular Biology & Biophysics, ETH Zurich, Switzerland
| | | | - Eilika Weber-Ban
- Institute of Molecular Biology & Biophysics, ETH Zurich, Switzerland
| |
Collapse
|
30
|
Jin H, Kim R, Bhaya D. Deciphering proteolysis pathways for the error-prone DNA polymerase in cyanobacteria. Environ Microbiol 2020; 23:559-571. [PMID: 31908125 DOI: 10.1111/1462-2920.14911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 10/25/2022]
Abstract
Protein quality control pathways require AAA+ proteases, such as Clp and Lon. Lon protease maintains UmuD, an important component of the error-prone DNA repair polymerase (Pol V), at very low levels in E. coli. Most members of the phylum Cyanobacteria lack Lon (including the model cyanobacterium, Synechocystis sp. PCC6803), so maintenance of UmuD at low levels must employ different proteases. We demonstrate that the first 19 residues from the N-terminus of UmuD (Sug1-19 ) fused to a reporter protein are adequate to trigger complete proteolysis and that mutation of a single leucine residue (L6) to aspartic acid inhibits proteolysis. This process appears to follow the N-end rule and is mediated by ClpA/P protease and the ClpS adaptor. Additionally, mutations of arginine residues in the Sug1-19 tag suggest that the ClpX/P pathway also plays a role in proteolysis. We propose that there is a dual degron at the N-terminus of the UmuD protein in Synechocystis sp. PCC6803, which is distinct from the degron required for degradation of UmuD in E. coli. The use of two proteolysis pathways to tune levels of UmuD might reflect how a photosynthetic organism responds to multiple environmental stressors.
Collapse
Affiliation(s)
- Haojie Jin
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.,Department of Plant Biology, Carnegie Institution for Science, Stanford, 94305, CA, USA
| | - Rick Kim
- Department of Plant Biology, Carnegie Institution for Science, Stanford, 94305, CA, USA
| | - Devaki Bhaya
- Department of Plant Biology, Carnegie Institution for Science, Stanford, 94305, CA, USA
| |
Collapse
|
31
|
Sprooten J, Garg AD. Type I interferons and endoplasmic reticulum stress in health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 350:63-118. [PMID: 32138904 PMCID: PMC7104985 DOI: 10.1016/bs.ircmb.2019.10.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type I interferons (IFNs) comprise of pro-inflammatory cytokines created, as well as sensed, by all nucleated cells with the main objective of blocking pathogens-driven infections. Owing to this broad range of influence, type I IFNs also exhibit critical functions in many sterile inflammatory diseases and immunopathologies, especially those associated with endoplasmic reticulum (ER) stress-driven signaling pathways. Indeed, over the years accumulating evidence has indicated that the presence of ER stress can influence the production, or sensing of, type I IFNs induced by perturbations like pattern recognition receptor (PRR) agonists, infections (bacterial, viral or parasitic) or autoimmunity. In this article we discuss the link between type I IFNs and ER stress in various diseased contexts. We describe how ER stress regulates type I IFNs production or sensing, or how type I IFNs may induce ER stress, in various circumstances like microbial infections, autoimmunity, diabetes, cancer and other ER stress-related contexts.
Collapse
Affiliation(s)
- Jenny Sprooten
- Department for Cellular and Molecular Medicine, Cell Death Research & Therapy (CDRT) Unit, KU Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Department for Cellular and Molecular Medicine, Cell Death Research & Therapy (CDRT) Unit, KU Leuven, Leuven, Belgium.
| |
Collapse
|
32
|
Cross Talk between SigB and PrfA in Listeria monocytogenes Facilitates Transitions between Extra- and Intracellular Environments. Microbiol Mol Biol Rev 2019; 83:83/4/e00034-19. [PMID: 31484692 DOI: 10.1128/mmbr.00034-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes can modulate its transcriptome and proteome to ensure its survival during transmission through vastly differing environmental conditions. While L. monocytogenes utilizes a large array of regulators to achieve survival and growth in different intra- and extrahost environments, the alternative sigma factor σB and the transcriptional activator of virulence genes protein PrfA are two key transcriptional regulators essential for responding to environmental stress conditions and for host infection. Importantly, emerging evidence suggests that the shift from extrahost environments to the host gastrointestinal tract and, subsequently, to intracellular environments requires regulatory interplay between σB and PrfA at transcriptional, posttranscriptional, and protein activity levels. Here, we review the current evidence for cross talk and interplay between σB and PrfA and their respective regulons and highlight the plasticity of σB and PrfA cross talk and the role of this cross talk in facilitating successful transition of L. monocytogenes from diverse extrahost to diverse extra- and intracellular host environments.
Collapse
|
33
|
The Salmonella virulence protein MgtC promotes phosphate uptake inside macrophages. Nat Commun 2019; 10:3326. [PMID: 31346161 PMCID: PMC6658541 DOI: 10.1038/s41467-019-11318-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 07/05/2019] [Indexed: 02/06/2023] Open
Abstract
The MgtC virulence protein from the intracellular pathogen Salmonella enterica is required for its intramacrophage survival and virulence in mice and this requirement of MgtC is conserved in several intracellular pathogens including Mycobacterium tuberculosis. Despite its critical role in survival within macrophages, only a few molecular targets of the MgtC protein have been identified. Here, we report that MgtC targets PhoR histidine kinase and activates phosphate transport independently of the available phosphate concentration. A single amino acid substitution in PhoR prevents its binding to MgtC, thus abrogating MgtC-mediated phosphate transport. Surprisingly, the removal of MgtC’s effect on the ability to transport phosphate renders Salmonella hypervirulent and decreases a non-replicating population inside macrophages, indicating that MgtC-mediated phosphate transport is required for normal Salmonella pathogenesis. This provides an example of a virulence protein directly activating a pathogen’s phosphate transport inside host. The virulence factor MgtC is essential for intracellular macrophage survival of Salmonella enterica. Here, the authors show that MgtC targets the PhoB/PhoR regulatory system leading to phosphate uptake inside macrophages and that both phoR mutation and phoB deletion renders Salmonella hypervirulent in mice.
Collapse
|
34
|
Rojas-Tapias DF, Helmann JD. Roles and regulation of Spx family transcription factors in Bacillus subtilis and related species. Adv Microb Physiol 2019; 75:279-323. [PMID: 31655740 DOI: 10.1016/bs.ampbs.2019.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacillus subtilis Spx is the prototype for a large family of redox-responsive transcription factors found in many bacteria, most notably those from the phylum Firmicutes. Unusually for a transcription factor, B. subtilis Spx protein modulates gene expression by binding as a monomer to the αCTD domain of RNA polymerase (RNAP), and only interacts with DNA during subsequent promoter engagement. B. subtilis Spx drives the expression of a large regulon in response to proteotoxic conditions, such as heat and disulfide stress, as well as cell wall stress. Here, we review the detailed mechanisms that control the expression, stability, and activity of Spx in response to a variety of stress conditions. We also summarize current knowledge regarding Spx homologs in other Firmicutes, the environmental conditions in which those homologs are activated, and their biological role.
Collapse
Affiliation(s)
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
35
|
Structural Basis for YjbH Adaptor-Mediated Recognition of Transcription Factor Spx. Structure 2019; 27:923-936.e6. [DOI: 10.1016/j.str.2019.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/31/2019] [Accepted: 03/14/2019] [Indexed: 11/18/2022]
|
36
|
Moreno-Cinos C, Goossens K, Salado IG, Van Der Veken P, De Winter H, Augustyns K. ClpP Protease, a Promising Antimicrobial Target. Int J Mol Sci 2019; 20:ijms20092232. [PMID: 31067645 PMCID: PMC6540193 DOI: 10.3390/ijms20092232] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/18/2019] [Accepted: 04/29/2019] [Indexed: 01/25/2023] Open
Abstract
The caseinolytic protease proteolytic subunit (ClpP) is a serine protease playing an important role in proteostasis of eukaryotic organelles and prokaryotic cells. Alteration of ClpP function has been proved to affect the virulence and infectivity of a number of pathogens. Increased bacterial resistance to antibiotics has become a global problem and new classes of antibiotics with novel mechanisms of action are needed. In this regard, ClpP has emerged as an attractive and potentially viable option to tackle pathogen fitness without suffering cross-resistance to established antibiotic classes and, when not an essential target, without causing an evolutionary selection pressure. This opens a greater window of opportunity for the host immune system to clear the infection by itself or by co-administration with commonly prescribed antibiotics. A comprehensive overview of the function, regulation and structure of ClpP across the different organisms is given. Discussion about mechanism of action of this protease in bacterial pathogenesis and human diseases are outlined, focusing on the compounds developed in order to target the activation or inhibition of ClpP.
Collapse
Affiliation(s)
- Carlos Moreno-Cinos
- Laboratory of Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | - Kenneth Goossens
- Laboratory of Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | - Irene G Salado
- Laboratory of Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | - Pieter Van Der Veken
- Laboratory of Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | - Hans De Winter
- Laboratory of Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| |
Collapse
|
37
|
Bouillet S, Ba M, Houot L, Iobbi-Nivol C, Bordi C. Connected partner-switches control the life style of Pseudomonas aeruginosa through RpoS regulation. Sci Rep 2019; 9:6496. [PMID: 31019225 PMCID: PMC6482189 DOI: 10.1038/s41598-019-42653-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/29/2019] [Indexed: 12/27/2022] Open
Abstract
Biofilm formation is a complex process resulting from the action of imbricated pathways in response to environmental cues. In this study, we showed that biofilm biogenesis in the opportunistic pathogen Pseudomonas aeruginosa depends on the availability of RpoS, the sigma factor regulating the general stress response in bacteria. Moreover, it was demonstrated that RpoS is post-translationally regulated by the HsbR-HsbA partner switching system as has been demonstrated for its CrsR-CrsA homolog in Shewanella oneidensis. Finally, it was established that HsbA, the anti-sigma factor antagonist, has a pivotal role depending on its phosphorylation state since it binds HsbR, the response regulator, when phosphorylated and FlgM, the anti-sigma factor of FliA, when non-phosphorylated. The phosphorylation state of HsbA thus drives the switch between the sessile and planktonic way of life of P. aeruginosa by driving the release or the sequestration of one or the other of these two sigma factors.
Collapse
Affiliation(s)
| | - Moly Ba
- Aix Marseille Univ, CNRS, IMM, LISM, Marseille, France
| | | | | | | |
Collapse
|
38
|
Dorich V, Brugger C, Tripathi A, Hoskins JR, Tong S, Suhanovsky MM, Sastry A, Wickner S, Gottesman S, Deaconescu AM. Structural basis for inhibition of a response regulator of σ S stability by a ClpXP antiadaptor. Genes Dev 2019; 33:718-732. [PMID: 30975721 PMCID: PMC6546054 DOI: 10.1101/gad.320168.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 03/19/2019] [Indexed: 11/25/2022]
Abstract
Dorich et al. present the first crystal structure of RssB bound to an antiadaptor, the DNA damage-inducible IraD. The structural data, together with mechanistic studies, suggest that RssB plasticity is critical for regulation of σS degradation. The stationary phase promoter specificity subunit σS (RpoS) is delivered to the ClpXP machinery for degradation dependent on the adaptor RssB. This adaptor-specific degradation of σS provides a major point for regulation and transcriptional reprogramming during the general stress response. RssB is an atypical response regulator and the only known ClpXP adaptor that is inhibited by multiple but dissimilar antiadaptors (IraD, IraP, and IraM). These are induced by distinct stress signals and bind to RssB in poorly understood manners to achieve stress-specific inhibition of σS turnover. Here we present the first crystal structure of RssB bound to an antiadaptor, the DNA damage-inducible IraD. The structure reveals that RssB adopts a compact closed architecture with extensive interactions between its N-terminal and C-terminal domains. The structural data, together with mechanistic studies, suggest that RssB plasticity, conferred by an interdomain glutamate-rich flexible linker, is critical for regulation of σS degradation. Structural modulation of interdomain linkers may thus constitute a general strategy for tuning response regulators.
Collapse
Affiliation(s)
- Victoria Dorich
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, USA
| | - Christiane Brugger
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, USA
| | - Arti Tripathi
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Joel R Hoskins
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Song Tong
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Margaret M Suhanovsky
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, USA
| | - Amita Sastry
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, USA
| | - Sue Wickner
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Alexandra M Deaconescu
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, USA
| |
Collapse
|
39
|
Khan AH, Noordin R. Strategies for humanizing glycosylation pathways and producing recombinant glycoproteins in microbial expression systems. Biotechnol Prog 2018; 35:e2752. [DOI: 10.1002/btpr.2752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/26/2018] [Accepted: 11/16/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Amjad Hayat Khan
- Inst. for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia 11800 Penang Malaysia
| | - Rahmah Noordin
- Inst. for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia 11800 Penang Malaysia
| |
Collapse
|
40
|
Deng CY, Zhang H, Wu Y, Ding LL, Pan Y, Sun ST, Li YJ, Wang L, Qian W. Proteolysis of histidine kinase VgrS inhibits its autophosphorylation and promotes osmostress resistance in Xanthomonas campestris. Nat Commun 2018; 9:4791. [PMID: 30442885 PMCID: PMC6237974 DOI: 10.1038/s41467-018-07228-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/18/2018] [Indexed: 11/16/2022] Open
Abstract
In bacterial cells, histidine kinases (HKs) are receptors that monitor environmental and intracellular stimuli. HKs and their cognate response regulators constitute two-component signalling systems (TCSs) that modulate cellular homeostasis through reversible protein phosphorylation. Here the authors show that the plant pathogen Xanthomonas campestris pv. campestris responds to osmostress conditions by regulating the activity of a HK (VgrS) via irreversible, proteolytic modification. This regulation is mediated by a periplasmic, PDZ-domain-containing protease (Prc) that cleaves the N-terminal sensor region of VgrS. Cleavage of VgrS inhibits its autokinase activity and regulates the ability of the cognate response regulator (VgrR) to bind promoters of downstream genes, thus promoting bacterial adaptation to osmostress. Bacterial histidine kinases (HKs) play key roles in the response to stimuli and are regulated by reversible phosphorylation. Here, the authors show that the activity of a HK in the plant pathogen Xanthomonas campestris is modulated by irreversible, proteolytic modification in response to osmostress.
Collapse
Affiliation(s)
- Chao-Ying Deng
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yao Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li-Li Ding
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Pan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu-Tao Sun
- Department of Core Facility, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ya-Jun Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,The College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Li Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Qian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
41
|
Rojas-Tapias DF, Helmann JD. Stabilization of Bacillus subtilis Spx under cell wall stress requires the anti-adaptor protein YirB. PLoS Genet 2018; 14:e1007531. [PMID: 30001325 PMCID: PMC6057675 DOI: 10.1371/journal.pgen.1007531] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/24/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022] Open
Abstract
Spx is a global transcriptional regulator present in low-GC Gram-positive bacteria, including the model bacterium Bacillus subtilis and various human pathogens. In B. subtilis, activation of Spx occurs in response to disulfide stress. We recently reported, however, that induction of Spx also occurs in response to cell wall stress, and that the molecular events that result in its activation under both stress conditions are mechanistically different. Here, we demonstrate that, in addition to up-regulation of spx transcription through the alternative sigma factor σM, full and timely activation of Spx-regulated genes by cell wall stress requires Spx stabilization by the anti-adaptor protein YirB. YirB is itself transcriptionally induced under cell wall stress, but not disulfide stress, and this induction requires the CssRS two-component system, which responds to both secretion stress and cell wall antibiotics. The yirB gene is repressed by YuxN, a divergently transcribed TetR family repressor, and CssR~P acts as an anti-repressor. Collectively, our results identify a physiological role for the YirB anti-adaptor protein and show that induction of the Spx regulon under disulfide and cell wall stress occurs through largely independent pathways. Bacillus subtilis Spx is the founding member of a large family of redox-stress sensing transcriptional regulatory proteins, and Spx orthologs are important for oxidative stress and virulence in several Gram-positive pathogens. Spx controls a large regulon in response to disulfide stress. Disulfide stress induces the Spx regulon through post-translational events that involve both stabilization of Spx against proteolysis and protein oxidation. We previously reported that genes in the Spx regulon are also induced in response to antibiotics that target the synthesis of the bacterial cell wall. Interestingly, we show that this induction is mechanistically distinct from disulfide stress as it involves transcriptional induction of spx by an alternative sigma factor. We show here that stabilization of Spx also requires a novel anti-adaptor protein, YirB, which prevents Spx degradation by binding to and inhibiting the activity of the adaptor protein YjbH. Induction of spx and Spx stabilization are both required for full and timely induction of the genes in the Spx regulon in response to cell wall stress. We further show that induction of the genes in the Spx regulon in response to either cell wall stress or disulfide stress takes place through largely independent pathways.
Collapse
Affiliation(s)
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
42
|
A Designed Peptide Targets Two Types of Modifications of p53 with Anti-cancer Activity. Cell Chem Biol 2018; 25:761-774.e5. [DOI: 10.1016/j.chembiol.2018.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/17/2018] [Accepted: 03/22/2018] [Indexed: 01/21/2023]
|
43
|
Lindemann C, Thomanek N, Kuhlmann K, Meyer HE, Marcus K, Narberhaus F. Next-Generation Trapping of Protease Substrates by Label-Free Proteomics. Methods Mol Biol 2018; 1841:189-206. [PMID: 30259488 DOI: 10.1007/978-1-4939-8695-8_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AAA+ proteases (ATPases associated with various cellular activities) shape the cellular protein pool in response to environmental conditions. A prerequisite for understanding the underlying recognition and degradation principles is the identification of as many protease substrates as possible. Most previous studies made use of inactive protease variants to trap substrates, which were identified by 2D-gel based proteomics. Since this method is known for limitations in the identification of low-abundant proteins or proteins with many transmembrane domains, we established a trapping approach that overcomes these limitations. We used a proteolytically inactive FtsH variant (FtsHtrap) of Escherichia coli (E. coli) that is still able to bind and translocate substrates into the proteolytic chamber but no longer able to degrade proteins. Proteins associated with FtsHtrap or FtsHwt (proteolytically active FtsH) were purified, concentrated by an 1D-short gel, and identified by LC-coupled mass spectrometry (LC-MS) followed by label-free quantification. The identification of four known FtsH substrates validated this approach and suggests that it is generally applicable to AAA+ proteases.
Collapse
Affiliation(s)
- Claudia Lindemann
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Nikolas Thomanek
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Katja Kuhlmann
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Helmut E Meyer
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Franz Narberhaus
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Bochum, Germany.
| |
Collapse
|
44
|
Yeom J, Wayne KJ, Groisman EA. Sequestration from Protease Adaptor Confers Differential Stability to Protease Substrate. Mol Cell 2017; 66:234-246.e5. [PMID: 28431231 DOI: 10.1016/j.molcel.2017.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/23/2017] [Accepted: 03/14/2017] [Indexed: 12/24/2022]
Abstract
According to the N-end rule, the N-terminal residue of a protein determines its stability. In bacteria, the adaptor ClpS mediates proteolysis by delivering substrates bearing specific N-terminal residues to the protease ClpAP. We now report that the Salmonella adaptor ClpS binds to the N terminus of the regulatory protein PhoP, resulting in PhoP degradation by ClpAP. We establish that the PhoP-activated protein MgtC protects PhoP from degradation by outcompeting ClpS for binding to PhoP. MgtC appears to act exclusively on PhoP, as it did not alter the stability of a different ClpS-dependent ClpAP substrate. Removal of five N-terminal residues rendered PhoP stability independent of both the clpS and mgtC genes. By preserving PhoP protein levels, MgtC enables normal temporal transcription of PhoP-activated genes. The identified mechanism provides a simple means to spare specific substrates from an adaptor-dependent protease.
Collapse
Affiliation(s)
- Jinki Yeom
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Kyle J Wayne
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA; Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT 06516, USA.
| |
Collapse
|
45
|
Elsholz AKW, Birk MS, Charpentier E, Turgay K. Functional Diversity of AAA+ Protease Complexes in Bacillus subtilis. Front Mol Biosci 2017; 4:44. [PMID: 28748186 PMCID: PMC5506225 DOI: 10.3389/fmolb.2017.00044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/15/2017] [Indexed: 12/20/2022] Open
Abstract
Here, we review the diverse roles and functions of AAA+ protease complexes in protein homeostasis, control of stress response and cellular development pathways by regulatory and general proteolysis in the Gram-positive model organism Bacillus subtilis. We discuss in detail the intricate involvement of AAA+ protein complexes in controlling sporulation, the heat shock response and the role of adaptor proteins in these processes. The investigation of these protein complexes and their adaptor proteins has revealed their relevance for Gram-positive pathogens and their potential as targets for new antibiotics.
Collapse
Affiliation(s)
- Alexander K W Elsholz
- Department of Regulation in Infection Biology, Max Planck Institute for Infection BiologyBerlin, Germany
| | - Marlene S Birk
- Department of Regulation in Infection Biology, Max Planck Institute for Infection BiologyBerlin, Germany
| | - Emmanuelle Charpentier
- Department of Regulation in Infection Biology, Max Planck Institute for Infection BiologyBerlin, Germany.,The Laboratory for Molecular Infection Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden.,Humboldt UniversityBerlin, Germany
| | - Kürşad Turgay
- Faculty of Natural Sciences, Institute of Microbiology, Leibniz UniversitätHannover, Germany
| |
Collapse
|
46
|
Vega-Cabrera LA, Wood CD, Pardo-López L. Spo0M: structure and function beyond regulation of sporulation. Curr Genet 2017; 64:17-23. [PMID: 28577219 DOI: 10.1007/s00294-017-0718-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 05/23/2017] [Accepted: 05/27/2017] [Indexed: 11/29/2022]
Abstract
In this mini-review, we present a perspective on the recent findings relating Spo0M structure and function that will stimulate and guide further studies in the characterization of this interesting protein. Cell division and sporulation constitute two of the best studied processes in the model organism Bacillus subtilis; however, there are many missing pieces in the giant regulatory puzzle that governs the independent and shared networks between them. Spo0M is a little studied protein that has been related to both, cell division and sporulation, but its biochemical function and its direct interactions have not been yet defined. Structural analysis of Spo0M revealed the presence of an arrestin-like domain and an FP domain (a dimerization domain present in proteasome elements), motifs more commonly found in eukaryotic proteins. The aim of this perspective is to present open questions regarding the functional and structural features of Spo0M that make this protein a good candidate for the ancestor of arrestins in bacteria and an important element in developmental and differentiation processes of Bacillus subtilis.
Collapse
Affiliation(s)
- Luz Adriana Vega-Cabrera
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Apdo. Postal 510-3, 62250, Cuernavaca, Morelos, Mexico
| | - Christopher D Wood
- Laboratorio Nacional de Microscopía Avanzada, Universidad Nacional Autónoma de México, Av. Universidad #2001, Apdo. Postal 510-3, 62250, Cuernavaca, Morelos, Mexico
| | - Liliana Pardo-López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Apdo. Postal 510-3, 62250, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
47
|
Joshi KK, Sutherland M, Chien P. Cargo engagement protects protease adaptors from degradation in a substrate-specific manner. J Biol Chem 2017; 292:10973-10982. [PMID: 28507098 DOI: 10.1074/jbc.m117.786392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/09/2017] [Indexed: 11/06/2022] Open
Abstract
Protein degradation in bacteria is a highly controlled process involving proteolytic adaptors that regulate protein degradation during cell cycle progression or during stress responses. Many adaptors work as scaffolds that selectively bind cargo and tether substrates to their cognate proteases to promote substrate destruction, whereas others primarily activate the target protease. Because adaptors must bind their cognate protease, all adaptors run the risk of being recognized by the protease as substrates themselves, a process that could limit their effectiveness. Here we use purified proteins in a reconstituted system and in vivo studies to show that adaptors of the ClpXP protease are readily degraded but that cargo binding inhibits this degradation. We found that this principle extends across several adaptor systems, including the hierarchical adaptors that drive the Caulobacter bacterial cell cycle and the quality control adaptor SspB. We also found that the ability of a cargo to protect its adaptor is adaptor substrate-specific, as adaptors with artificial degradation tags were not protected even though cargo binding is unaffected. Our work points to an optimization of inherent adaptor degradation and cargo binding that ensures that robust adaptor activity is maintained when high amounts of substrate must be delivered and that adaptors can be eliminated when their tasks have been completed.
Collapse
Affiliation(s)
- Kamal Kishore Joshi
- From the Department of Biochemistry and Molecular Biology and.,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003
| | | | - Peter Chien
- From the Department of Biochemistry and Molecular Biology and .,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
48
|
Bittner LM, Kraus A, Schäkermann S, Narberhaus F. The Copper Efflux Regulator CueR Is Subject to ATP-Dependent Proteolysis in Escherichia coli. Front Mol Biosci 2017; 4:9. [PMID: 28293558 PMCID: PMC5329002 DOI: 10.3389/fmolb.2017.00009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/13/2017] [Indexed: 11/13/2022] Open
Abstract
The trace element copper serves as cofactor for many enzymes but is toxic at elevated concentrations. In bacteria, the intracellular copper level is maintained by copper efflux systems including the Cue system controlled by the transcription factor CueR. CueR, a member of the MerR family, forms homodimers, and binds monovalent copper ions with high affinity. It activates transcription of the copper tolerance genes copA and cueO via a conserved DNA-distortion mechanism. The mechanism how CueR-induced transcription is turned off is not fully understood. Here, we report that Escherichia coli CueR is prone to proteolysis by the AAA+ proteases Lon, ClpXP, and ClpAP. Using a set of CueR variants, we show that CueR degradation is not altered by mutations affecting copper binding, dimerization or DNA binding of CueR, but requires an accessible C terminus. Except for a twofold stabilization shortly after a copper pulse, proteolysis of CueR is largely copper-independent. Our results suggest that ATP-dependent proteolysis contributes to copper homeostasis in E. coli by turnover of CueR, probably to allow steady monitoring of changes of the intracellular copper level and shut-off of CueR-dependent transcription.
Collapse
|
49
|
Muriel-Millán LF, Moreno S, Gallegos-Monterrosa R, Espín G. Unphosphorylated EIIA Ntr induces ClpAP-mediated degradation of RpoS in Azotobacter vinelandii. Mol Microbiol 2017; 104:197-211. [PMID: 28097724 DOI: 10.1111/mmi.13621] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2017] [Indexed: 02/02/2023]
Abstract
The nitrogen-related phosphotransferase system (PTSNtr ) is composed of the EINtr , NPr and EIIANtr proteins that form a phosphorylation cascade from phosphoenolpyruvate. PTSNtr is a global regulatory system present in most Gram-negative bacteria that controls some pivotal processes such as potassium and phosphate homeostasis, virulence, nitrogen fixation and ABC transport activation. In the soil bacterium Azotobacter vinelandii, unphosphorylated EIIANtr negatively regulates the expression of genes related to the synthesis of the bioplastic polyester poly-β-hydroxybutyrate (PHB) and cyst-specific lipids alkylresorcinols (ARs). The mechanism by which EIIANtr controls gene expression in A. vinelandii is not known. Here, we show that, in presence of unphosphorylated EIIANtr , the stability of the stationary phase sigma factor RpoS, which is necessary for transcriptional activation of PHB and ARs synthesis related genes, is reduced, and that the inactivation of genes coding for ClpAP protease complex in strains that carry unphosphorylated EIIANtr , restored the levels and in vivo stability of RpoS, as well as the synthesis of PHB and ARs. Taken together, our results reveal a novel mechanism, by which EIIANtr globally controls gene expression in A. vinelandii, where the unphosphorylated EIIANtr induces the degradation of RpoS by the proteolytic complex ClpAP.
Collapse
Affiliation(s)
- Luis Felipe Muriel-Millán
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México
| | - Soledad Moreno
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México
| | - Ramsés Gallegos-Monterrosa
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México
| |
Collapse
|
50
|
Abstract
Protein degradation is essential for all living things. Bacteria use energy-dependent proteases to control protein destruction in a highly specific manner. Recognition of substrates is determined by the inherent specificity of the proteases and through adaptor proteins that alter the spectrum of substrates. In the α-proteobacterium Caulobacter crescentus, regulated protein degradation is required for stress responses, developmental transitions, and cell cycle progression. In this review, we describe recent progress in our understanding of the regulated and stress-responsive protein degradation pathways in Caulobacter. We discuss how organization of highly specific adaptors into functional hierarchies drives destruction of proteins during the bacterial cell cycle. Because all cells must balance the need for degradation of many true substrates with the toxic consequences of nonspecific protein destruction, principles found in one system likely generalize to others.
Collapse
Affiliation(s)
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003;
| |
Collapse
|