1
|
Kriegler M, Wernet V, Hetzer B, Herrero S, Wei A, Wäckerle J, Dewein I, Fischer R. Cell-end marker proteins are required for hyphal ring formation and size determination of traps in Arthrobotrys flagrans. J Cell Sci 2025; 138:jcs263744. [PMID: 40270444 DOI: 10.1242/jcs.263744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/21/2025] [Indexed: 04/25/2025] Open
Abstract
Filamentous fungi grow by apical extension where secretory vesicles are transported long distances by microtubules and by actin prior to fusion with the cell membrane. Apical, membrane-bound cell-end marker proteins (CEMPs) organise the cytoskeletons and thereby the growth machinery. CEMPs have been characterised mainly in Schizosaccharomyces pombe and Aspergillus nidulans. Here, we studied the role of CEMPs in the nematode-trapping fungus Arthrobotrys flagrans. This predatory fungus forms ring-shaped adhesive traps to capture nematodes, such as Caenorhabditis elegans. Traps are morphologically and physiologically different from vegetative hyphae and are generated by hyphal turning and fusion of the trap tip cell with the basal hypha. The absence of the membrane-anchored CEMP receptor protein, TeaR, caused a reduction in ring size, whereas deletion of teaA or teaC largely prevented the formation of ring-shaped hyphae, and most traps appeared as adhesive sticks. Hence, compared to Schizosaccharomyces pombe and Aspergillus nidulans, loss of function of the CEMPs results in a severe morphological phenotype. The mutant strains also show changes in cell-to-cell communication and hyphal fusion, suggesting novel functions and interconnections with other signalling processes in the cell.
Collapse
Affiliation(s)
- Marius Kriegler
- Institute for Applied Biosciences, Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Valentin Wernet
- Institute for Applied Biosciences, Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Birgit Hetzer
- Max-Rubner-Institut (MRI) - Federal Research Institute of Nutrition and Food, Haid-und-Neu-Strasse 9, 76131 Karlsruhe, Germany
| | - Satur Herrero
- Institute for Applied Biosciences, Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Anlun Wei
- Institute for Applied Biosciences, Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Jan Wäckerle
- Institute for Applied Biosciences, Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Imane Dewein
- Institute for Applied Biosciences, Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Reinhard Fischer
- Institute for Applied Biosciences, Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| |
Collapse
|
2
|
Mazheika IS, Kamzolkina OV. The curtain model as an alternative and complementary to the classic turgor concept of filamentous fungi. Arch Microbiol 2025; 207:65. [PMID: 39979668 DOI: 10.1007/s00203-025-04271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/02/2025] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
Turgor pressure is critically important for all organisms with the cell wall. In fungi, turgor is involved in the apical growth of hyphae, affects cell size, provides tension to the plasma membrane, creates the necessary rigidity for hyphae to penetrate the substrate, and has many other functions. However, there is increasing evidence that turgor pressure is not always the sole or main factor influencing some of these processes. This review characterizes the curtain model, previously proposed to describe the regulation of plasma membrane tension in the hyphae of basidiomycetes. The current understanding of the four main components of the model is outlined: the driving actin cytoskeleton, the elastic cell wall, tight adhesion of the plasma membrane to the cell wall, and macroinvaginations of the plasma membrane. All four elements, as a single model, complement or replace some physiological functions of turgor and allow us to understand how a non-apical fungal cell maintains its physiological functionality under changing environmental conditions. Further experimental confirmation of this model is fundamentally important for mycology and applied sciences.
Collapse
Affiliation(s)
- Igor S Mazheika
- Department of Mycology and Algology, Lomonosov Moscow State University, Moscow, Russia, 119991.
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia, 117971.
| | - Olga V Kamzolkina
- Department of Mycology and Algology, Lomonosov Moscow State University, Moscow, Russia, 119991
| |
Collapse
|
3
|
Zhu S, Chen A, Zhang J, Luo S, Yang J, Chai Y, Zeng J, Bai M, Yang Z, Lu G. Deciphering the biodegradation of thiamethoxam by Phanerochaete chrysosporium with natural siderite: Synergistic mechanisms, transcriptomics characterization, and molecular simulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136327. [PMID: 39481264 DOI: 10.1016/j.jhazmat.2024.136327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/12/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Fungi play vital roles in the fate of organic pollutants, particularly when interacting with minerals in aquatic and soil environments. Mechanisms by which fungi may mitigate pollutions in fungus-mineral interactions are still unclear. Inspired by biogeochemical cycling, we constructed a range of co-culture systems to investigate synergistic effects of the white-rot fungus Phanerochaete chrysosporium and the iron-bearing mineral siderite on thiamethoxam (THX) transformation, a common neonicotinoid pesticide. Co-culturing with siderite significantly enhanced THX transformation during the initial 10 days with a dose effect, achieving 86 % removal within 25 days. Fungi could affect siderite's dissolution, transformation, and precipitation through their biological activities. These interactions triggered physiological adaptation and resilience in fungi. Siderite could enhance the activity of fungal ligninolytic enzymes and cytochrome P450, facilitating biotransformation. Genes expression related to growth, energy metabolism, and oxidative stress response upregulated, enhancing fungal resilience to THX. The primary THX degradation pathways included nitro-reduction, C-N cleavage, and de-chlorination. Molecular dynamics simulations provided insights into catalytic mechanisms of enzyme-THX interactions. Together, siderite could act as natural enhancers that endowed fungi to resist physical and chemical stresses in environments, providing insights into contaminants attenuation, fungal biomineralization, and the coevolution of the Earth's lithosphere and biosphere.
Collapse
Affiliation(s)
- Shiye Zhu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Anwei Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China.
| | - Jiale Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Si Luo
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Jizhao Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Youzheng Chai
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Jianhua Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, PR China
| | - Ma Bai
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Zhenghang Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Gen Lu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| |
Collapse
|
4
|
Kumari A, Kaur J, Sharma P, Kaur M, Singh R. Repurposing the non-steroidal anti-inflammatory drug diflunisal as an adjunct therapy with amphotericin B against mucoralean fungi. J Med Microbiol 2024; 73. [PMID: 39576272 DOI: 10.1099/jmm.0.001929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Introduction. Mucormycosis is an aggressive, angioinvasive infection associated with high morbidity and mortality. The disease remains difficult to treat, with limited available antifungal drugs. Consequently, there is an urgent need to develop alternate therapeutics against mucormycosis. In an earlier study, we demonstrated that the non-steroidal anti-inflammatory drug diflunisal impacted the actin cytoskeleton and quorum sensing and inhibited the formation of filopodia-/cytoneme-like extensions in Rhizopus arrhizus.Hypothesis. The non-steroidal anti-inflammatory drug diflunisal could exhibit potential antifungal activity.Aim. This study aimed to investigate the plausible antifungal activity of diflunisal against a range of medically important Mucorales and its combination effect with antifungal drugs.Methodology. The antifungal activity of diflunisal against Rhizopus arrhizus, Lichtheimia corymbifera, Rhizomucor pusillus, Cunninghamella bertholletiae, Mucor indicus, Mucor irregularis and Apophysomyces elegans was evaluated by broth microdilution assay. Allied salicylates were also screened. A combination assay with amphotericin B deoxycholate and posaconazole was performed by fractional inhibitory concentration test.Results. Exposure to diflunisal inhibited Rhizopus arrhizus spore germination in a dose-dependent manner. MICs of diflunisal against different Mucorales ranged from 64 to 2048 µg ml-1. Remarkably low levels of diflunisal (0.03-2 µg ml-1), depending on the strain/species tested, improved the antifungal activity of amphotericin B against mucoralean fungi by twofold (ΣFIC ≈ 0.5-0.508; P<0.01). Field-emission scanning electron micrographs further confirmed these observations. MICs of posaconazole were unchanged by this compound.Conclusion. Considering that amphotericin B remains the first-line drug against mucormycosis and exhibits dose-dependent side effects in clinical practice, especially nephrotoxicity, the observed additive interaction at remarkably low, clinically achievable levels of diflunisal demonstrates its potential utility as an adjunct therapy against mucoralean fungi.
Collapse
Affiliation(s)
- Anjna Kumari
- Department of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| | - Jasdeep Kaur
- Department of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| | - Pallavi Sharma
- Department of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| | - Mahaldeep Kaur
- Department of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
- Present address: Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rachna Singh
- Department of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| |
Collapse
|
5
|
Zhang Z, Wang S, Guo M. The CHY-type zinc finger protein MoChy1 is involved in polarized growth, conidiation, autophagy and pathogenicity of Magnaporthe oryzae. Int J Biol Macromol 2024; 268:131867. [PMID: 38670181 DOI: 10.1016/j.ijbiomac.2024.131867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Polarized growth is critical for the development of filamentous phytopathogens, and the CHY-type zinc finger protein Chy1 regulates microtubule assembly to influence polarized growth and thereby affect plant infections. However, the biological role of a Chy1 homolog MoChy1 remains unknown in Magnaporthe oryzae. We found here that the MoChy1-GFP was distributed in the cytoplasm outside the vacuole in hyphae and localized mainly to the vacuole compartments as the appressorium matured. The Mochy1 mutants showed an extremely slow growth rate, curved and branched mycelium, reduced conidiation, and a smaller size in the appressorium. Meanwhile, the Mochy1 mutants showed increased sensitivity to benomyl, damaged microtubule cytoskeleton, and mislocalized polarisome protein MoSpa2 and chitin synthase MoChs6 in hyphae. Compared to Guy11, the Mochy1 mutants exhibited increased sensitivity to H2O2, impaired ability to eliminate host-derived ROS and reduced penetration into host plants, resulting in a strong reduction in pathogenicity of Mochy1 mutants. Furthermore, the Mochy1 mutants also exhibited defects in chitin distribution, osmotic stress tolerance, and septin ring organization during appressorium differentiation and fungal development. Nonselective autophagy was negatively regulated in Mochy1 mutants compared to Guy11. In summary, MoChy1 plays multiple roles in fungal polar growth and full virulence of M. oryzae.
Collapse
Affiliation(s)
- Zhaodi Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China
| | - Shuaishuai Wang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China.
| | - Min Guo
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
6
|
Georgiou X, Dimou S, Diallinas G, Samiotaki M. The interactome of the UapA transporter reveals putative new players in anterograde membrane cargo trafficking. Fungal Genet Biol 2023; 169:103840. [PMID: 37730157 DOI: 10.1016/j.fgb.2023.103840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Neosynthesized plasma membrane (PM) proteins co-translationally translocate to the ER, concentrate at regions called ER-exit sites (ERes) and pack into COPII secretory vesicles which are sorted to the early-Golgi through membrane fusion. Following Golgi maturation, membrane cargoes reach the late-Golgi, from where they exit in clathrin-coated vesicles destined to the PM, directly or through endosomes. Post-Golgi membrane cargo trafficking also involves the cytoskeleton and the exocyst. The Golgi-dependent secretory pathway is thought to be responsible for the trafficking of all major membrane proteins. However, our recent findings in Aspergillus nidulans showed that several plasma membrane cargoes, such as transporters and receptors, follow a sorting route that seems to bypass Golgi functioning. To gain insight on membrane trafficking and specifically Golgi-bypass, here we used proximity dependent biotinylation (PDB) coupled with data-independent acquisition mass spectrometry (DIA-MS) for identifying transient interactors of the UapA transporter. Our assays, which included proteomes of wild-type and mutant strains affecting ER-exit or endocytosis, identified both expected and novel interactions that might be physiologically relevant to UapA trafficking. Among those, we validated, using reverse genetics and fluorescence microscopy, that COPI coatomer is essential for ER-exit and anterograde trafficking of UapA and other membrane cargoes. We also showed that ArfAArf1 GTPase activating protein (GAP) Glo3 contributes to UapA trafficking at increased temperature. This is the first report addressing the identification of transient interactions during membrane cargo biogenesis using PDB and proteomics coupled with fungal genetics. Our work provides a basis for dissecting dynamic membrane cargo trafficking via PDB assays.
Collapse
Affiliation(s)
- Xenia Georgiou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens 15784, Greece
| | - Sofia Dimou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens 15784, Greece
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens 15784, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion 70013, Greece.
| | - Martina Samiotaki
- Biomedical Sciences Research Center "Alexander Fleming", Institute for Bioinnovation, Vari 16672, Greece.
| |
Collapse
|
7
|
Lu X, Yan G, Fu L, Cui B, Wang J, Zhou D. A review of filamentous sludge bulking controls from conventional methods to emerging quorum quenching strategies. WATER RESEARCH 2023; 236:119922. [PMID: 37098319 DOI: 10.1016/j.watres.2023.119922] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/16/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Filamentous bulking, which results from the overgrowth of filamentous microorganisms, is a common issue that frequently disrupts the stable operation of activated sludge processes. Recent literature has paid attention to the relationship between quorum sensing (QS) and filamentous bulking highlighting that the morphological transformations of filamentous microbes are regulated by functional signal molecules in the bulking sludge system. In response to this, a novel quorum quenching (QQ) technology has been developed to control sludge bulking effectively and precisely by disturbing QS-mediated filamentation behaviors. This paper presents a critical review on the limitations of classical bulking hypotheses and traditional control methods, and provides an overview of recent QS/QQ studies that aim to elucidate and control filamentous bulking, including the characterization of molecule structures, the elaboration of QS pathways, and the precise design of QQ molecules to mitigate filamentous bulking. Finally, suggestions for further research and development of QQ strategies for precise bulking control are put forward.
Collapse
Affiliation(s)
- Xin Lu
- Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, PR China
| | - Ge Yan
- Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, PR China
| | - Liang Fu
- Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, PR China
| | - Bin Cui
- Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, PR China
| | - Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Dandan Zhou
- Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, PR China.
| |
Collapse
|
8
|
Zhang Y, An B, Wang W, Zhang B, He C, Luo H, Wang Q. Actin-bundling protein fimbrin regulates pathogenicity via organizing F-actin dynamics during appressorium development in Colletotrichum gloeosporioides. MOLECULAR PLANT PATHOLOGY 2022; 23:1472-1486. [PMID: 35791045 PMCID: PMC9452767 DOI: 10.1111/mpp.13242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Anthracnose caused by Colletotrichum gloeosporioides leads to serious economic loss to rubber tree yield and other tropical crops. The appressorium, a specialized dome-shaped infection structure, plays a crucial role in the pathogenesis of C. gloeosporioides. However, the mechanism of how actin cytoskeleton dynamics regulate appressorium formation and penetration remains poorly defined in C. gloeosporioides. In this study, an actin cross-linking protein fimbrin homologue (CgFim1) was identified in C. gloeosporioides, and the knockout of CgFim1 led to impairment in vegetative growth, conidiation, and pathogenicity. We then investigated the roles of CgFim1 in the dynamic organization of the actin cytoskeleton. We observed that actin patches and cables localized at the apical and subapical regions of the hyphal tip, and showed a disc-to-ring dynamic around the pore during appressorium development. CgFim1 showed a similar distribution pattern to the actin cytoskeleton. Moreover, knockout of CgFim1 affected the polarity of the actin cytoskeleton in the hyphal tip and disrupted the actin dynamics and ring structure formation in the appressorium, which prevented polar growth and appressorium development. The CgFim1 mutant also interfered with the septin structure formation. This caused defects in pore wall overlay formation, pore contraction, and the extension of the penetration peg. These results reveal the mechanism by which CgFim1 regulates the growth and pathogenicity of C. gloeosporioides by organizing the actin cytoskeleton.
Collapse
Affiliation(s)
- Yi Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan ProvinceCollege of Tropical Crops, Hainan UniversityHaikouChina
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed LaboratorySanyaChina
| | - Bang An
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan ProvinceCollege of Tropical Crops, Hainan UniversityHaikouChina
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed LaboratorySanyaChina
| | - Wenfeng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan ProvinceCollege of Tropical Crops, Hainan UniversityHaikouChina
| | - Bei Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan ProvinceCollege of Tropical Crops, Hainan UniversityHaikouChina
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed LaboratorySanyaChina
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan ProvinceCollege of Tropical Crops, Hainan UniversityHaikouChina
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed LaboratorySanyaChina
| | - Hongli Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan ProvinceCollege of Tropical Crops, Hainan UniversityHaikouChina
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed LaboratorySanyaChina
| | - Qiannan Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan ProvinceCollege of Tropical Crops, Hainan UniversityHaikouChina
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed LaboratorySanyaChina
| |
Collapse
|
9
|
Secondary Metabolism Gene Clusters Exhibit Increasingly Dynamic and Differential Expression during Asexual Growth, Conidiation, and Sexual Development in Neurospora crassa. mSystems 2022; 7:e0023222. [PMID: 35638725 PMCID: PMC9239088 DOI: 10.1128/msystems.00232-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Secondary metabolite clusters (SMCs) encode the machinery for fungal toxin production. However, understanding their function and analyzing their products requires investigation of the developmental and environmental conditions in which they are expressed. Gene expression is often restricted to specific and unexamined stages of the life cycle. Therefore, we applied comparative genomics analyses to identify SMCs in Neurospora crassa and analyzed extensive transcriptomic data spanning nine independent experiments from diverse developmental and environmental conditions to reveal their life cycle-specific gene expression patterns. We reported 20 SMCs comprising 177 genes-a manageable set for investigation of the roles of SMCs across the life cycle of the fungal model N. crassa-as well as gene sets coordinately expressed in 18 predicted SMCs during asexual and sexual growth under three nutritional and two temperature conditions. Divergent activity of SMCs between asexual and sexual development was reported. Of 126 SMC genes that we examined for knockout phenotypes, al-2 and al-3 exhibited phenotypes in asexual growth and conidiation, whereas os-5, poi-2, and pmd-1 exhibited phenotypes in sexual development. SMCs with annotated function in mating and crossing were actively regulated during the switch between asexual and sexual growth. Our discoveries call for attention to roles that SMCs may play in the regulatory switches controlling mode of development, as well as the ecological associations of those developmental stages that may influence expression of SMCs. IMPORTANCE Secondary metabolites (SMs) are low-molecular-weight compounds that often mediate interactions between fungi and their environments. Fungi enriched with SMs are of significant research interest to agriculture and medicine, especially from the aspects of pathogen ecology and environmental epidemiology. However, SM clusters (SMCs) that have been predicted by comparative genomics alone have typically been poorly defined and insufficiently functionally annotated. Therefore, we have investigated coordinate expression in SMCs in the model system N. crassa, and our results suggest that SMCs respond to environmental signals and to stress that are associated with development. This study examined SMC regulation at the level of RNA to integrate observations and knowledge of these genes in various growth and development conditions, supporting combining comparative genomics and inclusive transcriptomics to improve computational annotation of SMCs. Our findings call for detailed study of the function of SMCs during the asexual-sexual switch, a key, often-overlooked developmental stage.
Collapse
|
10
|
Liu N, Wang W, He C, Luo H, An B, Wang Q. NADPH Oxidases Play a Role in Pathogenicity via the Regulation of F-Actin Organization in Colletotrichum gloeosporioides. Front Cell Infect Microbiol 2022; 12:845133. [PMID: 35782153 PMCID: PMC9240266 DOI: 10.3389/fcimb.2022.845133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/16/2022] [Indexed: 11/29/2022] Open
Abstract
Multiunit-flavoenzyme NADPH oxidases (NOXs) play multiple roles in living cells via regulating signaling pathways. In several phytopathogenic fungi, NOXs are required for the polarized growth of hyphal tips and pathogenicity to host plants, but the possible mechanisms are still elusive. In our previous study, CgNOXA, CgNOXB, and CgNOXR were identified as components of the NOX complex in Colletotrichum gloeosporioides. The growth and the inoculation assays revealed that CgNOXA/B and CgNOXR regulate vegetative growth and are required for the full pathogenicity of C. gloeosporioides to Hevea leaves. We further demonstrated that the vital roles of CgNOXB and CgNOXR in appressorium formation and the development of invasion hyphae account for their functions in pathogenicity. Moreover, CgNOXB and CgNOXR regulate the production and distribution of ROS in hyphal tips and appressoria, control the specialized remodeling of F-actin in hyphal tips and appressoria, and are involved in fungal cell wall biosynthesis. Taken together, our findings highlight the role of NOXs in fungal pathogenicity through the organization of the actin cytoskeleton.
Collapse
Affiliation(s)
- Na Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Wenfeng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Hongli Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Bang An
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Qiannan Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
- *Correspondence: Qiannan Wang,
| |
Collapse
|
11
|
Wernet V, Wäckerle J, Fischer R. The STRIPAK component SipC is involved in morphology and cell-fate determination in the nematode-trapping fungus Duddingtonia flagrans. Genetics 2022; 220:iyab153. [PMID: 34849851 PMCID: PMC8733638 DOI: 10.1093/genetics/iyab153] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022] Open
Abstract
The striatin-interacting phosphatase and kinase (STRIPAK) complex is a highly conserved eukaryotic signaling hub involved in the regulation of many cellular processes. In filamentous fungi, STRIPAK controls multicellular development, hyphal fusion, septation, and pathogenicity. In this study, we analyzed the role of the STRIPAK complex in the nematode-trapping fungus Duddingtonia flagrans which forms three-dimensional, adhesive trapping networks to capture Caenorhabditis elegans. Trap networks consist of several hyphal loops which are morphologically and functionally different from vegetative hyphae. We show that lack of the STRIPAK component SipC (STRIP1/2/HAM-2/PRO22) results in incomplete loop formation and column-like trap structures with elongated compartments. The misshapen or incomplete traps lost their trap identity and continued growth as vegetative hyphae. The same effect was observed in the presence of the actin cytoskeleton drug cytochalasin A. These results could suggest a link between actin and STRIPAK complex functions.
Collapse
Affiliation(s)
- Valentin Wernet
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT)—South Campus, D-76131 Karlsruhe, Germany
| | - Jan Wäckerle
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT)—South Campus, D-76131 Karlsruhe, Germany
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT)—South Campus, D-76131 Karlsruhe, Germany
| |
Collapse
|
12
|
Shigeto S, Takeshita N. Raman Micro-spectroscopy and Imaging of Filamentous Fungi. Microbes Environ 2022; 37. [PMID: 35387945 PMCID: PMC10037093 DOI: 10.1264/jsme2.me22006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Filamentous fungi grow by the elongation of tubular cells called hyphae and form mycelia through repeated hyphal tip growth and branching. Since hyphal growth is closely related to the ability to secrete large amounts of enzymes or invade host cells, a more detailed understanding and the control of its growth are important in fungal biotechnology, ecology, and pathogenesis. Previous studies using fluorescence imaging revealed many of the molecular mechanisms involved in hyphal growth. Raman microspectroscopy and imaging methods are now attracting increasing attention as powerful alternatives due to their high chemical specificity and label-free, non-destructive properties. Spatially resolved information on the relative abundance, structure, and chemical state of multiple intracellular components may be simultaneously obtained. Although Raman studies on filamentous fungi are still limited, this review introduces recent findings from Raman studies on filamentous fungi and discusses their potential use in the future.
Collapse
Affiliation(s)
- Shinsuke Shigeto
- Department of Chemistry, School of Science, Kwansei Gakuin University
| | - Norio Takeshita
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba
| |
Collapse
|
13
|
Expression of F-actin and β-tubulin genes in free mycelia and robust biofilms of the filamentous fungus Aspergillus niger. Braz J Microbiol 2021; 52:2357-2362. [PMID: 34549373 DOI: 10.1007/s42770-021-00611-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022] Open
Abstract
The morphology and growth of the filamentous fungi are influenced by different factors as the culture conditions and the type of fermentative process. The production and secretion of metabolites by these organisms present a direct relationship with their morphology. The organization of the microtubules and actin in the cytoskeleton is determinant for both the fungal growth and morphology. In this context, this study aimed to analyze the expression of the β-tubulin, F-actin, and glucan synthase in the A. niger mycelia obtained from submerged fermentation and biofilm fermentation through qPCR, as well as the analysis of the nucleus distribution in the hypha. Herein, we showed that β-tubulin and the F-actin gene were more expressed in the biofilm condition, while the glucan synthase was in the submerged condition. No significant difference was observed in the nucleus distribution between the mycelia obtained from both the fermentative processes. In conclusion, the different morphologies observed for the mycelia from submerged fermentation and biofilm fermentation might be influenced by the differential modulation of genes that codify cytoskeleton proteins, which seems to be potentially regulated by mechanosensing during fungal contact with solid supports.
Collapse
|
14
|
Tracking Fungal Growth: Establishment of Arp1 as a Marker for Polarity Establishment and Active Hyphal Growth in Filamentous Ascomycetes. J Fungi (Basel) 2021; 7:jof7070580. [PMID: 34356959 PMCID: PMC8304394 DOI: 10.3390/jof7070580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/20/2022] Open
Abstract
Polar growth is a key characteristic of all filamentous fungi. It allows these eukaryotes to not only effectively explore organic matter but also interact within its own colony, mating partners, and hosts. Therefore, a detailed understanding of the dynamics in polar growth establishment and maintenance is crucial for several fields of fungal research. We developed a new marker protein, the actin-related protein 1 (Arp1) fused to red and green fluorescent proteins, which allows for the tracking of polar axis establishment and active hyphal growth in microscopy approaches. To exclude a probable redundancy with known polarity markers, we compared the localizations of the Spitzenkörper (SPK) and Arp1 using an FM4-64 staining approach. As we show in applications with the coprophilous fungus Sordaria macrospora and the hemibiotrophic plant pathogen Colletotrichum graminicola, the monitoring of Arp1 can be used for detailed studies of hyphal growth dynamics and ascospore germination, the interpretation of chemotropic growth processes, and the tracking of elongating penetration pegs into plant material. Since the Arp1 marker showed the same dynamics in both fungi tested, we believe this marker can be broadly applied in fungal research to study the manifold polar growth processes determining fungal life.
Collapse
|
15
|
Geetha N, Bhavya G, Abhijith P, Shekhar R, Dayananda K, Jogaiah S. Insights into nanomycoremediation: Secretomics and mycogenic biopolymer nanocomposites for heavy metal detoxification. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124541. [PMID: 33223321 DOI: 10.1016/j.jhazmat.2020.124541] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/02/2020] [Accepted: 11/06/2020] [Indexed: 05/21/2023]
Abstract
Our environment thrives on the subtle balance achieved by the forever cyclical nature of building and rebuilding life through natural processes. Fungi, being the evident armor of bioremediation, is the indispensable element of the soil food web, contribute to be the nature's most dynamic arsenal with non-specific enzymes like peroxidase (POX), glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), non-enzymatic compounds like thiol (-SH) groups and non-protein compounds such as glutathione (GSH) and metallothionein (MT). Recently, the area of nanomycoremediation has been gaining momentum as a powerful tool for environmental clean-up strategies with its ability to detoxify heavy metals with its unique characteristics to adapt mechanisms such as biosorption, bioconversion, and biodegradation to harmless end products. The insight into the elaborate secretomic processes provides us with huge opportunities for creating a magnificent living bioremediation apparatus. This review discusses the scope and recent advances in the lesser understood area, nanomycoremediation, the state-of-the-art, innovative, cost-effective and promising tool for detoxification of heavy metal pollutants and focuses on the metabolic capabilities and secretomics with nanobiotechnological interventions.
Collapse
Affiliation(s)
- Nagaraja Geetha
- Nanobiotechnology Laboratory, Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - Gurulingaiah Bhavya
- Nanobiotechnology Laboratory, Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - Padukana Abhijith
- Nanobiotechnology Laboratory, Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - Ravikant Shekhar
- Nanobiotechnology Laboratory, Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - Karigowda Dayananda
- Nanobiotechnology Laboratory, Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580003, Karnataka, India.
| |
Collapse
|
16
|
Cao S, Li W, Li C, Wang G, Jiang W, Sun H, Deng Y, Chen H. The CHY-Type Zinc Finger Protein FgChy1 Regulates Polarized Growth, Pathogenicity, and Microtubule Assembly in Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:362-375. [PMID: 33369502 DOI: 10.1094/mpmi-07-20-0206-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microtubules (MTs), as transport tracks, play important roles in hyphal-tip growth in filamentous fungi, but MT-associated proteins involved in polarized growth remain unknown. Here, we found that one novel zinc finger protein, FgChy1, is required for MT morphology and polarized growth in Fusarium graminearum. The Fgchy1 mutant presented curved and directionless growth of hyphae. Importantly, the conidia and germ tubes of the Fgchy1 mutant exhibited badly damaged and less-organized beta-tubulin cytoskeletons. Compared with the wild type, the Fgchy1 mutant lost the ability to maintain polarity and was also more sensitive to the anti-MT drugs carbendazim and nocodazole, likely due to the impaired MT cytoskeleton. Indeed, the hyphae of the wild type treated with nocodazole exhibited a morphology consistent with that of the Fgchy1 mutant. Interestingly, the disruption of FgChy1 resulted in the off-center localization of actin patches and the polarity-related polarisome protein FgSpa2 from the hyphal-tip axis. A similar defect in FgSpa2 localization was also observed in the nocodazole-treated wild-type strain. In addition, FgChy1 is also required for conidiogenesis, septation, sexual reproduction, pathogenicity, and deoxynivalenol production. Overall, this study provides the first demonstrations of the functions of the novel zinc finger protein FgChy1 in polarized growth, development, and virulence in filamentous fungi.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Shulin Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Wei Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Chaohui Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Guanghui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenqiang Jiang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou 434025, Hubei, China
| | - Haiyan Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Yuanyu Deng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
17
|
Abstract
Tip-growing fungal cells maintain cell polarity at the apical regions and elongate by de novo synthesis of the cell wall. Cell polarity and tip growth rate affect mycelial morphology. Tip-growing fungal cells maintain cell polarity at the apical regions and elongate by de novo synthesis of the cell wall. Cell polarity and tip growth rate affect mycelial morphology. However, it remains unclear how both features act cooperatively to determine cell shape. Here, we investigated this relationship by analyzing hyphal tip growth of filamentous fungi growing inside extremely narrow 1 μm-width channels of microfluidic devices. Since the channels are much narrower than the diameter of hyphae, any hypha growing through the channel must adapt its morphology. Live-cell imaging analyses revealed that hyphae of some species continued growing through the channels, whereas hyphae of other species often ceased growing when passing through the channels, or had lost apical polarity after emerging from the other end of the channel. Fluorescence live-cell imaging analyses of the Spitzenkörper, a collection of secretory vesicles and polarity-related proteins at the hyphal tip, in Neurospora crassa indicates that hyphal tip growth requires a very delicate balance of ordered exocytosis to maintain polarity in spatially confined environments. We analyzed the mycelial growth of seven fungal species from different lineages, including phytopathogenic fungi. This comparative approach revealed that the growth defects induced by the channels were not correlated with their taxonomic classification or with the width of hyphae, but, rather, correlated with the hyphal elongation rate. This report indicates a trade-off between morphological plasticity and velocity in mycelial growth and serves to help understand fungal invasive growth into substrates or plant/animal cells, with direct impact on fungal biotechnology, ecology, and pathogenicity.
Collapse
|
18
|
Deuterium-labeled Raman tracking of glucose accumulation and protein metabolic dynamics in Aspergillus nidulans hyphal tips. Sci Rep 2021; 11:1279. [PMID: 33446770 PMCID: PMC7809412 DOI: 10.1038/s41598-020-80270-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/18/2020] [Indexed: 01/29/2023] Open
Abstract
Filamentous fungi grow exclusively at their tips, where many growth-related fungal processes, such as enzyme secretion and invasion into host cells, take place. Hyphal tips are also a site of active metabolism. Understanding metabolic dynamics within the tip region is therefore important for biotechnology and medicine as well as for microbiology and ecology. However, methods that can track metabolic dynamics with sufficient spatial resolution and in a nondestructive manner are highly limited. Here we present time-lapse Raman imaging using a deuterium (D) tracer to study spatiotemporally varying metabolic activity within the hyphal tip of Aspergillus nidulans. By analyzing the carbon-deuterium (C-D) stretching Raman band with spectral deconvolution, we visualize glucose accumulation along the inner edge of the hyphal tip and synthesis of new proteins from the taken-up D-labeled glucose specifically at the central part of the apical region. Our results show that deuterium-labeled Raman imaging offers a broadly applicable platform for the study of metabolic dynamics in filamentous fungi and other relevant microorganisms in vivo.
Collapse
|
19
|
Gao X, Fischer R, Takeshita N. Application of PALM Superresolution Microscopy to the Analysis of Microtubule-Organizing Centers (MTOCs) in Aspergillus nidulans. Methods Mol Biol 2021; 2329:277-289. [PMID: 34085230 DOI: 10.1007/978-1-0716-1538-6_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photoactivated localization microscopy (PALM), one of the super resolution microscopy methods improving the resolution limit to 20 nm, allows the detection of single molecules in complex protein structures in living cells. Microtubule-organizing centres (MTOCs) are large, multisubunit protein complexes, required for microtubule polymerization. The prominent MTOC in higher eukaryotes is the centrosome, and its functional ortholog in fungi is the spindle-pole body (SPB). There is ample evidence that besides centrosomes other MTOCs are important in eukaryotic cells. The filamentous ascomycetous fungus Aspergillus nidulans is a model organism, with hyphae consisting of multinucleate compartments separated by septa. In A. nidulans, besides the SPBs, a second type of MTOCs was discovered at septa (called septal MTOCs, sMTOC). All the MTOC components appear as big dots at SPBs and sMTOCs when tagged with a fluorescent protein and observed with conventional fluorescence microscopy due to the diffraction barrier. In this chapter, we describe the application of PALM in quantifying the numbers of individual proteins at both MTOC sites in A. nidulans and provide evidence that the composition of MTOCs is highly dynamic and dramatically changes during the cell cycle.
Collapse
Affiliation(s)
- Xiaolei Gao
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Norio Takeshita
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
20
|
Roberson RW. Subcellular structure and behaviour in fungal hyphae. J Microsc 2020; 280:75-85. [PMID: 32700404 DOI: 10.1111/jmi.12945] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022]
Abstract
This work briefly surveys the diversity of selected subcellular characteristics in hyphal tip cells of the fungal kingdom (Mycota). Hyphae are filamentous cells that grow by tip extension. It is a highly polarised mechanism that requires a robust secretory system for the delivery of materials (e.g. membrane, proteins, cell wall materials) to sites of cell growth. These events result it the self-assembly of a Spitzenkörper (Spk), found most often in the Basidiomycota, Ascomycota, and Blastocladiomycota, or an apical vesicle crescent (AVC), present in the most Mucoromycota and Zoopagomycota. The Spk is a complex apical body composed of secretory vesicles, cytoskeletal elements, and signaling proteins. The AVC appears less complex, though little is known of its composition other than secretory vesicles. Both bodies influence hyphal growth and morphogenesis. Other factors such as cytoskeletal functions, endocytosis, cytoplasmic flow, and turgor pressure are also important in sustaining hyphal growth. Clarifying subcellular structures, functions, and behaviours through bioimagining analysis are providing a better understanding of the cell biology and phylogenetic relationships of fungi. LAY DESCRIPTION: Fungi are most familiar to the public as yeast, molds, and mushrooms. They are eukaryotic organisms that inhabit diverse ecological niches around the world and are critical to the health of ecosystems performing roles in decomposition of organic matter and nutrient recycling (Heath, 1990). Fungi are heterotrophs, unlike plants, and comprise the most successful and diverse phyla of eukaryotic microbes, interacting with all other forms of life in associations that range from beneficial (e.g., mycorrhizae) to antagonistic (e.g., pathogens). Some fungi can be parasitic or pathogenic on plants (e.g., Cryphonectria parasitica, Magnaporthe grisea), insects (e.g., Beauveria bassiana, Cordyceps sp.), invertebrates (e.g., Drechslerella anchonia), vertebrates (e.g., Coccidioides immitis, Candia albicans) and other fungi (e.g., Trichoderma viride, Ampelomyces quisqualis). The majority of fungi, however, are saprophytes, obtaining nutrition through the brake down of non-living organic matter.
Collapse
Affiliation(s)
- R W Roberson
- School of Life Sciences, Arizona State University, Tempe, Arizona, U.S.A
| |
Collapse
|
21
|
Actin Is Required for Cellular Development and Virulence of Botrytis cinerea via the Mediation of Secretory Proteins. mSystems 2020; 5:5/1/e00732-19. [PMID: 32098836 PMCID: PMC7043344 DOI: 10.1128/msystems.00732-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The cytoskeleton is an important network that exists in cells of all domains of life. In eukaryotic cells, actin is a vital component of the cytoskeleton. Here, we report that BcactA, an actin protein in B. cinerea, can affect the growth, sporulation, and virulence of B. cinerea. Furthermore, iTRAQ-based proteomic analysis showed that BcactA affects the abundance of 40 extracellular proteins, including 11 down-accumulated CWDEs. Among them, two CWDEs, cellobiohydrolase (BcCBH) and β-endoglucanase (BcEG), contributed to the virulence of B. cinerea, indicating that bcactA plays a crucial role in regulating extracellular virulence factors. These findings unveil previously unknown functions of BcactA in mediating growth, sporulation, and virulence of B. cinerea. Actin is a vital component of the cytoskeleton of living cells and is involved in several complex processes. However, its functions in plant-pathogenic fungi are largely unknown. In this paper, we found that deletion of the Botrytis cinerea actin gene bcactA reduced growth and sporulation of B. cinerea and lowered virulence. Based on iTRAQ (isobaric tags for relative and absolute quantification)-based proteomic analysis, we compared changes of the secretome in ΔbcactA and wild-type strains. A total of 40 proteins exhibited significant differences in abundance in ΔbcactA mutants compared with the wild type. These proteins included 11 down-accumulated cell wall-degrading enzymes (CWDEs). Among them, two CWDEs, cellobiohydrolase (BcCBH) and β-endoglucanase (BcEG), were found to contribute to the virulence of B. cinerea, indicating that bcactA plays a crucial role in regulating the secretion of extracellular virulence factors. These findings unveil previously unknown functions of BcactA to mediate the virulence of B. cinerea and provide new mechanistic insights into the role of BcactA in the complex pathogenesis of B. cinerea. IMPORTANCE The cytoskeleton is an important network that exists in cells of all domains of life. In eukaryotic cells, actin is a vital component of the cytoskeleton. Here, we report that BcactA, an actin protein in B. cinerea, can affect the growth, sporulation, and virulence of B. cinerea. Furthermore, iTRAQ-based proteomic analysis showed that BcactA affects the abundance of 40 extracellular proteins, including 11 down-accumulated CWDEs. Among them, two CWDEs, cellobiohydrolase (BcCBH) and β-endoglucanase (BcEG), contributed to the virulence of B. cinerea, indicating that bcactA plays a crucial role in regulating extracellular virulence factors. These findings unveil previously unknown functions of BcactA in mediating growth, sporulation, and virulence of B. cinerea.
Collapse
|
22
|
Cortesão M, Schütze T, Marx R, Moeller R, Meyer V. Fungal Biotechnology in Space: Why and How? GRAND CHALLENGES IN FUNGAL BIOTECHNOLOGY 2020. [DOI: 10.1007/978-3-030-29541-7_18] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Soboń A, Szewczyk R, Długoński J, Różalska S. A proteomic study of Cunninghamella echinulata recovery during exposure to tributyltin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:32545-32558. [PMID: 31625117 DOI: 10.1007/s11356-019-06416-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
A proteomic study of Cunninghamella echinulata recovery during exposure to tributyltin was conducted with 2-D SDS-PAGE protein separation and profiling, MALDI-TOF/TOF protein identification, and PCA analysis. The presence of TBT resulted in an upregulation of enzymes related to energy production via cellular respiration. The unique overexpression of NADH dehydrogenase and mitochondrial malate dehydrogenase, together with an increased level of cytochrome c oxidase, ATP synthase subunits, and inorganic pyrophosphatase, indicates a strong energy deficit in the cells, leading to an increase in the ATP production. The overexpression of Prohibitin-1, a multifunctional protein associated with the proper functioning of mitochondria, was observed as well. The data also revealed oxidative stress condition. Among reactive oxygen species (ROS)-scavenging enzymes, only superoxide dismutase (SOD) showed active response against oxidative stress induced by the xenobiotic. The induction of a series of ROS-scavenging enzymes was supported by a microscopic analysis revealing a considerably large concentration of ROS in the hyphae. The overexpression of cytoskeleton-related proteins in the TBT presence was also noticed. The obtained results allow explaining the recovery strategy of the fungus in response to the energy depletion caused by TBT.
Collapse
Affiliation(s)
- Adrian Soboń
- Department of Industrial Microbiology and Biotechnology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
- Department of Microbial Genetics, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Rafał Szewczyk
- Department of Industrial Microbiology and Biotechnology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland.
- Centre of Clinical and Aesthetic Medicine DiMedical, Łódź, Poland.
| | - Jerzy Długoński
- Department of Industrial Microbiology and Biotechnology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| |
Collapse
|
24
|
Yasuda M, Takeshita N, Shigeto S. Inhomogeneous Molecular Distributions and Cytochrome Types and Redox States in Fungal Cells Revealed by Raman Hyperspectral Imaging Using Multivariate Curve Resolution–Alternating Least Squares. Anal Chem 2019; 91:12501-12508. [DOI: 10.1021/acs.analchem.9b03261] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Mitsuru Yasuda
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Norio Takeshita
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Shinsuke Shigeto
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
25
|
Raudaskoski M. The central role of septa in the basidiomycete Schizophyllum commune hyphal morphogenesis. Fungal Biol 2019; 123:638-649. [DOI: 10.1016/j.funbio.2019.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 11/15/2022]
|
26
|
Pérez-Mozqueda LL, Vazquez-Duhalt R, Castro-Longoria E. Role and dynamics of an agmatinase-like protein (AGM-1) in Neurospora crassa. Fungal Genet Biol 2019; 132:103264. [PMID: 31465847 DOI: 10.1016/j.fgb.2019.103264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 08/09/2019] [Accepted: 08/22/2019] [Indexed: 10/26/2022]
Abstract
Agmatinase is known as a metalloenzyme which hydrolyzes agmatine to produce urea and putrescine, being crucial in the alternative pathway to produce polyamines. In this study, an agmatinase-like protein (AGM-1) (NCU 01348) in the filamentous fungus Neurospora crassa is reported. Purified AGM-1 from N. crassa displays enzymatic activity hydrolyzing agmatine; therefore, it can be considered as an agmatinase-like protein. However, its role in the alternative pathway to produce polyamines apparently is not its main function since only a slight reduction of polyamines concentration was detected in the Δagm-1 het strain. Moreover, the null mutant Δagm-1 (homokaryon strain) was unable to grow and the deficiency of agm-1 in the heterokaryon strain provoked a decrease in elongation rate, conidia and biomass production, despite of having de constitutive pathway via the ornithine decarboxylase (ODC). Additionally, mature hyphae of the Δagm-1 het strain presented unusual apical branching and a disorganized Spitzenkörper (Spk). Trying to reveal the role of AGM-1in N. crassa, the protein was tagged with GFP and interestingly the dynamics and intracellular localization of AGM-1 closely resembles the F-actin population. This finding was further examined in order to elucidate if AGM-1is in a close association with F-actin. Since polyamines, among them agmatine, have been reported to act as stabilizers of actin filaments, we evaluated in vitro G-actin polymerization in the presence of agmatine and the effect of purified AGM-1 from N. crassa on these polymerized actin filaments. It was found that polymerization of actin filaments increases in the presence of agmatine and the addition of purified AGM-1 from N. crassa depolymerizes these actin filaments. Also, it was determined that an intact substrate binding site of the enzyme is necessary for the localization pattern of the native AGM-1. These results suggest that in N. crassa AGM-1 has a close association with the F-actin population via its substrate agmatine, playing an essential role during cell development.
Collapse
Affiliation(s)
- Luis L Pérez-Mozqueda
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, B.C., Mexico
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), Ensenada, Mexico
| | - Ernestina Castro-Longoria
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, B.C., Mexico.
| |
Collapse
|
27
|
Abstract
Many filamentous fungi colonizing animal or plant tissue, waste matter, or soil must find optimal paths through the constraining geometries of their microenvironment. Imaging of live fungal growth in custom-built microfluidics structures revealed the intracellular mechanisms responsible for this remarkable efficiency. In meandering channels, the Spitzenkörper (an assembly of vesicles at the filament tip) acted like a natural gyroscope, conserving the directional memory of growth, while the fungal cytoskeleton organized along the shortest growth path. However, if an obstacle could not be negotiated, the directional memory was lost due to the disappearance of the Spitzenkörper gyroscope. This study can impact diverse environmental, industrial, and medical applications, from fungal pathogenicity in plants and animals to biology-inspired computation. Filamentous fungi that colonize microenvironments, such as animal or plant tissue or soil, must find optimal paths through their habitat, but the biological basis for negotiating growth in constrained environments is unknown. We used time-lapse live-cell imaging of Neurospora crassa in microfluidic environments to show how constraining geometries determine the intracellular processes responsible for fungal growth. We found that, if a hypha made contact with obstacles at acute angles, the Spitzenkörper (an assembly of vesicles) moved from the center of the apical dome closer to the obstacle, thus functioning as an internal gyroscope, which preserved the information regarding the initial growth direction. Additionally, the off-axis trajectory of the Spitzenkörper was tracked by microtubules exhibiting “cutting corner” patterns. By contrast, if a hypha made contact with an obstacle at near-orthogonal incidence, the directional memory was lost, due to the temporary collapse of the Spitzenkörper–microtubule system, followed by the formation of two “daughter” hyphae growing in opposite directions along the contour of the obstacle. Finally, a hypha passing a lateral opening in constraining channels continued to grow unperturbed, but a daughter hypha gradually branched into the opening and formed its own Spitzenkörper–microtubule system. These observations suggest that the Spitzenkörper–microtubule system is responsible for efficient space partitioning in microenvironments, but, in its absence during constraint-induced apical splitting and lateral branching, the directional memory is lost, and growth is driven solely by the isotropic turgor pressure. These results further our understanding of fungal growth in microenvironments relevant to environmental, industrial, and medical applications.
Collapse
|
28
|
Takeshita N. Control of Actin and Calcium for Chitin Synthase Delivery to the Hyphal Tip of Aspergillus. Curr Top Microbiol Immunol 2019; 425:113-129. [PMID: 31974757 DOI: 10.1007/82_2019_193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Filamentous fungi are covered by a cell wall consisting mainly of chitin and glucan. The synthesis of chitin, a β-1,4-linked homopolymer of N-acetylglucosamine, is essential for hyphal morphogenesis. Fungal chitin synthases are integral membrane proteins that have been classified into seven classes. ChsB, a class III chitin synthase, is known to play a key role in hyphal tip growth and has been used here as a model to understand the cell biology of cell wall biosynthesis in Aspergillus nidulans. Chitin synthases are transported on secretory vesicles to the plasma membrane for new cell wall synthesis. Super-resolution localization imaging as a powerful biophysical approach indicated dynamics of the Spitzenkörper where spatiotemporally regulated exocytosis and cell extension, whereas high-speed pulse-chase imaging has revealed ChsB transport mechanism mediated by kinesin-1 and myosin-5. In addition, live imaging analysis showed correlations among intracellular Ca2+ levels, actin assembly, and exocytosis in growing hyphal tips. This suggests that pulsed Ca2+ influxes coordinate the temporal control of actin assembly and exocytosis, which results in stepwise cell extension. It is getting clear that turgor pressure and cell wall pressure are involved in the activation of Ca2+ channels for Ca2+ oscillation and cell extension. Here the cell wall synthesis and tip growth meet again.
Collapse
Affiliation(s)
- Norio Takeshita
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
29
|
Jackson-Hayes L, Atiq Z, Betton B, Freyaldenhoven WT, Myers L, Olsen E, Hill TW. Aspergillus nidulans protein kinase C forms a complex with the formin SepA that is involved in apical growth and septation. Fungal Genet Biol 2018; 122:21-30. [PMID: 30391723 DOI: 10.1016/j.fgb.2018.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 10/27/2022]
Abstract
The Aspergillus nidulans orthologue of Protein kinase C (PkcA) and the A. nidulans formin SepA participate in polarized growth. PkcA localizes to growing hyphal apices and septation sites, and amino acid sequences within PkcA that are required for PkcA to localize to these sites of cell wall synthesis have been identified. SepA is associated with the contractile actomyosin ring (CAR), and it localizes at hyphal tips in association with the Spitzenkörper (SPK) and as an apical dome. A mutation in the sepA gene (sepA1) renders A. nidulans aseptate at elevated temperature. Progress towards understanding the spatiotemporal relationship between PkcA and SepA during polarized growth is presented here. Fluorescent chimeras of PkcA and SepA strongly overlapped in some hyphal tips in a dome pattern, while other tips displayed SepA SPK and PkcA dome localization within the same tip. At septation sites PkcA and SepA consistently colocalized through late stages of CAR constriction. Bimolecular fluorescence complementation experimental results provide evidence that SepA and PkcA are both present in complexes at both hyphal tip domes and at cortical rings. A Gal4-based yeast two-hybrid analysis confirmed the physical interaction between SepA and PkcA, and indicted that the FH2 domain of SepA is involved in its physical interaction with PkcA. A functional interaction between PkcA and SepA was shown through complementation of the pkcA calC2 mutant's hypersensitivity to cell wall perturbing agents by overexpressed sepA and by the ability of the sepA1 mutation to block PkcA's ability to form cortical rings. Taken together these results suggest that a PkcA/SepA complex is involved in polarized growth. Through experiments using the actin disrupter latrunculin B, evidence is presented suggesting that actin plays a role in the PkcA/SepA complex.
Collapse
Affiliation(s)
- Loretta Jackson-Hayes
- Department of Chemistry, Rhodes College, 2000 N. Parkway, Memphis, TN 38112, USA; Biochemistry and Molecular Biology Program, Rhodes College, 2000 N. Parkway, Memphis, TN 38112, USA.
| | - Zainab Atiq
- Biochemistry and Molecular Biology Program, Rhodes College, 2000 N. Parkway, Memphis, TN 38112, USA
| | - Brianna Betton
- Biochemistry and Molecular Biology Program, Rhodes College, 2000 N. Parkway, Memphis, TN 38112, USA
| | - W Toler Freyaldenhoven
- Biochemistry and Molecular Biology Program, Rhodes College, 2000 N. Parkway, Memphis, TN 38112, USA
| | - Lance Myers
- Biochemistry and Molecular Biology Program, Rhodes College, 2000 N. Parkway, Memphis, TN 38112, USA
| | - Elisabet Olsen
- Department of Chemistry, Rhodes College, 2000 N. Parkway, Memphis, TN 38112, USA
| | - Terry W Hill
- Biochemistry and Molecular Biology Program, Rhodes College, 2000 N. Parkway, Memphis, TN 38112, USA; Department of Biology, Rhodes College, 2000 N. Parkway, Memphis, TN 38112, USA
| |
Collapse
|
30
|
Sephton-Clark PCS, Muñoz JF, Ballou ER, Cuomo CA, Voelz K. Pathways of Pathogenicity: Transcriptional Stages of Germination in the Fatal Fungal Pathogen Rhizopus delemar. mSphere 2018; 3:e00403-18. [PMID: 30258038 PMCID: PMC6158513 DOI: 10.1128/msphere.00403-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/22/2018] [Indexed: 12/19/2022] Open
Abstract
Rhizopus delemar is an invasive fungal pathogen responsible for the frequently fatal disease mucormycosis. Germination, a crucial mechanism by which infectious spores of Rhizopus delemar cause disease, is a key developmental process that transforms the dormant spore state into a vegetative one. The molecular mechanisms that underpin this transformation may be key to controlling mucormycosis; however, the regulation of germination remains poorly understood. This study describes the phenotypic and transcriptional changes that take place over the course of germination. This process is characterized by four distinct stages: dormancy, isotropic swelling, germ tube emergence, and hyphal growth. Dormant spores are shown to be transcriptionally unique, expressing a subset of transcripts absent in later developmental stages. A large shift in the expression profile is prompted by the initiation of germination, with genes involved in respiration, chitin, cytoskeleton, and actin regulation appearing to be important for this transition. A period of transcriptional consistency can be seen throughout isotropic swelling, before the transcriptional landscape shifts again at the onset of hyphal growth. This study provides a greater understanding of the regulation of germination and highlights processes involved in transforming Rhizopus delemar from a single-cellular to multicellular organism.IMPORTANCE Germination is key to the growth of many organisms, including fungal spores. Mucormycete spores exist abundantly within the environment and germinate to form hyphae. These spores are capable of infecting immunocompromised individuals, causing the disease mucormycosis. Germination from spore to hyphae within patients leads to angioinvasion, tissue necrosis, and often fatal infections. This study advances our understanding of how spore germination occurs in the mucormycetes, identifying processes we may be able to inhibit to help prevent or treat mucormycosis.
Collapse
Affiliation(s)
- Poppy C S Sephton-Clark
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Jose F Muñoz
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Elizabeth R Ballou
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kerstin Voelz
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
31
|
Wu SZ, Bezanilla M. Actin and microtubule cross talk mediates persistent polarized growth. J Cell Biol 2018; 217:3531-3544. [PMID: 30061106 PMCID: PMC6168251 DOI: 10.1083/jcb.201802039] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/08/2018] [Accepted: 07/10/2018] [Indexed: 11/25/2022] Open
Abstract
How the actin and microtubule cytoskeletons work together during diverse cellular functions is unclear. Wu et al. describe an apical actin pool in plant cells organized by a microtubule template at the site of polarized growth. Disconnecting the two cytoskeletons by removing class VIII myosins alters both cytoskeletal structures and impairs polarized growth. Coordination between actin and microtubules is important for numerous cellular processes in diverse eukaryotes. In plants, tip-growing cells require actin for cell expansion and microtubules for orientation of cell expansion, but how the two cytoskeletons are linked is an open question. In tip-growing cells of the moss Physcomitrella patens, we show that an actin cluster near the cell apex dictates the direction of rapid cell expansion. Formation of this structure depends on the convergence of microtubules near the cell tip. We discovered that microtubule convergence requires class VIII myosin function, and actin is necessary for myosin VIII–mediated focusing of microtubules. The loss of myosin VIII function affects both networks, indicating functional connections among the three cytoskeletal components. Our data suggest that microtubules direct localization of formins, actin nucleation factors, that generate actin filaments further focusing microtubules, thereby establishing a positive feedback loop ensuring that actin polymerization and cell expansion occur at a defined site resulting in persistent polarized growth.
Collapse
Affiliation(s)
- Shu-Zon Wu
- Department of Biological Sciences, Dartmouth College, Hanover, NH
| | | |
Collapse
|
32
|
Secretory Vesicle Polar Sorting, Endosome Recycling and Cytoskeleton Organization Require the AP-1 Complex in Aspergillus nidulans. Genetics 2018; 209:1121-1138. [PMID: 29925567 DOI: 10.1534/genetics.118.301240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/19/2018] [Indexed: 11/18/2022] Open
Abstract
The AP-1 complex is essential for membrane protein traffic via its role in the pinching-off and sorting of secretory vesicles (SVs) from the trans-Golgi and/or endosomes. While its essentiality is undisputed in metazoa, its role in simpler eukaryotes seems less clear. Here, we dissect the role of AP-1 in the filamentous fungus Aspergillus nidulans and show that it is absolutely essential for growth due to its role in clathrin-dependent maintenance of polar traffic of specific membrane cargoes toward the apex of growing hyphae. We provide evidence that AP-1 is involved in both anterograde sorting of RabERab11-labeled SVs and RabA/BRab5-dependent endosome recycling. Additionally, AP-1 is shown to be critical for microtubule and septin organization, further rationalizing its essentiality in cells that face the challenge of cytoskeleton-dependent polarized cargo traffic. This work also opens a novel issue on how nonpolar cargoes, such as transporters, are sorted to the eukaryotic plasma membrane.
Collapse
|
33
|
Fiedler MRM, Barthel L, Kubisch C, Nai C, Meyer V. Construction of an improved Aspergillus niger platform for enhanced glucoamylase secretion. Microb Cell Fact 2018; 17:95. [PMID: 29908567 PMCID: PMC6004097 DOI: 10.1186/s12934-018-0941-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/08/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The lifestyle of filamentous fungi depends on the secretion of hydrolytic enzymes into the surrounding medium, which degrade polymeric substances into monomers that are then taken up to sustain metabolism. This feature has been exploited in biotechnology to establish platform strains with high secretory capacity including Aspergillus niger. The accepted paradigm is that proteins become mainly secreted at the tips of fungal hyphae. However, it is still a matter of debate if the amount of growing hyphal tips in filamentous fungi correlates with an increase in secretion, with previous studies showing either a positive or no correlation. RESULTS Here, we followed a systematic approach to study protein secretion in A. niger. First, we put the glaA gene encoding for glucoamylase (GlaA), the most abundant secreted protein of A. niger, under control of the tunable Tet-on system. Regulation of glaA gene expression by omitting or adding the inducer doxycycline to cultivation media allowed us to study the effect of glaA under- or overexpression in the same isolate. By inducing glaA expression in a fluorescently tagged v-SNARE reporter strain expressing GFP-SncA, we could demonstrate that the amount of post-Golgi carriers indeed depends on and correlates with glaA gene expression. By deleting the racA gene, encoding the Rho-GTPase RacA in this isolate, we generated a strain which is identical to the parental strain with respect to biomass formation but produces about 20% more hyphal tips. This hyperbranching phenotype caused a more compact macromorphology in shake flask cultivations. When ensuring continuous high-level expression of glaA by repeated addition of doxycycline, this hyperbranching strain secreted up to four times more GlaA into the culture medium compared to its parental strain. CONCLUSION The data obtained in this study strongly indicate that A. niger responds to forced transcription of secretory enzymes with increased formation of post-Golgi carriers to efficiently accommodate the incoming cargo load. This physiological adaptation can be rationally exploited to generate hypersecretion platforms based on a hyperbranching phenotype. We propose that a racA deletion background serves as an excellent chassis for such hypersecretion strains.
Collapse
Affiliation(s)
- Markus R. M. Fiedler
- Department Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Lars Barthel
- Department Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Christin Kubisch
- Department Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Corrado Nai
- Department Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Vera Meyer
- Department Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| |
Collapse
|
34
|
Riquelme M, Aguirre J, Bartnicki-García S, Braus GH, Feldbrügge M, Fleig U, Hansberg W, Herrera-Estrella A, Kämper J, Kück U, Mouriño-Pérez RR, Takeshita N, Fischer R. Fungal Morphogenesis, from the Polarized Growth of Hyphae to Complex Reproduction and Infection Structures. Microbiol Mol Biol Rev 2018; 82:e00068-17. [PMID: 29643171 PMCID: PMC5968459 DOI: 10.1128/mmbr.00068-17] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Filamentous fungi constitute a large group of eukaryotic microorganisms that grow by forming simple tube-like hyphae that are capable of differentiating into more-complex morphological structures and distinct cell types. Hyphae form filamentous networks by extending at their tips while branching in subapical regions. Rapid tip elongation requires massive membrane insertion and extension of the rigid chitin-containing cell wall. This process is sustained by a continuous flow of secretory vesicles that depends on the coordinated action of the microtubule and actin cytoskeletons and the corresponding motors and associated proteins. Vesicles transport cell wall-synthesizing enzymes and accumulate in a special structure, the Spitzenkörper, before traveling further and fusing with the tip membrane. The place of vesicle fusion and growth direction are enabled and defined by the position of the Spitzenkörper, the so-called cell end markers, and other proteins involved in the exocytic process. Also important for tip extension is membrane recycling by endocytosis via early endosomes, which function as multipurpose transport vehicles for mRNA, septins, ribosomes, and peroxisomes. Cell integrity, hyphal branching, and morphogenesis are all processes that are largely dependent on vesicle and cytoskeleton dynamics. When hyphae differentiate structures for asexual or sexual reproduction or to mediate interspecies interactions, the hyphal basic cellular machinery may be reprogrammed through the synthesis of new proteins and/or the modification of protein activity. Although some transcriptional networks involved in such reprogramming of hyphae are well studied in several model filamentous fungi, clear connections between these networks and known determinants of hyphal morphogenesis are yet to be established.
Collapse
Affiliation(s)
- Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Jesús Aguirre
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Salomon Bartnicki-García
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Michael Feldbrügge
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Ursula Fleig
- Institute for Functional Genomics of Microorganisms, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Wilhelm Hansberg
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Jörg Kämper
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Ulrich Kück
- Ruhr University Bochum, Lehrstuhl für Allgemeine und Molekulare Botanik, Bochum, Germany
| | - Rosa R Mouriño-Pérez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Norio Takeshita
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Japan
| | - Reinhard Fischer
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| |
Collapse
|
35
|
Liu JY, Chang MC, Meng JL, Feng CP, Wang Y. A Comparative Proteome Approach Reveals Metabolic Changes Associated with Flammulina velutipes Mycelia in Response to Cold and Light Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3716-3725. [PMID: 29584419 DOI: 10.1021/acs.jafc.8b00383] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In some industrial processes, cold and light stresses are recognized as two important environmental triggers for the transformation of mycelia into fruit-bodies via intermediate primordia in Flammulina velutipes cultivation. To gain insights into the mechanism of regulation of F. velutipes mycelia in response to cold and light stress, proteins expressed abundantly and characteristically at particular stress states were investigated by using the isobaric tags for the relative and absolute quantitation labeling technique. Among the 1046 nonredundant proteins identified with a high degree of confidence, 264 proteins, which were detected as differentially expressed proteins, were associated with 176 specific KEGG pathways. In-depth data analysis revealed that the regulatory network underlying the cold and light response mechanisms of F. velutipes mycelia was complex and multifaceted, as it included varied functions such as rapid energy supply, the biosynthesis of lysine, phenylalanine, tyrosine, and γ-aminobutyric acid, the calcium signal transduction process, dynein-dependent actin and microtubule cytoskeleton formation, autolysis, oxidative stress adaptation, pigment secretion, tissue and organ morphogenesis, and other interesting stress-related processes. Insights into the proteins might shed light on an intuitive understanding of the cold and light stress response mechanism underlying the fruiting processes of F. velutipes. Furthermore, the data might also provide further insights into the stress response mechanism of macro-fungi and valuable information for scientific improvement of some mushroom cultivation techniques in practice.
Collapse
Affiliation(s)
- Jing-Yu Liu
- College of Food Engineering , Shanxi Agricultural University , Taigu 030801 , China
- Shanxi Engineering Research Center of Edible Fungi , Taigu 030801 , China
| | - Ming-Chang Chang
- College of Food Engineering , Shanxi Agricultural University , Taigu 030801 , China
- Shanxi Engineering Research Center of Edible Fungi , Taigu 030801 , China
| | - Jun-Long Meng
- College of Food Engineering , Shanxi Agricultural University , Taigu 030801 , China
- Shanxi Engineering Research Center of Edible Fungi , Taigu 030801 , China
| | - Cui-Ping Feng
- College of Food Engineering , Shanxi Agricultural University , Taigu 030801 , China
- Shanxi Engineering Research Center of Edible Fungi , Taigu 030801 , China
| | - Yu Wang
- College of Food Engineering , Shanxi Agricultural University , Taigu 030801 , China
| |
Collapse
|
36
|
Renshaw H, Vargas-Muñiz JM, Juvvadi PR, Richards AD, Waitt G, Soderblom EJ, Moseley MA, Steinbach WJ. The tail domain of the Aspergillus fumigatus class V myosin MyoE orchestrates septal localization and hyphal growth. J Cell Sci 2018; 131:jcs.205955. [PMID: 29222113 DOI: 10.1242/jcs.205955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 12/05/2017] [Indexed: 01/10/2023] Open
Abstract
Myosins are critical motor proteins that contribute to the secretory pathway, polarized growth, and cytokinesis. The globular tail domains of class V myosins have been shown to be important for cargo binding and actin cable organization. Additionally, phosphorylation plays a role in class V myosin cargo choice. Our previous studies on the class V myosin MyoE in the fungal pathogen Aspergillus fumigatus confirmed its requirement for normal morphology and virulence. However, the domains and molecular mechanisms governing the functions of MyoE remain unknown. Here, by analyzing tail mutants, we demonstrate that the tail is required for radial growth, conidiation, septation frequency and MyoE's location at the septum. Furthermore, MyoE is phosphorylated at multiple residues in vivo; however, alanine substitution mutants revealed that no single phosphorylated residue was critical. Importantly, in the absence of the phosphatase calcineurin, an additional residue was phosphorylated in its tail domain. Mutation of this tail residue led to mislocalization of MyoE from the septa. This work reveals the importance of the MyoE tail domain and its phosphorylation/dephosphorylation in the growth and morphology of A. fumigatus.
Collapse
Affiliation(s)
- Hilary Renshaw
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - José M Vargas-Muñiz
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Praveen R Juvvadi
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Amber D Richards
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Greg Waitt
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Erik J Soderblom
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - M Arthur Moseley
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - William J Steinbach
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA .,Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
37
|
Jung EM, Kothe E, Raudaskoski M. The making of a mushroom: Mitosis, nuclear migration and the actin network. Fungal Genet Biol 2018; 111:85-91. [DOI: 10.1016/j.fgb.2017.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
|
38
|
Zhou L, Evangelinos M, Wernet V, Eckert AF, Ishitsuka Y, Fischer R, Nienhaus GU, Takeshita N. Superresolution and pulse-chase imaging reveal the role of vesicle transport in polar growth of fungal cells. SCIENCE ADVANCES 2018; 4:e1701798. [PMID: 29387789 PMCID: PMC5787382 DOI: 10.1126/sciadv.1701798] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
Polarized growth of filamentous fungi requires continuous transport of biomolecules to the hyphal tip. To this end, construction materials are packaged in vesicles and transported by motor proteins along microtubules and actin filaments. We have studied these processes with quantitative superresolution localization microscopy of live Aspergillus nidulans cells expressing the photoconvertible protein mEosFPthermo fused to the chitin synthase ChsB. ChsB is mainly located at the Spitzenkörper near the hyphal tip and produces chitin, a key component of the cell wall. We have visualized the pulsatory dynamics of the Spitzenkörper, reflecting vesicle accumulation before exocytosis and their subsequent fusion with the apical plasma membrane. Furthermore, high-speed pulse-chase imaging after photoconversion of mEosFPthermo in a tightly focused spot revealed that ChsB is transported with two different speeds from the cell body to the hyphal tip and vice versa. Comparative analysis using motor protein deletion mutants allowed us to assign the fast movements (7 to 10 μm s-1) to transport of secretory vesicles by kinesin-1, and the slower ones (2 to 7 μm s-1) to transport by kinesin-3 on early endosomes. Our results show how motor proteins ensure the supply of vesicles to the hyphal tip, where temporally regulated exocytosis results in stepwise tip extension.
Collapse
Affiliation(s)
- Lu Zhou
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Nanotechnology, KIT, Karlsruhe, Germany
| | - Minoas Evangelinos
- Department of Microbiology, Institute for Applied Biosciences, KIT, Karlsruhe, Germany
- Faculty of Biology, University of Athens, Athens, Greece
- Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Gosselies, Belgium
| | - Valentin Wernet
- Department of Microbiology, Institute for Applied Biosciences, KIT, Karlsruhe, Germany
| | - Antonia F. Eckert
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Yuji Ishitsuka
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, KIT, Karlsruhe, Germany
| | - G. Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Nanotechnology, KIT, Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Institute of Toxicology and Genetics, KIT, Eggenstein-Leopoldshafen, Germany
| | - Norio Takeshita
- Department of Microbiology, Institute for Applied Biosciences, KIT, Karlsruhe, Germany
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
39
|
Oscillatory fungal cell growth. Fungal Genet Biol 2017; 110:10-14. [PMID: 29229585 DOI: 10.1016/j.fgb.2017.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/26/2017] [Accepted: 12/06/2017] [Indexed: 12/20/2022]
Abstract
Cells are dynamic systems, the state of which undergoes constant alteration that results in morphological changes and movement. Many dynamic cellular processes that appear continuous are driven by underlying mechanisms that oscillate with distinct periods. For example eukaryotic cells do not grow continuously, but rather by pulsed extension of the periphery. Stepwise cell extension at the hyphal tips of several filamentous fungi was discovered 20 years ago, but only a few molecular details of the mechanism have been clarified since then. A recent study has provided evidence for correlations among intracellular Ca2+ levels, actin assembly, exocytosis and cell extension in growing hyphal tips. This suggests that pulsed Ca2+ influxes coordinate the temporal control of actin assembly and exocytosis, which results in stepwise cell extension. The coordinated oscillation of these machineries are likely to be ubiquitous among all eukaryotes. Indeed, intracellular Ca2+ levels and/or actin polymerization oscillate in mammalian and plant cells. This review summarizes the mechanisms of oscillation in several systems.
Collapse
|
40
|
Zhang Y, Gao X, Manck R, Schmid M, Osmani AH, Osmani SA, Takeshita N, Fischer R. Microtubule-organizing centers of Aspergillus nidulans
are anchored at septa by a disordered protein. Mol Microbiol 2017; 106:285-303. [DOI: 10.1111/mmi.13763] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Ying Zhang
- Department of Microbiology, Institute for Applied Biosciences; Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4; Karlsruhe D-76131 Germany
| | - Xiaolei Gao
- Department of Microbiology, Institute for Applied Biosciences; Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4; Karlsruhe D-76131 Germany
| | - Raphael Manck
- Department of Microbiology, Institute for Applied Biosciences; Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4; Karlsruhe D-76131 Germany
| | - Marjorie Schmid
- Department of Microbiology, Institute for Applied Biosciences; Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4; Karlsruhe D-76131 Germany
| | - Aysha H. Osmani
- Department of Molecular Genetics; Ohio State University, 105 Biological Sciences Building, 484 W 12th Ave; Columbus OH 43210 USA
| | - Stephen A. Osmani
- Department of Molecular Genetics; Ohio State University, 105 Biological Sciences Building, 484 W 12th Ave; Columbus OH 43210 USA
| | - Norio Takeshita
- Department of Microbiology, Institute for Applied Biosciences; Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4; Karlsruhe D-76131 Germany
- School of Life and Environmental Sciences; University of Tsukuba; Ten-Nou-Dai Tsukuba 305-8572 Japan
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences; Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4; Karlsruhe D-76131 Germany
| |
Collapse
|
41
|
Pulses of Ca 2+ coordinate actin assembly and exocytosis for stepwise cell extension. Proc Natl Acad Sci U S A 2017; 114:5701-5706. [PMID: 28507141 DOI: 10.1073/pnas.1700204114] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many eukaryotic cells grow by extending their cell periphery in pulses. The molecular mechanisms underlying this process are not yet fully understood. Here we present a comprehensive model of stepwise cell extension by using the unique tip growth system of filamentous fungi. Live-cell imaging analysis, including superresolution microscopy, revealed that the fungus Aspergillus nidulans extends the hyphal tip in an oscillatory manner. The amount of F-actin and secretory vesicles (SV) accumulating at the hyphal tip oscillated with a positive temporal correlation, whereas vesicle amounts were negatively correlated to the growth rate. The intracellular Ca2+ level also pulsed with a positive temporal correlation to the amount of F-actin and SV at the hyphal tip. Two Ca2+ channels, MidA and CchA, were needed for proper tip growth and the oscillations of actin polymerization, exocytosis, and the growth rate. The data indicate a model in which transient Ca2+ pluses cause depolymerization of F-actin at the cortex and promote SV fusion with the plasma membrane, thereby extending the cell tip. Over time, Ca2+ diffuses away and F-actin and SV accumulate again at the hyphal tip. Our data provide evidence that temporally controlled actin polymerization and exocytosis are coordinated by pulsed Ca2+ influx, resulting in stepwise cell extension.
Collapse
|
42
|
Liu Z, Wu S, Chen Y, Han X, Gu Q, Yin Y, Ma Z. The microtubule end-binding protein FgEB1 regulates polar growth and fungicide sensitivity via different interactors in Fusarium graminearum. Environ Microbiol 2017; 19:1791-1807. [PMID: 28028881 DOI: 10.1111/1462-2920.13651] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/18/2016] [Indexed: 11/30/2022]
Abstract
In yeasts, the end-binding protein 1 (EB1) homologs regulate microtubule dynamics, cell polarization, and chromosome stability. However, functions of EB1 orthologs in plant pathogenic fungi have not been characterized yet. Here, we observed that the FgEB1 deletion mutant (ΔFgEB1) of Fusarium graminearum exhibits twisted hyphae, increased hyphal branching and curved conidia, indicating that FgEB1 is involved in the regulation of cellular polarity. Microscopic examination further showed that the microtubules of ΔFgEB1 exhibited less organized in comparison with those of the wild type. In addition, the lack of FgEB1 also altered the distribution of polarity-related class I myosin via the interaction with the actin. On the other hand, we identified four core septins as FgEB1-interacting proteins, and found that FgEB1 and septins regulated conidial polar growth in the opposite orientation. Interestingly, FgEB1 and FgKar9 constituted another complex that modulated the response to carbendazim, a microtubule-damaging agent specifically. In addition, the deletion of FgEB1 led to dramatically decreased deoxynivalenol (DON) biosynthesis. Taken together, results of this study indicate that FgEB1 regulates cellular polarity, fungicide sensitivity and DON biosynthesis via different interactors in F. graminarum, which provides a novel insight into understanding of the biological functions of EB1 in filamentous fungi.
Collapse
Affiliation(s)
- Zunyong Liu
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Sisi Wu
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yun Chen
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xinyue Han
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Qin Gu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanni Yin
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhonghua Ma
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.,State Key Laboratory of Rice Biology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
43
|
García-Rico RO, Fierro F. [Role of G-protein alpha sub-units in the morphogenic processes of filamentous Ascomycota fungi]. Rev Iberoam Micol 2017; 34:1-9. [PMID: 28169110 DOI: 10.1016/j.riam.2016.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 03/30/2016] [Accepted: 06/21/2016] [Indexed: 01/04/2023] Open
Abstract
The phylum Ascomycota comprises about 75% of all the fungal species described, and includes species of medical, phytosanitary, agricultural, and biotechnological importance. The ability to spread, explore, and colonise new substrates is a feature of critical importance for this group of organisms. In this regard, basic processes such as conidial germination, the extension of hyphae and sporulation, make up the backbone of development in most filamentous fungi. These processes require specialised morphogenic machinery, coordinated and regulated by mechanisms that are still being elucidated. In recent years, substantial progress has been made in understanding the role of the signalling pathway mediated by heterotrimericG proteins in basic biological processes of many filamentous fungi. This review focuses on the role of the alpha subunits of heterotrimericG proteins in the morphogenic processes of filamentous Ascomycota.
Collapse
Affiliation(s)
- Ramón O García-Rico
- Departamento de Microbiología, Facultad de Ciencias Básicas, Universidad de Pamplona, Pamplona, Norte de Santander, Colombia.
| | - Francisco Fierro
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Unidad Iztapalapa, Ciudad de México, Distrito Federal, México
| |
Collapse
|
44
|
He PH, Dong WX, Chu XL, Feng MG, Ying SH. The cellular proteome is affected by a gelsolin (BbGEL1
) during morphological transitions in aerobic surface versus liquid growth in the entomopathogenic fungus Beauveria bassiana. Environ Microbiol 2016; 18:4153-4169. [DOI: 10.1111/1462-2920.13500] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/23/2016] [Accepted: 08/13/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Pu-Hong He
- College of Life Sciences; Institute of Microbiology, Zhejiang University; Hangzhou 310058 China
| | - Wei-Xia Dong
- College of Life Sciences; Institute of Microbiology, Zhejiang University; Hangzhou 310058 China
| | - Xin-Ling Chu
- College of Life Sciences; Institute of Microbiology, Zhejiang University; Hangzhou 310058 China
| | - Ming-Guang Feng
- College of Life Sciences; Institute of Microbiology, Zhejiang University; Hangzhou 310058 China
| | - Sheng-Hua Ying
- College of Life Sciences; Institute of Microbiology, Zhejiang University; Hangzhou 310058 China
| |
Collapse
|
45
|
Sánchez-Elordi E, Baluška F, Echevarría C, Vicente C, Legaz ME. Defence sugarcane glycoproteins disorganize microtubules and prevent nuclear polarization and germination of Sporisorium scitamineum teliospores. JOURNAL OF PLANT PHYSIOLOGY 2016; 200:111-123. [PMID: 27372179 DOI: 10.1016/j.jplph.2016.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 06/06/2023]
Abstract
Microtubules (MTs) are involved in the germination of Sporisorium scitamineum teliospores. Resistant varieties of sugar cane plants produce defence glycoproteins that prevent the infection of the plants by the filamentous fungi Sporisorium scitamineum. Here, we show that a fraction of these glycoproteins prevents the correct arrangement of MTs and causes nuclear fragmentation defects. As a result, nuclei cannot correctly migrate through the growing hyphae, causing germinative failure. Arginase activity contained in defence glycoproteins is already described for preventing fungal germination. Now, its enzymatically active form is presented as a link between the defensive capacity of glycoproteins and the MT disorganization in fungal cells. Active arginase is produced in healthy and resistant plants; conversely, it is not detected in the juice from susceptible varieties, which explains why MT depolarization, nuclear disorganization as well as germination of teliospores are not significantly affected by glycoproteins from non-resistant plants. Our results also suggest that susceptible plants try to increase their levels of arginase after detecting the presence of the pathogen. However, this signal comes "too late" and such defensive mechanism fails.
Collapse
Affiliation(s)
- Elena Sánchez-Elordi
- Team of Intercellular Communication in Plant Symbiosis, Faculty of Biology, Complutense University. 12 José Antonio Novais Av., 28040 Madrid, Spain
| | - František Baluška
- Department of Plant Cell Biology, Institute of Cellular and Molecular Botany (IZMB), University Bonn. 1 Kirschallee St., D-53115 Bonn, Germany
| | - Clara Echevarría
- Team of Intercellular Communication in Plant Symbiosis, Faculty of Biology, Complutense University. 12 José Antonio Novais Av., 28040 Madrid, Spain
| | - Carlos Vicente
- Team of Intercellular Communication in Plant Symbiosis, Faculty of Biology, Complutense University. 12 José Antonio Novais Av., 28040 Madrid, Spain.
| | - M Estrella Legaz
- Team of Intercellular Communication in Plant Symbiosis, Faculty of Biology, Complutense University. 12 José Antonio Novais Av., 28040 Madrid, Spain
| |
Collapse
|
46
|
González-Rodríguez VE, Garrido C, Cantoral JM, Schumacher J. The F-actin capping protein is required for hyphal growth and full virulence but is dispensable for septum formation in Botrytis cinerea. Fungal Biol 2016; 120:1225-35. [PMID: 27647239 DOI: 10.1016/j.funbio.2016.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 01/20/2023]
Abstract
Filamentous (F-) actin is an integral part of the cytoskeleton allowing for cell growth, intracellular motility, and cytokinesis of eukaryotic cells. Its assembly from G-actin monomers and its disassembly are tightly regulated processes involving a number of actin-binding proteins (ABPs) such as F-actin nucleators and cross-linking proteins. F-actin capping protein (CP) is an alpha/beta heterodimer known from yeast and higher eukaryotes to bind to the fast growing ends of the actin filaments stabilizing them. In this study, we identified the orthologs of the two CP subunits, named BcCPA1 and BcCPB1, in the plant pathogenic fungus Botrytis cinerea and showed that the two proteins physically interact in a yeast two-hybrid approach. GFP-BcCPA1 fusion proteins were functional and localized to the assumed sites of F-actin accumulation, i.e. to the hyphal tips and the sites of actin ring formation. Deletion of bccpa1 had a profound effect on hyphal growth, morphogenesis, and virulence indicating the importance of F-actin capping for an intact actin cytoskeleton. As polarized growth - unlike septum formation - is impaired in the mutants, it can be concluded that the organization and/or localization of actin patches and cables are disturbed rather than the functionality of the actin rings.
Collapse
Affiliation(s)
- Victoria E González-Rodríguez
- Departamento de Biomedicina, Biotecnología y Salud Pública, Laboratorio de Microbiología, Facultad de Ciencias de Mar y Ambientales, Instituto Universitario de Investigación Vitivinícola y Agroalimentaria (IVAGRO), Universidad de Cádiz, Polígono Río San Pedro, 11510 Puerto Real, Spain.
| | - Carlos Garrido
- Departamento de Biomedicina, Biotecnología y Salud Pública, Laboratorio de Microbiología, Facultad de Ciencias de Mar y Ambientales, Instituto Universitario de Investigación Vitivinícola y Agroalimentaria (IVAGRO), Universidad de Cádiz, Polígono Río San Pedro, 11510 Puerto Real, Spain.
| | - Jesús M Cantoral
- Departamento de Biomedicina, Biotecnología y Salud Pública, Laboratorio de Microbiología, Facultad de Ciencias de Mar y Ambientales, Instituto Universitario de Investigación Vitivinícola y Agroalimentaria (IVAGRO), Universidad de Cádiz, Polígono Río San Pedro, 11510 Puerto Real, Spain.
| | - Julia Schumacher
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany.
| |
Collapse
|
47
|
Bergs A, Ishitsuka Y, Evangelinos M, Nienhaus GU, Takeshita N. Dynamics of Actin Cables in Polarized Growth of the Filamentous Fungus Aspergillus nidulans. Front Microbiol 2016; 7:682. [PMID: 27242709 PMCID: PMC4860496 DOI: 10.3389/fmicb.2016.00682] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/26/2016] [Indexed: 12/20/2022] Open
Abstract
Highly polarized growth of filamentous fungi requires a continuous supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeletons and their associated motor proteins. Particularly, actin cables originating from the hyphal tip are essential for hyphal growth. Although, specific marker proteins have been developed to visualize actin cables in filamentous fungi, the exact organization and dynamics of actin cables has remained elusive. Here, we observed actin cables using tropomyosin (TpmA) and Lifeact fused to fluorescent proteins in living Aspergillus nidulans hyphae and studied the dynamics and regulation. GFP tagged TpmA visualized dynamic actin cables formed from the hyphal tip with cycles of elongation and shrinkage. The elongation and shrinkage rates of actin cables were similar and approximately 0.6 μm/s. Comparison of actin markers revealed that high concentrations of Lifeact reduced actin dynamics. Simultaneous visualization of actin cables and microtubules suggests temporally and spatially coordinated polymerization and depolymerization between the two cytoskeletons. Our results provide new insights into the molecular mechanism of ordered polarized growth regulated by actin cables and microtubules.
Collapse
Affiliation(s)
- Anna Bergs
- Department of Microbiology, Institute for Applied Bioscience, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Yuji Ishitsuka
- Institute of Applied Physics, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Minoas Evangelinos
- Department of Microbiology, Institute for Applied Bioscience, Karlsruhe Institute of TechnologyKarlsruhe, Germany; Faculty of Biology, University of AthensAthens, Greece
| | - G U Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of TechnologyKarlsruhe, Germany; Institute of Toxicology and Genetics, Karlsruhe Institute of TechnologyEggenstein-Leopoldshafen, Germany; Institute of Nanotechnology, Karlsruhe Institute of TechnologyEggenstein-Leopoldshafen, Germany; Department of Physics, University of Illinois at Urbana-ChampaignUrbana-Champaign, IL, USA
| | - Norio Takeshita
- Department of Microbiology, Institute for Applied Bioscience, Karlsruhe Institute of TechnologyKarlsruhe, Germany; Faculty of Life and Environmental Sciences, University of TsukubaTsukuba, Japan
| |
Collapse
|
48
|
Abstract
Filamentous fungi are extremely polarized organisms, exhibiting continuous growth at their hyphal tips. The hyphal form is related to their pathogenicity in animals and plants, and their high secretion ability for biotechnology. Polarized growth requires a sequential supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeleton. Therefore, the arrangement of the cytoskeleton is a crucial step to establish and maintain the cell polarity. This review summarizes recent findings unraveling the mechanism of polarized growth with special emphasis on the role of actin and microtubule cytoskeleton and polarity marker proteins. Rapid insertions of membranes via highly active exocytosis at hyphal tips could quickly dilute the accumulated polarity marker proteins. Recent findings by a super-resolution microscopy indicate that filamentous fungal cells maintain their polarity at the tips by repeating transient assembly and disassembly of polarity sites.
Collapse
Affiliation(s)
- Norio Takeshita
- a Department of Microbiology , Institute for Applied Bioscience, Karlsruhe Institute of Technology (KIT) , Karlsruhe , Germany.,b Faculty of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Japan
| |
Collapse
|
49
|
Schinke J, Kolog Gulko M, Christmann M, Valerius O, Stumpf SK, Stirz M, Braus GH. The DenA/DEN1 Interacting Phosphatase DipA Controls Septa Positioning and Phosphorylation-Dependent Stability of Cytoplasmatic DenA/DEN1 during Fungal Development. PLoS Genet 2016; 12:e1005949. [PMID: 27010942 PMCID: PMC4806917 DOI: 10.1371/journal.pgen.1005949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/01/2016] [Indexed: 11/18/2022] Open
Abstract
DenA/DEN1 and the COP9 signalosome (CSN) represent two deneddylases which remove the ubiquitin-like Nedd8 from modified target proteins and are required for distinct fungal developmental programmes. The cellular DenA/DEN1 population is divided into a nuclear and a cytoplasmatic subpopulation which is especially enriched at septa. DenA/DEN1 stability control mechanisms are different for the two cellular subpopulations and depend on different physical interacting proteins and the C-terminal DenA/DEN1 phosphorylation pattern. Nuclear DenA/DEN1 is destabilized during fungal development by five of the eight CSN subunits which target nuclear DenA/DEN1 for degradation. DenA/DEN1 becomes stabilized as a phosphoprotein at S243/S245 during vegetative growth, which is necessary to support further asexual development. After the initial phase of development, the newly identified cytoplasmatic DenA/DEN1 interacting phosphatase DipA and an additional developmental specific C-terminal phosphorylation site at serine S253 destabilize DenA/DEN1. Outside of the nucleus, DipA is co-transported with DenA/DEN1 in the cytoplasm between septa and nuclei. Deletion of dipA resulted in increased DenA/DEN1 stability in a strain which is unresponsive to illumination. The mutant strain is dysregulated in cytokinesis and impaired in asexual development. Our results suggest a dual phosphorylation-dependent DenA/DEN1 stability control with stabilizing and destabilizing modifications and physical interaction partner proteins which function as control points in the nucleus and the cytoplasm.
Collapse
Affiliation(s)
- Josua Schinke
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), and Georg-August-University, Göttingen, Germany
| | - Miriam Kolog Gulko
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), and Georg-August-University, Göttingen, Germany
| | - Martin Christmann
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), and Georg-August-University, Göttingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), and Georg-August-University, Göttingen, Germany
| | - Sina Kristin Stumpf
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), and Georg-August-University, Göttingen, Germany
| | - Margarita Stirz
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), and Georg-August-University, Göttingen, Germany
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), and Georg-August-University, Göttingen, Germany
- * E-mail:
| |
Collapse
|
50
|
Hoshi HO, Zheng L, Ohta A, Horiuchi H. A Wiskott-Aldrich syndrome protein is involved in endocytosis in Aspergillus nidulans. Biosci Biotechnol Biochem 2016; 80:1802-12. [PMID: 26927610 DOI: 10.1080/09168451.2016.1148580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Endocytosis is vital for hyphal tip growth in filamentous fungi and is involved in the tip localization of various membrane proteins. To investigate the function of a Wiskott-Aldrich syndrome protein (WASP) in endocytosis of filamentous fungi, we identified a WASP ortholog-encoding gene, wspA, in Aspergillus nidulans and characterized it. The wspA product, WspA, localized to the tips of germ tubes during germination and actin rings in the subapical regions of mature hyphae. wspA is essential for the growth and functioned in the polarity establishment and maintenance during germination of conidia. We also investigated its function in endocytosis and revealed that endocytosis of SynA, a synaptobrevin ortholog that is known to be endocytosed at the subapical regions of hyphal tips in A. nidulans, did not occur when wspA expression was repressed. These results suggest that WspA plays roles in endocytosis at hyphal tips and polarity establishment during germination.
Collapse
Affiliation(s)
- Hiro-Omi Hoshi
- a Department of Biotechnology , The University of Tokyo , Tokyo , Japan
| | - Lu Zheng
- a Department of Biotechnology , The University of Tokyo , Tokyo , Japan
| | - Akinori Ohta
- a Department of Biotechnology , The University of Tokyo , Tokyo , Japan
| | - Hiroyuki Horiuchi
- a Department of Biotechnology , The University of Tokyo , Tokyo , Japan
| |
Collapse
|