1
|
Yu Y, Iatsenko I. Drosophila symbionts in infection: when a friend becomes an enemy. Infect Immun 2025; 93:e0051124. [PMID: 40172541 PMCID: PMC12070757 DOI: 10.1128/iai.00511-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
The insect microbiome is comprised of extracellular microbial communities that colonize the host surfaces and endosymbionts that reside inside host cells and tissues. Both of these communities participate in essential aspects of host biology, including the immune response and interactions with pathogens. In recent years, our knowledge about the role of the insect microbiome in infection has increased tremendously. While many studies have highlighted the microbiome's protective effect against various natural enemies of insects, unexpected discoveries have shown that some members of the microbiota can facilitate pathogenic infections. Here, we summarize studies in the fruit fly, Drosophila melanogaster, that have substantially progressed our understanding of host-pathogen-microbiome interactions during infection. We summarize studies on the protective mechanisms of Drosophila gut microbiota, highlight examples of microbiome exploitation by pathogens, and detail the mechanisms of endosymbiont-mediated host protection. In addition, we delve into a previously neglected topic in Drosophila microbiome research-the crosstalk between endosymbionts and gut microbiota. Finally, we address how endosymbionts and gut microbiota remain resilient to host immune responses and stably colonize the host during infection. By examining how the microbiome is influenced by and reciprocally affects infection outcomes, this review provides timely and cohesive coverage of the roles of Drosophila endosymbionts and gut microbiota during infections.
Collapse
Affiliation(s)
- Yi Yu
- Research Group Genetics of Host-Microbe Interactions, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Igor Iatsenko
- Research Group Genetics of Host-Microbe Interactions, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
2
|
Singh AS, Pathak D, Devi MS, Anifowoshe AT, Nongthomba U. Antibiotic alters host's gut microbiota, fertility, and antimicrobial peptide gene expression vis-à-vis ampicillin treatment on model organism Drosophila melanogaster. Int Microbiol 2024; 27:1665-1676. [PMID: 38502456 DOI: 10.1007/s10123-024-00507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/20/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
Antibiotics are commonly used to treat infectious diseases; however, persistence is often expressed by the pathogenic bacteria and their long-term relative effect on the host have been neglected. The present study investigated the impact of antibiotics in gut microbiota (GM) and metabolism of host. The effect of ampicillin antibiotics on GM of Drosophila melanogaster was analyzed through deep sequencing of 16S rRNA amplicon gene. The dominant phyla consisted of Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, Planctomycetes, Chloroflexi, Euryarchaeota, Acedobacteria, Verrucomicrobia, and Cyanobacteria. It was found that the composition of GM was significantly altered on administration of antibiotics. On antibiotic treatments, there were decline in relative abundance of Proteobacteria and Firmicutes, while there were increase in relative abundance of Chlorophyta and Bacteroidota. High abundance of 14 genera, viz., Wolbachia, Lactobacillus, Bacillus, Pseudomonas, Thiolamprovum, Pseudoalteromonas, Vibrio, Romboutsia, Staphylococcus, Alteromonas, Clostridium, Lysinibacillus, Litoricola, and Cellulophaga were significant (p ≤ 0.05) upon antibiotic treatment. Particularly, the abundance of Acetobacter was significantly (p ≤ 0.05) declined but increased for Wolbachia. Further, a significant (p ≤ 0.05) increase in Wolbachia endosymbiont of D. melanogaster, Wolbachia endosymbiont of Curculio okumai, and Wolbachia pipientis and a decrease in the Acinetobacter sp. were observed. We observed an increase in functional capacity for biosynthesis of certain nucleotides and the enzyme activities. Further, the decrease in antimicrobial peptide production in the treated group and potential effects on the host's defense mechanisms were observed. This study helps shed light on an often-overlooked dimension, namely the persistence of antibiotics' effects on the host.
Collapse
Affiliation(s)
- Asem Sanjit Singh
- Developmental and Biomedical Genetics Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India, 560012.
| | - Dhruv Pathak
- Developmental and Biomedical Genetics Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India, 560012
| | - Manoharmayum Shaya Devi
- ICAR-Central Inland Fisheries Research Institute, P.O. Monirampore, Barrackpore, Kolkata, India, 700 120
| | - Abass Toba Anifowoshe
- Developmental and Biomedical Genetics Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India, 560012
| | - Upendra Nongthomba
- Developmental and Biomedical Genetics Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India, 560012.
| |
Collapse
|
3
|
Wang J, Gu J, Yi J, Li J, Li W, Zhai Z. High-fat diets induce inflammatory IMD/NFκB signaling via gut microbiota remodeling in Drosophila. Front Cell Infect Microbiol 2024; 14:1347716. [PMID: 38716198 PMCID: PMC11074423 DOI: 10.3389/fcimb.2024.1347716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/02/2024] [Indexed: 06/05/2024] Open
Abstract
High-fat diets (HFDs), a prevailing daily dietary style worldwide, induce chronic low-grade inflammation in the central nervous system and peripheral tissues, promoting a variety of diseases including pathologies associated with neuroinflammation. However, the mechanisms linking HFDs to inflammation are not entirely clear. Here, using a Drosophila HFD model, we explored the mechanism of HFD-induced inflammation in remote tissues. We found that HFDs activated the IMD/NFκB immune pathway in the head through remodeling of the commensal gut bacteria. Removal of gut microbiota abolished such HFD-induced remote inflammatory response. Further experiments revealed that HFDs significantly increased the abundance of Acetobacter malorum in the gut, and the re-association of this bacterium was sufficient to elicit inflammatory response in remote tissues. Mechanistically, Acetobacter malorum produced a greater amount of peptidoglycan (PGN), a well-defined microbial molecular pattern that enters the circulation and remotely activates an inflammatory response. Our results thus show that HFDs trigger inflammation mediated by a bacterial molecular pattern that elicits host immune response.
Collapse
Affiliation(s)
| | | | | | | | | | - Zongzhao Zhai
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
4
|
Fasel C, Chiapperino L. Between the genotype and the phenotype lies the microbiome: symbiosis and the making of 'postgenomic' knowledge. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2023; 45:43. [PMID: 38055153 PMCID: PMC10700207 DOI: 10.1007/s40656-023-00599-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/29/2023] [Indexed: 12/07/2023]
Abstract
Emphatic claims of a "microbiome revolution" aside, the study of the gut microbiota and its role in organismal development and evolution is a central feature of so-called postgenomics; namely, a conceptual and/or practical turn in contemporary life sciences, which departs from genetic determinism and reductionism to explore holism, emergentism and complexity in biological knowledge-production. This paper analyses the making of postgenomic knowledge about developmental symbiosis in Drosophila melanogaster by a specific group of microbiome scientists. Drawing from both practical philosophy of science and Science and Technology Studies, the paper documents epistemological questions of artefactuality and representativeness of model organisms as they emerge in the day-to-day labour producing and being produced by the "microbiome revolution." Specifically, the paper builds on all the written and editorial exchanges involved in the troubled publication of a research paper studying the symbiotic role of the microbiota in the flies' development. These written materials permit us to delimit the network of justifications, evidence, standards of knowledge-production, trust in the tools and research designs that make up the conditions of possibility of a postgenomic fact. More than reframing the organism as a radically novel multiplicity of reactive genomes, we conclude, doing postgenomic research on the microbiota and symbiosis means producing a story that deviates from the scripts embedded into the sociotechnical experimental systems of post-Human Genome Project life sciences.
Collapse
Affiliation(s)
- Cécile Fasel
- STS Lab, Institute of Social Sciences, Faculty of Social and Political Sciences, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Luca Chiapperino
- STS Lab, Institute of Social Sciences, Faculty of Social and Political Sciences, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
5
|
Xiao C, Duarri‐Redondo S, Thorhölludottir DAV, Chen Y, Schlötterer C. Non-additive effects between genotypes: Implications for competitive fitness assays. Ecol Evol 2023; 13:e10713. [PMID: 37941737 PMCID: PMC10630047 DOI: 10.1002/ece3.10713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/27/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023] Open
Abstract
Competitive fitness assays are widely used in evolutionary biology and typically rely on a reference strain to compare different focal genotypes. This approach implicitly relies on the absence of interaction between the competing genotypes. In other words, the performance of the reference strain must not depend on the competitor. This report scrutinized this assumption by competing diverged Drosophila simulans populations against a common reference strain. We detected strong evidence for interaction between the competing genotypes: (1) Frequency-dependent selection was common with opposite effects in genetically diverged populations. (2) Temporal heterogeneity of fitness estimates, which can be partially attributed to a competitor-specific delay in the eclosion of the reference strain. We propose that this inconsistent behavior of the reference strain can be considered a specific case of a genotype × environment interaction. Focal populations could modify the environment of the reference strain, either indirectly by altering the microbiome composition and food availability or directly by genotype-specific cannibalism. Our results provide new insights into the interaction of diverged genotypes and have important implications for the interpretation of competitive fitness assays.
Collapse
Affiliation(s)
- Changyi Xiao
- Institut für PopulationsgenetikVetmeduni ViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
| | - Sara Duarri‐Redondo
- Institut für PopulationsgenetikVetmeduni ViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
| | - Dagny A. V. Thorhölludottir
- Institut für PopulationsgenetikVetmeduni ViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
| | - Yiwen Chen
- Institut für PopulationsgenetikVetmeduni ViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
| | | |
Collapse
|
6
|
da Silva Soares NF, Quagliariello A, Yigitturk S, Martino ME. Gut microbes predominantly act as living beneficial partners rather than raw nutrients. Sci Rep 2023; 13:11981. [PMID: 37488173 PMCID: PMC10366161 DOI: 10.1038/s41598-023-38669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023] Open
Abstract
Animals and their gut microbes mutually benefit their health. Nutrition plays a central role in this, directly influencing both host and microbial fitness and the nature of their interactions. This makes nutritional symbioses a complex and dynamic tri-system of diet-microbiota-host. Despite recent discoveries on this field, full control over the interplay among these partners is challenging and hinders the resolution of fundamental questions, such as how to parse the gut microbes' effect as raw nutrition or as symbiotic partners? To tackle this, we made use of the well-characterized Drosophila melanogaster/Lactiplantibacillus plantarum experimental model of nutritional symbiosis to generate a quantitative framework of gut microbes' effect on the host. By coupling experimental assays and Random Forest analysis, we show that the beneficial effect of L. plantarum strains primarily results from the active relationship as symbionts rather than raw nutrients, regardless of the bacterial strain. Metabolomic analysis of both active and inactive bacterial cells further demonstrated the crucial role of the production of beneficial bacterial metabolites, such as N-acetylated-amino-acids, as result of active bacterial growth and function. Altogether, our results provide a ranking and quantification of the main bacterial features contributing to sustain animal growth. We demonstrate that bacterial activity is the predominant and necessary variable involved in bacteria-mediated benefit, followed by strain-specific properties and the nutritional potential of the bacterial cells. This contributes to elucidate the role of beneficial bacteria and probiotics, creating a broad quantitative framework for host-gut microbiome that can be expanded to other model systems.
Collapse
Affiliation(s)
| | - Andrea Quagliariello
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Seren Yigitturk
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
- Food Quality and Design Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Maria Elena Martino
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy.
| |
Collapse
|
7
|
Cao Q, Koski TM, Li H, Zhang C, Sun J. The effect of inactivation of aldehyde dehydrogenase on pheromone production by a gut bacterium of an invasive bark beetle, Dendroctonus valens. INSECT SCIENCE 2023; 30:459-472. [PMID: 36003004 DOI: 10.1111/1744-7917.13101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/06/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Semiochemical-based management strategies are important for controlling bark beetles, such as invasive Red Turpentine Beetle (Denroctonus valens), the causal agent for mass mortality of pine trees (Pinus spp.) in China. It has been previously shown that the pheromone verbenone regulates the attack density of this beetle in a dose-dependent manner and that the gut bacteria of D. valens are involved in verbenone production. However, molecular functional verification of the role of gut bacteria in the pheromone production of D. valens is still lacking. To better understand the molecular function of gut bacterial verbenone production, we chose a facultative anaerobic gut bacterium (Enterobacter xiangfangensis) of D. valens based on its strong ability to convert cis-verbenol to verbenone, as shown in our previous study, and investigated its transcriptomics in the presence or absence of cis-verbenol under anaerobic conditions (simulating the anoxic environment in the beetle's gut). Based on this transcriptome analysis, aldehyde dehydrogenase (ALDH1) was identified as a putative key gene responsible for verbenone production and was knocked-down by homologous recombination to obtain a mutant E. xiangfangensis strain. Our results show that these mutants had significantly decreased the ability to convert the monoterpene precursor to verbenone compared with the wild-type bacteria, indicating that ALDH1 is primarily responsible for verbenone conversion for this bacterium species. These findings provide further mechanistic evidence of bacterially mediated pheromone production by D. valens, add new perspective for functional studies of gut bacteria in general, and may aid the development of new gene silencing-based pest management strategies.
Collapse
Affiliation(s)
- Qingjie Cao
- College of Forestry, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Tuuli-Marjaana Koski
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei Province, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huiping Li
- College of Forestry, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Chi Zhang
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jianghua Sun
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei Province, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Abstract
Acetobacter species are a major component of the gut microbiome of the fruit fly Drosophila melanogaster, a widely used model organism. While a range of studies have illuminated impacts of Acetobacter on their hosts, less is known about how association with the host impacts bacteria. A previous study identified that a purine salvage locus was commonly found in Acetobacter associated with Drosophila. In this study, we sought to verify the functions of predicted purine salvage genes in Acetobacter fabarum DsW_054 and to test the hypothesis that these bacteria can utilize host metabolites as a sole source of nitrogen. Targeted gene deletion and complementation experiments confirmed that genes encoding xanthine dehydrogenase (xdhB), urate hydroxylase (urhA), and allantoinase (puuE) were required for growth on their respective substrates as the sole source of nitrogen. Utilization of urate by Acetobacter is significant because this substrate is the major nitrogenous waste product of Drosophila, and its accumulation in the excretory system is detrimental to both flies and humans. The potential significance of our findings for host purine homeostasis and health are discussed, as are the implications for interactions among microbiota members, which differ in their capacity to utilize host metabolites for nitrogen. IMPORTANCEAcetobacter are commonly found in the gut microbiota of fruit flies, including Drosophila melanogaster. We evaluated the function of purine salvage genes in Acetobacter fabarum to test the hypothesis that this bacterium can utilize host metabolites as a source of nitrogen. Our results identify functions for three genes required for growth on urate, a major host waste product. The utilization of this and other Drosophila metabolites by gut bacteria may play a role in their survival in the host environment. Future research into how microbial metabolism impacts host purine homeostasis may lead to therapies because urate accumulation in the excretory system is detrimental to flies and humans.
Collapse
|
9
|
Hong S, Sun Y, Sun D, Wang C. Microbiome assembly on Drosophila body surfaces benefits the flies to combat fungal infections. iScience 2022; 25:104408. [PMID: 35663020 PMCID: PMC9157200 DOI: 10.1016/j.isci.2022.104408] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/28/2022] [Accepted: 05/11/2022] [Indexed: 02/08/2023] Open
Abstract
In contrast to the well-characterized gut microbiomes, the composition and function of the insect body-surface microbiotas are still elusive and highly underexplored. Here we report the dynamic features of the Drosophila melanogaster surface microbiomes. It was found that the microbiomes assembled on fly surfaces could defend insects against fungal parasitic infections. The substantial increase of bacterial loads occurred within 10 days of fly eclosion, especially the expansion of Gilliamella species. The culturable bacteria such as Lactiplantibacillus plantarum could effectively inhibit fungal spore germinations, and the gnotobiotic addition of the isolated bacteria could substantially delay fungal infection of axenic flies. We found that the fly tarsal segments were largely accumulated with bacterial cells, which could accelerate cell dispersal onto different body parts to deter fungal spore germinations. Our findings will facilitate future investigations of the surface microbiotas affecting insect physiologies.
Collapse
Affiliation(s)
- Song Hong
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlei Sun
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dapeng Sun
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
10
|
Caragata EP, Short SM. Vector microbiota and immunity: modulating arthropod susceptibility to vertebrate pathogens. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100875. [PMID: 35065286 DOI: 10.1016/j.cois.2022.100875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/03/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Arthropods, including mosquitoes, sand flies, tsetse flies, and ticks are vectors of many bacterial, parasitic, and viral pathogens that cause serious disease in humans and animals. Their microbiota, that is, all microorganisms that dwell within their tissues, can impact vector immunity and susceptibility to pathogen infection. Historically, host-pathogen-microbiota interactions have not been well described, with little known about mechanism. In this review, we highlight recent advances in understanding how individual microorganisms and microbial communities interact with vectors and human pathogens, the mechanisms they utilize to achieve these effects, and the potential for exploiting these interactions to control pathogen transmission. These studies fill important knowledge gaps and further our understanding of the roles that the vector microbiota plays in pathogen transmission.
Collapse
Affiliation(s)
- Eric P Caragata
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL 32962, USA
| | - Sarah M Short
- Department of Entomology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
11
|
Mutualism between Gut-Borne Yeasts and Their Host, Thaumatotibia leucotreta, and Potential Usefulness in Pest Management. INSECTS 2022; 13:insects13030243. [PMID: 35323541 PMCID: PMC8954841 DOI: 10.3390/insects13030243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/04/2022]
Abstract
Thaumatotibia leucotreta is endemic to southern Africa and is highly significant for various fruit industries, including the South African citrus industry, due to its classification as a phytosanitary pest. Mutualistic associations between C. pomonella, closely related to T. leucotreta, and yeasts have previously been described and reported to reduce larval mortality and enhance larval development. Here, we determined which yeast species occur naturally in the gut of T. leucotreta larvae and investigated whether any of the isolated yeast species affect their behaviour and development. Navel oranges infested with T. leucotreta larvae were collected from geographically distinct provinces in South Africa, and the larvae were processed for analysis of naturally occurring associated yeasts. Six yeast species were isolated and identified from the guts of these T. leucotreta larvae via PCR amplification and sequencing of the ITS region of rDNA and D1/D2 domain of large ribosomal subunit. Larval development and attraction assays were conducted, and T. leucotreta larvae that fed on Navel oranges inoculated with yeast had accelerated developmental periods and reduced mortality rates. Neonate T. leucotreta were also attracted to YPD broth cultures inoculated with yeast for feeding. Oviposition preference assays were conducted with adult T. leucotreta females. Navel oranges inoculated with yeast were shown to influence the oviposition preference of adult females. Yeasts harbour the potential for use in biocontrol, especially when combined with other well-established control methods. This study provides a platform for future research into incorporating yeast with current biological control agents as a novel option for controlling T. leucotreta in the field.
Collapse
|
12
|
Kitani-Morii F, Friedland RP, Yoshida H, Mizuno T. Drosophila as a Model for Microbiota Studies of Neurodegeneration. J Alzheimers Dis 2021; 84:479-490. [PMID: 34569965 PMCID: PMC8673522 DOI: 10.3233/jad-215031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accumulating evidence show that the gut microbiota is deeply involved not only in host nutrient metabolism but also in immune function, endocrine regulation, and chronic disease. In neurodegenerative conditions such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis, the gut-brain axis, the bidirectional interaction between the brain and the gut, provides new route of pathological spread and potential therapeutic targets. Although studies of gut microbiota have been conducted mainly in mice, mammalian gut microbiota is highly diverse, complex, and sensitive to environmental changes. Drosophila melanogaster, a fruit fly, has many advantages as a laboratory animal: short life cycle, numerous and genetically homogenous offspring, less ethical concerns, availability of many genetic models, and low maintenance costs. Drosophila has a simpler gut microbiota than mammals and can be made to remain sterile or to have standardized gut microbiota by simple established methods. Research on the microbiota of Drosophila has revealed new molecules that regulate the brain-gut axis, and it has been shown that dysbiosis of the fly microbiota worsens lifespan, motor function, and neurodegeneration in AD and PD models. The results shown in fly studies represents a fundamental part of the immune and proteomic process involving gut-microbiota interactions that are highly conserved. Even though the fly’s gut microbiota are not simple mimics of humans, flies are a valuable system to learn the molecular mechanisms of how the gut microbiota affect host health and behavior.
Collapse
Affiliation(s)
- Fukiko Kitani-Morii
- Department of Molecular Pathobiology of Brain Diseases, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan.,Department of Neurology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Robert P Friedland
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Hideki Yoshida
- Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto, Japan
| | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| |
Collapse
|
13
|
Probiotics Improve Eating Disorders in Mandarin Fish ( Siniperca chuatsi) Induced by a Pellet Feed Diet via Stimulating Immunity and Regulating Gut Microbiota. Microorganisms 2021; 9:microorganisms9061288. [PMID: 34204793 PMCID: PMC8231599 DOI: 10.3390/microorganisms9061288] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Eating disorders are directly or indirectly influenced by gut microbiota and innate immunity. Probiotics have been shown to regulate gut microbiota and stimulate immunity in a variety of species. In this study, three kinds of probiotics, namely, Lactobacillus plantarum, Lactobacillus rhamnosus and Clostridium butyricum, were selected for the experiment. The results showed that the addition of three probiotics at a concentration of 108 colony forming unit/mL to the culture water significantly increased the ratio of the pellet feed recipients and survival rate of mandarin fish (Siniperca chuatsi) under pellet-feed feeding. In addition, the three kinds of probiotics reversed the decrease in serum lysozyme and immunoglobulin M content, the decrease in the activity of antioxidant enzymes glutathione and catalase and the decrease in the expression of the appetite-stimulating regulator agouti gene-related protein of mandarin fish caused by pellet-feed feeding. In terms of intestinal health, the three probiotics reduced the abundance of pathogenic bacteria Aeromonas in the gut microbiota and increased the height of intestinal villi and the thickness of foregut basement membrane of mandarin fish under pellet-feed feeding. In general, the addition of the three probiotics can significantly improve eating disorders of mandarin fish caused by pellet feeding.
Collapse
|
14
|
Gut microbiome modulates Drosophila aggression through octopamine signaling. Nat Commun 2021; 12:2698. [PMID: 33976215 PMCID: PMC8113466 DOI: 10.1038/s41467-021-23041-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Gut microbiome profoundly affects many aspects of host physiology and behaviors. Here we report that gut microbiome modulates aggressive behaviors in Drosophila. We found that germ-free males showed substantial decrease in inter-male aggression, which could be rescued by microbial re-colonization. These germ-free males are not as competitive as wild-type males for mating with females, although they displayed regular levels of locomotor and courtship behaviors. We further found that Drosophila microbiome interacted with diet during a critical developmental period for the proper expression of octopamine and manifestation of aggression in adult males. These findings provide insights into how gut microbiome modulates specific host behaviors through interaction with diet during development. The gut microbiome regulates behaviour in a number of species. Here the authors show that depletion of the gut microbiome in Drosophila reduced aggressive behaviour, in an octopamine-dependent manner.
Collapse
|
15
|
Kapun M, Barrón MG, Staubach F, Obbard DJ, Wiberg RAW, Vieira J, Goubert C, Rota-Stabelli O, Kankare M, Bogaerts-Márquez M, Haudry A, Waidele L, Kozeretska I, Pasyukova EG, Loeschcke V, Pascual M, Vieira CP, Serga S, Montchamp-Moreau C, Abbott J, Gibert P, Porcelli D, Posnien N, Sánchez-Gracia A, Grath S, Sucena É, Bergland AO, Guerreiro MPG, Onder BS, Argyridou E, Guio L, Schou MF, Deplancke B, Vieira C, Ritchie MG, Zwaan BJ, Tauber E, Orengo DJ, Puerma E, Aguadé M, Schmidt P, Parsch J, Betancourt AJ, Flatt T, González J. Genomic Analysis of European Drosophila melanogaster Populations Reveals Longitudinal Structure, Continent-Wide Selection, and Previously Unknown DNA Viruses. Mol Biol Evol 2020; 37:2661-2678. [PMID: 32413142 PMCID: PMC7475034 DOI: 10.1093/molbev/msaa120] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genetic variation is the fuel of evolution, with standing genetic variation especially important for short-term evolution and local adaptation. To date, studies of spatiotemporal patterns of genetic variation in natural populations have been challenging, as comprehensive sampling is logistically difficult, and sequencing of entire populations costly. Here, we address these issues using a collaborative approach, sequencing 48 pooled population samples from 32 locations, and perform the first continent-wide genomic analysis of genetic variation in European Drosophila melanogaster. Our analyses uncover longitudinal population structure, provide evidence for continent-wide selective sweeps, identify candidate genes for local climate adaptation, and document clines in chromosomal inversion and transposable element frequencies. We also characterize variation among populations in the composition of the fly microbiome, and identify five new DNA viruses in our samples.
Collapse
Affiliation(s)
- Martin Kapun
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Evolutionary Biology and Environmental Sciences, University of Zürich, Zürich, Switzerland
- Division of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Maite G Barrón
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Fabian Staubach
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolutionary Biology and Ecology, University of Freiburg, Freiburg, Germany
| | - Darren J Obbard
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - R Axel W Wiberg
- The European Drosophila Population Genomics Consortium (DrosEU)
- Centre for Biological Diversity, School of Biology, University of St. Andrews, St Andrews, Scotland
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Jorge Vieira
- The European Drosophila Population Genomics Consortium (DrosEU)
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal
| | - Clément Goubert
- The European Drosophila Population Genomics Consortium (DrosEU)
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1, Université de Lyon, Villeurbanne, France
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
| | - Omar Rota-Stabelli
- The European Drosophila Population Genomics Consortium (DrosEU)
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’ Adige, Italy
| | - Maaria Kankare
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - María Bogaerts-Márquez
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Annabelle Haudry
- The European Drosophila Population Genomics Consortium (DrosEU)
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1, Université de Lyon, Villeurbanne, France
| | - Lena Waidele
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolutionary Biology and Ecology, University of Freiburg, Freiburg, Germany
| | - Iryna Kozeretska
- The European Drosophila Population Genomics Consortium (DrosEU)
- General and Medical Genetics Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- State Institution National Antarctic Scientific Center of Ministry of Education and Science of Ukraine, Kyiv, Ukraine
| | - Elena G Pasyukova
- The European Drosophila Population Genomics Consortium (DrosEU)
- Laboratory of Genome Variation, Institute of Molecular Genetics of RAS, Moscow, Russia
| | - Volker Loeschcke
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Bioscience—Genetics, Ecology and Evolution, Aarhus University, Aarhus C, Denmark
| | - Marta Pascual
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Cristina P Vieira
- The European Drosophila Population Genomics Consortium (DrosEU)
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal
| | - Svitlana Serga
- The European Drosophila Population Genomics Consortium (DrosEU)
- General and Medical Genetics Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Catherine Montchamp-Moreau
- The European Drosophila Population Genomics Consortium (DrosEU)
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Jessica Abbott
- The European Drosophila Population Genomics Consortium (DrosEU)
- Section for Evolutionary Ecology, Department of Biology, Lund University, Lund, Sweden
| | - Patricia Gibert
- The European Drosophila Population Genomics Consortium (DrosEU)
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1, Université de Lyon, Villeurbanne, France
| | - Damiano Porcelli
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Animal and Plant Sciences, Sheffield, United Kingdom
| | - Nico Posnien
- The European Drosophila Population Genomics Consortium (DrosEU)
- Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Universität Göttingen, Göttingen, Germany
| | - Alejandro Sánchez-Gracia
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Sonja Grath
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Élio Sucena
- The European Drosophila Population Genomics Consortium (DrosEU)
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Alan O Bergland
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, University of Virginia, Charlottesville, VA
| | - Maria Pilar Garcia Guerreiro
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Banu Sebnem Onder
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Eliza Argyridou
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Lain Guio
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Mads Fristrup Schou
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Bioscience—Genetics, Ecology and Evolution, Aarhus University, Aarhus C, Denmark
- Section for Evolutionary Ecology, Department of Biology, Lund University, Lund, Sweden
| | - Bart Deplancke
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Bio-engineering, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Cristina Vieira
- The European Drosophila Population Genomics Consortium (DrosEU)
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1, Université de Lyon, Villeurbanne, France
| | - Michael G Ritchie
- The European Drosophila Population Genomics Consortium (DrosEU)
- Centre for Biological Diversity, School of Biology, University of St. Andrews, St Andrews, Scotland
| | - Bas J Zwaan
- The European Drosophila Population Genomics Consortium (DrosEU)
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Eran Tauber
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Dorcas J Orengo
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Eva Puerma
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Montserrat Aguadé
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Paul Schmidt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, University of Pennsylvania, Philadelphia, PA
| | - John Parsch
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Andrea J Betancourt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolution, Ecology, and Behaviour, University of Liverpool, Liverpool, United Kingdom
| | - Thomas Flatt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Josefa González
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
16
|
Henriques SF, Dhakan DB, Serra L, Francisco AP, Carvalho-Santos Z, Baltazar C, Elias AP, Anjos M, Zhang T, Maddocks ODK, Ribeiro C. Metabolic cross-feeding in imbalanced diets allows gut microbes to improve reproduction and alter host behaviour. Nat Commun 2020; 11:4236. [PMID: 32843654 PMCID: PMC7447780 DOI: 10.1038/s41467-020-18049-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
The impact of commensal bacteria on the host arises from complex microbial-diet-host interactions. Mapping metabolic interactions in gut microbial communities is therefore key to understand how the microbiome influences the host. Here we use an interdisciplinary approach including isotope-resolved metabolomics to show that in Drosophila melanogaster, Acetobacter pomorum (Ap) and Lactobacillus plantarum (Lp) a syntrophic relationship is established to overcome detrimental host diets and identify Ap as the bacterium altering the host's feeding decisions. Specifically, we show that Ap uses the lactate produced by Lp to supply amino acids that are essential to Lp, allowing it to grow in imbalanced diets. Lactate is also necessary and sufficient for Ap to alter the fly's protein appetite. Our data show that gut bacterial communities use metabolic interactions to become resilient to detrimental host diets. These interactions also ensure the constant flow of metabolites used by the microbiome to alter reproduction and host behaviour.
Collapse
Affiliation(s)
- Sílvia F Henriques
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal
| | - Darshan B Dhakan
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal
| | - Lúcia Serra
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal
| | - Ana Patrícia Francisco
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal
| | - Zita Carvalho-Santos
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal
| | - Célia Baltazar
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal
| | - Ana Paula Elias
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal
| | - Margarida Anjos
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal
| | - Tong Zhang
- University of Glasgow Institute of Cancer Sciences, Switchback Road, Glasgow, G61 1QH, UK
| | - Oliver D K Maddocks
- University of Glasgow Institute of Cancer Sciences, Switchback Road, Glasgow, G61 1QH, UK
| | - Carlos Ribeiro
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal.
| |
Collapse
|
17
|
Hiebert N, Kessel T, Skaljac M, Spohn M, Vilcinskas A, Lee KZ. The Gram-Positive Bacterium Leuconostoc pseudomesenteroides Shows Insecticidal Activity against Drosophilid and Aphid Pests. INSECTS 2020; 11:E471. [PMID: 32722463 PMCID: PMC7469177 DOI: 10.3390/insects11080471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/08/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022]
Abstract
Insect pests reduce global crop yields by up to 20%, but the most effective control measures are currently based on environmentally hazardous chemical pesticides. An alternative, ecologically beneficial pest-management strategy involves the use of microbial pathogens (or active compounds and extracts derived from them) that naturally target selected insect pests. A novel strain of the bacterium Leuconostoc pseudomesenteroides showed promising activity in our preliminary tests. Here, we investigated its effects in more detail, focusing on drosophilid and aphid pests by testing the survival of two species representing the family Drosophilidae (Drosophila suzukii and D. melanogaster) and one representing the family Aphididae (Acyrthosiphon pisum). We used oral and septic infection models to administer living bacteria or cell-free extracts to adult flies and aphid nymphs. We found that infection with living bacteria significantly reduced the survival of our insect models, whereas the administration of cell-free extracts had a significant effect only in aphids. These results confirm that L. pseudomesenteroides has potential as a new biocontrol agent for sustainable pest management.
Collapse
Affiliation(s)
- Nils Hiebert
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, D-35394 Giessen, Germany; (N.H.); (M.S.); (M.S.); (A.V.)
| | - Tobias Kessel
- Institute for Insect Biotechnology, Justus-Liebig University of Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany;
| | - Marisa Skaljac
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, D-35394 Giessen, Germany; (N.H.); (M.S.); (M.S.); (A.V.)
| | - Marius Spohn
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, D-35394 Giessen, Germany; (N.H.); (M.S.); (M.S.); (A.V.)
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, D-35394 Giessen, Germany; (N.H.); (M.S.); (M.S.); (A.V.)
- Institute for Insect Biotechnology, Justus-Liebig University of Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany;
| | - Kwang-Zin Lee
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, D-35394 Giessen, Germany; (N.H.); (M.S.); (M.S.); (A.V.)
| |
Collapse
|
18
|
Brown JJ, Mihaljevic JR, Des Marteaux L, Hrček J. Metacommunity theory for transmission of heritable symbionts within insect communities. Ecol Evol 2020; 10:1703-1721. [PMID: 32076545 PMCID: PMC7029081 DOI: 10.1002/ece3.5754] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/13/2019] [Accepted: 09/21/2019] [Indexed: 12/14/2022] Open
Abstract
Microbial organisms are ubiquitous in nature and often form communities closely associated with their host, referred to as the microbiome. The microbiome has strong influence on species interactions, but microbiome studies rarely take interactions between hosts into account, and network interaction studies rarely consider microbiomes. Here, we propose to use metacommunity theory as a framework to unify research on microbiomes and host communities by considering host insects and their microbes as discretely defined "communities of communities" linked by dispersal (transmission) through biotic interactions. We provide an overview of the effects of heritable symbiotic bacteria on their insect hosts and how those effects subsequently influence host interactions, thereby altering the host community. We suggest multiple scenarios for integrating the microbiome into metacommunity ecology and demonstrate ways in which to employ and parameterize models of symbiont transmission to quantitatively assess metacommunity processes in host-associated microbial systems. Successfully incorporating microbiota into community-level studies is a crucial step for understanding the importance of the microbiome to host species and their interactions.
Collapse
Affiliation(s)
- Joel J. Brown
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
- Biology Centre of the Czech Academy of SciencesInstitute of EntomologyCeske BudejoviceCzech Republic
| | - Joseph R. Mihaljevic
- School of Informatics, Computing, and Cyber SystemsNorthern Arizona UniversityFlagstaffAZUSA
| | - Lauren Des Marteaux
- Biology Centre of the Czech Academy of SciencesInstitute of EntomologyCeske BudejoviceCzech Republic
| | - Jan Hrček
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
- Biology Centre of the Czech Academy of SciencesInstitute of EntomologyCeske BudejoviceCzech Republic
| |
Collapse
|
19
|
Belmonte RL, Corbally MK, Duneau DF, Regan JC. Sexual Dimorphisms in Innate Immunity and Responses to Infection in Drosophila melanogaster. Front Immunol 2020; 10:3075. [PMID: 32076419 PMCID: PMC7006818 DOI: 10.3389/fimmu.2019.03075] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022] Open
Abstract
The sexes show profound differences in responses to infection and the development of autoimmunity. Dimorphisms in immune responses are ubiquitous across taxa, from arthropods to vertebrates. Drosophila melanogaster shows strong sex dimorphisms in immune system responses at baseline, upon pathogenic challenge, and over aging. We have performed an exhaustive survey of peer-reviewed literature on Drosophila immunity, and present a database of publications indicating the sex(es) analyzed in each study. While we found a growing interest in the community in adult immunity and in reporting both sexes, the main body of work in this field uses only one sex, or does not stratify by sex. We synthesize evidence for sexually dimorphic responses to bacterial, viral, and fungal infections. Dimorphisms may be mediated by distinct immune compartments, and we review work on sex differences in behavioral, epithelial, cellular, and systemic (fat body-mediated) immunity. Emerging work on sexually dimorphic aging of immune tissues, immune senescence, and inflammation are examined. We consider evolutionary drivers for sex differences in immune investment, highlight the features of Drosophila biology that make it particularly amenable to studies of immune dimorphisms, and discuss areas for future exploration.
Collapse
Affiliation(s)
- Rebecca L. Belmonte
- Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Mary-Kate Corbally
- Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - David F. Duneau
- Laboratoire Evolution & Diversite Biologique, UMR5174 EDB, CNRS, Université Toulouse 3 Paul Sabatier, Toulouse, France
| | - Jennifer C. Regan
- Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
20
|
Solomon GM, Dodangoda H, McCarthy-Walker T, Ntim-Gyakari R, Newell PD. The microbiota of Drosophila suzukii influences the larval development of Drosophila melanogaster. PeerJ 2019; 7:e8097. [PMID: 31763075 PMCID: PMC6873876 DOI: 10.7717/peerj.8097] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022] Open
Abstract
Microorganisms play a central role in the biology of vinegar flies such as Drosophila suzukii and Drosophila melanogaster: serving as a food source to both adults and larvae, and influencing a range of traits including nutrition, behavior, and development. The niches utilized by the fly species partially overlap, as do the microbiota that sustain them, and interactions among these players may drive the development of crop diseases. To learn more about how the microbiota of one species may affect the other, we isolated and identified microbes from field-caught D. suzukii, and then characterized their effects on D. melanogaster larval development time in the laboratory. We found that the D. suzukii microbiota consistently included both yeasts and bacteria. It was dominated by yeasts of the genus Hanseniaspora, and bacteria from the families Acetobacteraceae and Enterobacteriaceae. Raising D. melanogaster under gnotobiotic conditions with each microbial isolate individually, we found that some bacteria promoted larval development relative to axenic conditions, but most did not have a significant effect. In contrast, nearly all the yeasts tested significantly accelerated larval development. The one exception was Starmerella bacillaris, which had the opposite effect: significantly slowing larval developmental rate. We investigated the basis for this effect by examining whether S. bacillaris cells could sustain larval growth, and measuring the survival of S. bacillaris and other yeasts in the larval gut. Our results suggest S. bacillaris is not digested by D. melanogaster and therefore cannot serve as a source of nutrition. These findings have interesting implications for possible interactions between the two Drosophilia species and their microbiota in nature. Overall, we found that microbes isolated from D. suzukii promote D. melanogaster larval development, which is consistent with the model that infestation of fruit by D. suzukii can open up habitat for D. melanogaster. We propose that the microbiome is an important dimension of the ecological interactions between Drosophila species.
Collapse
Affiliation(s)
- Gabrielle M. Solomon
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, United States of America
| | - Hiruni Dodangoda
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, United States of America
| | - Tylea McCarthy-Walker
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, United States of America
| | - Rita Ntim-Gyakari
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, United States of America
| | - Peter D. Newell
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, United States of America
| |
Collapse
|
21
|
Bosch TCG, Guillemin K, McFall-Ngai M. Evolutionary "Experiments" in Symbiosis: The Study of Model Animals Provides Insights into the Mechanisms Underlying the Diversity of Host-Microbe Interactions. Bioessays 2019; 41:e1800256. [PMID: 31099411 PMCID: PMC6756983 DOI: 10.1002/bies.201800256] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/11/2019] [Indexed: 12/13/2022]
Abstract
Current work in experimental biology revolves around a handful of animal species. Studying only a few organisms limits science to the answers that those organisms can provide. Nature has given us an overwhelming diversity of animals to study, and recent technological advances have greatly accelerated the ability to generate genetic and genomic tools to develop model organisms for research on host-microbe interactions. With the help of such models the authors therefore hope to construct a more complete picture of the mechanisms that underlie crucial interactions in a given metaorganism (entity consisting of a eukaryotic host with all its associated microbial partners). As reviewed here, new knowledge of the diversity of host-microbe interactions found across the animal kingdom will provide new insights into how animals develop, evolve, and succumb to the disease.
Collapse
Affiliation(s)
- Thomas C G Bosch
- Canadian Institute for Advanced Research, Toronto, ON, M5G 1M1, Canada
- Zoological Institute, University of Kiel, 24118, Kiel, Germany
| | - Karen Guillemin
- Canadian Institute for Advanced Research, Toronto, ON, M5G 1M1, Canada
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Margaret McFall-Ngai
- Canadian Institute for Advanced Research, Toronto, ON, M5G 1M1, Canada
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| |
Collapse
|
22
|
Capo F, Wilson A, Di Cara F. The Intestine of Drosophila melanogaster: An Emerging Versatile Model System to Study Intestinal Epithelial Homeostasis and Host-Microbial Interactions in Humans. Microorganisms 2019; 7:microorganisms7090336. [PMID: 31505811 PMCID: PMC6780840 DOI: 10.3390/microorganisms7090336] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/16/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022] Open
Abstract
In all metazoans, the intestinal tract is an essential organ to integrate nutritional signaling, hormonal cues and immunometabolic networks. The dysregulation of intestinal epithelium functions can impact organism physiology and, in humans, leads to devastating and complex diseases, such as inflammatory bowel diseases, intestinal cancers, and obesity. Two decades ago, the discovery of an immune response in the intestine of the genetic model system, Drosophila melanogaster, sparked interest in using this model organism to dissect the mechanisms that govern gut (patho) physiology in humans. In 2007, the finding of the intestinal stem cell lineage, followed by the development of tools available for its manipulation in vivo, helped to elucidate the structural organization and functions of the fly intestine and its similarity with mammalian gastrointestinal systems. To date, studies of the Drosophila gut have already helped to shed light on a broad range of biological questions regarding stem cells and their niches, interorgan communication, immunity and immunometabolism, making the Drosophila a promising model organism for human enteric studies. This review summarizes our current knowledge of the structure and functions of the Drosophila melanogaster intestine, asserting its validity as an emerging model system to study gut physiology, regeneration, immune defenses and host-microbiota interactions.
Collapse
Affiliation(s)
- Florence Capo
- Department of Microbiology and Immunology, IWK Research Centre, Dalhousie University, 5850/5980 University Avenue, Halifax, NS B3K 6R8, Canada.
| | - Alexa Wilson
- Department of Microbiology and Immunology, IWK Research Centre, Dalhousie University, 5850/5980 University Avenue, Halifax, NS B3K 6R8, Canada.
| | - Francesca Di Cara
- Department of Microbiology and Immunology, IWK Research Centre, Dalhousie University, 5850/5980 University Avenue, Halifax, NS B3K 6R8, Canada.
| |
Collapse
|
23
|
Murgier J, Everaerts C, Farine JP, Ferveur JF. Live yeast in juvenile diet induces species-specific effects on Drosophila adult behaviour and fitness. Sci Rep 2019; 9:8873. [PMID: 31222019 PMCID: PMC6586853 DOI: 10.1038/s41598-019-45140-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023] Open
Abstract
The presence and the amount of specific yeasts in the diet of saprophagous insects such as Drosophila can affect their development and fitness. However, the impact of different yeast species in the juvenile diet has rarely been investigated. Here, we measured the behavioural and fitness effects of three live yeasts (Saccharomyces cerevisiae = SC; Hanseniaspora uvarum = HU; Metschnikowia pulcherrima = MP) added to the diet of Drosophila melanogaster larvae. Beside these live yeast species naturally found in natural Drosophila populations or in their food sources, we tested the inactivated "drySC" yeast widely used in Drosophila research laboratories. All flies were transferred to drySC medium immediately after adult emergence, and several life traits and behaviours were measured. These four yeast diets had different effects on pre-imaginal development: HU-rich diet tended to shorten the "egg-to-pupa" period of development while MP-rich diet induced higher larval lethality compared to other diets. Pre- and postzygotic reproduction-related characters (copulatory ability, fecundity, cuticular pheromones) varied according to juvenile diet and sex. Juvenile diet also changed adult food choice preference and longevity. These results indicate that specific yeast species present in natural food sources and ingested by larvae can affect their adult characters crucial for fitness.
Collapse
Affiliation(s)
- Juliette Murgier
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup-UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Claude Everaerts
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup-UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Jean-Pierre Farine
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup-UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Jean-François Ferveur
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup-UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France.
| |
Collapse
|
24
|
Baenas N, Wagner AE. Drosophila melanogaster as an alternative model organism in nutrigenomics. GENES AND NUTRITION 2019; 14:14. [PMID: 31080523 PMCID: PMC6501408 DOI: 10.1186/s12263-019-0641-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022]
Abstract
Nutrigenomics explains the interaction between the genome, the proteome, the epigenome, the metabolome, and the microbiome with the nutritional environment of an organism. It is therefore situated at the interface between an organism's health, its diet, and the genome. The diet and/or specific dietary compounds are able to affect not only the gene expression patterns, but also the epigenetic mechanisms as well as the production of metabolites and the bacterial composition of the microbiota. Drosophila melanogaster provides a well-suited model organism to unravel these interactions in the context of nutrigenomics as it combines several advantages including an affordable maintenance, a short generation time, a high fecundity, a relatively short life expectancy, a well-characterized genome, and the availability of several mutant fly lines. Furthermore, it hosts a mammalian-like intestinal system with a clear microbiota and a fat body resembling the adipose tissue with liver-equivalent oenocytes, supporting the fly as an excellent model organism not only in nutrigenomics but also in nutritional research. Experimental approaches that are essentially needed in nutrigenomic research, including several sequencing technologies, have already been established in the fruit fly. However, studies investigating the interaction of a specific diet and/or dietary compounds in the fly are currently very limited. The present review provides an overview of the fly's morphology including the intestinal microbiome and antimicrobial peptides as modulators of the immune system. Additionally, it summarizes nutrigenomic approaches in the fruit fly helping to elucidate host-genome interactions with the nutritional environment in the model organism Drosophila melanogaster.
Collapse
Affiliation(s)
- Nieves Baenas
- 1Institute of Nutritional Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Anika E Wagner
- 2Institute of Nutritional Sciences, Justus-Liebig-University, Wilhelmstrasse 20, 35392 Giessen, Germany
| |
Collapse
|
25
|
Luo J, Ren Q, Chen Z, Liu W, Qu Z, Xiao R, Chen R, Lin H, Wu Z, Luo J, Yin H, Wang H, Liu G. Comparative analysis of microRNA profiles between wild and cultured Haemaphysalis longicornis (Acari, Ixodidae) ticks. ACTA ACUST UNITED AC 2019; 26:18. [PMID: 30916642 PMCID: PMC6436478 DOI: 10.1051/parasite/2019018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/11/2019] [Indexed: 12/25/2022]
Abstract
The miRNA profiles of a Haemaphysalis longicornis wild-type (HLWS) and of a Haemaphysalis longicornis cultured population (HLCS) were sequenced using the Illumina Hiseq 4000 platform combined with bioinformatics analysis and real-time polymerase chain reaction (RT-PCR). A total of 15.63 and 15.48 million raw reads were acquired for HLWS and HLCS, respectively. The data identified 1517 and 1327 known conserved miRNAs, respectively, of which 342 were differentially expressed between the two libraries. Thirty-six novel candidate miRNAs were predicted. To explain the functions of these novel miRNAs, Gene Ontology (GO) analysis was performed. Target gene function prediction identified a significant set of genes related to salivary gland development, pathogen-host interaction and regulation of the defence response to pathogens expressed by wild H. longicornis ticks. Cellular component biogenesis, the immune system process, and responses to stimuli were represented at high percentages in the two tick libraries. GO enrichment analysis showed that the percentages of most predicted functions of the target genes of miRNA were similar, as were certain specific categories of functional enhancements, and that these genes had different numbers and specific functions (e.g., auxiliary transport protein and electron carrier functions). This study provides novel findings showing that miRNA regulation affects the expression of immune genes, indicating a considerable influence of environment-induced stressful stimulation on immune homeostasis. Differences in the living environments of ticks can lead to differences in miRNAs between ticks and provide a basis and a convenient means to screen for genes encoding immune factors in ticks.
Collapse
Affiliation(s)
- Jin Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Qiaoyun Ren
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Ze Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Wenge Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Zhiqiang Qu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Ronghai Xiao
- Inspection and Comprehensive Technology Center of Ruili Entry Exit Inspection and Quarantine Bureau, Yunnan 678600, PR China
| | - Ronggui Chen
- Ili Center of Animal Disease Control and Diagnosis, Ili 835000, PR China
| | - Hanliang Lin
- Xinjiang Animal Health Supervision Station, Urumqi, Xinjiang 830063, PR China
| | - Zegong Wu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China - Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Hui Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China - Centre for Ecology and Hydrology, Natural Environment Research Council (NERC), Wallingford, Oxon OX10 8BB, UK - Department of Engineering, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| |
Collapse
|
26
|
Karunakar P, Bhalla A, Sharma A. Transgenerational inheritance of cold temperature response in Drosophila. FEBS Lett 2019; 593:594-600. [PMID: 30779346 DOI: 10.1002/1873-3468.13343] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 12/20/2022]
Abstract
Intergenerational inheritance of transcriptional responses induced by low temperature rearing has recently been shown in Drosophila. Besides germline inheritance, fecal transfer experiments indirectly suggested that the acquired microbiome may also have contributed to the transcriptional responses in offspring. Here, we analyze expression data on inheritance of the cold-induced effects in conjunction with previously reported transcriptomic differences between flies with a microbiota or axenic flies and provide support for a contribution of the acquired microbiome to the offspring phenotype. Also, based on a similar analysis in conjunction with diet- and metabolism-related fly transcriptome data, we predicted and, then, experimentally confirmed that cold regulates triglyceride levels both inter- as well as trans-generationally.
Collapse
Affiliation(s)
- Pinreddy Karunakar
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Ameek Bhalla
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Abhay Sharma
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
27
|
Metabolic Basis for Mutualism between Gut Bacteria and Its Impact on the Drosophila melanogaster Host. Appl Environ Microbiol 2019; 85:AEM.01882-18. [PMID: 30389767 DOI: 10.1128/aem.01882-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/27/2018] [Indexed: 01/05/2023] Open
Abstract
Interactions between species shape the formation and function of microbial communities. In the gut microbiota of animals, cross-feeding of metabolites between microbes can enhance colonization and influence host physiology. We examined a mutually beneficial interaction between two bacteria isolated from the gut microbiota of Drosophila, i.e., Acetobacter fabarum and Lactobacillus brevis After developing an in vitro coculture assay, we utilized a genetic screen to identify A. fabarum genes required for enhanced growth with L. brevis The screen, and subsequent genetic analyses, showed that the gene encoding pyruvate phosphate dikinase (ppdK) is required for A. fabarum to benefit fully from coculture. By testing strains with mutations in a range of metabolic genes, we provide evidence that A. fabarum can utilize multiple fermentation products of L. brevis Mutualism between the bacteria in vivo affects gnotobiotic Drosophila melanogaster; flies associated with A. fabarum and L. brevis showed >1,000-fold increases in bacterial cell density and significantly lower triglyceride storage than monocolonized flies. Mutation of ppdK decreased A. fabarum density in flies cocolonized with L. brevis, consistent with the model in which Acetobacter employs gluconeogenesis to assimilate Lactobacillus fermentation products as a source of carbon in vivo We propose that cross-feeding between these groups is a common feature of microbiota in Drosophila IMPORTANCE The digestive tracts of animals are home to a community of microorganisms, the gut microbiota, which affects the growth, development, and health of the host. Interactions among microbes in this inner ecosystem can influence which species colonize the gut and can lead to changes in host physiology. We investigated a mutually beneficial interaction between two bacterial species from the gut microbiota of fruit flies. By coculturing the bacteria in vitro, we were able to identify a metabolic gene required for the bacteria to grow better together than they do separately. Our data suggest that one species consumes the waste products of the other, leading to greater productivity of the microbial community and modifying the nutrients available to the host. This study provides a starting point for investigating how these and other bacteria mutually benefit by sharing metabolites and for determining the impact of mutualism on host health.
Collapse
|
28
|
Iatsenko I, Boquete JP, Lemaitre B. Microbiota-Derived Lactate Activates Production of Reactive Oxygen Species by the Intestinal NADPH Oxidase Nox and Shortens Drosophila Lifespan. Immunity 2018; 49:929-942.e5. [DOI: 10.1016/j.immuni.2018.09.017] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/01/2018] [Accepted: 09/24/2018] [Indexed: 12/22/2022]
|
29
|
Pais IS, Valente RS, Sporniak M, Teixeira L. Drosophila melanogaster establishes a species-specific mutualistic interaction with stable gut-colonizing bacteria. PLoS Biol 2018; 16:e2005710. [PMID: 29975680 PMCID: PMC6049943 DOI: 10.1371/journal.pbio.2005710] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/17/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023] Open
Abstract
Animals live together with diverse bacteria that can impact their biology. In Drosophila melanogaster, gut-associated bacterial communities are relatively simple in composition but also have a strong impact on host development and physiology. It is generally assumed that gut bacteria in D. melanogaster are transient and their constant ingestion with food is required to maintain their presence in the gut. Here, we identify bacterial species from wild-caught D. melanogaster that stably associate with the host independently of continuous inoculation. Moreover, we show that specific Acetobacter wild isolates can proliferate in the gut. We further demonstrate that the interaction between D. melanogaster and the wild isolated Acetobacter thailandicus is mutually beneficial and that the stability of the gut association is key to this mutualism. The stable population in the gut of D. melanogaster allows continuous bacterial spreading into the environment, which is advantageous to the bacterium itself. The bacterial dissemination is in turn advantageous to the host because the next generation of flies develops in the presence of this particularly beneficial bacterium. A. thailandicus leads to a faster host development and higher fertility of emerging adults when compared to other bacteria isolated from wild-caught flies. Furthermore, A. thailandicus is sufficient and advantageous when D. melanogaster develops in axenic or freshly collected figs, respectively. This isolate of A. thailandicus colonizes several genotypes of D. melanogaster but not the closely related D. simulans, indicating that the stable association is host specific. This work establishes a new conceptual model to understand D. melanogaster-gut microbiota interactions in an ecological context; stable interactions can be mutualistic through microbial farming, a common strategy in insects. Moreover, these results develop the use of D. melanogaster as a model to study gut microbiota proliferation and colonization.
Collapse
Affiliation(s)
- Inês S. Pais
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | - Luis Teixeira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
30
|
Hu CK, Brunet A. The African turquoise killifish: A research organism to study vertebrate aging and diapause. Aging Cell 2018; 17:e12757. [PMID: 29573324 PMCID: PMC5946070 DOI: 10.1111/acel.12757] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2018] [Indexed: 02/06/2023] Open
Abstract
The African turquoise killifish has recently gained significant traction as a new research organism in the aging field. Our understanding of aging has strongly benefited from canonical research organisms—yeast, C. elegans, Drosophila, zebrafish, and mice. Many characteristics that are essential to understand aging—for example, the adaptive immune system or the hypothalamo‐pituitary axis—are only present in vertebrates (zebrafish and mice). However, zebrafish and mice live more than 3 years and their relatively long lifespans are not compatible with high‐throughput studies. Therefore, the turquoise killifish, a vertebrate with a naturally compressed lifespan of only 4–6 months, fills an essential gap to understand aging. With a recently developed genomic and genetic toolkit, the turquoise killifish not only provides practical advantages for lifespan and longitudinal experiments, but also allows more systematic characterizations of the interplay between genetics and environment during vertebrate aging. Interestingly, the turquoise killifish can also enter a long‐term dormant state during development called diapause. Killifish embryos in diapause already have some organs and tissues, and they can last in this state for years, exhibiting exceptional resistance to stress and to damages due to the passage of time. Understanding the diapause state could give new insights into strategies to prevent the damage caused by aging and to better preserve organs, tissues, and cells. Thus, the African turquoise killifish brings two interesting aspects to the aging field—a compressed lifespan and a long‐term resistant diapause state, both of which should spark new discoveries in the field.
Collapse
Affiliation(s)
- Chi-Kuo Hu
- Department of Genetics; Stanford University; Stanford CA USA
| | - Anne Brunet
- Department of Genetics; Stanford University; Stanford CA USA
- Glenn Laboratories for the Biology of Aging; Stanford CA USA
| |
Collapse
|
31
|
Zhai Z, Huang X, Yin Y. Beyond immunity: The Imd pathway as a coordinator of host defense, organismal physiology and behavior. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:51-59. [PMID: 29146454 DOI: 10.1016/j.dci.2017.11.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
The humoral arm of host defense in Drosophila relies on two evolutionarily conserved NFκB signaling cascades, the Toll and the immune deficiency (Imd) pathways. The Imd signaling pathway senses and neutralizes Gram-negative bacteria. Its activity is tightly adjusted, allowing the host to simultaneously prevent infection by pathogenic bacteria and tolerate beneficial gut microbiota. Over-activation of Imd signaling is detrimental at least in part by causing gut dysbiosis that further exacerbates intestinal pathologies. Furthermore, it is increasingly recognized that the Imd pathway or its components also play non-immune roles. In this review, we summarize recent advances in Imd signal transduction, discuss the gut-microbiota interactions mediated by Imd signaling, and finally elaborate on its diverse physiological functions beyond immunity. Understanding the multifaceted physiological outputs of Imd activation will help integrate its immune role into the regulation of whole organismal physiology.
Collapse
Affiliation(s)
- Zongzhao Zhai
- Changsha Medical University, 410125 Changsha, China; Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, 410081 Changsha, Hunan, China.
| | | | - Yulong Yin
- Changsha Medical University, 410125 Changsha, China; Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, 410081 Changsha, Hunan, China
| |
Collapse
|
32
|
Staats S, Lüersen K, Wagner AE, Rimbach G. Drosophila melanogaster as a Versatile Model Organism in Food and Nutrition Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3737-3753. [PMID: 29619822 DOI: 10.1021/acs.jafc.7b05900] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Drosophila melanogaster has been widely used in the biological sciences as a model organism. Drosophila has a relatively short life span of 60-80 days, which makes it attractive for life span studies. Moreover, approximately 60% of the fruit fly genes are orthologs to mammals. Thus, metabolic and signal transduction pathways are highly conserved. Maintenance and reproduction of Drosophila do not require sophisticated equipment and are rather cheap. Furthermore, there are fewer ethical issues involved in experimental Drosophila research compared with studies in laboratory rodents, such as rats and mice. Drosophila is increasingly recognized as a model organism in food and nutrition research. Drosophila is often fed complex solid diets based on yeast, corn, and agar. There are also so-called holidic diets available that are defined in terms of their amino acid, fatty acid, carbohydrate, vitamin, mineral, and trace element compositions. Feed intake, body composition, locomotor activity, intestinal barrier function, microbiota, cognition, fertility, aging, and life span can be systematically determined in Drosophila in response to dietary factors. Furthermore, diet-induced pathophysiological mechanisms including inflammation and stress responses may be evaluated in the fly under defined experimental conditions. Here, we critically evaluate Drosophila melanogaster as a versatile model organism in experimental food and nutrition research, review the corresponding data in the literature, and make suggestions for future directions of research.
Collapse
Affiliation(s)
- Stefanie Staats
- Institute of Human Nutrition and Food Science , University of Kiel , Hermann-Rodewald-Strasse 6 , D-24118 Kiel , Germany
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science , University of Kiel , Hermann-Rodewald-Strasse 6 , D-24118 Kiel , Germany
| | - Anika E Wagner
- Institute of Nutritional Medicine , University of Lübeck , Ratzeburger Allee 160 , D-23538 Lübeck , Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science , University of Kiel , Hermann-Rodewald-Strasse 6 , D-24118 Kiel , Germany
| |
Collapse
|
33
|
The impact of genome variation and diet on the metabolic phenotype and microbiome composition of Drosophila melanogaster. Sci Rep 2018; 8:6215. [PMID: 29670218 PMCID: PMC5906449 DOI: 10.1038/s41598-018-24542-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/05/2018] [Indexed: 12/19/2022] Open
Abstract
The metabolic phenotype of an organism depends on a complex regulatory network, which integrates the plethora of intrinsic and external information and prioritizes the flow of nutrients accordingly. Given the rise of metabolic disorders including obesity, a detailed understanding of this regulatory network is in urgent need. Yet, our level of understanding is far from completeness and complicated by the discovery of additional layers in metabolic regulation, such as the impact of the microbial community present in the gut on the hosts’ energy storage levels. Here, we investigate the interplay between genome variation, diet and the gut microbiome in the shaping of a metabolic phenotype. For this purpose, we reared a set of fully sequenced wild type Drosophila melanogaster flies under basal and nutritionally challenged conditions and performed metabolic and microbiome profiling experiments. Our results introduce the fly as a model system to investigate the impact of genome variation on the metabolic response to diet alterations and reveal candidate single nucleotide polymorphisms associated with different metabolic traits, as well as metabolite-metabolite and metabolite-microbe correlations. Intriguingly, the dietary changes affected the microbiome composition less than anticipated. These results challenge the current view of a rapidly changing microbiome in response to environmental fluctuations.
Collapse
|
34
|
Schwarzer M, Strigini M, Leulier F. Gut Microbiota and Host Juvenile Growth. Calcif Tissue Int 2018; 102:387-405. [PMID: 29214457 DOI: 10.1007/s00223-017-0368-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/18/2017] [Indexed: 02/07/2023]
Abstract
Good genes, good food, good friends. That is what parents hope will sustain and nurture the harmonious growth of their children. The impact of the genetic background and nutrition on postnatal growth has been in the spot light for long, but the good friends have come to the scene only recently. Among the good friends perhaps the most crucial ones are those that we are carrying within ourselves. They comprise the trillions of microbes that collectively constitute each individual's intestinal microbiota. Indeed, recent epidemiological and field studies in humans, supported by extensive experimental data on animal models, demonstrate a clear role of the intestinal microbiota on their host's juvenile growth, especially under suboptimal nutrient conditions. Genuinely integrative approaches applicable to invertebrate and vertebrate systems combine tools from genetics, developmental biology, microbiology, nutrition, and physiology to reveal how gut microbiota affects growth both positively and negatively, in healthy and pathological conditions. It appears that certain natural or engineered gut microbiota communities can positively impact insulin/IGF-1 and steroid hormone signaling, thus contributing to the host juvenile development and maturation.
Collapse
Affiliation(s)
- Martin Schwarzer
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, 69364, Lyon Cedex 07, France.
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czech Republic.
| | - Maura Strigini
- INSERM, U1059, Sainbiose, Université de Lyon, Université Jean Monnet, Faculté de Médecine, Campus Santé Innovation, 42023, Saint-Étienne, France.
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, 69364, Lyon Cedex 07, France
| |
Collapse
|
35
|
Tejeda-Guzmán C, Rosas-Arellano A, Kroll T, Webb SM, Barajas-Aceves M, Osorio B, Missirlis F. Biogenesis of zinc storage granules in Drosophila melanogaster. J Exp Biol 2018; 221:jeb168419. [PMID: 29367274 PMCID: PMC5897703 DOI: 10.1242/jeb.168419] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/17/2018] [Indexed: 12/16/2022]
Abstract
Membrane transporters and sequestration mechanisms concentrate metal ions differentially into discrete subcellular microenvironments for use in protein cofactors, signalling, storage or excretion. Here we identify zinc storage granules as the insect's major zinc reservoir in principal Malpighian tubule epithelial cells of Drosophila melanogaster The concerted action of Adaptor Protein-3, Rab32, HOPS and BLOC complexes as well as of the white-scarlet (ABCG2-like) and ZnT35C (ZnT2/ZnT3/ZnT8-like) transporters is required for zinc storage granule biogenesis. Due to lysosome-related organelle defects caused by mutations in the homologous human genes, patients with Hermansky-Pudlak syndrome may lack zinc granules in beta pancreatic cells, intestinal paneth cells and presynaptic vesicles of hippocampal mossy fibers.
Collapse
Affiliation(s)
- Carlos Tejeda-Guzmán
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, C.P. 07360, México
| | - Abraham Rosas-Arellano
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, C.P. 07360, México
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Samuel M Webb
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Martha Barajas-Aceves
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, C.P. 07360, México
| | - Beatriz Osorio
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, C.P. 07360, México
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, C.P. 07360, México
| |
Collapse
|
36
|
Erturk-Hasdemir D, Kasper DL. Finding a needle in a haystack: Bacteroides fragilis polysaccharide A as the archetypical symbiosis factor. Ann N Y Acad Sci 2018. [PMID: 29528123 DOI: 10.1111/nyas.13660] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Starting from birth, all animals develop a symbiotic relationship with their resident microorganisms that benefits both the microbe and the host. Recent advances in technology have substantially improved our ability to direct research toward the identification of important microbial species that affect host physiology. The identification of specific commensal molecules from these microbes and their mechanisms of action is still in its early stages. Polysaccharide A (PSA) of Bacteroides fragilis is the archetypical example of a commensal molecule that can modulate the host immune system in health and disease. This zwitterionic polysaccharide has a critical impact on the development of the mammalian immune system and also on the stimulation of interleukin 10-producing CD4+ T cells; consequently, PSA confers benefits to the host with regard to experimental autoimmune, inflammatory, and infectious diseases. In this review, we summarize the current understanding of the immunomodulatory effects of B. fragilis PSA and discuss these effects as a novel immunological paradigm. In particular, we discuss recent advances in our understanding of the unique functional mechanisms of this molecule and its therapeutic potential, and we review the recent literature in the field of microbiome research aimed at discovering new commensal products and their immunomodulatory potential.
Collapse
Affiliation(s)
- Deniz Erturk-Hasdemir
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
| | - Dennis L Kasper
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
37
|
Racing to Stay Put: How Resident Microbiota Stimulate Intestinal Epithelial Cell Proliferation. CURRENT PATHOBIOLOGY REPORTS 2018. [DOI: 10.1007/s40139-018-0163-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|