1
|
Liu M, Li Y, Yuan X, Rong S, Du J. Novel insights into RNA polymerase II transcription regulation: transcription factors, phase separation, and their roles in cardiovascular diseases. Biochem Cell Biol 2025; 103:1-21. [PMID: 39540550 DOI: 10.1139/bcb-2024-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Transcription factors (TFs) are specialized proteins that bind DNA in a sequence-specific manner and modulate RNA polymerase II (Pol II) in multiple steps of the transcription process. Phase separation is a spontaneous or driven process that can form membrane-less organelles called condensates. By creating different liquid phases at active transcription sites, the formation of transcription condensates can reduce the water content of the condensate and lower the dielectric constant in biological systems, which in turn alters the structure and function of proteins and nucleic acids in the condensate. In RNA Pol II transcription, phase separation formation shortens the time at which TFs bind to target DNA sites and promotes transcriptional bursting. RNA Pol II transcription is engaged in developing several diseases, such as cardiovascular disease, by regulating different TFs and mediating the occurrence of phase separation. This review aims to summarize the advances in the molecular mechanisms of RNA Pol II transcriptional regulation, in particular the effect of TFs and phase separation. The role of RNA Pol II transcriptional regulation in cardiovascular disease will be elucidated, providing potential therapeutic targets for the management and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 4000l0, China
| | - Shunkang Rong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
2
|
Damodharan S, Shireman JM, Xie E, Distler E, Kendziorski C, Dey M. Transcriptomic and proteomic spatial profiling of pediatric and adult diffuse midline glioma H3 K27-Altered. Sci Rep 2024; 14:22668. [PMID: 39349581 PMCID: PMC11443003 DOI: 10.1038/s41598-024-73199-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Diffuse midline glioma, H3 K27-altered (DMG) are highly aggressive malignancies of the central nervous system (CNS) that primarily affect the pediatric population. Large scale spatial transcriptomic studies have implicated that tumor microenvironmental landscape plays an important role in determining the phenotypic differences in tumor presentation and clinical course, however, data connecting overall transcriptomic changes to the protein level is lacking. The NanoString GeoMx™ Digital Spatial Profiler platform was used to determine the spatial transcriptomic and proteomic landscape in a cohort of both pediatric and adult H3 K27-altered DMG biopsy samples. Three fluorescently labeled antibodies targeting immune cells (CD45), epithelial cells (PanCK), tumor cells (H3 K27M) and a nucleic acid stain (SYTO-13) were used to establish regions of interest (ROI) for genomic and proteomic analysis. We found genetic alterations within the tumor which can be delineated across patient age and spatial location. We show that the H3 K27M mutation itself has a profound impact on tumor cells transcriptomics and interestingly we found limited fidelity between overall transcriptome and proteome. Our data also validate a previously described genomic signature at the proteomic level and reveal a special shift in the signature based on the local TME composition.
Collapse
Affiliation(s)
- Sudarshawn Damodharan
- Department of Pediatrics, Section of Hematology, Oncology & Stem Cell Transplantation, University of Chicago, Chicago, IL, USA
| | - Jack M Shireman
- Department of Neurosurgery, School of Medicine & Public Health, University of Wisconsin, UW Carbone Cancer Center, 600 Highland Ave, Madison, WI, 53792, USA
| | - Elliot Xie
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Emily Distler
- Department of Neurosurgery, School of Medicine & Public Health, University of Wisconsin, UW Carbone Cancer Center, 600 Highland Ave, Madison, WI, 53792, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Mahua Dey
- Department of Neurosurgery, School of Medicine & Public Health, University of Wisconsin, UW Carbone Cancer Center, 600 Highland Ave, Madison, WI, 53792, USA.
| |
Collapse
|
3
|
Midha T, Kolomeisky AB, Igoshin OA. Linear-Decoupling Enables Accurate Speed and Accuracy Predictions for Copolymerization Processes. J Phys Chem Lett 2024; 15:9361-9368. [PMID: 39240239 DOI: 10.1021/acs.jpclett.4c02132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Biological processes exhibit remarkable accuracy and speed and can be theoretically explored through various approaches. The Markov-chain copolymerization theory, describing polymer growth kinetics as a Markov chain, provides an exact set of equations to solve for error and speed. Still, due to nonlinearity, these equations are hard to solve. Alternatively, the enzyme-kinetics approach, which formulates a set of linear equations, simplifies the biological processes as transitions between discrete chemical states, but generally, it might not be accurate. Here, we show that the enzyme-kinetic approach can lead to inaccurate fluxes, even for first-order polymerization processes. To address the problem, we propose a simplified linear-decoupling approximation for steady-state probabilities of higher-order copolymer chains under biologically relevant conditions. Our findings demonstrate that the stationary speed and error rate obtained from the linear-decoupling method align closely with exact values from the Markov-chain (nonlinear) approximation. Extending the technique to higher-order processes with proofreading and internal states shows that it works equally well to describe trade-offs between speed and accuracy for DNA replication and transcription elongation. Our work underscores the proposed linear-decoupling approximation's efficacy in addressing the nonlinear behavior of the Markov-chain approach and the enzyme-kinetic approach's limitations, ensuring accurate predictions for high-fidelity biological processes.
Collapse
Affiliation(s)
- Tripti Midha
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Anatoly B Kolomeisky
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Oleg A Igoshin
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
4
|
Damodharan S, Shireman JM, Xie E, Distler E, Kendziorski C, Dey M. Transcriptomic and Proteomic Spatial Profiling of Pediatric and Adult Diffuse Midline Glioma H3 K27-Altered, Reveals Region Specific Differences and Limited Overlap between mRNA and Protein. RESEARCH SQUARE 2024:rs.3.rs-4139314. [PMID: 38645012 PMCID: PMC11030546 DOI: 10.21203/rs.3.rs-4139314/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Diffuse midline glioma, H3 K27-altered (DMG-Alt) are highly aggressive malignancies of the central nervous system (CNS) that primarily affect the pediatric population. Large scale spatial transcriptomic studies have implicated that tumor microenvironmental landscape plays an important role in determining the phenotypic differences in tumor presentation and clinical course, however, data connecting overall transcriptomic changes to the protein level is lacking. The NanoString GeoMx™ Digital Spatial Profiler platform was used to determine the spatial transcriptomic and proteomic landscape in a cohort of both pediatric and adult H3 K27-altered DMG biopsy samples. Three fluorescently labeled antibodies targeting immune cells (CD45), epithelial cells (PanCK), tumor cells (H3 K27M) and a nucleic acid stain (SYTO-13) were used to establish regions of interest (ROI) for genomic and proteomic analysis. We found genetic alterations within the tumor which can be delineated across patient age and spatial location. We show that the H3 K27M mutation itself has a profound impact on tumor cells transcriptomics and interestingly we found limited fidelity between overall transcriptome and proteome. Our data also validate the previously described OPC like precursor signature at the proteomic level and reveal a special shift in the signature based on the local TME composition.
Collapse
Affiliation(s)
| | | | - Elliot Xie
- University of Wisconsin School of Medicine & Public Health
| | - Emily Distler
- University of Wisconsin School of Medicine & Public Health
| | | | - Mahua Dey
- University of Wisconsin School of Medicine & Public Health
| |
Collapse
|
5
|
Salazar Marcano DE, Savić ND, Declerck K, Abdelhameed SAM, Parac-Vogt TN. Reactivity of metal-oxo clusters towards biomolecules: from discrete polyoxometalates to metal-organic frameworks. Chem Soc Rev 2024; 53:84-136. [PMID: 38015569 DOI: 10.1039/d3cs00195d] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Metal-oxo clusters hold great potential in several fields such as catalysis, materials science, energy storage, medicine, and biotechnology. These nanoclusters of transition metals with oxygen-based ligands have also shown promising reactivity towards several classes of biomolecules, including proteins, nucleic acids, nucleotides, sugars, and lipids. This reactivity can be leveraged to address some of the most pressing challenges we face today, from fighting various diseases, such as cancer and viral infections, to the development of sustainable and environmentally friendly energy sources. For instance, metal-oxo clusters and related materials have been shown to be effective catalysts for biomass conversion into renewable fuels and platform chemicals. Furthermore, their reactivity towards biomolecules has also attracted interest in the development of inorganic drugs and bioanalytical tools. Additionally, the structural versatility of metal-oxo clusters allows for the efficiency and selectivity of the biomolecular reactions they promote to be readily tuned, thereby providing a pathway towards reaction optimization. The properties of the catalyst can also be improved through incorporation into solid supports or by linking metal-oxo clusters together to form Metal-Organic Frameworks (MOFs), which have been demonstrated to be powerful heterogeneous catalysts. Therefore, this review aims to provide a comprehensive and critical analysis of the state of the art on biomolecular transformations promoted by metal-oxo clusters and their applications, with a particular focus on structure-activity relationships.
Collapse
Affiliation(s)
| | - Nada D Savić
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Kilian Declerck
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | | | | |
Collapse
|
6
|
Woodgate J, Zenkin N. Transcription-translation coupling: Recent advances and future perspectives. Mol Microbiol 2023; 120:539-546. [PMID: 37856403 PMCID: PMC10953045 DOI: 10.1111/mmi.15076] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 10/21/2023]
Abstract
The flow of genetic information from the chromosome to protein in all living organisms consists of two steps: (1) copying information coded in DNA into an mRNA intermediate via transcription by RNA polymerase, followed by (2) translation of this mRNA into a polypeptide by the ribosome. Unlike eukaryotes, where transcription and translation are separated by a nuclear envelope, in bacterial cells, these two processes occur within the same compartment. This means that a pioneering ribosome starts translation on nascent mRNA that is still being actively transcribed by RNA polymerase. This tethering via mRNA is referred to as 'coupling' of transcription and translation (CTT). CTT raises many questions regarding physical interactions and potential mutual regulation between these large (ribosome is ~2.5 MDa and RNA polymerase is 0.5 MDa) and powerful molecular machines. Accordingly, we will discuss some recently discovered structural and functional aspects of CTT.
Collapse
Affiliation(s)
- Jason Woodgate
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| |
Collapse
|
7
|
Midha T, Mallory JD, Kolomeisky AB, Igoshin OA. Synergy among Pausing, Intrinsic Proofreading, and Accessory Proteins Results in Optimal Transcription Speed and Tolerable Accuracy. J Phys Chem Lett 2023; 14:3422-3429. [PMID: 37010247 DOI: 10.1021/acs.jpclett.3c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cleavage of dinucleotides after the misincorporational pauses serves as a proofreading mechanism that increases transcriptional elongation accuracy. The accuracy is further improved by accessory proteins such as GreA and TFIIS. However, it is not clear why RNAP pauses and why cleavage-factor-assisted proofreading is necessary despite transcriptional errors in vitro being of the same order as those in downstream translation. Here, we developed a chemical-kinetic model that incorporates most relevant features of transcriptional proofreading and uncovers how the balance between speed and accuracy is achieved. We found that long pauses are essential for high accuracy, whereas cleavage-factor-stimulated proofreading optimizes speed. Moreover, in comparison to the cleavage of a single nucleotide or three nucleotides, RNAP backtracking and dinucleotide cleavage improve both speed and accuracy. Our results thereby show how the molecular mechanism and the kinetic parameters of the transcriptional process were evolutionarily optimized to achieve maximal speed and tolerable accuracy.
Collapse
Affiliation(s)
- Tripti Midha
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Joel D Mallory
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Anatoly B Kolomeisky
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Oleg A Igoshin
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
8
|
de Lorenzo V. Innovation versus novelty in microbial systems. Environ Microbiol 2023; 25:167-170. [PMID: 36335556 PMCID: PMC10098617 DOI: 10.1111/1462-2920.16278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Víctor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
9
|
Miropolskaya N, Petushkov I, Esyunina D, Kulbachinskiy A. Suppressor mutations in Escherichia coli RNA polymerase alter transcription initiation but do not affect translesion RNA synthesis in vitro. J Biol Chem 2022; 298:102099. [PMID: 35667439 PMCID: PMC9254596 DOI: 10.1016/j.jbc.2022.102099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022] Open
Abstract
Bacterial RNA polymerase (RNAP) coordinates transcription with DNA repair and replication. Many RNAP mutations have pleiotropic phenotypes with profound effects on transcription-coupled processes. One class of RNAP mutations (rpo*) has been shown to suppress mutations in regulatory factors responsible for changes in gene expression during stationary phase or starvation, as well as in factors involved in the restoration of replication forks after DNA damage. These mutations were suggested to affect the ability of RNAP to transcribe damaged DNA and to decrease the stability of transcription complexes, thus facilitating their dislodging during DNA replication and repair, although this was not explicitly demonstrated. Here, we obtained nine mutations of this class located around the DNA/RNA binding cleft of E. coli RNAP and analyzed their transcription properties in vitro. We found that these mutations decreased promoter complex stability to varying degrees and all decreased the activity of rRNA promoters. However, they did not have strong effects on elongation complex stability. Some mutations were shown to stimulate transcriptional pauses or decrease intrinsic RNA cleavage by RNAP, but none altered the ability of RNAP to transcribe DNA templates containing damaged nucleotides. Thus, we conclude that the suppressor phenotypes of the mutations are unlikely to result from direct effects on DNA lesion recognition by RNAP but may be primarily explained by changes in transcription initiation. Further analysis of the effects of these mutations on the genomic distribution of RNAP and its interactions with regulatory factors will be essential for understanding their diverse phenotypes in vivo.
Collapse
Affiliation(s)
- Nataliya Miropolskaya
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia
| | - Ivan Petushkov
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia
| | - Daria Esyunina
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia.
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia.
| |
Collapse
|
10
|
Agapov A, Olina A, Kulbachinskiy A. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3018-3041. [PMID: 35323981 PMCID: PMC8989532 DOI: 10.1093/nar/gkac174] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 11/14/2022] Open
Abstract
Cellular DNA is continuously transcribed into RNA by multisubunit RNA polymerases (RNAPs). The continuity of transcription can be disrupted by DNA lesions that arise from the activities of cellular enzymes, reactions with endogenous and exogenous chemicals or irradiation. Here, we review available data on translesion RNA synthesis by multisubunit RNAPs from various domains of life, define common principles and variations in DNA damage sensing by RNAP, and consider existing controversies in the field of translesion transcription. Depending on the type of DNA lesion, it may be correctly bypassed by RNAP, or lead to transcriptional mutagenesis, or result in transcription stalling. Various lesions can affect the loading of the templating base into the active site of RNAP, or interfere with nucleotide binding and incorporation into RNA, or impair RNAP translocation. Stalled RNAP acts as a sensor of DNA damage during transcription-coupled repair. The outcome of DNA lesion recognition by RNAP depends on the interplay between multiple transcription and repair factors, which can stimulate RNAP bypass or increase RNAP stalling, and plays the central role in maintaining the DNA integrity. Unveiling the mechanisms of translesion transcription in various systems is thus instrumental for understanding molecular pathways underlying gene regulation and genome stability.
Collapse
Affiliation(s)
- Aleksei Agapov
- Correspondence may also be addressed to Aleksei Agapov. Tel: +7 499 196 0015; Fax: +7 499 196 0015;
| | - Anna Olina
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute” Moscow 123182, Russia
| | - Andrey Kulbachinskiy
- To whom correspondence should be addressed. Tel: +7 499 196 0015; Fax: +7 499 196 0015;
| |
Collapse
|
11
|
Ho AT, Hurst LD. Effective Population Size Predicts Local Rates but Not Local Mitigation of Read-through Errors. Mol Biol Evol 2021; 38:244-262. [PMID: 32797190 PMCID: PMC7783166 DOI: 10.1093/molbev/msaa210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In correctly predicting that selection efficiency is positively correlated with the effective population size (Ne), the nearly neutral theory provides a coherent understanding of between-species variation in numerous genomic parameters, including heritable error (germline mutation) rates. Does the same theory also explain variation in phenotypic error rates and in abundance of error mitigation mechanisms? Translational read-through provides a model to investigate both issues as it is common, mostly nonadaptive, and has good proxy for rate (TAA being the least leaky stop codon) and potential error mitigation via "fail-safe" 3' additional stop codons (ASCs). Prior theory of translational read-through has suggested that when population sizes are high, weak selection for local mitigation can be effective thus predicting a positive correlation between ASC enrichment and Ne. Contra to prediction, we find that ASC enrichment is not correlated with Ne. ASC enrichment, although highly phylogenetically patchy, is, however, more common both in unicellular species and in genes expressed in unicellular modes in multicellular species. By contrast, Ne does positively correlate with TAA enrichment. These results imply that local phenotypic error rates, not local mitigation rates, are consistent with a drift barrier/nearly neutral model.
Collapse
Affiliation(s)
- Alexander T Ho
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- Corresponding author: E-mail:
| | - Laurence D Hurst
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| |
Collapse
|
12
|
Wang Q, Li S, Wan F, Xu Y, Wu Z, Cao M, Lan P, Lei M, Wu J. Structural insights into transcriptional regulation of human RNA polymerase III. Nat Struct Mol Biol 2021; 28:220-227. [PMID: 33558766 DOI: 10.1038/s41594-021-00557-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 12/29/2020] [Indexed: 01/30/2023]
Abstract
RNA polymerase III (Pol III) synthesizes structured, essential small RNAs, such as transfer RNA, 5S ribosomal RNA and U6 small nuclear RNA. Pol III, the largest nuclear RNA polymerase, is composed of a conserved core region and eight constitutive regulatory subunits, but how these factors jointly regulate Pol III transcription remains unclear. Here, we present cryo-EM structures of human Pol III in both apo and elongating states, which unveil both an orchestrated movement during the apo-to-elongating transition and an unexpected apo state in which the RPC7 subunit tail occupies the DNA-RNA-binding cleft of Pol III, suggesting that RPC7 plays important roles in both autoinhibition and transcription initiation. The structures also reveal a proofreading mechanism for the TFIIS-like subunit RPC10, which stably retains its catalytic position in the secondary channel, explaining the high fidelity of Pol III transcription. Our work provides an integrated picture of the mechanism of Pol III transcription regulation.
Collapse
Affiliation(s)
- Qianmin Wang
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Shaobai Li
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Futang Wan
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Youwei Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Zhenfang Wu
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Mi Cao
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Pengfei Lan
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Institute of Precision Medicine, Shanghai, China.
| | - Ming Lei
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Institute of Precision Medicine, Shanghai, China. .,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jian Wu
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Institute of Precision Medicine, Shanghai, China.
| |
Collapse
|
13
|
Thouvenot B, Roitel O, Tomasina J, Hilselberger B, Richard C, Jacquenet S, Codreanu-Morel F, Morisset M, Kanny G, Beaudouin E, Delebarre-Sauvage C, Olivry T, Favrot C, Bihain BE. Transcriptional frameshifts contribute to protein allergenicity. J Clin Invest 2020; 130:5477-5492. [PMID: 32634131 PMCID: PMC7524509 DOI: 10.1172/jci126275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 07/01/2020] [Indexed: 01/07/2023] Open
Abstract
Transcription infidelity (TI) is a mechanism that increases RNA and protein diversity. We found that single-base omissions (i.e., gaps) occurred at significantly higher rates in the RNA of highly allergenic legumes. Transcripts from peanut, soybean, sesame, and mite allergens contained a higher density of gaps than those of nonallergens. Allergen transcripts translate into proteins with a cationic carboxy terminus depleted in hydrophobic residues. In mice, recombinant TI variants of the peanut allergen Ara h 2, but not the canonical allergen itself, induced, without adjuvant, the production of anaphylactogenic specific IgE (sIgE), binding to linear epitopes on both canonical and TI segments of the TI variants. The removal of cationic proteins from bovine lactoserum markedly reduced its capacity to induce sIgE. In peanut-allergic children, the sIgE reactivity was directed toward both canonical and TI segments of Ara h 2 variants. We discovered 2 peanut allergens, which we believe to be previously unreported, because of their RNA-DNA divergence gap patterns and TI peptide amino acid composition. Finally, we showed that the sIgE of children with IgE-negative milk allergy targeted cationic proteins in lactoserum. We propose that it is not the canonical allergens, but their TI variants, that initiate sIgE isotype switching, while both canonical and TI variants elicit clinical allergic reactions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Françoise Codreanu-Morel
- Unité Nationale d’Immunologie et d’Allergologie, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Martine Morisset
- Unité d’Allergologie, Département de Pneumologie, Centre Hospitalier Universitaire Angers, Angers, France
| | - Gisèle Kanny
- Service de Médecine Interne, Immunologie Clinique et Allergologie, Hôpitaux de Brabois, Centre Hospitalier Universitaire de Nancy, Vandœuvre-lès-Nancy, France
| | - Etienne Beaudouin
- Unité d’Allergologie, Centre Hospitalier Régional de Metz, Metz, France
| | - Christine Delebarre-Sauvage
- Allergology Center Saint-Vincent de Paul Hospital, Groupe Hospitalier de l’Institut Catholique de Lille, Lille, France
| | - Thierry Olivry
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Claude Favrot
- Clinic for Small Animal Internal Medicine, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
14
|
Mutational analysis of Escherichia coli GreA protein reveals new functional activity independent of antipause and lethal when overexpressed. Sci Rep 2020; 10:16074. [PMID: 32999370 PMCID: PMC7527559 DOI: 10.1038/s41598-020-73069-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022] Open
Abstract
There is a growing appreciation for the diverse regulatory consequences of the family of proteins that bind to the secondary channel of E. coli RNA polymerase (RNAP), such as GreA, GreB or DksA. Similar binding sites could suggest a competition between them. GreA is characterised to rescue stalled RNAP complexes due to its antipause activity, but also it is involved in transcription fidelity and proofreading. Here, overexpression of GreA is noted to be lethal independent of its antipause activity. A library of random GreA variants has been used to isolate lethality suppressors to assess important residues for GreA functionality and its interaction with the RNA polymerase. Some mutant defects are inferred to be associated with altered binding competition with DksA, while other variants seem to have antipause activity defects that cannot reverse a GreA-sensitive pause site in a fliC::lacZ reporter system. Surprisingly, apparent binding and cleavage defects are found scattered throughout both the coiled-coil and globular domains. Thus, the coiled-coil of GreA is not just a measuring stick ensuring placement of acidic residues precisely at the catalytic centre but also seems to have binding functions. These lethality suppressor mutants may provide valuable tools for future structural and functional studies.
Collapse
|
15
|
Vecchi D. DNA is not an ontologically distinctive developmental cause. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2020; 81:101245. [PMID: 31899119 DOI: 10.1016/j.shpsc.2019.101245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/14/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
In this article I critically evaluate the thesis that DNA is an ontologically distinctive developmental cause. I shall critically analyse different versions of the latter thesis by taking into consideration concrete developmental cases. I shall argue that DNA is neither a developmental determinant nor an ontologically distinctive developmental cause. Instead, I shall argue that mechanistic analysis shows that DNA's causal role in development depends on the higher robustness of the developmental processes in which it exerts its causal capacities. The focus on process and developmental system implies a metaphysical shift: rather than attributing to DNA molecules biochemically unique properties, I suggest that it might be better to think about DNA's causal role in development in terms of the causal capacities that DNA molecules manifest in a rich developmental milieu. I shall also suggest that my position is distinct both from the view advocating the instrumental primacy of DNA-centric biology and developmental constructionism. It is different from the former because it provides a substantial answer to the question of what makes DNA causally central in developmental processes. Finally, I argue that evolutionary considerations pose an important challenge to developmental constructionism.
Collapse
Affiliation(s)
- Davide Vecchi
- Centro de Filosofia das Ciências, Departamento de História e Filosofia das Ciências, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.
| |
Collapse
|
16
|
Miropolskaya N, Kulbachinskiy A, Esyunina D. Factor-specific effects of mutations in the active site of RNA polymerase on RNA cleavage. Biochem Biophys Res Commun 2020; 523:165-170. [PMID: 31837805 DOI: 10.1016/j.bbrc.2019.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/07/2019] [Indexed: 10/25/2022]
Abstract
Bacterial RNA polymerase (RNAP) relies on the same active site for RNA synthesis and co-transcriptional RNA proofreading. The intrinsic RNA proofreading activity of RNAP can be greatly stimulated by Gre factors, which bind within the secondary channel and directly participate in the RNA cleavage reaction in the active site of RNAP. Here, we characterize mutations in Escherichia coli RNAP that differentially affect intrinsic and Gre-stimulated RNA cleavage. Substitution of a highly conserved arginine residue that contacts nascent RNA upstream of the active site strongly impairs intrinsic and GreA-dependent cleavage, without reducing GreA affinity or catalytic Mg2+ binding. In contrast, substitutions of several nonconserved residues at the Gre-interacting interface in the secondary channel primarily affect GreB-dependent cleavage, by decreasing both the catalytic rate and GreB affinity. The results suggest that RNAP residues not directly involved in contacts with the reacting RNA groups or catalytic ions play essential roles in RNA cleavage and can modulate its regulation by transcription factors.
Collapse
Affiliation(s)
- Nataliya Miropolskaya
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | - Daria Esyunina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| |
Collapse
|
17
|
Transcriptional Fidelity of Mitochondrial RNA Polymerase RpoTm from Arabidopsis thaliana. J Mol Biol 2019; 431:4767-4783. [PMID: 31626802 DOI: 10.1016/j.jmb.2019.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 05/30/2019] [Accepted: 08/26/2019] [Indexed: 11/21/2022]
Abstract
Fidelity of RNA synthesis is essential for the faithful transfer of information from DNA to RNA. A comprehensive analysis of the nucleotide selectivity by the mitochondrial RNA polymerase (RNAP) RpoTm, from Arabidopsis thaliana, has been carried out. The kinetic parameters for the incorporation of cognate, noncognate, and oxidized bases have been determined. The results establish high fidelity of mitochondrial transcription resembling those of replicative polymerases in the absence of repair. In addition, RpoTm incorporates oxidized nucleotides with similar efficiency compared with mismatches and is capable of extending the RNA beyond the insertion of the oxidized base. Furthermore, lesion bypass study on RpoTm demonstrates that the enzyme bypasses 8-oxo-guanine by insertion of adenine leading to C to A mutations in RNA. Homology modeling of RpoTm elongation complex allows delineation of the residues necessary for stabilizing the incoming NTP substrate and for posing the template nucleotide residue. Substitution of these residues leads to compromise in the activity of the enzyme corroborating their importance in RNA synthesis. Comparison of the data with T7 RNAPs indicates that low efficiency of misincorporation is a universal strategy used by single-subunit RNAPs for maintaining high fidelity in the absence of proofreading and repair activity in mitochondria.
Collapse
|
18
|
The hunt for RNA polymerase II elongation factors: a historical perspective. Nat Struct Mol Biol 2019; 26:771-776. [PMID: 31439940 DOI: 10.1038/s41594-019-0283-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
Abstract
The discovery of the three eukaryotic nuclear RNA polymerases paved the way for serious biochemical investigations of eukaryotic transcription and the identification of eukaryotic transcription factors. Here we describe this adventure from our vantage point, with a focus on the hunt for factors that regulate elongation by RNA polymerase II.
Collapse
|
19
|
Belogurov GA, Artsimovitch I. The Mechanisms of Substrate Selection, Catalysis, and Translocation by the Elongating RNA Polymerase. J Mol Biol 2019; 431:3975-4006. [PMID: 31153902 DOI: 10.1016/j.jmb.2019.05.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 11/15/2022]
Abstract
Multi-subunit DNA-dependent RNA polymerases synthesize all classes of cellular RNAs, ranging from short regulatory transcripts to gigantic messenger RNAs. RNA polymerase has to make each RNA product in just one try, even if it takes millions of successive nucleotide addition steps. During each step, RNA polymerase selects a correct substrate, adds it to a growing chain, and moves one nucleotide forward before repeating the cycle. However, RNA synthesis is anything but monotonous: RNA polymerase frequently pauses upon encountering mechanical, chemical and torsional barriers, sometimes stepping back and cleaving off nucleotides from the growing RNA chain. A picture in which these intermittent dynamics enable processive, accurate, and controllable RNA synthesis is emerging from complementary structural, biochemical, computational, and single-molecule studies. Here, we summarize our current understanding of the mechanism and regulation of the on-pathway transcription elongation. We review the details of substrate selection, catalysis, proofreading, and translocation, focusing on rate-limiting steps, structural elements that modulate them, and accessory proteins that appear to control RNA polymerase translocation.
Collapse
Affiliation(s)
| | - Irina Artsimovitch
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
20
|
Liu W, Shi X, Gong P. A unique intra-molecular fidelity-modulating mechanism identified in a viral RNA-dependent RNA polymerase. Nucleic Acids Res 2018; 46:10840-10854. [PMID: 30239956 PMCID: PMC6237809 DOI: 10.1093/nar/gky848] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/11/2018] [Indexed: 01/07/2023] Open
Abstract
Typically not assisted by proofreading, the RNA-dependent RNA polymerases (RdRPs) encoded by the RNA viruses may need to independently control its fidelity to fulfill virus viability and fitness. However, the precise mechanism by which the RdRP maintains its optimal fidelity level remains largely elusive. By solving 2.1-2.5 Å resolution crystal structures of the classical swine fever virus (CSFV) NS5B, an RdRP with a unique naturally fused N-terminal domain (NTD), we identified high-resolution intra-molecular interactions between the NTD and the RdRP palm domain. In order to dissect possible regulatory functions of NTD, we designed mutations at residues Y471 and E472 to perturb key interactions at the NTD-RdRP interface. When crystallized, some of these NS5B interface mutants maintained the interface, while the others adopted an 'open' conformation that no longer retained the intra-molecular interactions. Data from multiple in vitro RdRP assays indicated that the perturbation of the NTD-RdRP interactions clearly reduced the fidelity level of the RNA synthesis, while the processivity of the NS5B elongation complex was not affected. Collectively, our work demonstrates an explicit and unique mode of polymerase fidelity modulation and provides a vivid example of co-evolution in multi-domain enzymes.
Collapse
Affiliation(s)
- Weichi Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoling Shi
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China,To whom correspondence should be addressed. Tel: +86 27 87197578;
| |
Collapse
|
21
|
Errors during Gene Expression: Single-Cell Heterogeneity, Stress Resistance, and Microbe-Host Interactions. mBio 2018; 9:mBio.01018-18. [PMID: 29970467 PMCID: PMC6030554 DOI: 10.1128/mbio.01018-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Gene expression has been considered a highly accurate process, and deviation from such fidelity has been shown previously to be detrimental for the cell. More recently, increasing evidence has supported the notion that the accuracy of gene expression is indeed flexibly variable. The levels of errors during gene expression differ from condition to condition and even from cell to cell within genetically identical populations grown under the same conditions. The different levels of errors resulting from inaccurate gene expression are now known to play key roles in regulating microbial stress responses and host interactions. This minireview summarizes the recent development in understanding the level, regulation, and physiological impact of errors during gene expression. Gene expression has been considered a highly accurate process, and deviation from such fidelity has been shown previously to be detrimental for the cell. More recently, increasing evidence has supported the notion that the accuracy of gene expression is indeed flexibly variable.
Collapse
|
22
|
Gordon AJE, Sivaramakrishnan P, Halliday JA, Herman C. Transcription infidelity and genome integrity: the parallax view. Transcription 2018; 9:315-320. [PMID: 29929421 DOI: 10.1080/21541264.2018.1491251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
It was recently shown that removal of GreA, a transcription fidelity factor, enhances DNA break repair. This counterintuitive result, arising from unresolved backtracked RNA polymerase impeding DNA resection and thereby facilitating RecA-loading, leads to an interesting corollary: error-free full-length transcripts and broken chromosomes. Therefore, transcription fidelity may compromise genomic integrity.
Collapse
Affiliation(s)
- Alasdair J E Gordon
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Priya Sivaramakrishnan
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,b Department of Genetics , Perelman School of Medicine, University of Pennsylvania , Philadelphia , PA , USA
| | - Jennifer A Halliday
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Christophe Herman
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,c Department of Molecular Virology and Microbiology , Baylor College of Medicine , Houston , TX , USA.,d Dan L. Duncan Cancer Center, Baylor College of Medicine , Houston , TX , USA
| |
Collapse
|
23
|
Veening JW, Tamayo R. Editorial overview: Bacterial cell regulation: from genes to complex environments. Curr Opin Microbiol 2018; 42:110-114. [PMID: 29444492 DOI: 10.1016/j.mib.2018.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland; Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
24
|
Selisko B, Papageorgiou N, Ferron F, Canard B. Structural and Functional Basis of the Fidelity of Nucleotide Selection by Flavivirus RNA-Dependent RNA Polymerases. Viruses 2018; 10:v10020059. [PMID: 29385764 PMCID: PMC5850366 DOI: 10.3390/v10020059] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/25/2018] [Accepted: 01/27/2018] [Indexed: 12/22/2022] Open
Abstract
Viral RNA-dependent RNA polymerases (RdRps) play a central role not only in viral replication, but also in the genetic evolution of viral RNAs. After binding to an RNA template and selecting 5'-triphosphate ribonucleosides, viral RdRps synthesize an RNA copy according to Watson-Crick base-pairing rules. The copy process sometimes deviates from both the base-pairing rules specified by the template and the natural ribose selectivity and, thus, the process is error-prone due to the intrinsic (in)fidelity of viral RdRps. These enzymes share a number of conserved amino-acid sequence strings, called motifs A-G, which can be defined from a structural and functional point-of-view. A co-relation is gradually emerging between mutations in these motifs and viral genome evolution or observed mutation rates. Here, we review our current knowledge on these motifs and their role on the structural and mechanistic basis of the fidelity of nucleotide selection and RNA synthesis by Flavivirus RdRps.
Collapse
Affiliation(s)
- Barbara Selisko
- CNRS, Aix-Marseille Université, AFMB, UMR 7257, 163 Avenue de Luminy, 13288 Marseille, France.
| | - Nicolas Papageorgiou
- CNRS, Aix-Marseille Université, AFMB, UMR 7257, 163 Avenue de Luminy, 13288 Marseille, France.
| | - François Ferron
- CNRS, Aix-Marseille Université, AFMB, UMR 7257, 163 Avenue de Luminy, 13288 Marseille, France.
| | - Bruno Canard
- CNRS, Aix-Marseille Université, AFMB, UMR 7257, 163 Avenue de Luminy, 13288 Marseille, France.
| |
Collapse
|
25
|
Verheijen BM, van Leeuwen FW. Commentary: The landscape of transcription errors in eukaryotic cells. Front Genet 2017; 8:219. [PMID: 29313848 PMCID: PMC5735076 DOI: 10.3389/fgene.2017.00219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/05/2017] [Indexed: 12/18/2022] Open
Affiliation(s)
- Bert M Verheijen
- Laboratory of Experimental Neurology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Fred W van Leeuwen
- Department of Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|