1
|
Fernandes JCR, Zamboni DS. Mechanisms regulating host cell death during Leishmania infection. mBio 2024; 15:e0198023. [PMID: 39392429 PMCID: PMC11559009 DOI: 10.1128/mbio.01980-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Parasites from the Leishmania genus are the causative agents of leishmaniasis and primarily reside within macrophages during mammalian infection. Their ability to establish intracellular infection provides a secure niche for proliferation while evading detection. However, successful multiplication within mammalian cells requires the orchestration of multiple mechanisms that control host cell viability. In contrast, innate immune cells, such as macrophages, can undergo different forms of cell death in response to pathogenic intracellular microbes. Thus, modulation of these different forms of host cell death is crucial for Leishmaniasis development. The regulation of host cell apoptosis, a form of programmed cell death, is crucial for sustaining parasites within viable host cells. Accordingly, several studies have demonstrated evasion of apoptosis induced by dermotropic and viscerotropic Leishmania species. Conversely, the prevention of pyroptosis, an inflammatory form of cell death, ensures the establishment of infection by silencing the release of mediators that could trigger massive proinflammatory responses. This manuscript explores how Leishmania regulates various host cell death pathways and overviews seminal studies on regulating host cell apoptosis by different Leishmania species.
Collapse
Affiliation(s)
- Juliane C. R. Fernandes
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Dario S. Zamboni
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Lafleur A, Daffis S, Mowbray C, Arana B. Immunotherapeutic Strategies as Potential Treatment Options for Cutaneous Leishmaniasis. Vaccines (Basel) 2024; 12:1179. [PMID: 39460345 PMCID: PMC11511131 DOI: 10.3390/vaccines12101179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Cutaneous leishmaniasis (CL), caused by protozoan parasites of the Leishmania genus, is prevalent in tropical and subtropical regions, with important morbidity, particularly in low- to middle-income countries. Current systemic treatments, including pentavalent antimonials and miltefosine, are associated with significant toxicity, reduced efficacy, and are frequently ineffective in cases of severe or chronic CL. Immunotherapies leverage the immune system to combat microbial infection and offer a promising adjunct or alternative approach to the current standard of care for CL. However, the heterogeneous clinical presentation of CL, which is dependent on parasite species and host immunity, may require informed clinical intervention with immunotherapies. This review explores the clinical and immunological characteristics of CL, emphasising the current landscape of immunotherapies in in vivo models and clinical studies. Such immune-based interventions aim to modulate immune responses against Leishmania, with additive therapeutic effects enabling the efficacy of lower drug doses and decreasing the associated toxicity. Understanding the mechanisms that underlie immunotherapy for CL provides critical insights into developing safer and more effective treatments for this neglected tropical disease. Identifying suitable therapeutic candidates and establishing their safety and efficacy are essential steps in this process. However, the feasibility and utility of these treatments in resource-limited settings must also be considered, taking into account factors such as cost of production, temperature stability, and overall patient access.
Collapse
Affiliation(s)
- Andrea Lafleur
- Doctoral Training Centre, University of Oxford, Oxford OX1 3NP, UK
| | - Stephane Daffis
- Drugs for Neglected Diseases initiative (DNDi), 1202 Geneva, Switzerland; (S.D.)
| | - Charles Mowbray
- Drugs for Neglected Diseases initiative (DNDi), 1202 Geneva, Switzerland; (S.D.)
| | - Byron Arana
- Drugs for Neglected Diseases initiative (DNDi), 1202 Geneva, Switzerland; (S.D.)
| |
Collapse
|
3
|
DeSouza-Vieira T, Pretti MAM, Lima Gomes PS, Paula-Neto HA, Goundry A, Nascimento MT, Ganesan S, Gonçalves da Silva T, Kamenyeva O, Kabat J, Manzella-Lapeira J, B. Canto F, Fraga-Junior VDS, Eustáquio Lopes M, Gomes Vaz L, Pessenda G, Paun A, Freitas-Mesquita AL, Meyer-Fernandes JR, Boroni M, Bellio M, Batista Menezes G, Brzostowski J, Mottram J, Sacks D, Lima APCA, Saraiva EM. Functional plasticity shapes neutrophil response to Leishmania major infection in susceptible and resistant strains of mice. PLoS Pathog 2024; 20:e1012592. [PMID: 39378227 PMCID: PMC11488723 DOI: 10.1371/journal.ppat.1012592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/18/2024] [Accepted: 09/14/2024] [Indexed: 10/10/2024] Open
Abstract
Neutrophils rapidly infiltrate sites of infection and possess several microbicidal strategies, such as neutrophil extracellular traps release and phagocytosis. Enhanced neutrophil infiltration is associated with higher susceptibility to Leishmania infection, but neutrophil effector response contribution to this phenotype is uncertain. Here, we show that neutrophils from susceptible BALB/c mice (B/c) produce more NETs in response to Leishmania major than those from resistant C57BL/6 mice (B6), which are more phagocytic. The absence of neutrophil elastase contributes to phagocytosis regulation. Microarray analysis shows enrichment of genes involved in NET formation (mpo, pi3kcg, il1b) in B/c, while B6 shows upregulation of genes involved in phagocytosis and cell death (Arhgap12, casp9, mlkl, FasL). scRNA-seq in L. major-infected B6 showed heterogeneity in the pool of intralesional neutrophils, and we identified the N1 subset as the putative subpopulation involved with phagocytosis. In vivo, imaging validates NET formation in infected B/c ears where NETing neutrophils were mainly uninfected cells. NET digestion in vivo augmented parasite lymphatic drainage. Hence, a balance between NET formation and phagocytosis in neutrophils may contribute to the divergent phenotype observed in these mice.
Collapse
Affiliation(s)
- Thiago DeSouza-Vieira
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Marco Antônio M. Pretti
- Laboratório de Bioinformática e Biologia Computacional, Divisão de Pesquisa Experimental Translacional, Instituto Nacional do Câncer (INCA), Rio de Janeiro, Brasil
| | - Phillipe Souza Lima Gomes
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Heitor A. Paula-Neto
- Laboratório de Alvos Moleculares, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Amy Goundry
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Michelle T. Nascimento
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Triciana Gonçalves da Silva
- National Center for Structural Biology and Bioimaging, CENABIO, Universidade Federal do Rio de Janeiro, Brazil
| | - Olena Kamenyeva
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Juraj Kabat
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Javier Manzella-Lapeira
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Fábio B. Canto
- Laboratório de Tolerância Imunológica e Homeostase Linfocitária, Departamento de Imunobiologia, Universidade Federal Fluminense, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Vanderlei da Silva Fraga-Junior
- Laboratório de Imunologia Molecular e Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Mateus Eustáquio Lopes
- Centro de Biologia Gastrointestinal, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Leonardo Gomes Vaz
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brasil
| | - Gabriela Pessenda
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andrea Paun
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anita L. Freitas-Mesquita
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Mariana Boroni
- Laboratório de Bioinformática e Biologia Computacional, Divisão de Pesquisa Experimental Translacional, Instituto Nacional do Câncer (INCA), Rio de Janeiro, Brasil
| | - Maria Bellio
- Laboratório de Imunobiologia, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Gustavo Batista Menezes
- Centro de Biologia Gastrointestinal, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Joseph Brzostowski
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jeremy Mottram
- York Biomedical Research Institute and Department of Biology, University of York, York, United Kingdom
| | - David Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ana Paula C. A. Lima
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Elvira M. Saraiva
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
4
|
Bhattacharya S, Chakraborty S, Manna D, Thakur P, Chakravorty N, Mukherjee B. Deciphering the intricate dynamics of inflammasome regulation in visceral and post-kala-azar dermal leishmaniasis: A meta-analysis of consistencies. Acta Trop 2024; 257:107313. [PMID: 38964632 DOI: 10.1016/j.actatropica.2024.107313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Post Kala-azar dermal leishmaniasis (PKDL) arises as a significant dermal sequel following Visceral leishmaniasis (VL) caused by protozoan parasite Leishmania donovani (LD). PKDL acts as a significant constrain for VL elimination serving as a crucial reservoir for LD. PKDL patients exhibit depigmented macular and papular lesions on their skin, which results in social discrimination due to loss of natural skin color. Inflammatory reactions, prevalent in both VL and PKDL, potentially lead to tissue damage in areas harboring the parasite. Disruption of the immune-inflammasomal network not only facilitates LD persistence but also leads to the skin hypopigmentation seen in PKDL, impacting social well-being. Activation of inflammasomal markers like STAT1, NLRP1, NLRP3, AIM2, CASP11, and NLRP12 have been identified as a common host-defense mechanism across various Leishmania infections. Conversely, Leishmania modulates inflammasome activation to sustain its presence within the host. Nevertheless, in specific instances of Leishmania infection, inflammasome activation can worsen disease pathology by promoting parasite proliferation and persistence. This study encompasses recent transcriptomic analyses conducted between 2016 and 2023 on human and murine subjects afflicted with VL/PKDL, elucidating significant alterations in inflammasomal markers in both conditions. It offers a comprehensive understanding how these markers contribute in disease progression, drawing upon available literature for logical analysis. Furthermore, our analysis identifies validated miRNA network that could potentially disrupt this crucial immune-inflammasomal network, thereby offering a plausible explanation on how secreted LD-factors could enable membrane-bound LD, isolated from the host cytoplasm, to modulate cytoplasmic inflammasomal markers. Insights from this study could guide the development of host-directed therapeutics to impede transmission and address hypopigmentation, thereby mitigating the social stigma associated with PKDL.
Collapse
Affiliation(s)
| | | | - Debolina Manna
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur 721302, India
| | - Pradipti Thakur
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur 721302, India
| | - Nishant Chakravorty
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur 721302, India
| | - Budhaditya Mukherjee
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
5
|
Goris M, Passelli K, Peyvandi S, Díaz-Varela M, Billion O, Prat-Luri B, Demarco B, Desponds C, Termote M, Iniguez E, Dey S, Malissen B, Kamhawi S, Hurrell BP, Broz P, Tacchini-Cottier F. NLRP1-dependent activation of Gasdermin D in neutrophils controls cutaneous leishmaniasis. PLoS Pathog 2024; 20:e1012527. [PMID: 39250503 PMCID: PMC11412672 DOI: 10.1371/journal.ppat.1012527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/19/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024] Open
Abstract
Intracellular pathogens that replicate in host myeloid cells have devised ways to inhibit the cell's killing machinery. Pyroptosis is one of the host strategies used to reduce the pathogen replicating niche and thereby control its expansion. The intracellular Leishmania parasites can survive and use neutrophils as a silent entry niche, favoring subsequent parasite dissemination into the host. Here, we show that Leishmania mexicana induces NLRP1- and caspase-1-dependent Gasdermin D (GSDMD)-mediated pyroptosis in neutrophils, a process critical to control the parasite-induced pathology. In the absence of GSDMD, we observe an increased number of infected dermal neutrophils two days post-infection. Using adoptive neutrophil transfer in neutropenic mice, we show that pyroptosis contributes to the regulation of the neutrophil niche early after infection. The critical role of neutrophil pyroptosis and its positive influence on the regulation of the disease outcome was further demonstrated following infection of mice with neutrophil-specific deletion of GSDMD. Thus, our study establishes neutrophil pyroptosis as a critical regulator of leishmaniasis pathology.
Collapse
Affiliation(s)
- Michiel Goris
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland
| | - Katiuska Passelli
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland
| | - Sanam Peyvandi
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland
| | - Miriam Díaz-Varela
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland
| | - Oaklyne Billion
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland
| | - Borja Prat-Luri
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland
| | - Benjamin Demarco
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Chantal Desponds
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland
| | - Manon Termote
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland
| | - Eva Iniguez
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Somaditya Dey
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Post Graduate Department of Zoology, Barasat Government College, Barasat, West Bengal, India
| | - Bernard Malissen
- INSERM, CNRS, Centre D’Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Benjamin P. Hurrell
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Fabienne Tacchini-Cottier
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
6
|
Scaramele NF, Troiano JA, Felix JDS, Costa SF, Almeida MC, Florencio de Athayde FR, Soares MF, Lopes MFDS, Furlan ADO, de Lima VMF, Lopes FL. Leishmania infantum infection modulates messenger RNA, microRNA and long non-coding RNA expression in human neutrophils in vitro. PLoS Negl Trop Dis 2024; 18:e0012318. [PMID: 39028711 PMCID: PMC11259272 DOI: 10.1371/journal.pntd.0012318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/25/2024] [Indexed: 07/21/2024] Open
Abstract
In the Americas, L. infantum (syn. chagasi) is the main cause of human visceral leishmaniasis. The role of neutrophils as part of the innate response to Leishmania spp. infection is dubious and varies according to the species causing the infection. Global expression of coding RNAs, microRNAs and long non-coding RNAs changes as part of the immune response against pathogens. Changes in mRNA and non-coding RNA expression resulting from infection by Leishmania spp. are widely studied in macrophages, but scarce in neutrophils, the first cell to encounter the trypanosomatid, especially following infection by L. infantum. Herein, we aimed to understand the expression patterns of coding and non-coding transcripts during acute in vitro infection of human neutrophils by L. infantum. We isolated neutrophils from whole blood of healthy male donors (n = 5) and split into groups: 1) infected with L. infantum (MOI = 5:1), and 2) uninfected controls. After 3 hours of exposure of infected group to promastigotes of L. infantum, followed by 17 hours of incubation, total RNA was extracted and total RNA-Seq and miRNA microarray were performed. A total of 212 genes were differentially expressed in neutrophils following RNA-Seq analysis (log2(FC)±0.58, FDR≤0.05). In vitro infection with L. infantum upregulated the expression of 197 and reduced the expression of 92 miRNAs in human neutrophils (FC±2, FDR≤0.01). Lastly, 5 downregulated genes were classified as lncRNA, and of the 10 upregulated genes, there was only 1 lncRNA. Further bioinformatic analysis indicated that changes in the transcriptome and microtranscriptome of neutrophils, following in vitro infection with L. infantum, may impair phagocytosis, apoptosis and decrease nitric oxide production. Our work sheds light on several mechanisms used by L. infantum to control neutrophil-mediated immune response and identifies several targets for future functional studies, aiming at the development of preventive or curative treatments for this prevalent zoonosis.
Collapse
Affiliation(s)
- Natália Francisco Scaramele
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Jéssica Antonini Troiano
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Juliana de Souza Felix
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Sidnei Ferro Costa
- Department of Animal Clinic, Surgery and Reproduction, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Mariana Cordeiro Almeida
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Flávia Regina Florencio de Athayde
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Matheus Fujimura Soares
- Department of Animal Clinic, Surgery and Reproduction, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Maria Fernanda da Silva Lopes
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Amanda de Oliveira Furlan
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Valéria Marçal Felix de Lima
- Department of Animal Clinic, Surgery and Reproduction, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Flavia Lombardi Lopes
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| |
Collapse
|
7
|
Felipin KP, Paloschi MV, Silva MDS, Ikenohuchi YJ, Santana HM, Setúbal SDS, Rego CMA, Lopes JA, Boeno CN, Serrath SN, De Medeiros EHRT, Pimentel IF, Oliveira AER, Cupolillo E, Cantanhêde LM, Ferreira RDGM, Zuliani JP. Transcriptomics analysis highlights potential ways in human pathogenesis in Leishmania braziliensis infected with the viral endosymbiont LRV1. PLoS Negl Trop Dis 2024; 18:e0012126. [PMID: 38743668 PMCID: PMC11093365 DOI: 10.1371/journal.pntd.0012126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 04/01/2024] [Indexed: 05/16/2024] Open
Abstract
The parasite Leishmania (Viannia) braziliensis is widely distributed in Brazil and is one of the main species associated with human cases of different forms of tegumentary leishmaniasis (TL) such as cutaneous leishmaniasis (CL) and mucosal leishmaniasis (ML). The mechanisms underlying the pathogenesis of TL are still not fully understood, but it is known that factors related to the host and the parasite act in a synergistic and relevant way to direct the response to the infection. In the host, macrophages have a central connection with the parasite and play a fundamental role in the defense of the organism due to their ability to destroy intracellular parasites and present antigens. In the parasite, some intrinsic factors related to the species or even the strain analyzed are fundamental for the outcome of the disease. One of them is the presence of Leishmania RNA Virus 1 (LRV1), an endosymbiont virus that parasitizes some species of Leishmania that triggers a cascade of signals leading to a more severe TL phenotype, such as ML. One of the strategies for understanding factors associated with the immune response generated after Leishmania/host interaction is through the analysis of molecular patterns after infection. Thus, the gene expression profile in human monocyte-derived macrophages obtained from healthy donors infected in vitro with L. braziliensis positive (LbLRV1+) and negative (LbLRV1-) for LRV1 was evaluated. For this, the microarray assay was used and 162 differentially expressed genes were identified in the comparison LbLRV1+ vs. LbLRV1-, 126 upregulated genes for the type I and II interferons (IFN) signaling pathway, oligoadenylate synthase OAS/RNAse L, non-genomic actions of vitamin D3 and RIG-I type receptors, and 36 down-regulated. The top 10 downregulated genes along with the top 10 upregulated genes were considered for analysis. Type I interferon (IFNI)- and OAS-related pathways results were validated by RT-qPCR and Th1/Th2/Th17 cytokines were analyzed by Cytometric Bead Array (CBA) and enzyme-linked immunosorbent assay (ELISA). The microarray results validated by RT-qPCR showed differential expression of genes related to IFNI-mediated pathways with overexpression of different genes in cells infected with LbLRV1+ compared to LbLRV1- and to the control. No significant differences were found in cytokine levels between LbLRV1+ vs. LbLRV1- and control. The data suggest the activation of gene signaling pathways associated with the presence of LRV1 has not yet been reported so far. This study demonstrates, for the first time, the activation of the OAS/RNase L signaling pathway and the non-genomic actions of vitamin D3 when comparing infections with LbLRV1+ versus LbLRV1- and the control. This finding emphasizes the role of LRV1 in directing the host's immune response after infection, underlining the importance of identifying LRV1 in patients with TL to assess disease progression.
Collapse
Affiliation(s)
- Kátia Paula Felipin
- Laboratório de Epidemiologia Genética, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, Brazil
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, Brazil
| | - Mauro Valentino Paloschi
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, Brazil
| | - Milena Daniela Souza Silva
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, Brazil
| | - Yoda Janaina Ikenohuchi
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, Brazil
| | - Hallison Mota Santana
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, Brazil
| | - Sulamita da Silva Setúbal
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, Brazil
| | - Cristina Matiele Alves Rego
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, Brazil
| | - Jéssica Amaral Lopes
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, Brazil
| | - Charles Nunes Boeno
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, Brazil
| | - Suzanne Nery Serrath
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, Brazil
| | | | - Iasmin Ferreira Pimentel
- Laboratório de Epidemiologia Genética, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, Brazil
| | | | - Elisa Cupolillo
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental, EpiAmO, Porto Velho, Brazil
| | - Lilian Motta Cantanhêde
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental, EpiAmO, Porto Velho, Brazil
| | - Ricardo de Godoi Matos Ferreira
- Laboratório de Epidemiologia Genética, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, Brazil
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental, EpiAmO, Porto Velho, Brazil
| | - Juliana Pavan Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, Brazil
- Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, Brazil
| |
Collapse
|
8
|
Divenuto F, Marascio N, Quirino A, Giancotti A, Filice S, Gigliotti S, Campolo MP, Campolo M, Barreca GS, Lamberti AG, Castelli G, Bruno F, Matera G. Cellular mediators in human leishmaniasis: Critical determinants in parasite killing or disease progression. Acta Trop 2023; 248:107037. [PMID: 37805040 DOI: 10.1016/j.actatropica.2023.107037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Data on cellular immunity mediators in the early phase of human leishmaniasis are still limited and controversial. In order to mimic the changes of humoral mediators during the early phase of human natural infection, some Th1, Th2, Treg, and Breg cytokines, MCP-1, and the nitric oxide (NO) from human PBMC, stimulated by Leishmania infantum, Leishmania major, Leishmania donovani and Leishmania tropica infective metacyclic promastigotes, were determined. After 4 h of L. major, L. donovani, and L. tropica challenge, TNFα, IL-1β, IL-6 levels were significantly higher than negative control cultures with saline (SF) instead of Leishmania promastigotes, unlike L. infantum-stimulated TNFα and L. major-stimulated IL-1β. We obtained higher levels of IL-4 and IL-10 cytokines after stimulation of human PBMCs by L. infantum and L. donovani, compared to those observed after the challenge of PBMCs by L. major and L. tropica. Regarding IL-35, such cytokine levels were significantly increased following infection with L. infantum and L. donovani, in contrast to L. major and L. tropica. Up to our knowledge, we are the first to study the effect of four different species of Leishmania on IL-35 levels in human cells. Our study highlights how several Leishmania species can up-regulate different groups of cytokines (Th1, Th2, Treg and Breg) and modulate NO release in a different way. This original aspect can be explained by different Leishmania cell products, such as LPG, obtained from different strains/species of live parasites. Our findings would contribute to the development of new therapeutics or vaccination strategies.
Collapse
Affiliation(s)
- F Divenuto
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| | - N Marascio
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| | - A Quirino
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy.
| | - A Giancotti
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| | - S Filice
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| | - S Gigliotti
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| | - M P Campolo
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| | - M Campolo
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| | - G S Barreca
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| | - A G Lamberti
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| | - G Castelli
- National Reference Center for Leishmaniasis (C.Re.Na.L.), Istituto Zooprofilattico Sperimentale della Sicilia, 90129 Palermo, Italy
| | - F Bruno
- National Reference Center for Leishmaniasis (C.Re.Na.L.), Istituto Zooprofilattico Sperimentale della Sicilia, 90129 Palermo, Italy
| | - G Matera
- Clinical Microbiology Unit, Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
9
|
Sengupta R, Roy M, Dey NS, Kaye PM, Chatterjee M. Immune dysregulation and inflammation causing hypopigmentation in post kala-azar dermal leishmaniasis: partners in crime? Trends Parasitol 2023; 39:822-836. [PMID: 37586987 DOI: 10.1016/j.pt.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
Post kala-azar dermal leishmaniasis (PKDL), a heterogeneous dermal sequela of visceral leishmaniasis (VL), is challenging in terms of its etiopathogenesis. Hypopigmentation is a consistent clinical feature in PKDL, but mechanisms contributing to the loss of melanocytes remains poorly defined. Like other hypopigmentary dermatoses - for example, vitiligo, psoriasis, and leprosy - the destruction of melanocytes is likely a multifactorial phenomenon, key players being immune dysregulation and inflammation. This review focuses on immunological mechanisms responsible for the 'murder' of melanocytes, prime suspects at the lesional sites being CD8+ T cells and keratinocytes and their criminal tools being proinflammatory cytokines, for example, IFN-γ, IL-6, and TNF-α. Collectively, these may cause decreased secretion of melanocyte growth factors, loss/attenuation of cell adhesion molecules and inflammasome activation, culminating in melanocyte death.
Collapse
Affiliation(s)
- Ritika Sengupta
- Dept. of Pharmacology, Institute of Post Graduate Medical Education and Research, 244B AJC Bose Road, Kolkata 700020, India
| | - Madhurima Roy
- Dept. of Pharmacology, Institute of Post Graduate Medical Education and Research, 244B AJC Bose Road, Kolkata 700020, India
| | - Nidhi S Dey
- York Biomedical Research Institute, Hull York Medical School, University of York, Heslington, York, YO10 5DD, UK
| | - Paul M Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, Heslington, York, YO10 5DD, UK
| | - Mitali Chatterjee
- Dept. of Pharmacology, Institute of Post Graduate Medical Education and Research, 244B AJC Bose Road, Kolkata 700020, India.
| |
Collapse
|
10
|
Zhao P, Li J, Li X, Dong J, Wang X, Zhang N, Li S, Sun M, Zhang X, Wang Z, Liang M, Li Y, Cao L, Gong P. The NLRP3 inflammasome recognizes alpha-2 and alpha-7.3 giardins and decreases the pathogenicity of Giardia duodenalis in mice. Parasit Vectors 2023; 16:85. [PMID: 36869360 PMCID: PMC9983531 DOI: 10.1186/s13071-023-05688-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/01/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Giardia duodenalis is a parasitic organism that can cause giardiasis, an intestinal infection, particularly prevalent in young children, with clinical symptoms of diarrhea. We previously reported that extracellular G. duodenalis triggers intracellular nucleotide-binding oligomerization-like receptor 3 (NLRP3) inflammasome activation and regulates the host inflammatory response by secreting extracellular vesicles (EVs). However, the exact pathogen-associated molecular patterns in G. duodenalis EVs (GEVs) involved in this process and the role of the NLRP3 inflammasome in giardiasis remain to be elucidated. METHODS Recombinant eukaryotic expression plasmids of pcDNA3.1(+)-alpha-2 and alpha-7.3 giardins in GEVs were constructed, transfected into primary mouse peritoneal macrophages and screened by measuring the expression levels of the inflammasome target molecule caspase-1 p20. The preliminary identification of G. duodenalis alpha-2 and alpha-7.3 giardins was further verified by measuring the protein expression levels of key molecules of the NLRP3 inflammasome (NLRP3, pro-interleukin-1 beta [IL-1β], pro-caspase-1, and caspase-1 p20), the secretion levels of IL-1β, the level of apoptosis speck-like protein (ASC) oligomerization and the immunofluorescence localization of NLRP3 and ASC. The roles of the NLRP3 inflammasome in G. duodenalis pathogenicity were then evaluated using mice in which NLRP3 activation was blocked (NLRP3-blocked mice), and body weight, parasite burden in the duodenum and histopathological changes in the duodenum were monitored. In addition, we explored whether alpha-2 and alpha-7.3 giardins triggered IL-1β secretion in vivo through the NLRP3 inflammasome and determined the roles of these molecules in G. duodenalis pathogenicity in mice. RESULTS Alpha-2 and alpha-7.3 giardins triggered NLRP3 inflammasome activation in vitro. This led to caspase-1 p20 activation, upregulation of the protein expression levels of NLRP3, pro-IL-1β and pro-caspase-1, significant enhancement of IL-1β secretion, ASC speck formation in the cytoplasm and also induction of ASC oligomerization. Deletion of the NLRP3 inflammasome aggravated G. duodenalis pathogenicity in mice. Compared to wild-type mice gavaged with cysts, mice gavaged with cysts in NLRP3-blocked mice displayed increased trophozoite loads and severe duodenal villus damage, characterized by necrotic crypts with atrophy and branching. In vivo assays revealed that alpha-2 and alpha-7.3 giardins could induce IL-1β secretion through the NLRP3 inflammasome and that immunization with alpha-2 and alpha-7.3 giardins decreased G. duodenalis pathogenicity in mice. CONCLUSIONS Overall, the results of the present study revealed that alpha-2 and alpha-7.3 giardins trigger host NLRP3 inflammasome activation and decrease G. duodenalis infection ability in mice, which are promising targets for the prevention of giardiasis.
Collapse
Affiliation(s)
- Panpan Zhao
- State Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China
| | - Jianhua Li
- State Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China
| | - Xin Li
- State Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China
| | - Jingquan Dong
- State Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China.,Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu Province, People's Republic of China
| | - Xiaocen Wang
- State Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China
| | - Nan Zhang
- State Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China
| | - Shan Li
- State Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China
| | - Min Sun
- State Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China
| | - Xichen Zhang
- State Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China
| | - Zhibang Wang
- College of Life Science, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China
| | - Min Liang
- State Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China
| | - Ying Li
- State Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China
| | - Lili Cao
- State Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China. .,Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun, 130062, Jilin Province, People's Republic of China.
| | - Pengtao Gong
- State Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China.
| |
Collapse
|
11
|
Fernandes JCR, Gonçalves ANA, Floeter-Winter LM, Nakaya HI, Muxel SM. Comparative transcriptomic analysis of long noncoding RNAs in Leishmania-infected human macrophages. Front Genet 2023; 13:1051568. [PMID: 36685903 PMCID: PMC9845402 DOI: 10.3389/fgene.2022.1051568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/25/2022] [Indexed: 01/05/2023] Open
Abstract
It is well established that infection with Leishmania alters the host cell's transcriptome. Since mammalian cells have multiple mechanisms to control gene expression, different molecules, such as noncoding RNAs, can be involved in this process. MicroRNAs have been extensively studied upon Leishmania infection, but whether long noncoding RNAs (lncRNAs) are also altered in macrophages is still unexplored. We performed RNA-seq from THP-1-derived macrophages infected with Leishmania amazonensis (La), L. braziliensis (Lb), and L. infantum (Li), investigating a previously unappreciated fraction of macrophage transcriptome. We found that more than 24% of the total annotated transcripts and 30% of differentially expressed (DE) RNAs in Leishmania-infected macrophage correspond to lncRNAs. LncRNAs and protein coding RNAs with altered expression are similar among macrophages infected with the Leishmania species. Still, some species-specific alterations could occur due to distinct pathophysiology in which Li infection led to a more significant number of exclusively DE RNAs. The most represented classes among DE lncRNAs were intergenic and antisense lncRNAs. We also found enrichment for immune response-related pathways in the DE protein coding RNAs, as well as putative targets of the lncRNAs. We performed a coexpression analysis to explore potential cis regulation of coding and antisense noncoding transcripts. We identified that antisense lncRNAs are similarly regulated as its neighbor protein coding genes, such as the BAALC/BAALC-AS1, BAALC/BAALC-AS2, HIF1A/HIF1A-AS1, HIF1A/HIF1A-AS3 and IRF1/IRF1-AS1 pairs, which can occur as a species-specific modulation. These findings are a novelty in the field because, to date, no study has focused on analyzing lncRNAs in Leishmania-infected macrophage. Our results suggest that lncRNAs may account for a novel mechanism by which Leishmania can control macrophage function. Further research must validate putative lncRNA targets and provide additional prospects in lncRNA function during Leishmania infection.
Collapse
Affiliation(s)
- Juliane C. R. Fernandes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil,Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Lucile M. Floeter-Winter
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | - Sandra M. Muxel
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil,*Correspondence: Sandra M. Muxel,
| |
Collapse
|
12
|
Infection and Immunity. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
de Mesquita TGR, Junior JDES, da Silva LDO, Silva GAV, de Araújo FJ, Pinheiro SK, Kerr HKA, da Silva LS, de Souza LM, de Almeida SA, Queiroz KLGD, de Souza JL, da Silva CC, Sequera HDG, de Souza MLG, Barbosa AN, Pontes GS, Guerra MVDF, Ramasawmy R. Distinct plasma chemokines and cytokines signatures in Leishmania guyanensis-infected patients with cutaneous leishmaniasis. Front Immunol 2022; 13:974051. [PMID: 36091007 PMCID: PMC9453042 DOI: 10.3389/fimmu.2022.974051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
The immunopathology associated with Leishmaniasis is a consequence of inflammation. Upon infection with Leishmania, the type of host-immune response is determinant for the clinical manifestations that can lead to either self-healing or chronic disease. Multiple pathways may determine disease severity. A comparison of systemic immune profiles in patients with cutaneous leishmaniasis caused by L. guyanensis and healthy individuals with the same socio-epidemiological characteristics coming from the same endemic areas as the patients is performed to identify particular immune profile and pathways associated with the progression of disease development. Twenty-seven plasma soluble circulating factors were evaluated between the groups by univariate and multivariate analysis. The following biomarkers pairs IL-17/IL-9 (ρ=0,829), IL-17/IL-12 (ρ=0,786), IL-6/IL-1ra (ρ=0,785), IL-6/IL-12 (ρ=0,780), IL-1β/G-CSF (ρ=0,758) and IL-17/MIP-1β (ρ=0,754) showed the highest correlation mean among the patient while only INF-γ/IL-4 (ρ=0.740), 17/MIP-1β (ρ=0,712) and IL-17/IL-9 (ρ=0,707) exhibited positive correlation among the control group. The cytokine IL-17 and IL1β presented the greater number of positive pair correlation among the patients. The linear combinations of biomarkers displayed IP-10, IL-2 and RANTES as the variables with the higher discriminatory activity in the patient group compared to PDGF, IL-1ra and eotaxin among the control subjects. IP-10, IL-2, IL-1β, RANTES and IL-17 seem to be predictive value of progression to the development of disease among the Lg-infected individuals.
Collapse
Affiliation(s)
- Tirza Gabrielle Ramos de Mesquita
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Molecular Biology, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
| | - José do Espírito Santo Junior
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Brazil
| | | | - George Allan Villarouco Silva
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Felipe Jules de Araújo
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Brazil
| | - Suzana Kanawati Pinheiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Molecular Biology, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
| | | | - Lener Santos da Silva
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Molecular Biology, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
| | - Luciane Macedo de Souza
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | | | | | - Josué Lacerda de Souza
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Brazil
| | - Cilana Chagas da Silva
- Department of Molecular Biology, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
| | - Héctor David Graterol Sequera
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Molecular Biology, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
| | - Mara Lúcia Gomes de Souza
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Molecular Biology, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
| | | | - Gemilson Soares Pontes
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Department of Virology, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
- Genomic Health Surveillance Network: Optimization of Assistance and Research in The State of Amazonas – REGESAM, Manaus, Amazonas, Brazil
| | - Marcus Vinitius de Farias Guerra
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Molecular Biology, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
| | - Rajendranath Ramasawmy
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Molecular Biology, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
- Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Brazil
- Genomic Health Surveillance Network: Optimization of Assistance and Research in The State of Amazonas – REGESAM, Manaus, Amazonas, Brazil
- *Correspondence: Rajendranath Ramasawmy,
| |
Collapse
|
14
|
Bekkar A, Isorce N, Snäkä T, Claudinot S, Desponds C, Kopelyanskiy D, Prével F, Reverte M, Xenarios I, Fasel N, Teixeira F. Dissection of the macrophage response towards infection by the Leishmania-viral endosymbiont duo and dynamics of the type I interferon response. Front Cell Infect Microbiol 2022; 12:941888. [PMID: 35992159 PMCID: PMC9386148 DOI: 10.3389/fcimb.2022.941888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Abstract
Leishmania RNA virus 1 (LRV1) is a double-stranded RNA virus found in some strains of the human protozoan parasite Leishmania, the causative agent of leishmaniasis, a neglected tropical disease. Interestingly, the presence of LRV1 inside Leishmania constitutes an important virulence factor that worsens the leishmaniasis outcome in a type I interferon (IFN)–dependent manner and contributes to treatment failure. Understanding how macrophages respond toward Leishmania alone or in combination with LRV1 as well as the role that type I IFNs may play during infection is fundamental to oversee new therapeutic strategies. To dissect the macrophage response toward infection, RNA sequencing was performed on murine wild-type and Ifnar-deficient bone marrow–derived macrophages infected with Leishmania guyanensis (Lgy) devoid or not of LRV1. Additionally, macrophages were treated with poly I:C (mimetic virus) or with type I IFNs. By implementing a weighted gene correlation network analysis, the groups of genes (modules) with similar expression patterns, for example, functionally related, coregulated, or the members of the same functional pathway, were identified. These modules followed patterns dependent on Leishmania, LRV1, or Leishmania exacerbated by the presence of LRV1. Not only the visualization of how individual genes were embedded to form modules but also how different modules were related to each other were observed. Thus, in the context of the observed hyperinflammatory phenotype associated to the presence of LRV1, it was noted that the biomarkers tumor-necrosis factor α (TNF-α) and the interleukin 6 (IL-6) belonged to different modules and that their regulating specific Src-family kinases were segregated oppositely. In addition, this network approach revealed the strong and sustained effect of LRV1 on the macrophage response and genes that had an early, late, or sustained impact during infection, uncovering the dynamics of the IFN response. Overall, this study contributed to shed light and dissect the intricate macrophage response toward infection by the Leishmania-LRV1 duo and revealed the crosstalk between modules made of coregulated genes and provided a new resource that can be further explored to study the impact of Leishmania on the macrophage response.
Collapse
Affiliation(s)
- Amel Bekkar
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Nathalie Isorce
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Tiia Snäkä
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | | | - Chantal Desponds
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | | | - Florence Prével
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Marta Reverte
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Ioannis Xenarios
- Agora Center, Center Hospitalier Universitaire (CHUV), Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Fasel
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- *Correspondence: Nicolas Fasel, ; Filipa Teixeira,
| | - Filipa Teixeira
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- *Correspondence: Nicolas Fasel, ; Filipa Teixeira,
| |
Collapse
|
15
|
Olajide JS, Xiong L, Yang S, Qu Z, Xu X, Yang B, Wang J, Liu B, Ma X, Cai J. Eimeria falciformis secretes extracellular vesicles to modulate proinflammatory response during interaction with mouse intestinal epithelial cells. Parasit Vectors 2022; 15:245. [PMID: 35804396 PMCID: PMC9270845 DOI: 10.1186/s13071-022-05364-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protozoan parasite secretions can be triggered by various modified media and diverse physicochemical stressors. Equally, host-parasite interactions are known to co-opt the exchange and secretion of soluble biochemical components. Analysis of Eimeria falciformis sporozoite secretions in response to interaction with mouse intestinal epithelial cells (MIECs) may reveal parasite secretory motifs, protein composition and inflammatory activities of E. falciformis extracellular vesicles (EVs). METHODS Eimeria falciformis sporozoites were allowed to interact with inactivated MIECs. Parasite secretions were separated into EV and vesicle-free (VF) fractions by discontinuous centrifugation and ultracentrifugation. Secreted EVs were purified in an iodixanol density gradient medium and the protein composition of both EV and VF fractions were analyzed by liquid chromatoraphy-tandem mass spectroscopy. The inflammatory activities of E. falciformis sporozoite EV on MIECs were then investigated. RESULTS During the interaction of E. falciformis sporozoites with inactivated MIECs, the parasite secreted VF and vesicle-bound molecules. Eimeria falciformis vesicles are typical pathogenic protozoan EVs with a mean diameter of 264 ± 2 nm, and enclosed heat shock protein (Hsp) 70 as classical EV marker. Refractile body-associated aspartyl proteinase (or eimepsin), GAP45 and aminopeptidase were the main components of E. falciformis sporozoite EVs, while VF proteins include Hsp90, actin, Vps54 and kinases, among others. Proteomic data revealed that E. falciformis EV and VF proteins are aggregates of bioactive, antigenic and immunogenic molecules which act in concert for E. falciformis sporozoite motility, pathogenesis and survival. Moreover, in MIECs, E. falciformis EVs induced upregulation of gene expression and secretion of IL-1β, IL-6, IL-17, IL-18, MCP1 as well as pyroptosis-dependent caspase 11 and NLRP6 inflammasomes with the concomitant secretion of lactate dehydrogenase. CONCLUSIONS Eimeria falciformis sporozoite interaction with MIECs triggered the secretion of immunogenic and antigenic proteins. In addition, E. falciformis sporozoite EVs constitute parasite-associated molecular pattern that induced inflammatory response and cell death. This study offers additional insight in the secretion and protein composition of E. falciformis secretomes as well as the proinflammatory functions of E. falciformis sporozoite EVs.
Collapse
Affiliation(s)
- Joshua Seun Olajide
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
- Centre for Distance Learning, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Ling Xiong
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Shunli Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Zigang Qu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Xiao Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Bin Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Jing Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Baohong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Xueting Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Jianping Cai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| |
Collapse
|
16
|
Muñoz-Durango N, Gómez A, García-Valencia N, Roldán M, Ochoa M, Bautista-Erazo DE, Ramírez-Pineda JR. A Mouse Model of Ulcerative Cutaneous Leishmaniasis by Leishmania (Viannia) panamensis to Investigate Infection, Pathogenesis, Immunity, and Therapeutics. Front Microbiol 2022; 13:907631. [PMID: 35770175 PMCID: PMC9234518 DOI: 10.3389/fmicb.2022.907631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
A mouse model of cutaneous leishmaniasis (CL) by Leishmania (Viannia) panamensis (L(V)p) that reproduces the characteristics of the human disease remains elusive. Here we report the development of a CL model that uses a mouse-adapted L(V)p isolate to reproducibly induce a dermal disease with a remarkable similarity to human CL. BALB/c mice infected intradermally in the ear with 105 stationary UA-946 L(V)p promastigotes develop a progressive cutaneous disease that exhibits the typical ulcerated lesions with indurated borders observed in CL patients. Although most of parasites in the inoculum die within the first week of infection, the survivors vigorously multiply at the infection site during the following weeks, paralleling disease appearance and aggravation. Regional lymphadenopathy as well as lymphatic dissemination of parasites to draining lymph nodes (dLN) was evidenced early after infection. Viable parasites were also isolated from spleen at later timepoints indicating systemic parasitic dissemination, but, strikingly, no signs of systemic disease were observed. Increasing numbers of myeloid cells and T lymphocytes producing IFNγ and IL-4 were observed in the dLN as disease progressed. A mixed adaptive L(V)p-specific T cell-mediated response was induced, since ex vivo recall experiments using dLN cells and splenocytes revealed the production of type 1 (IFNγ, IL-2), type 2 (IL-4, IL-13), regulatory (IL-10), and inflammatory (GM-CSF, IL-3) cytokines. Humoral adaptive response was characterized by early production of IgG1- followed by IgG2a-type of L(V)p-specific antibodies. IFNγ/IL-4 and IgG2a/IgG1 ratios indicated that the initial non-protective Th2 response was redirected toward a protective Th1 response. In situ studies revealed a profuse recruitment of myeloid cells and of IFNγ- and IL-4-producing T lymphocytes to the site of infection, and the typical histopathological changes induced by dermotropic Leishmania species. Evidence that this model is suitable to investigate pharmacological and immunomodulatory interventions, as well as for antigen discovery and vaccine development, is also presented. Altogether, these results support the validity and utility of this novel mouse model to study the pathogenesis, immunity, and therapeutics of L(V)p infections.
Collapse
Affiliation(s)
- Natalia Muñoz-Durango
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellín, Colombia
| | - Alexander Gómez
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellín, Colombia
| | - Natalia García-Valencia
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellín, Colombia
| | - Miguel Roldán
- Instituto de Patología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Marcela Ochoa
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - David E. Bautista-Erazo
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellín, Colombia
| | - José R. Ramírez-Pineda
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
17
|
Aljedaie MM. Epigenetic paradigms/exemplars of the macrophage: inflammasome axis in Leishmaniasis. Mol Cell Biochem 2022; 477:2553-2565. [PMID: 35595955 DOI: 10.1007/s11010-022-04460-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022]
Abstract
The infectious paradigms have recently led to the recognition interplay of complex phenomenon underpinning disease diagnosis and prognosis. Evidently, parasitic infection studies are depicting converging trends of the epigenetic, environmental, and microbiome contributions, assisting pathogen-directed modulations of host biological system. The molecular details of epigenetic variations and memory, along with the multi-omics data at the interface of the host-pathogen level becomes strong indicator of immune cell plasticity, differentiation, and pathogen survival. Despite being one of the most important aspects of the disease's etiopathology, the epigenetic regulation of host-pathogen interactions and evolutionary epigenetics have received little attention thus far. Recent evidence has focused on the growing need to link epigenetic and microbiome modulations on parasite phenotypic plasticity and pathogen-induced host phenotypic plasticity for designing futuristic therapeutic regimes. Leishmaniasis is a neglected tropical illness with varying degrees of disease severity that is linked to a trans-species and epigenetic heredity process, including the pathogen-induced host and strain-specific modulations. The review configures research findings aligning to the epigenetic epidemiology niche, involving co-evolutionary epigenetic inheritance and plasticity disease models. The epigenetic exemplars focus on the host-pathogen interactome expanse at the macrophage-inflammasome axis.
Collapse
Affiliation(s)
- Manei M Aljedaie
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, PO Box 173, Al-Kharj, 11942, Saudi Arabia.
| |
Collapse
|
18
|
A T-Cell Epitope-Based Multi-Epitope Vaccine Designed Using Human HLA Specific T Cell Epitopes Induces a Near-Sterile Immunity against Experimental Visceral Leishmaniasis in Hamsters. Vaccines (Basel) 2021; 9:vaccines9101058. [PMID: 34696166 PMCID: PMC8537199 DOI: 10.3390/vaccines9101058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Visceral leishmaniasis is a neglected tropical disease affecting 12 million people annually. Even in the second decade of the 21st century, it has remained without an effective vaccine for human use. In the current study, we designed three multiepitope vaccine candidates by the selection of multiple IFN-γ inducing MHC-I and MHC-II binder T-cell specific epitopes from three previously identified antigen genes of Leishmania donovani from our lab by an immuno-informatic approach using IFNepitope, the Immune Epitope Database (IEDB) T cell epitope identification tools, NET-MHC-1, and NET MHC-2 webservers. We tested the protective potential of these three multiepitope proteins as a vaccine in a hamster model of visceral leishmaniasis. The immunization data revealed that the vaccine candidates induced a very high level of Th1 biased protective immune response in-vivo in a hamster model of experimental visceral leishmaniasis, with one of the candidates inducing a near-sterile immunity. The vaccinated animals displayed highly activated monocyte macrophages with the capability of clearing intracellular parasites due to increased respiratory burst. Additionally, these proteins induced activation of polyfunctional T cells secreting INF-γ, TNF-α, and IL-2 in an ex-vivo stimulation of human peripheral blood mononuclear cells, further supporting the protective nature of the designed candidates.
Collapse
|
19
|
Chaves MM, Savio LEB, Coutinho-Silva R. Purinergic signaling: a new front-line determinant of resistance and susceptibility in leishmaniasis. Biomed J 2021; 45:109-117. [PMID: 34175493 PMCID: PMC9133308 DOI: 10.1016/j.bj.2021.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease that causes several clinical manifestations. Parasites of the genus Leishmania cause this disease. Spread across five continents, leishmaniasis is a particular public health problem in developing countries. Leishmania infects phagocytic cells such as macrophages, where it induces adenosine triphosphate (ATP) release at the time of infection. ATP activates purinergic receptors in the cell membranes of infected cells and promotes parasite control by inducing leukotriene B4 release and NLRP3 inflammasome activation. Moreover, uridine triphosphate induces ATP release, exacerbating the immune response. However, ATP may also undergo catalysis by ectonucleotidases present in the parasite membrane, generating adenosine, which activates P1 receptors and induces the production of anti-inflammatory molecules such as prostaglandin E2 and IL-10. These mechanisms culminate in Leishmania's survival. Thus, how Leishmania handles extracellular nucleotides and the activation of purinergic receptors determines the control or the dissemination of the disease.
Collapse
Affiliation(s)
- Mariana M Chaves
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Eduardo B Savio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
20
|
de Carvalho RV, Lima-Júnior DS, de Oliveira CV, Zamboni DS. Endosymbiotic RNA virus inhibits Leishmania-induced caspase-11 activation. iScience 2021; 24:102004. [PMID: 33490912 PMCID: PMC7811143 DOI: 10.1016/j.isci.2020.102004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/18/2020] [Accepted: 12/23/2020] [Indexed: 11/19/2022] Open
Abstract
New World species of the intracellular protozoan parasites of the Leishmania genus can cause mucocutaneous leishmaniases. The presence of an endosymbiotic Leishmania RNA virus (LRV) in Leishmania guyanensis (L.g.) promotes disease exacerbation and the development of mucocutaneous disease. It was previously reported that LRV blocks the NLRP3 inflammasome, but additional mechanisms remain unclear. Here, we investigated whether LRV interferes with the inflammasome via caspase-11, which induces non-canonical NLRP3 activation and was reported to be activated by Leishmania. By using macrophages and mice, we found that LRV inhibits caspase-11 activation and IL-1β release by L.g. in a TLR3- and ATG5-dependent manner. Moreover, LRV exacerbates disease in C57BL/6 mice but not in Casp11 -/- , Nlrp3 -/- , and 129 mice, a mouse strain that is naturally mutant for caspase-11. These results demonstrate that LRV interferes with caspase-11 activation by Leishmania, expanding our understanding about the mechanisms by which LRV promotes disease exacerbation.
Collapse
Affiliation(s)
- Renan V.H. de Carvalho
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Medical School, FMRP/USP. Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Djalma S. Lima-Júnior
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Medical School, FMRP/USP. Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Caroline V. de Oliveira
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Medical School, FMRP/USP. Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Dario S. Zamboni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Medical School, FMRP/USP. Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil
- Corresponding author
| |
Collapse
|
21
|
Wang Y, Zhu J, Cao Y, Shen J, Yu L. Insight Into Inflammasome Signaling: Implications for Toxoplasma gondii Infection. Front Immunol 2020; 11:583193. [PMID: 33391259 PMCID: PMC7772217 DOI: 10.3389/fimmu.2020.583193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Inflammasomes are multimeric protein complexes regulating the innate immune response to invading pathogens or stress stimuli. Recent studies have reported that nucleotide-binding leucine-rich repeat-containing (NLRs) proteins and DNA sensor absent in melanoma 2 (AIM2) serve as inflammasome sentinels, whose stimulation leads to the proteolytic activation of caspase-1, proinflammatory cytokine secretion, and pyroptotic cell death. Toxoplasma gondii, an obligate intracellular parasite of phylum Apicomplexans, is reportedly involved in NLRP1, NLRP3 and AIM2 inflammasomes activation; however, mechanistic evidence regarding the activation of these complexes is preliminary. This review describes the current understanding of inflammasome signaling in rodent and human models of T. gondii infection.
Collapse
Affiliation(s)
- Yang Wang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jinjin Zhu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yuanyuan Cao
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jilong Shen
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Li Yu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
22
|
Malta-Santos H, Fukutani KF, Sorgi CA, Queiroz ATL, Nardini V, Silva J, Lago A, Carvalho LP, Machado PLR, Bozza PT, França-Costa J, Faccioli LH, Carvalho EM, Andrade BB, Borges VM. Multi-omic Analyses of Plasma Cytokines, Lipidomics, and Transcriptomics Distinguish Treatment Outcomes in Cutaneous Leishmaniasis. iScience 2020; 23:101840. [PMID: 33313489 PMCID: PMC7721649 DOI: 10.1016/j.isci.2020.101840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/09/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
Leishmania braziliensis infection frequently results in cutaneous leishmaniasis (CL). An increase in incidence of drug-resistant CL leading to treatment failure has been reported. Identification of reliable predictors of treatment outcomes is necessary to optimize patient care. Here, we performed a prospective case-control study in which plasma levels of cytokines and lipid mediators were assessed at different time points during antileishmanial therapy in patients with CL from Brazil. Multidimensional analyses were employed to describe a combination of biomarkers able to predict and characterize treatment failure. We found a biosignature influenced mainly by plasma levels of lipid mediators that accurately predicted treatment failure. Furthermore, transcriptomic analysis of a publicly available data set revealed that expression levels of genes related to lipid metabolism measured in skin lesions could distinguish treatment outcomes in CL. Thus, activation of pathways linked to lipid biosynthesis predicts treatment failure in CL. The biomarkers identified may be further explored as therapeutic targets.
Collapse
Affiliation(s)
- Hayna Malta-Santos
- Faculdade de Medicina da Bahia (FAMED), Universidade Federal da Bahia, Salvador, Brazil.,Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Kiyoshi F Fukutani
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER), Salvador, Brazil
| | - Carlos A Sorgi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP-USP), Universidade de São Paulo (USP), São Paulo, Brazil
| | - Artur T L Queiroz
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER), Salvador, Brazil
| | - Viviane Nardini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP-USP), Universidade de São Paulo (USP), São Paulo, Brazil
| | - Juliana Silva
- Serviço de Imunologia, C-HUPES, Universidade Federal da Bahia, Salvador, Brazil
| | - Alex Lago
- Serviço de Imunologia, C-HUPES, Universidade Federal da Bahia, Salvador, Brazil
| | - Lucas P Carvalho
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Serviço de Imunologia, C-HUPES, Universidade Federal da Bahia, Salvador, Brazil
| | - Paulo L R Machado
- Serviço de Imunologia, C-HUPES, Universidade Federal da Bahia, Salvador, Brazil
| | - Patrícia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Jaqueline França-Costa
- Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Serviço de Imunologia, C-HUPES, Universidade Federal da Bahia, Salvador, Brazil
| | - Lucia H Faccioli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP-USP), Universidade de São Paulo (USP), São Paulo, Brazil
| | - Edgar M Carvalho
- Faculdade de Medicina da Bahia (FAMED), Universidade Federal da Bahia, Salvador, Brazil.,Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Serviço de Imunologia, C-HUPES, Universidade Federal da Bahia, Salvador, Brazil
| | - Bruno B Andrade
- Faculdade de Medicina da Bahia (FAMED), Universidade Federal da Bahia, Salvador, Brazil.,Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER), Salvador, Brazil.,Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil.,Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil
| | - Valéria M Borges
- Faculdade de Medicina da Bahia (FAMED), Universidade Federal da Bahia, Salvador, Brazil.,Instituto Gonçalo Moniz (IGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| |
Collapse
|
23
|
Involvement of the Inflammasome and Th17 Cells in Skin Lesions of Human Cutaneous Leishmaniasis Caused by Leishmania ( Viannia) panamensis. Mediators Inflamm 2020; 2020:9278931. [PMID: 33192178 PMCID: PMC7641710 DOI: 10.1155/2020/9278931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/24/2020] [Accepted: 09/19/2020] [Indexed: 01/07/2023] Open
Abstract
Localized cutaneous leishmaniasis (LCL) caused by Leishmania (Viannia) panamensis is an endemic disease in Panama. This condition causes ulcerated skin lesions characterized by a mixed Th1/Th2 immune response that is responsible for disease pathology. However, the maintenance of the in situ inflammatory process involves other elements, such as Th17 and inflammasome responses. Although these processes are associated with parasite elimination, their role in the increase in disease pathology cannot be discarded. Thus, the role in Leishmania infection is still unclear. In this sense, the present study aimed at characterizing the Th17 and inflammasome responses in the skin lesions of patients with LCL caused by L. (V.) panamensis to help elucidate the pathogenesis of this disease in Panama. Th17 and inflammasome responses were evaluated by immunohistochemistry (IHQ) in 46 skin biopsies from patients with LCL caused by L. (V.) panamensis. The Th17 immune response was assessed using CD3, CD4, RoRγt, IL-17, IL-6, IL-23, and TGF-β1 antibodies, and the inflammasome response was assessed by IL-1β, IL-18, and caspase-1 antibodies. The presence of the Th17 and inflammasome responses was evidenced by a positive reaction for all immunological markers in the skin lesions. An inverse correlation between the density of amastigotes and the density of RoRγt+, IL-17+, IL-1β+, and caspase-1+ cells was observed, but no correlation between Th17 and the inflammasome response with evolutionary disease pathology was reported. These data showed the participation of Th17 cells and the inflammasome in the inflammatory response of the skin lesions of LCL caused by L. (V.) panamensis infection. These results suggest a role in the control of tissue parasitism of IL-17 and the activation of the NLRP3 inflammasome dependent on IL-1β but cannot exclude their role in the development of disease pathology.
Collapse
|
24
|
P2Y 2 Receptor Induces L. amazonensis Infection Control in a Mechanism Dependent on Caspase-1 Activation and IL-1 β Secretion. Mediators Inflamm 2020; 2020:2545682. [PMID: 33061823 PMCID: PMC7547346 DOI: 10.1155/2020/2545682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease caused by an intracellular parasite of the genus Leishmania. Damage-associated molecular patterns (DAMPs) such as UTP and ATP are released from infected cells and, once in the extracellular medium, activate P2 purinergic receptors. P2Y2 and P2X7 receptors cooperate to control Leishmania amazonensis infection. NLRP3 inflammasome activation and IL-1β release resulting from P2X7 activation are important for outcomes of L. amazonensis infection. The cytokine IL-1β is required for the control of intracellular parasites. In the present study, we investigated the involvement of the P2Y2 receptor in the activation of NLRP3 inflammasome elements (caspase-1 and 11) and IL-1β secretion during L. amazonensis infection in peritoneal macrophages as well as in a murine model of cutaneous leishmaniasis. We found that 2-thio-UTP (a selective P2Y2 agonist) reduced parasite load in L. amazonensis-infected murine macrophages and in the footpads and lymph nodes of infected mice. The antiparasitic effects triggered by P2Y2 activation were not observed when cells were pretreated with a caspase-1 inhibitor (Z-YVAD-FMK) or in macrophages from caspase-1/11 knockout mice (CASP-1,11−/−). We also found that UTP treatment induced IL-1β secretion in wild-type (WT) infected macrophages but not in cells from CASP-1,11−/− mice, suggesting that caspase-1 activation by UTP triggers IL-1β secretion in L. amazonensis-infected macrophages. Infected cells pretreated with IL-1R antagonist did not show reduced parasitic load after UTP and ATP treatment. Our in vivo experiments also showed that intralesional UTP treatment reduced both parasite load (in the footpads and popliteal lymph nodes) and lesion size in wild-type (WT) and CASP-11−/− but not in CASP-1,11−/− mice. Taken together, our findings suggest that P2Y2R activation induces CASP-1 activation and IL-1β secretion during L. amazonensis infection. IL-1β/IL-1R signaling is crucial for P2Y2R-mediated protective immune response in an experimental model of cutaneous leishmaniasis.
Collapse
|
25
|
Olivier M, Zamboni DS. Leishmania Viannia guyanensis, LRV1 virus and extracellular vesicles: a dangerous trio influencing the faith of immune response during muco-cutaneous leishmaniasis. Curr Opin Immunol 2020; 66:108-113. [PMID: 32877837 DOI: 10.1016/j.coi.2020.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023]
Abstract
Parasites of Leishmania genus have developed various strategies to overcome host immune response favoring its infection and development toward leishmaniasis. With an array of virulence factors, those parasites modify host macrophage signaling and functions. Depending of the species involved, visceral or cutaneous leishmaniasis will develop. Several years ago, Leishmania Viannia guyanensis that is naturally infected with the endosymbiotic virus Leishmania RNA Virus 1 was found to cause a particularly aggressive form of South-American mucocutaneous leishmaniasis. This virus, when co-transmitted with the parasite was shown to strongly modulate RNA sensors and NLRP3 inflammasome network that could explain in part the exacerbated skin pathology caused by this particular parasite. In this review, we will be discussing how this endosymbiotic virus-infected Leishmania in conjunction with Leishmania exosomes partner together to manipulate host immune response in their favor.
Collapse
Affiliation(s)
- Martin Olivier
- Department of Medicine, Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, QC, Canada; Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, QC, Canada.
| | - Dario S Zamboni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
26
|
Sanches RCO, Souza C, Oliveira SC. Schistosoma antigens as activators of inflammasome pathway: from an unexpected stimulus to an intriguing role. Microbes Infect 2020; 22:534-539. [PMID: 32841730 DOI: 10.1016/j.micinf.2020.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 01/14/2023]
Abstract
Parasites of the genus Schistosoma are organisms capable of living for decades within the definitive host. They interfere with the immune response by interacting with host's receptors. In this review, we discuss from the first reports to the most recent discoveries regarding the ability of Schistosoma antigens in triggering intracellular receptors and inducing inflammasome activation.
Collapse
Affiliation(s)
- Rodrigo C O Sanches
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cláudia Souza
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sergio C Oliveira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), CNPq MCT, 31270-901, Salvador, Brazil.
| |
Collapse
|
27
|
The different faces of the NLRP3 inflammasome in cutaneous Leishmaniasis: A review. Cytokine 2020; 147:155248. [PMID: 32807586 DOI: 10.1016/j.cyto.2020.155248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022]
Abstract
Cutaneous leishmaniasis (CL) is a vector-borne parasitic disease caused by Protozoa of the genus Leishmania. Clinical manifestations of this disease are the result of a complex interplay of diverse factors, including the genetic background and the immune status of the host. Understanding the impact of these factors on the CL pathology may provide new targets to manage the infection and improve clinical outcome. The NLRP3 inflammasome, an innate immune complex of several cell types, seems to be involved in the CL physiopathology. Current studies of its role show contradictory effects of this complex on the evolution of Leishmania infection in mice and humans. In this review, we discuss the data regarding different roles of the NLRP3 inflammasome in murine and human CL.
Collapse
|
28
|
Saresella M, Basilico N, Marventano I, Perego F, La Rosa F, Piancone F, Taramelli D, Banks H, Clerici M. Leishmania infantum infection reduces the amyloid β 42-stimulated NLRP3 inflammasome activation. Brain Behav Immun 2020; 88:597-605. [PMID: 32335194 DOI: 10.1016/j.bbi.2020.04.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/09/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
Activation of the NLRP3 inflammasome has been shown to play a major role in the neuroinflammation that accompanies Alzheimer's disease (AD); interventions that down regulate the NLRP3 inflammasome could thus be beneficial in AD. Parasite infections were recently shown to be associated with improved cognitive functions in Apolipoprotein E4 (ApoE4)-expressing members of an Amazonian tribe. We verified in an in vitro model whether Leishmania infantum infection could reduce NLRP3. Results obtained in an initial experimental model in which PBMC were LPS primed and nigericin-stimulated showed that L. infantum infection significantly reduced ASC-speck formation (i.e. intracellular inflammasome proteins assembly), as well as the production of activated caspase 5 and IL-1β, but increased that of activated caspase 1 and IL-18. Moreover, L. infantum infection induced the generation of an anti-inflammatory milieu by suppressing the production of TNFα and increasing that of IL-10. These results were replicated when cells that had been LPS-primed were stimulated with Aβ42 and infected with L. infantum. Results herein indicate that Leishmania infection favors an anti-inflammatory milieu, which includes the down-regulation of NLRP3 inflammasome activation, possibly to facilitate its survival inside host cells. A side effect of Leishmaniasis would be the hampering of neuroinflammation; this could play a protective role against AD development.
Collapse
Affiliation(s)
| | - Nicoletta Basilico
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy.
| | | | - Federica Perego
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy.
| | | | | | - Donatella Taramelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20100 Milan, Italy.
| | - Helen Banks
- Centre for Research on Health and Social Care Management (Cergas), SDA Bocconi School of Management, Milan 20100, Italy.
| | - Mario Clerici
- IRCCS Fondazione don Carlo Gnocchi, 20148 Milan, Italy; Department of Physiopathology and Transplants, University of Milan, 20122 Milan, Italy.
| |
Collapse
|
29
|
Peniche AG, Osorio EY, Melby PC, Travi BL. Efficacy of histamine H1 receptor antagonists azelastine and fexofenadine against cutaneous Leishmania major infection. PLoS Negl Trop Dis 2020; 14:e0008482. [PMID: 32776923 PMCID: PMC7449455 DOI: 10.1371/journal.pntd.0008482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 08/26/2020] [Accepted: 06/13/2020] [Indexed: 11/18/2022] Open
Abstract
Current drug therapies for cutaneous leishmaniasis are often difficult to administer and treatment failure is an increasingly common occurrence. The efficacy of anti-leishmanial therapy relies on a combination of anti-parasite activity of drugs and the patient's immune response. Previous studies have reported in vitro antimicrobial activity of histamine 1-receptor antagonists (H1RAs) against different pathogens. We used an ex vivo explant culture of lymph nodes from mice infected with Leishmania major to screen H1RAs compounds. Azelastine (AZ) and Fexofenadine (FX) showed remarkable ex vivo efficacy (EC50 = 0.05 and 1.50 μM respectively) and low in vitro cytotoxicity yielding a high therapeutic index. AZ significantly decreased the expression of H1R and the proinflammatory cytokine IL-1ẞ in the ex vivo system, which were shown to be augmented by histamine addition. The anti-leishmanial efficacy of AZ was enhanced in the presence of T cells from infected mice suggesting an immune-modulatory mechanism of parasite suppression. L. major infected BALB/c mice treated per os with FX or intralesionally with AZ showed a significant reduction of lesion size (FX = 69%; AZ = 52%). Furthermore, there was significant parasite suppression in the lesion (FX = 82%; AZ = 87%) and lymph nodes (FX = 81%; AZ = 36%) with no observable side effects. AZ and FX and potentially other H1RAs are good candidates for assessing efficacy in larger studies as monotherapies or in combination with current anti-leishmanial drugs to treat cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Alex G. Peniche
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - E. Yaneth Osorio
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Peter C. Melby
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bruno L. Travi
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
30
|
Rosazza T, Lecoeur H, Blisnick T, Moya-Nilges M, Pescher P, Bastin P, Prina E, Späth GF. Dynamic imaging reveals surface exposure of virulent Leishmania amastigotes during pyroptosis of infected macrophages. J Cell Sci 2020; 134:jcs242776. [PMID: 32501279 DOI: 10.1242/jcs.242776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/29/2020] [Indexed: 12/29/2022] Open
Abstract
Leishmania spp. are obligate intracellular parasites that infect phagocytes, notably macrophages. No information is available on how Leishmania parasites respond to pyroptosis of their host cell, which is known to limit microbial infection. Here, we analyzed the pyroptotic process and the fate of intracellular amastigotes at the single-cell level using high-content real-time imaging. Bone marrow-derived macrophages were infected with virulent Leishmania amazonensis amastigotes and sequentially treated with lipopolysaccharide and ATP to induce pyroptosis. Real-time monitoring identified distinct pyroptotic phases, including rapid decay of the parasitophorous vacuole (PV), progressive cell death and translocation of the luminal PV membrane to the cell surface in 40% of macrophages, resulting in the extracellular exposure of amastigotes that remained anchored to PV membranes. Electron microscopy analyses revealed an exclusive polarized orientation of parasites, with the anterior pole exposed toward the extracellular milieu, and the parasite posterior pole attached to the PV membrane. Exposed parasites retained their full infectivity towards naïve macrophages suggesting that host cell pyroptosis may contribute to parasite dissemination.
Collapse
Affiliation(s)
- Thibault Rosazza
- Institut Pasteur, Unité de Parasitologie Moléculaire et Signalisation, INSERM U1201, 75015 Paris, France
| | - Hervé Lecoeur
- Institut Pasteur, Unité de Parasitologie Moléculaire et Signalisation, INSERM U1201, 75015 Paris, France
- Institut Pasteur International Mixed Unit 'Inflammation and Leishmania infection', 75015 Paris, France
| | - Thierry Blisnick
- Institut Pasteur, Trypanosome Cell Biology Unit & INSERM U1201, 75015 Paris, France
| | - Maryse Moya-Nilges
- Institut Pasteur, Unité de Technologie et service BioImagerie Ultrastructurale (UtechSPBI), 75015 Paris, France
| | - Pascale Pescher
- Institut Pasteur, Unité de Parasitologie Moléculaire et Signalisation, INSERM U1201, 75015 Paris, France
| | - Phillipe Bastin
- Institut Pasteur, Trypanosome Cell Biology Unit & INSERM U1201, 75015 Paris, France
| | - Eric Prina
- Institut Pasteur, Unité de Parasitologie Moléculaire et Signalisation, INSERM U1201, 75015 Paris, France
| | - Gerald F Späth
- Institut Pasteur, Unité de Parasitologie Moléculaire et Signalisation, INSERM U1201, 75015 Paris, France
- Institut Pasteur International Mixed Unit 'Inflammation and Leishmania infection', 75015 Paris, France
| |
Collapse
|
31
|
de Carvalho RVH, Zamboni DS. Inflammasome Activation in Response to Intracellular Protozoan Parasites. Trends Parasitol 2020; 36:459-472. [PMID: 32298633 DOI: 10.1016/j.pt.2020.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
Inflammasomes are cytosolic complexes that assemble in response to cellular stress or upon sensing microbial molecules, culminating in cytokine processing and an inflammatory form of cell death called pyroptosis. Inflammasomes are usually composed of a sensor molecule, an adaptor protein, and an inflammatory caspase, such as Caspase-1, which cleaves and activates multiple substrates, including Gasdermin-D, pro-IL-1β, and pro-IL-18. Ultimately, inflammasome activation promotes inflammation and restriction of the microbial infection. In recent years, many studies have addressed the role of inflammasomes during fungal, bacterial, viral, and parasitic diseases, revealing sophisticated aspects of the host-pathogen interaction. In this review, we summarize recent advances on inflammasome activation in response to intracellular parasites, including Leishmania spp., Plasmodium spp., Trypanosoma cruzi, and Toxoplasma gondii.
Collapse
Affiliation(s)
- Renan V H de Carvalho
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dario S Zamboni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
32
|
dos Santos Meira C, Gedamu L. Protective or Detrimental? Understanding the Role of Host Immunity in Leishmaniasis. Microorganisms 2019; 7:microorganisms7120695. [PMID: 31847221 PMCID: PMC6956275 DOI: 10.3390/microorganisms7120695] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
The intracellular protozoan parasites of the genus Leishmania are the causative agents of leishmaniasis, a vector-borne disease of major public health concern, estimated to affect 12 million people worldwide. The clinical manifestations of leishmaniasis are highly variable and can range from self-healing localized cutaneous lesions to life-threatening disseminated visceral disease. Once introduced into the skin by infected sandflies, Leishmania parasites interact with a variety of immune cells, such as neutrophils, monocytes, dendritic cells (DCs), and macrophages. The resolution of infection requires a finely tuned interplay between innate and adaptive immune cells, culminating with the activation of microbicidal functions and parasite clearance within host cells. However, several factors derived from the host, insect vector, and Leishmania spp., including the presence of a double-stranded RNA virus (LRV), can modulate the host immunity and influence the disease outcome. In this review, we discuss the immune mechanisms underlying the main forms of leishmaniasis, some of the factors involved with the establishment of infection and disease severity, and potential approaches for vaccine and drug development focused on host immunity.
Collapse
|