1
|
Eberle R, Brattig NW, Trusch M, Schlüter H, Achukwi MD, Eisenbarth A, Renz A, Liebau E, Perbandt M, Betzel C. Isolation, identification and functional profile of excretory-secretory peptides from Onchocerca ochengi. Acta Trop 2015; 142:156-66. [PMID: 25479441 DOI: 10.1016/j.actatropica.2014.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/19/2014] [Accepted: 11/24/2014] [Indexed: 10/24/2022]
Abstract
Parasitic helminths excrete or secrete a variety of functional molecules into the internal milieu of their mammalian hosts and arthropod vectors which reveal distinct immunomodulatory and other biological activities. We identified and initially characterized the low molecular weight peptide composition of the secretome from the filarial parasite Onchocerca ochengi. A total of 85 peptides were purified by liquid chromatography and further characterized by mass spectrometry. 72 of these peptides were derived from already described Onchocerca proteins and 13 peptide sequences are included in the sequence of uncharacterized proteins. Three peptides, similar to host defense peptides, revealed antibacterial activity. The present analysis confirms the putative involvement of low molecular weight compounds in the parasite-host cross-talk.
Collapse
|
2
|
Involvement of lipid rafts in the budding-like exit of Orientia tsutsugamushi. Microb Pathog 2013; 63:37-43. [DOI: 10.1016/j.micpath.2013.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/05/2013] [Indexed: 01/20/2023]
|
3
|
Dhamodharan R, Hoti S, Sivapragasam G, Das M. Cloning and sequence analysis of partial genomic DNA coding for HtrA-type serine protease of Wolbachia from human lymphatic filarial parasite, Wuchereria bancrofti. Trop Parasitol 2011; 1:76-82. [PMID: 23508470 PMCID: PMC3593480 DOI: 10.4103/2229-5070.86935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 10/31/2011] [Indexed: 11/30/2022] Open
Abstract
Background: Periplasmic serine proteases of HtrA type of Wolbachia have been shown to play a role in the pathogenesis of filarial disease. Aims: This study was aimed to sequence Wb-HtrA serine protease and analyze its phylogenetic position by comparing with other filarial and non-filarial nematode homologs. Materials and Methods: Partial HtrA gene fragment was amplified from DNA isolated from periodic and sub-periodic Wuchereria bancrofti parasites collected from Pondicherry and Nicobar islands, respectively. The amplicons were sequenced, and sequence homology and phylogenetic relationship with other filarial and non-filarial nematodes were analyzed. Results: Partial orthologue of HtrA-type serine protease from Wolbachia of W. bancrofti was amplified, cloned and sequenced. The deduced amino acid sequence exhibited 87%, 81% and 74% identity with the homologous Wolbachia proteases identified from Brugia malayi, Onchocerca volvulus and Drosophila melanogaster, respectively. The Wb-HtrA has arthologues in several proteobacteria with very high homology and hence is highly conserved not only among Wolbachia of filarial parasites but also across proteobacteria. The phylogenetic tree constructed using Neighbor-Joining method showed two main clusters: cluster-I containing bacteria that dwell in diverse habitats such as soil, fresh and marine waters and plants and cluster-II comprising Anaplasma sp. and Erlichia, and Wolbachia endosymbionts of insects and nematodes, in distinct groups. Conclusions: HtrA-type serine protease from Wolbachia of W. bancrofti is highly conserved among filarial parasites. It will be of interest to know whether filarial Wolbachia HtrA type of serine protease might influence apoptosis and lymphatic epithelium, thereby playing a role in the filarial pathogenesis. Such information will be useful for identifying targets for the development of newer drugs for filariasis treatment, especially for preventing lymphatic pathology.
Collapse
Affiliation(s)
- R Dhamodharan
- Microbiology and Molecular Biology Division, Vector Control Research Centre (ICMR), Puducherry, India
| | | | | | | |
Collapse
|
4
|
Fischer K, Beatty WL, Jiang D, Weil GJ, Fischer PU. Tissue and stage-specific distribution of Wolbachia in Brugia malayi. PLoS Negl Trop Dis 2011; 5:e1174. [PMID: 21629728 PMCID: PMC3101188 DOI: 10.1371/journal.pntd.0001174] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 04/01/2011] [Indexed: 01/21/2023] Open
Abstract
Background Most filarial parasite species contain Wolbachia, obligatory bacterial endosymbionts that are crucial for filarial development and reproduction. They are targets for alternative chemotherapy, but their role in the biology of filarial nematodes is not well understood. Light microscopy provides important information on morphology, localization and potential function of these bacteria. Surprisingly, immunohistology and in situ hybridization techniques have not been widely used to monitor Wolbachia distribution during the filarial life cycle. Methods/Principal Findings A monoclonal antibody directed against Wolbachia surface protein and in situ hybridization targeting Wolbachia 16S rRNA were used to monitor Wolbachia during the life cycle of B. malayi. In microfilariae and vector stage larvae only a few cells contain Wolbachia. In contrast, large numbers of Wolbachia were detected in the lateral chords of L4 larvae, but no endobacteria were detected in the genital primordium. In young adult worms (5 weeks p.i.), a massive expansion of Wolbachia was observed in the lateral chords adjacent to ovaries or testis, but no endobacteria were detected in the growth zone of the ovaries, uterus, the growth zone of the testis or the vas deferens. Confocal laser scanning and transmission electron microscopy showed that numerous Wolbachia are aligned towards the developing ovaries and single endobacteria were detected in the germline. In inseminated females (8 weeks p.i.) Wolbachia were observed in the ovaries, embryos and in decreasing numbers in the lateral chords. In young males Wolbachia were found in distinct zones of the testis and in large numbers in the lateral chords in the vicinity of testicular tissue but never in mature spermatids or spermatozoa. Conclusions Immunohistology and in situ hybridization show distinct tissue and stage specific distribution patterns for Wolbachia in B. malayi. Extensive multiplication of Wolbachia occurs in the lateral chords of L4 and young adults adjacent to germline cells. Most filarial nematodes contain Wolbachia endobacteria that are essential for development and reproduction. An antibody against a Wolbachia surface protein was used to monitor the distribution of endobacteria during the B. malayi life cycle. In situ hybridization with probes binding to Wolbachia 16S rRNA were used to confirm results. Only a few cells contain Wolbachia in microfilariae and vector stage larvae; this suggests that the bacteria need to be maintained, but may have limited importance for these stages. Large numbers of Wolbachia were detected in the lateral chords of L4 larvae and of young adult worms, but not in the developing reproductive tissue. Confocal laser scanning and transmission electron microscopy showed that Wolbachia are aligned towards the developing germline. It can be hypothesized that Wolbachia invade developing ovaries from the lateral chords. In inseminated females, Wolbachia were detected in the ovaries and embryos. In young males, Wolbachia were found in parts of the testis and in the lateral chords in the vicinity of testicular tissue but never in mature spermatids or spermatozoa. The process of overcoming tissue boundaries to ensure transovarial transmission of Wolbachia could be an Achilles heel in the life cycle of B. malayi.
Collapse
Affiliation(s)
- Kerstin Fischer
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Daojun Jiang
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Gary J. Weil
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Peter U. Fischer
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
5
|
Immunohistological studies on neoplasms of female and male Onchocerca volvulus: filarial origin and absence of Wolbachia from tumor cells. Parasitology 2010; 137:841-54. [PMID: 20199697 PMCID: PMC2925449 DOI: 10.1017/s0031182009992010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Up to 5% of untreated female Onchocerca volvulus filariae develop potentially fatal pleomorphic neoplasms, whose incidence is increased following ivermectin treatment. We studied the occurrence of 8 filarial proteins and of Wolbachia endobacteria in the tumor cells. Onchocercomas from patients, untreated and treated with antibiotics and anthelminthics, were examined by immunohistology. Neoplasms were diagnosed in 112 of 3587 female and in 2 of 1570 male O. volvulus. The following proteins and other compounds of O. volvulus were expressed in the cells of the neoplasms: glutathione S-transferase 1, lysosomal aspartic protease, cAMP-dependent protein kinase, alpha-enolase, aspartate aminotransferase, ankyrin E1, tropomyosin, heat shock protein 60, transforming growth factor-beta, and prostaglandin E2. These findings prove the filarial origin of the neoplasms and confirm the pleomorphism of the tumor cells. Signs indicating malignancy of the neoplasms are described. Wolbachia were observed in the hypodermis, oocytes, and embryos of tumor-harbouring filariae using antibodies against Wolbachia surface protein, Wolbachia HtrA-type serine protease, and Wolbachia aspartate aminotransferase. In contrast, Wolbachia were not found in the cells of the neoplasms. Further, neoplasm-containing worms were not observed after more than 10 months after the start of sufficient treatment with doxycycline or doxycycline plus ivermectin.
Collapse
|
6
|
Abstract
Filariasis is caused by thread-like nematode worms, classified according to their presence in the vertebrate host. The cutaneous group includes Onchocerca volvulus, Loa loa and Mansonella streptocerca; the lymphatic group includes Wuchereria bancrofti, Brugia malayi and Brugia timori and the body cavity group includes Mansonella perstans and Mansonella ozzardi. Lymphatic filariasis, a mosquito-borne disease, is one of the most prevalent diseases in tropical and subtropical countries and is accompanied by a number of pathological conditions. In recent years, there has been rapid progress in filariasis research, which has provided new insights into the pathogenesis of filarial disease, diagnosis, chemotherapy, the host–parasite relationship and the genomics of the parasite. Together, these insights are assisting the identification of novel drug targets and the discovery of antifilarial agents and candidate vaccine molecules. This review discusses the antifilarial activity of various chemical entities, the merits and demerits of antifilarial drugs currently in use, their mechanisms of action, in addition to antifilarial drug targets and their validation.
Collapse
|
7
|
Fenn K, Conlon C, Jones M, Quail MA, Holroyd NE, Parkhill J, Blaxter M. Phylogenetic relationships of the Wolbachia of nematodes and arthropods. PLoS Pathog 2006; 2:e94. [PMID: 17040125 PMCID: PMC1599763 DOI: 10.1371/journal.ppat.0020094] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 08/21/2006] [Indexed: 11/18/2022] Open
Abstract
Wolbachia are well known as bacterial symbionts of arthropods, where they are reproductive parasites, but have also been described from nematode hosts, where the symbiotic interaction has features of mutualism. The majority of arthropod Wolbachia belong to clades A and B, while nematode Wolbachia mostly belong to clades C and D, but these relationships have been based on analysis of a small number of genes. To investigate the evolution and relationships of Wolbachia symbionts we have sequenced over 70 kb of the genome of wOvo, a Wolbachia from the human-parasitic nematode Onchocerca volvulus, and compared the genes identified to orthologues in other sequenced Wolbachia genomes. In comparisons of conserved local synteny, we find that wBm, from the nematode Brugia malayi, and wMel, from Drosophila melanogaster, are more similar to each other than either is to wOvo. Phylogenetic analysis of the protein-coding and ribosomal RNA genes on the sequenced fragments supports reciprocal monophyly of nematode and arthropod Wolbachia. The nematode Wolbachia did not arise from within the A clade of arthropod Wolbachia, and the root of the Wolbachia clade lies between the nematode and arthropod symbionts. Using the wOvo sequence, we identified a lateral transfer event whereby segments of the Wolbachia genome were inserted into the Onchocerca nuclear genome. This event predated the separation of the human parasite O. volvulus from its cattle-parasitic sister species, O. ochengi. The long association between filarial nematodes and Wolbachia symbionts may permit more frequent genetic exchange between their genomes. Filarial nematode worms cause hundreds of millions of cases of disease in humans worldwide. As part of efforts to identify new drug targets in these parasites, the Filarial Genome Project rediscovered that these worms carry within them a symbiotic bacterium, which may be a novel target. Fenn et al. investigated the relationships of these bacteria, from the genus Wolbachia, to those previously identified in arthropods using a new dataset of genome sequence data from the human parasite Onchocerca volvulus. O. volvulus causes river blindness in West Africa. The authors found that the Wolbachia strains found in nematodes are more closely related to each other than they are to the Wolbachia in insects, suggesting that the nematodes and their bacterial partners have been coevolving for some considerable evolutionary time and may indeed be good targets. In addition, the authors identified a fragment of Wolbachia DNA that was inserted in the genome of its nematode host and has subsequently degenerated. The insertion occurred before O. volvulus diverged from another nematode species, O. ochengi, found in cattle.
Collapse
Affiliation(s)
- Katelyn Fenn
- Institutes of Evolutionary Biology and Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Claire Conlon
- Institutes of Evolutionary Biology and Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Martin Jones
- Institutes of Evolutionary Biology and Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael A Quail
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Nancy E Holroyd
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Julian Parkhill
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Mark Blaxter
- Institutes of Evolutionary Biology and Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
8
|
Foster J, Ganatra M, Kamal I, Ware J, Makarova K, Ivanova N, Bhattacharyya A, Kapatral V, Kumar S, Posfai J, Vincze T, Ingram J, Moran L, Lapidus A, Omelchenko M, Kyrpides N, Ghedin E, Wang S, Goltsman E, Joukov V, Ostrovskaya O, Tsukerman K, Mazur M, Comb D, Koonin E, Slatko B. The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol 2005; 3:e121. [PMID: 15780005 PMCID: PMC1069646 DOI: 10.1371/journal.pbio.0030121] [Citation(s) in RCA: 450] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Accepted: 02/02/2005] [Indexed: 11/18/2022] Open
Abstract
Complete genome DNA sequence and analysis is presented for Wolbachia, the obligate alpha-proteobacterial endosymbiont required for fertility and survival of the human filarial parasitic nematode Brugia malayi. Although, quantitatively, the genome is even more degraded than those of closely related Rickettsia species, Wolbachia has retained more intact metabolic pathways. The ability to provide riboflavin, flavin adenine dinucleotide, heme, and nucleotides is likely to be Wolbachia's principal contribution to the mutualistic relationship, whereas the host nematode likely supplies amino acids required for Wolbachia growth. Genome comparison of the Wolbachia endosymbiont of B. malayi (wBm) with the Wolbachia endosymbiont of Drosophila melanogaster (wMel) shows that they share similar metabolic trends, although their genomes show a high degree of genome shuffling. In contrast to wMel, wBm contains no prophage and has a reduced level of repeated DNA. Both Wolbachia have lost a considerable number of membrane biogenesis genes that apparently make them unable to synthesize lipid A, the usual component of proteobacterial membranes. However, differences in their peptidoglycan structures may reflect the mutualistic lifestyle of wBm in contrast to the parasitic lifestyle of wMel. The smaller genome size of wBm, relative to wMel, may reflect the loss of genes required for infecting host cells and avoiding host defense systems. Analysis of this first sequenced endosymbiont genome from a filarial nematode provides insight into endosymbiont evolution and additionally provides new potential targets for elimination of cutaneous and lymphatic human filarial disease. Analysis of this Wolbachia genome, which resides within filarial parasites, offers insight into endosymbiont evolution and the promise of new strategies for the elimination of human filarial disease
Collapse
Affiliation(s)
- Jeremy Foster
- 1Molecular Parasitology Division, New England BiolabsBeverly, MassachusettsUnited States of America
| | - Mehul Ganatra
- 1Molecular Parasitology Division, New England BiolabsBeverly, MassachusettsUnited States of America
| | - Ibrahim Kamal
- 1Molecular Parasitology Division, New England BiolabsBeverly, MassachusettsUnited States of America
| | - Jennifer Ware
- 1Molecular Parasitology Division, New England BiolabsBeverly, MassachusettsUnited States of America
| | - Kira Makarova
- 2National Center for Biotechnology Information, National Library of MedicineNational Institutes of Health, Bethesda, MarylandUnited States of America
| | - Natalia Ivanova
- 3Integrated Genomics, ChicagoIllinoisUnited States of America
| | | | | | - Sanjay Kumar
- 1Molecular Parasitology Division, New England BiolabsBeverly, MassachusettsUnited States of America
| | - Janos Posfai
- 1Molecular Parasitology Division, New England BiolabsBeverly, MassachusettsUnited States of America
| | - Tamas Vincze
- 1Molecular Parasitology Division, New England BiolabsBeverly, MassachusettsUnited States of America
| | - Jessica Ingram
- 1Molecular Parasitology Division, New England BiolabsBeverly, MassachusettsUnited States of America
| | - Laurie Moran
- 1Molecular Parasitology Division, New England BiolabsBeverly, MassachusettsUnited States of America
| | - Alla Lapidus
- 3Integrated Genomics, ChicagoIllinoisUnited States of America
| | - Marina Omelchenko
- 2National Center for Biotechnology Information, National Library of MedicineNational Institutes of Health, Bethesda, MarylandUnited States of America
| | - Nikos Kyrpides
- 3Integrated Genomics, ChicagoIllinoisUnited States of America
| | - Elodie Ghedin
- 4Parasite Genomics, Institute for Genomic ResearchRockville, MarylandUnited States of America
| | - Shiliang Wang
- 4Parasite Genomics, Institute for Genomic ResearchRockville, MarylandUnited States of America
| | - Eugene Goltsman
- 3Integrated Genomics, ChicagoIllinoisUnited States of America
| | - Victor Joukov
- 3Integrated Genomics, ChicagoIllinoisUnited States of America
| | | | - Kiryl Tsukerman
- 3Integrated Genomics, ChicagoIllinoisUnited States of America
| | - Mikhail Mazur
- 3Integrated Genomics, ChicagoIllinoisUnited States of America
| | - Donald Comb
- 1Molecular Parasitology Division, New England BiolabsBeverly, MassachusettsUnited States of America
| | - Eugene Koonin
- 2National Center for Biotechnology Information, National Library of MedicineNational Institutes of Health, Bethesda, MarylandUnited States of America
| | - Barton Slatko
- 1Molecular Parasitology Division, New England BiolabsBeverly, MassachusettsUnited States of America
| |
Collapse
|
9
|
Brattig NW. Pathogenesis and host responses in human onchocerciasis: impact of Onchocerca filariae and Wolbachia endobacteria. Microbes Infect 2004; 6:113-28. [PMID: 14738900 DOI: 10.1016/j.micinf.2003.11.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Onchocerca volvulus is a tissue-invasive parasitic nematode causing skin and eye pathology in human onchocerciasis. The filariae habour abundant intracellular Wolbachia bacteria, now recognised as obligatory symbionts, and therefore emerging as a novel target for chemotherapy. Recent research demonstrates that both the filariae and endobacteria contribute to the pathogenesis of onchocerciasis, and molecules have been identified that promote inflammatory or counter-inflammatory immune mechanisms, divert the host's immune response or procure evasion of the parasite.
Collapse
Affiliation(s)
- N W Brattig
- Tropical Medicine Section, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany.
| |
Collapse
|