1
|
Ørbæk M, Gonzalez-Ortiz F, Gynthersen RMM, Andersen ÅB, Tan K, Andreasson U, Blennow K, Mens H, Zetterberg H, Lebech AM. Plasma levels of the neuron damage markers brain-derived tau and glial fibrillary acidic protein in Lyme neuroborreliosis: A longitudinal study. Ticks Tick Borne Dis 2025; 16:102459. [PMID: 40120235 DOI: 10.1016/j.ttbdis.2025.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND A reliable blood biomarker for neuroborreliosis (NB) has yet to be identified. This study investigated levels of neuron damage markers glial fibrillary acidic protein (GFAP) and brain-derived tau (BD-tau) over six months of follow-up in patients with NB. The aim was to evaluate the potential of these biomarkers for monitoring treatment response and prognostic purposes. METHODS A retrospective longitudinal cohort study including plasma collected at diagnosis and approximately three- and six-months post diagnosis from adult NB patients enrolled at the Department of Infectious Diseases, Rigshospitalet between 2018 and 2020. BD-tau concentrations were measured in-house using the Single Molecule Array (Simoa) HD-X platform, while GFAP concentrations were assessed on the same platform utilizing the GFAP Discovery Kit. Changes in biomarker concentrations were analyzed using linear mixed models with an unstructured covariance pattern, with follow-up included as a categorical fixed effect. RESULTS A total of 23 patients (median age: 63 years; male/female ratio: 16/7) with 56 plasma samples were analyzed; 12 patients had complete samples. GFAP and BD-tau levels showed minimal variation throughout the study period. Patients with persistent symptoms had GFAP concentrations that were 55 % higher at diagnosis compared to those who fully recovered, though this difference was not statistically significant (p = 0.09). No significant associations were observed between biomarker levels and treatment response or long-term outcomes. CONCLUSIONS This longitudinal study did not find BD-tau or GFAP to be effective blood biomarkers for monitoring treatment response or predicting outcomes in NB.
Collapse
Affiliation(s)
- Mathilde Ørbæk
- Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
| | - Fernando Gonzalez-Ortiz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, The University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Rosa M M Gynthersen
- Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Åse Bengaard Andersen
- Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Kubra Tan
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, The University of Gothenburg, Mölndal, Sweden
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, The University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, The University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Helene Mens
- Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, The University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Hong Kong Center for Neurodegenerative Diseases, Hong Kong Central College, Hong Kong, China; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Anne-Mette Lebech
- Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen
| |
Collapse
|
2
|
Paunkov A, Strasser D, Huber P, Leitsch D. Roles of efflux pumps and nitroreductases in metronidazole-resistant Trichomonas vaginalis. Parasitol Res 2025; 124:21. [PMID: 39937247 PMCID: PMC11821713 DOI: 10.1007/s00436-025-08463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
Trichomonas vaginalis infections significantly impact public health and are associated with increased likelihood of HIV infection, prostate cancer, and pregnancy complications. Current treatment relies almost exclusively on 5-nitroimidazoles, particularly metronidazole, raising concerns about drug resistance and treatment efficacy. This study is aimed at evaluating the effectiveness of metronidazole and tinidazole on metronidazole-resistant strains of T. vaginalis and at determining whether efflux pump inhibitors could reverse metronidazole resistance. Additionally, the roles of nitroreductases in metronidazole resistance were also studied. Metronidazole and tinidazole were tested on both metronidazole-sensitive and -resistant T. vaginalis strains. A checkerboard assay was conducted to assess the potential synergy between metronidazole or tinidazole and efflux pump inhibitors. Nitroreductase activity and ferric iron reduction assays were employed to study the functions of nitroreductases. Tinidazole demonstrated better effectiveness against metronidazole-resistant strains compared to metronidazole, with lower minimal lethal concentration levels. However, the tested efflux pump inhibitors did not significantly enhance the efficacy of metronidazole or tinidazole. Pyrimethamine showed some activity but did not improve the efficacy of the 5-nitroimidazoles in combination. Investigations into the role of nitroreductases and other enzymes in metronidazole resistance revealed no clear downregulation trend in resistant strains. Notably, nitroreductase 8 was capable of reducing ferric iron. While tinidazole remains a viable alternative for treating metronidazole-resistant T. vaginalis, efflux pump inhibitors do not effectively reverse resistance. The identification of nitroreductase's 8 iron-reducing activity suggests its involvement in metronidazole resistance mechanisms. This finding highlights the need for continued research to develop new treatment strategies and improve the management of trichomoniasis, ultimately reducing its public health burden.
Collapse
Affiliation(s)
- Ana Paunkov
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria.
| | - Doris Strasser
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Philipp Huber
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - David Leitsch
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| |
Collapse
|
3
|
Lewis J, Lloyd VK, Robichaud GA. Development, Optimization, and Validation of a Quantitative PCR Assay for Borrelia burgdorferi Detection in Tick, Wildlife, and Human Samples. Pathogens 2024; 13:1034. [PMID: 39770294 PMCID: PMC11679815 DOI: 10.3390/pathogens13121034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 01/30/2025] Open
Abstract
Tick-borne pathogens are growing in importance for human and veterinary research worldwide. We developed, optimized, and validated a reliable quantitative PCR (qPCR; real-time PCR) assay to assess Borrelia burgdorferi infection by targeting two B. burgdorferi genes, ospA and flaB. When assessing previously tested tick samples, its performance surpassed the nested PCR in efficiency, sensitivity, and specificity. Since the detection of Borrelia is more difficult in mammalian samples, the qPCR assay was also assessed using wildlife tissues. For wildlife samples, the sensitivity and specificity of ospA primers, with the incorporation of a pre-amplification step, was equivalent or superior to the nested PCR. For human samples, no primer set was successful with human tissue without culture, but we detected Borrelia with ospA and flaB primers in 50% of the Lyme culture samples, corresponding to 60% of the participants with a Lyme disease diagnosis or suspicion. The specificity of amplification was confirmed by Sanger sequencing. The healthy participant culture samples were negative. This PCR-based direct detection assay performs well for the detection of Borrelia in different biological samples. Advancements in detection methods lead to a better surveillance of Borrelia in vectors and hosts, and, ultimately, enhance human and animal health.
Collapse
Affiliation(s)
- Julie Lewis
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Vett K. Lloyd
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada
| | - Gilles A. Robichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
4
|
Selmi R, Abdi K, Belkahia H, Abdallah MB, Mamlouk A, Kratou M, Said MB, Messadi L. Detection and genetic identification of Borrelia lusitaniae in questing Ixodes inopinatus tick from Tunisia. INFECTIOUS MEDICINE 2024; 3:100093. [PMID: 38586546 PMCID: PMC10998273 DOI: 10.1016/j.imj.2024.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 04/09/2024]
Abstract
Background Until now, there has been limited information on the prevalence and the phylogeny of Borrelia burgdorferi sensu lato in Ixodes ticks in Tunisia, particularly in Ixodes inopinatus. Methods The present study aimed to determine the prevalence and the phylogeny of B. burgdorferi s.l., in coexisted I. ricinus and I. inopinatus ticks collected from Northern Tunisia. One hundred questig ticks were collected during winter 2020 by tick-dragging method in Beja gouvernorate located in the north of Tunisia. Real-time PCR panel targeting B. burgdorferi s.l. 23S rRNA gene were performed. Positive DNA samples were subjected to conventional PCRs targeting 457 bp fragment of the Borrelia sp. flagellin (fla) gene using primers FlaF/FlaR. The identified Borrelia sp. isolate underwent partial sequence analysis to determine genospecies and evaluate their phylogenetic position. Results The study revealed a prevalence rate of 28% (28/100) for B. burgdorferi sensu lato in the Ixodes ticks. The prevalence rates across tick species and genders did not show significant variations (p > 0.05). Interestingly, the study underlines the coexistence of I. inopinatus and I. ricinus sharing the same geographic areas in Northern Tunisia. Furthermore, DNA of B. lusitaniae was detected in I. inopinatus ticks for the first time in Tunisia. Revealed B. lusitaniae bacterium is similar to previously identified strains in Mediterranean region, but distinct from those isolated exclusively from countries of Eastern and Central Europe, such as Serbia, Romania, and Poland. This study highlights the prevalence of B. burgdorferi s.l. in I. ricinus/I. inopinatus ticks, and reveals B. lusitaniae in I. inopinatus ticks for the first time in Tunisia. Conclusion These findings suggest the involvement of I. inopinatus as a potential vector of this pathogenic genospeciess in Tunisia. This may help understanding the ecology of Ixodes ticks, the natural infection and the transmission dynamics of Borrelia species in this country.
Collapse
Affiliation(s)
- Rachid Selmi
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, LR16AGR01, University of Manouba, Manouba 2010, Tunisia
- Ministry of National Defense, General Directorate of Military Health, Military Center of Veterinary Medicine, Tunis 1030, Tunisia
| | - Khaoula Abdi
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, LR16AGR01, University of Manouba, Manouba 2010, Tunisia
| | - Hanène Belkahia
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, LR16AGR01, University of Manouba, Manouba 2010, Tunisia
| | - Meriem Ben Abdallah
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, LR16AGR01, University of Manouba, Manouba 2010, Tunisia
| | - Aymen Mamlouk
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, LR16AGR01, University of Manouba, Manouba 2010, Tunisia
| | - Myriam Kratou
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, LR16AGR01, University of Manouba, Manouba 2010, Tunisia
| | - Mourad Ben Said
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, LR16AGR01, University of Manouba, Manouba 2010, Tunisia
- Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
| | - Lilia Messadi
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, LR16AGR01, University of Manouba, Manouba 2010, Tunisia
| |
Collapse
|
5
|
Bransfield RC, Mao C, Greenberg R. Microbes and Mental Illness: Past, Present, and Future. Healthcare (Basel) 2023; 12:83. [PMID: 38200989 PMCID: PMC10779437 DOI: 10.3390/healthcare12010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
A review of the association between microbes and mental illness is performed, including the history, relevant definitions, infectious agents associated with mental illnesses, complex interactive infections, total load theory, pathophysiology, psychoimmunology, psychoneuroimmunology, clinical presentations, early-life infections, clinical assessment, and treatment. Perspectives on the etiology of mental illness have evolved from demonic possession toward multisystem biologically based models that include gene expression, environmental triggers, immune mediators, and infectious diseases. Microbes are associated with a number of mental disorders, including autism, schizophrenia, bipolar disorder, depressive disorders, and anxiety disorders, as well as suicidality and aggressive or violent behaviors. Specific microbes that have been associated or potentially associated with at least one of these conditions include Aspergillus, Babesia, Bartonella, Borna disease virus, Borrelia burgdorferi (Lyme disease), Candida, Chlamydia, coronaviruses (e.g., SARS-CoV-2), Cryptococcus neoformans, cytomegalovirus, enteroviruses, Epstein-Barr virus, hepatitis C, herpes simplex virus, human endogenous retroviruses, human immunodeficiency virus, human herpesvirus-6 (HHV-6), human T-cell lymphotropic virus type 1, influenza viruses, measles virus, Mycoplasma, Plasmodium, rubella virus, Group A Streptococcus (PANDAS), Taenia solium, Toxoplasma gondii, Treponema pallidum (syphilis), Trypanosoma, and West Nile virus. Recognition of the microbe and mental illness association with the development of greater interdisciplinary research, education, and treatment options may prevent and reduce mental illness morbidity, disability, and mortality.
Collapse
Affiliation(s)
- Robert C. Bransfield
- Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
- Hackensack Meridian School of Medicine, Nutey, NJ 07110, USA
| | | | | |
Collapse
|
6
|
Adkison H, Embers ME. Lyme disease and the pursuit of a clinical cure. Front Med (Lausanne) 2023; 10:1183344. [PMID: 37293310 PMCID: PMC10244525 DOI: 10.3389/fmed.2023.1183344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
Lyme disease, caused by the spirochete Borrelia burgdorferi, is the most common vector-borne illness in the United States. Many aspects of the disease are still topics of controversy within the scientific and medical communities. One particular point of debate is the etiology behind antibiotic treatment failure of a significant portion (10-30%) of Lyme disease patients. The condition in which patients with Lyme disease continue to experience a variety of symptoms months to years after the recommended antibiotic treatment is most recently referred to in the literature as post treatment Lyme disease syndrome (PTLDS) or just simply post treatment Lyme disease (PTLD). The most commonly proposed mechanisms behind treatment failure include host autoimmune responses, long-term sequelae from the initial Borrelia infection, and persistence of the spirochete. The aims of this review will focus on the in vitro, in vivo, and clinical evidence that either validates or challenges these mechanisms, particularly with regard to the role of the immune response in disease and resolution of the infection. Next generation treatments and research into identifying biomarkers to predict treatment responses and outcomes for Lyme disease patients are also discussed. It is essential that definitions and guidelines for Lyme disease evolve with the research to translate diagnostic and therapeutic advances to patient care.
Collapse
Affiliation(s)
| | - Monica E. Embers
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, United States
| |
Collapse
|
7
|
Zinck CB, Thampy PR, Rego ROM, Brisson D, Ogden NH, Voordouw M. Borrelia burgdorferi strain and host sex influence pathogen prevalence and abundance in the tissues of a laboratory rodent host. Mol Ecol 2022; 31:5872-5888. [PMID: 36112076 DOI: 10.1111/mec.16694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 01/13/2023]
Abstract
Experimental infections with different pathogen strains give insight into pathogen life history traits. The purpose of the present study was to compare variation in tissue infection prevalence and spirochete abundance among strains of Borrelia burgdorferi in a rodent host (Mus musculus, C3H/HeJ). Male and female mice were experimentally infected via tick bite with one of 12 strains. Ear tissue biopsies were taken at days 29, 59 and 89 postinfection, and seven tissues were collected at necropsy. The presence and abundance of spirochetes in the mouse tissues were measured by quantitative polymerase chain reaction. To determine the frequencies of our strains in nature, their multilocus sequence types were matched to published data sets. For the infected mice, 56.6% of the tissues were infected with B. burgdorferi. The mean spirochete load in the mouse necropsy tissues varied 4.8-fold between the strains. The mean spirochete load in the ear tissue biopsies decreased rapidly over time for some strains. The percentage of infected tissues in male mice (65.4%) was significantly higher compared to female mice (50.5%). The mean spirochete load in the seven tissues was 1.5× higher in male mice compared to female mice; this male bias was 15.3× higher in the ventral skin. Across the 11 strains, the mean spirochete loads in the infected mouse tissues were positively correlated with the strain-specific frequencies in their tick vector populations. The study suggests that laboratory-based estimates of pathogen abundance in host tissues can predict the strain composition of this important tick-borne pathogen in nature.
Collapse
Affiliation(s)
- Christopher B Zinck
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Prasobh Raveendran Thampy
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ryan O M Rego
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Dustin Brisson
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicholas H Ogden
- Public Health Risk Sciences, National Microbiology Laboratory, Public Health Agency of Canada, St Hyacinthe, Quebec, Canada
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique (GREZOSP), Faculté de Médecine Vétérinaire, and Centre de Recherche en Santé Publique (CReSP), Université de Montréal, Montreal, Quebec, Canada
| | - Maarten Voordouw
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
8
|
Karvonen K, Nykky J, Marjomäki V, Gilbert L. Distinctive Evasion Mechanisms to Allow Persistence of Borrelia burgdorferi in Different Human Cell Lines. Front Microbiol 2021; 12:711291. [PMID: 34712208 PMCID: PMC8546339 DOI: 10.3389/fmicb.2021.711291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Lyme borreliosis is a multisystemic disease caused by the pleomorphic bacteria of the Borrelia burgdorferi sensu lato complex. The exact mechanisms for the infection to progress into a prolonged sequelae of the disease are currently unknown, although immune evasion and persistence of the bacteria in the host are thought to be major contributors. The current study investigated B. burgdorferi infection processes in two human cell lines, both non-immune and non-phagocytic, to further understand the mechanisms of infection of this bacterium. By utilizing light, confocal, helium ion, and transmission electron microscopy, borrelial infection of chondrosarcoma (SW1353) and dermal fibroblast (BJ) cells were examined from an early 30-min time point to a late 9-days post-infection. Host cell invasion, viability of both the host and B. burgdorferi, as well as, co-localization with lysosomes and the presence of different borrelial pleomorphic forms were analyzed. The results demonstrated differences of infection between the cell lines starting from early entry as B. burgdorferi invaded BJ cells in coiled forms with less pronounced host cell extensions, whereas in SW1353 cells, micropodial interactions with spirochetes were always seen. Moreover, infection of BJ cells increased in a dose dependent manner throughout the examined 9 days, while the percentage of infection, although dose dependent, decreased in SW1353 cells after reaching a peak at 48 h. Furthermore, blebs, round body and damaged B. burgdorferi forms, were mostly observed from the infected SW1353 cells, while spirochetes dominated in BJ cells. Both infected host cell lines grew and remained viable after 9 day post-infection. Although damaged forms were noticed in both cell lines, co-localization with lysosomes was low in both cell lines, especially in BJ cells. The invasion of non-phagocytic cells and the lack of cytopathic effects onto the host cells by B. burgdorferi indicated one mechanism of immune evasion for the bacteria. The differences in attachment, pleomorphic form expressions, and the lack of lysosomal involvement between the infected host cells likely explain the ability of a bacterium to adapt to different environments, as well as, a strategy for persistence inside a host.
Collapse
Affiliation(s)
- Kati Karvonen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Jonna Nykky
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Varpu Marjomäki
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | | |
Collapse
|
9
|
Ørbæk M, Gynthersen RMM, Mens H, Stenør C, Wiese L, Brandt C, Ostrowski SR, Nielsen SD, Lebech AM. Stimulated Immune Response by TruCulture ® Whole Blood Assay in Patients With European Lyme Neuroborreliosis: A Prospective Cohort Study. Front Cell Infect Microbiol 2021; 11:666037. [PMID: 34041044 PMCID: PMC8141554 DOI: 10.3389/fcimb.2021.666037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Borrelia burgdorferi sensu lato complex (B. burgdorferi) can cause a variety of clinical manifestations including Lyme neuroborreliosis. Following the tick-borne transmission, B. burgdorferi initially evade immune responses, later symptomatic infection is associated with occurrence of specific antibody responses. We hypothesized that B. burgdorferi induce immune hyporesponsiveness or immune suppression and aimed to investigate patients with Lyme neuroborreliosis ability to respond to immune stimulation. Methods An observational cohort study investigating the stimulated immune response by standardized whole blood assay (TruCulture®) in adult patients with Lyme neuroborreliosis included at time of diagnosis from 01.09.2018-31.07.2020. Reference intervals were based on a 5-95% range of cytokine concentrations from healthy individuals (n = 32). Patients with Lyme neuroborreliosis and references were compared using Mann-Whitney U test. Heatmaps of cytokine responses were generated using the webtool Clustvis. Results In total, 22 patients with Lyme neuroborreliosis (19 definite, 3 probable) were included. In the unstimulated samples, the concentrations of cytokines in patients with Lyme neuroborreliosis were comparable with references, except interferon (IFN)-α, interleukin (IL)-17A, IL-1β and IL-8, which were all significantly below the references. Patients with Lyme neuroborreliosis had similar concentrations of most cytokines in all stimulations compared with references. IFN-α, IFN-γ, IL-12 and IL-17A were lower than references in multiple stimulations. Conclusion In this exploratory cohort study, we found lower or similar concentrations of circulating cytokines in blood from patients with Lyme neuroborreliosis at time of diagnosis compared with references. The stimulated cytokine release in blood from patients with Lyme neuroborreliosis was in general slightly lower than in the references. Specific patterns of low IL-12 and IFN-γ indicated low Th1-response and low concentrations of IL-17A did not support a strong Th17 response. Our results suggest that patients with Lyme neuroborreliosis elicit a slightly suppressed or impaired immune response for the investigated stimulations, however, whether the response normalizes remains unanswered.
Collapse
Affiliation(s)
- Mathilde Ørbæk
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Helene Mens
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Christian Stenør
- Department of Neurology, Herlev Hospital, Herlev, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lothar Wiese
- Department of Infectious Diseases, Sjællands University Hospital, Roskilde, Denmark
| | - Christian Brandt
- Department of Infectious Diseases, Sjællands University Hospital, Roskilde, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Susanne Dam Nielsen
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Mette Lebech
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Abi ME, Ji Z, Jian M, Dai X, Bai R, Ding Z, Luo L, Chen T, Wang F, Wen S, Zhou G, Bao F, Liu A. Molecular Interactions During Borrelia burgdorferi Migration from the Vector to the Mammalian Nervous System. Curr Protein Pept Sci 2021; 21:517-526. [PMID: 31613726 DOI: 10.2174/1389203720666191015145714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 11/22/2022]
Abstract
Lyme disease (LD) is an infectious disease caused by the spirochetes of genus borrelia, which are transmitted by the ticks of the genus ixodes. LD is transmitted by the spirochete B. burgdorferi sensu lato. Once in contact with the host through a tick bite, the pathogen comes into contact with the host defense, and must escape this machinery to establish LD, thus using a large number of mechanisms involving the vector of the pathogen, the pathogen itself and also the host. The initial diagnosis of the disease can be made based on the clinical symptoms of LD and the disease can be treated and cured with antibiotics if the diagnosis is made early in the beginning of the disease. Contrariwise, if LD is left untreated, the pathogen disseminates throughout the tissues and organs of the body, where it establishes different types of disease manifestations. In the nervous system, the inflammation caused by B. burgdorferi is known as Lyme neuroborreliosis (LNB). LNB is one of the principal manifestations of LD. In this review, we systematically describe the different molecular interactions among B. burgdorferi, the vector (tick) and the mammalian host.
Collapse
Affiliation(s)
- Manzama-Esso Abi
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Zhenhua Ji
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Miaomiao Jian
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming 650500, China
| | - Xiting Dai
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Ruolan Bai
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming 650500, China
| | - Zhe Ding
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Lisha Luo
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming 650500, China
| | - Taigui Chen
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Feng Wang
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Shiyuan Wen
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Guozhong Zhou
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China
| | - Fukai Bao
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Microbiology and Immunology, Kunming Medical University, Kunming 650500, China.,Yunnan Province Key Laboratory for Major Children Diseases, Children Hospital of Kunming, Kunming 650300, China.,Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming 650500, China.,Yunnan Demonstration Base of International Science and Technology Cooperation for Tropical Diseases, Kunming 650500, China
| | - Aihua Liu
- The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, China.,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming 650500, China.,Yunnan Province Key Laboratory for Major Children Diseases, Children Hospital of Kunming, Kunming 650300, China.,Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming 650500, China.,Yunnan Demonstration Base of International Science and Technology Cooperation for Tropical Diseases, Kunming 650500, China
| |
Collapse
|
11
|
Pothineni VR, Potula HHSK, Ambati A, Mallajosyula VVA, Sridharan B, Inayathullah M, Ahmed MS, Rajadas J. Azlocillin can be the potential drug candidate against drug-tolerant Borrelia burgdorferi sensu stricto JLB31. Sci Rep 2020; 10:3798. [PMID: 32123189 PMCID: PMC7052277 DOI: 10.1038/s41598-020-59600-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/27/2020] [Indexed: 01/17/2023] Open
Abstract
Lyme disease is one of most common vector-borne diseases, reporting more than 300,000 cases annually in the United States. Treating Lyme disease during its initial stages with traditional tetracycline antibiotics is effective. However, 10-20% of patients treated with antibiotic therapy still shows prolonged symptoms of fatigue, musculoskeletal pain, and perceived cognitive impairment. When these symptoms persists for more than 6 months to years after completing conventional antibiotics treatment are called post-treatment Lyme disease syndrome (PTLDS). Though the exact reason for the prolongation of post treatment symptoms are not known, the growing evidence from recent studies suggests it might be due to the existence of drug-tolerant persisters. In order to identify effective drug molecules that kill drug-tolerant borrelia we have tested two antibiotics, azlocillin and cefotaxime that were identified by us earlier. The in vitro efficacy studies of azlocillin and cefotaxime on drug-tolerant persisters were done by semisolid plating method. The results obtained were compared with one of the currently prescribed antibiotic doxycycline. We found that azlocillin completely kills late log phase and 7-10 days old stationary phase B. burgdorferi. Our results also demonstrate that azlocillin and cefotaxime can effectively kill in vitro doxycycline-tolerant B. burgdorferi. Moreover, the combination drug treatment of azlocillin and cefotaxime effectively killed doxycycline-tolerant B. burgdorferi. Furthermore, when tested in vivo, azlocillin has shown good efficacy against B. burgdorferi in mice model. These seminal findings strongly suggests that azlocillin can be effective in treating B. burgdorferi sensu stricto JLB31 infection and furthermore in depth research is necessary to evaluate its potential use for Lyme disease therapy.
Collapse
Affiliation(s)
- Venkata Raveendra Pothineni
- Biomaterials and Advanced Drug Delivery, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, California, 94304, USA
| | - Hari-Hara S K Potula
- Biomaterials and Advanced Drug Delivery, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, California, 94304, USA
| | - Aditya Ambati
- Center for sleep sciences and medicine, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Palo Alto, California, 94304, USA
| | | | - Brindha Sridharan
- Department of Plant Biology and Biotechnology, Loyola College, Chennai, 600 034, Tamil Nadu, India
| | - Mohammed Inayathullah
- Biomaterials and Advanced Drug Delivery, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, California, 94304, USA
| | - Mohamed Sohail Ahmed
- Biomaterials and Advanced Drug Delivery, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, California, 94304, USA
| | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, California, 94304, USA.
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Palo Alto, California, 94304, USA.
- Bioengineering and Therapeutic Sciences, UCSF School of Pharmacy, University of California, San Francisco, CA, 94158, USA.
| |
Collapse
|
12
|
Chronic Lyme Disease: An Evidence-Based Definition by the ILADS Working Group. Antibiotics (Basel) 2019; 8:antibiotics8040269. [PMID: 31888310 PMCID: PMC6963229 DOI: 10.3390/antibiotics8040269] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022] Open
Abstract
Objective: Chronic Lyme disease has been a poorly defined term and often dismissed as a fictitious entity. In this paper, the International Lyme and Associated Diseases Society (ILADS) provides its evidence-based definition of chronic Lyme disease. Definition: ILADS defines chronic Lyme disease (CLD) as a multisystem illness with a wide range of symptoms and/or signs that are either continuously or intermittently present for a minimum of six months. The illness is the result of an active and ongoing infection by any of several pathogenic members of the Borrelia burgdorferi sensu lato complex (Bbsl). The infection has variable latency periods and signs and symptoms may wax, wane and migrate. CLD has two subcategories, CLD, untreated (CLD-U) and CLD, previously treated (CLD-PT). The latter requires that CLD manifestations persist or recur following treatment and are present continuously or in a relapsing/remitting pattern for a duration of six months or more. Methods: Systematic review of over 250 peer reviewed papers in the international literature to characterize the clinical spectrum of CLD-U and CLD-PT. Conclusion: This evidence-based definition of chronic Lyme disease clarifies the term's meaning and the literature review validates that chronic and ongoing Bbsl infections can result in chronic disease. Use of this CLD definition will promote a better understanding of the infection and facilitate future research of this infection.
Collapse
|
13
|
Bamm VV, Ko JT, Mainprize IL, Sanderson VP, Wills MKB. Lyme Disease Frontiers: Reconciling Borrelia Biology and Clinical Conundrums. Pathogens 2019; 8:E299. [PMID: 31888245 PMCID: PMC6963551 DOI: 10.3390/pathogens8040299] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 12/18/2022] Open
Abstract
Lyme disease is a complex tick-borne zoonosis that poses an escalating public health threat in several parts of the world, despite sophisticated healthcare infrastructure and decades of effort to address the problem. Concepts like the true burden of the illness, from incidence rates to longstanding consequences of infection, and optimal case management, also remain shrouded in controversy. At the heart of this multidisciplinary issue are the causative spirochetal pathogens belonging to the Borrelia Lyme complex. Their unusual physiology and versatile lifestyle have challenged microbiologists, and may also hold the key to unlocking mysteries of the disease. The goal of this review is therefore to integrate established and emerging concepts of Borrelia biology and pathogenesis, and position them in the broader context of biomedical research and clinical practice. We begin by considering the conventions around diagnosing and characterizing Lyme disease that have served as a conceptual framework for the discipline. We then explore virulence from the perspective of both host (genetic and environmental predispositions) and pathogen (serotypes, dissemination, and immune modulation), as well as considering antimicrobial strategies (lab methodology, resistance, persistence, and clinical application), and borrelial adaptations of hypothesized medical significance (phenotypic plasticity or pleomorphy).
Collapse
Affiliation(s)
| | | | | | | | - Melanie K. B. Wills
- G. Magnotta Lyme Disease Research Lab, Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (V.V.B.); (J.T.K.); (I.L.M.); (V.P.S.)
| |
Collapse
|
14
|
Walter L, Sürth V, Röttgerding F, Zipfel PF, Fritz-Wolf K, Kraiczy P. Elucidating the Immune Evasion Mechanisms of Borrelia mayonii, the Causative Agent of Lyme Disease. Front Immunol 2019; 10:2722. [PMID: 31849943 PMCID: PMC6902028 DOI: 10.3389/fimmu.2019.02722] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/06/2019] [Indexed: 01/24/2023] Open
Abstract
Borrelia (B.) mayonii sp. nov. has recently been reported as a novel human pathogenic spirochete causing Lyme disease (LD) in North America. Previous data reveal a higher spirochaetemia in the blood compared to patients infected by LD spirochetes belonging to the B. burgdorferi sensu lato complex, suggesting that this novel genospecies must exploit strategies to overcome innate immunity, in particular complement. To elucidate the molecular mechanisms of immune evasion, we utilized various methodologies to phenotypically characterize B. mayonii and to identify determinants involved in the interaction with complement. Employing serum bactericidal assays, we demonstrated that B. mayonii resists complement-mediated killing. To further elucidate the role of the key regulators of the alternative pathway (AP), factor H (FH), and FH-like protein 1 (FHL-1) in immune evasion of B. mayonii, serum adsorption experiments were conducted. The data revealed that viable spirochetes recruit both regulators from human serum and FH retained its factor I-mediated C3b-inactivating activity when bound to the bacterial cells. In addition, two prominent FH-binding proteins of approximately 30 and 18 kDa were detected in B. mayonii strain MN14-1420. Bioinformatics identified a gene, exhibiting 60% identity at the DNA level to the cspA encoding gene of B. burgdorferi. Following PCR amplification, the gene product was produced as a His-tagged protein. The CspA-orthologous protein of B. mayonii interacted with FH and FHL-1, and both bound regulators promoted inactivation of C3b in the presence of factor I. Additionally, the CspA ortholog counteracted complement activation by inhibiting the alternative and terminal but not the classical and Lectin pathways, respectively. Increasing concentrations of CspA of B. mayonii also strongly affected C9 polymerization, terminating the formation of the membrane attack complex. To assess the role of CspA of B. mayonii in facilitating serum resistance, a gain-of-function strain was generated, harboring a shuttle vector allowing expression of the CspA encoding gene under its native promotor. Spirochetes producing the native protein on the cell surface overcame complement-mediated killing, indicating that CspA facilitates serum resistance of B. mayonii. In conclusion, here we describe the molecular mechanism utilized by B. mayonii to resists complement-mediated killing by capturing human immune regulators.
Collapse
Affiliation(s)
- Lea Walter
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Valerie Sürth
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Florian Röttgerding
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz-Institute for Natural Products Research and Infection Biology, Jena, Germany.,Friedrich Schiller University, Jena, Germany
| | - Karin Fritz-Wolf
- Max Planck Institute for Medical Research, Heidelberg, Germany.,Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
15
|
Hodzic E, Imai DM, Escobar E. Generality of Post-Antimicrobial Treatment Persistence of Borrelia burgdorferi Strains N40 and B31 in Genetically Susceptible and Resistant Mouse Strains. Infect Immun 2019; 87:e00442-19. [PMID: 31308087 PMCID: PMC6759297 DOI: 10.1128/iai.00442-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/11/2019] [Indexed: 01/22/2023] Open
Abstract
A basic feature of infection caused by Borrelia burgdorferi, the etiological agent of Lyme borreliosis, is that persistent infection is the rule in its many hosts. The ability to persist and evade host immune clearance poses a challenge to effective antimicrobial treatment. A link between therapy failure and the presence of persister cells has started to emerge. There is growing experimental evidence that viable but noncultivable spirochetes persist following treatment with several different antimicrobial agents. The current study utilized the mouse model to evaluate if persistence occurs following antimicrobial treatment in disease-susceptible (C3H/HeJ [C3H]) and disease-resistant (C57BL/6 [B6]) mouse strains infected with B. burgdorferi strains N40 and B31 and to confirm the generality of this phenomenon, as well as to assess the persisters' clinical relevance. The status of infection was evaluated at 12 and 18 months after treatment. The results demonstrated that persistent spirochetes remain viable for up to 18 months following treatment, as well as being noncultivable. The phenomenon of persistence in disease-susceptible C3H mice is equally evident in disease-resistant B6 mice and not unique to any particular B. burgdorferi strain. The results also demonstrate that, following antimicrobial treatment, both strains of B. burgdorferi, N40 and B31, lose one or more plasmids. The study demonstrated that noncultivable spirochetes can persist in a host following antimicrobial treatment for a long time but did not demonstrate their clinical relevance in a mouse model of chronic infection. The clinical relevance of persistent spirochetes beyond 18 months following antimicrobial treatment requires further studies in other animal models.
Collapse
Affiliation(s)
- Emir Hodzic
- Real-Time PCR Research and Diagnostic Core Facility, School of Veterinary Medicine, University of California at Davis, Davis, California, USA
| | - Denise M Imai
- Comparative Pathology Laboratory, School of Veterinary Medicine, University of California at Davis, Davis, California, USA
| | - Edlin Escobar
- Real-Time PCR Research and Diagnostic Core Facility, School of Veterinary Medicine, University of California at Davis, Davis, California, USA
| |
Collapse
|
16
|
Shemenski J. Cimetidine as a novel adjunctive treatment for early stage Lyme disease. Med Hypotheses 2019; 128:94-100. [DOI: 10.1016/j.mehy.2016.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/28/2016] [Indexed: 12/24/2022]
|
17
|
Rudenko N, Golovchenko M, Kybicova K, Vancova M. Metamorphoses of Lyme disease spirochetes: phenomenon of Borrelia persisters. Parasit Vectors 2019; 12:237. [PMID: 31097026 PMCID: PMC6521364 DOI: 10.1186/s13071-019-3495-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022] Open
Abstract
The survival of spirochetes from the Borrelia burgdorferi (sensu lato) complex in a hostile environment is achieved by the regulation of differential gene expression in response to changes in temperature, salts, nutrient content, acidity fluctuation, multiple host or vector dependent factors, and leads to the formation of dormant subpopulations of cells. From the other side, alterations in the level of gene expression in response to antibiotic pressure leads to the establishment of a persisters subpopulation. Both subpopulations represent the cells in different physiological states. "Dormancy" and "persistence" do share some similarities, e.g. both represent cells with low metabolic activity that can exist for extended periods without replication, both constitute populations with different gene expression profiles and both differ significantly from replicating forms of spirochetes. Persisters are elusive, present in low numbers, morphologically heterogeneous, multi-drug-tolerant cells that can change with the environment. The definition of "persisters" substituted the originally-used term "survivors", referring to the small bacterial population of Staphylococcus that survived killing by penicillin. The phenomenon of persisters is present in almost all bacterial species; however, the reasons why Borrelia persisters form are poorly understood. Persisters can adopt varying sizes and shapes, changing from well-known forms to altered morphologies. They are capable of forming round bodies, L-form bacteria, microcolonies or biofilms-like aggregates, which remarkably change the response of Borrelia to hostile environments. Persisters remain viable despite aggressive antibiotic challenge and are able to reversibly convert into motile forms in a favorable growth environment. Persisters are present in significant numbers in biofilms, which has led to the explanation of biofilm tolerance to antibiotics. Considering that biofilms are associated with numerous chronic diseases through their resilient presence in the human body, it is not surprising that interest in persisting cells has consequently accelerated. Certain diseases caused by pathogenic bacteria (e.g. tuberculosis, syphilis or leprosy) are commonly chronic in nature and often recur despite antibiotic treatment. Three decades of basic and clinical research have not yet provided a definite answer to the question: is there a connection between persisting spirochetes and recurrence of Lyme disease in patients?
Collapse
Affiliation(s)
- Natalie Rudenko
- Biology Centre CAS, Institute of Parasitology, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Maryna Golovchenko
- Biology Centre CAS, Institute of Parasitology, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Katerina Kybicova
- National Institute of Public Health, Srobarova 48, 100 42 Prague 10, Czech Republic
| | - Marie Vancova
- Biology Centre CAS, Institute of Parasitology, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| |
Collapse
|
18
|
Caskey JR, Hasenkampf NR, Martin DS, Chouljenko VN, Subramanian R, Cheslock MA, Embers ME. The Functional and Molecular Effects of Doxycycline Treatment on Borrelia burgdorferi Phenotype. Front Microbiol 2019; 10:690. [PMID: 31057493 PMCID: PMC6482230 DOI: 10.3389/fmicb.2019.00690] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/19/2019] [Indexed: 12/21/2022] Open
Abstract
Recent studies have shown that Borrelia burgdorferi can form antibiotic-tolerant persisters in the presence of microbiostatic drugs such as doxycycline. Precisely how this occurs is yet unknown. Our goal was to examine gene transcription by B. burgdorferi following doxycycline treatment in an effort to identify both persister-associated genes and possible targets for antimicrobial intervention. To do so, we performed next-generation RNA sequencing on doxycycline-treated spirochetes and treated spirochetes following regrowth, comparing them to untreated B. burgdorferi. A number of genes were perturbed and most of those which were statistically significant were down-regulated in the treated versus the untreated or treated/re-grown. Genes upregulated in the treated B. burgdorferi included a number of Erp genes and rplU, a 50S ribosomal protein. Among those genes associated with post-treatment regrowth were bba74 (Oms28), bba03, several peptide ABC transporters, ospA, ospB, ospC, dbpA and bba62. Studies are underway to determine if these same genes are perturbed in B. burgdorferi treated with doxycycline in a host environment.
Collapse
Affiliation(s)
- John R. Caskey
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, United States
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Nicole R. Hasenkampf
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, United States
| | - Dale S. Martin
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, United States
| | - Vladimir N. Chouljenko
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Ramesh Subramanian
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Mercedes A. Cheslock
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, United States
| | - Monica E. Embers
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, United States
| |
Collapse
|
19
|
Colonization and pathology of Borrelia afzelii in its natural hosts. Ticks Tick Borne Dis 2019; 10:822-827. [PMID: 31005618 DOI: 10.1016/j.ttbdis.2019.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/12/2019] [Accepted: 03/24/2019] [Indexed: 01/01/2023]
Abstract
Studies of Borrelia burgdorferi sensu lato in laboratory mice and humans have shown that spirochaetes disseminate from the site of infection (skin) to internal tissues, and cause various pathological effects. However, less is known about colonization and pathology of Lyme borreliosis spirochaetes in their natural hosts. In the present study, we assessed the colonization and manifestations during B. afzelii infection in reservoir hosts (yellow-necked mouse, Apodemus flavicollis; bank vole, Myodes glareolus; common shrew, Sorex araneus) infected in the wild. The infection prevalence and bacterial load was measured in skin (ear), joints and heart by quantitative PCR, and pathology in infected joints was evaluated by histology. The prevalence of B. afzelii was higher in skin than in joints and heart, but most animals that were positive in skin were also positive in internal tissues, and there was no difference between species in tissue-specific prevalence. Thus, spirochaetes disseminated from skin to other tissues in a similar way in all species. The bacterial load varied among host species and among different tissues within the same host species. In the case of skin and joints, bank voles and common shrews had higher bacterial loads than yellow-necked mice. In hearts, voles had higher bacterial loads than shrews and mice. Histological analyses showed no inflammation in joints of infected animals when compared to controls. We conclude that B. afzelii disseminates to internal tissues in natural hosts, but that levels of colonization vary between both species and tissues. There is as yet little evidence for pathological effects in natural hosts.
Collapse
|
20
|
Neuropsychiatric Lyme Borreliosis: An Overview with a Focus on a Specialty Psychiatrist's Clinical Practice. Healthcare (Basel) 2018; 6:healthcare6030104. [PMID: 30149626 PMCID: PMC6165408 DOI: 10.3390/healthcare6030104] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 02/07/2023] Open
Abstract
There is increasing evidence and recognition that Lyme borreliosis (LB) causes mental symptoms. This article draws from databases, search engines and clinical experience to review current information on LB. LB causes immune and metabolic effects that result in a gradually developing spectrum of neuropsychiatric symptoms, usually presenting with significant comorbidity which may include developmental disorders, autism spectrum disorders, schizoaffective disorders, bipolar disorder, depression, anxiety disorders (panic disorder, social anxiety disorder, generalized anxiety disorder, posttraumatic stress disorder, intrusive symptoms), eating disorders, decreased libido, sleep disorders, addiction, opioid addiction, cognitive impairments, dementia, seizure disorders, suicide, violence, anhedonia, depersonalization, dissociative episodes, derealization and other impairments. Screening assessment followed by a thorough history, comprehensive psychiatric clinical exam, review of systems, mental status exam, neurological exam and physical exam relevant to the patient's complaints and findings with clinical judgment, pattern recognition and knowledgeable interpretation of laboratory findings facilitates diagnosis. Psychotropics and antibiotics may help improve functioning and prevent further disease progression. Awareness of the association between LB and neuropsychiatric impairments and studies of their prevalence in neuropsychiatric conditions can improve understanding of the causes of mental illness and violence and result in more effective prevention, diagnosis and treatment.
Collapse
|
21
|
Williams SK, Weiner ZP, Gilmore RD. Human neuroglial cells internalize Borrelia burgdorferi by coiling phagocytosis mediated by Daam1. PLoS One 2018; 13:e0197413. [PMID: 29746581 PMCID: PMC5944952 DOI: 10.1371/journal.pone.0197413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/01/2018] [Indexed: 11/18/2022] Open
Abstract
Borrelia burgdorferi, the agent of Lyme borreliosis, can elude hosts’ innate and adaptive immunity as part of the course of infection. The ability of B. burgdorferi to invade or be internalized by host cells in vitro has been proposed as a mechanism for the pathogen to evade immune responses or antimicrobials. We have previously shown that B. burgdorferi can be internalized by human neuroglial cells. In this study we demonstrate that these cells take up B. burgdorferi via coiling phagocytosis mediated by the formin, Daam1, a process similarly described for human macrophages. Following coincubation with glial cells, B. burgdorferi was enwrapped by Daam1-enriched coiling pseudopods. Coiling of B. burgdorferi was significantly reduced when neuroglial cells were pretreated with anti-Daam1 antibody indicating the requirement for Daam1 for borrelial phagocytosis. Confocal microscopy showed Daam1 colocalizing to the B. burgdorferi surface suggesting interaction with borrelial membrane protein(s). Using the yeast 2-hybrid system for identifying protein-protein binding, we found that the B. burgdorferi surface lipoprotein, BBA66, bound the FH2 subunit domain of Daam1. Recombinant proteins were used to validate binding by ELISA, pull-down, and co-immunoprecipitation. Evidence for native Daam1 and BBA66 interaction was suggested by colocalization of the proteins in the course of borrelial capture by the Daam1-enriched pseudopodia. Additionally, we found a striking reduction in coiling for a BBA66-deficient mutant strain compared to BBA66-expressing strains. These results show that coiling phagocytosis is a mechanism for borrelial internalization by neuroglial cells mediated by Daam1.
Collapse
Affiliation(s)
- Shanna K. Williams
- Bacterial Diseases Branch, Division of Vector Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Zachary P. Weiner
- Bacterial Diseases Branch, Division of Vector Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Robert D. Gilmore
- Bacterial Diseases Branch, Division of Vector Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
22
|
Abstract
PURPOSE The aim of this paper is to investigate the association between suicide and Lyme and associated diseases (LAD). No journal article has previously performed a comprehensive assessment of this subject. INTRODUCTION Multiple case reports and other references demonstrate a causal association between suicidal risk and LAD. Suicide risk is greater in outdoor workers and veterans, both with greater LAD exposure. Multiple studies demonstrate many infections and the associated proinflammatory cytokines, inflammatory-mediated metabolic changes, and quinolinic acid and glutamate changes alter neural circuits which increase suicidality. A similar pathophysiology occurs in LAD. METHOD A retrospective chart review and epidemiological calculations were performed. RESULTS LAD contributed to suicidality, and sometimes homicidality, in individuals who were not suicidal before infection. A higher level of risk to self and others is associated with multiple symptoms developing after acquiring LAD, in particular, explosive anger, intrusive images, sudden mood swings, paranoia, dissociative episodes, hallucinations, disinhibition, panic disorder, rapid cycling bipolar, depersonalization, social anxiety disorder, substance abuse, hypervigilance, generalized anxiety disorder, genital-urinary symptoms, chronic pain, anhedonia, depression, low frustration tolerance, and posttraumatic stress disorder. Negative attitudes about LAD from family, friends, doctors, and the health care system may also contribute to suicide risk. By indirect calculations, it is estimated there are possibly over 1,200 LAD suicides in the US per year. CONCLUSION Suicidality seen in LAD contributes to causing a significant number of previously unexplained suicides and is associated with immune-mediated and metabolic changes resulting in psychiatric and other symptoms which are possibly intensified by negative attitudes about LAD from others. Some LAD suicides are associated with being overwhelmed by multiple debilitating symptoms, and others are impulsive, bizarre, and unpredictable. Greater understanding and a direct method of acquiring LAD suicide statistics is needed. It is suggested that medical examiners, the Centers for Disease Control and Prevention, and other epidemiological organizations proactively evaluate the association between LAD and suicide.
Collapse
|
23
|
Holmstrup P, Damgaard C, Olsen I, Klinge B, Flyvbjerg A, Nielsen CH, Hansen PR. Comorbidity of periodontal disease: two sides of the same coin? An introduction for the clinician. J Oral Microbiol 2017; 9:1332710. [PMID: 28748036 PMCID: PMC5508374 DOI: 10.1080/20002297.2017.1332710] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/07/2017] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence has suggested an independent association between periodontitis and a range of comorbidities, for example cardiovascular disease, type 2 diabetes, rheumatoid arthritis, osteoporosis, Parkinson’s disease, Alzheimer’s disease, psoriasis, and respiratory infections. Shared inflammatory pathways are likely to contribute to this association, but distinct causal mechanisms remain to be defined. Some of these comorbid conditions may improve by periodontal treatment, and a bidirectional relationship may exist, where, for example, treatment of diabetes can improve periodontal status. The present article presents an overview of the evidence linking periodontitis with selected systemic diseases and calls for increased cooperation between dentists and medical doctors to provide optimal screening, treatment, and prevention of both periodontitis and its comorbidities.
Collapse
Affiliation(s)
- Palle Holmstrup
- Section for Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Damgaard
- Section for Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Björn Klinge
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden.,Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Claus Henrik Nielsen
- Section for Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Riis Hansen
- Section for Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Cardiology Department, Herlev and Gentofte Hospital, Hellerup, Denmark
| |
Collapse
|
24
|
Lyme Disease. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Badawi A. The Potential of Omics Technologies in Lyme Disease Biomarker Discovery and Early Detection. Infect Dis Ther 2016; 6:85-102. [PMID: 27900646 PMCID: PMC5336413 DOI: 10.1007/s40121-016-0138-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Indexed: 12/31/2022] Open
Abstract
Lyme borreliosis (LB) is the most prevalent arthropod-borne infectious disease in North America and many countries of the temperate Northern Hemisphere. It is associated with local and systemic manifestations and has persistent post-treatment health complications in some individuals. Innate and acquired immunity-related inflammation is likely to play a critical role in both host defense against Borrelia burgdorferi and disease severity. Large-scale analytical approaches to quantify gene expression (transcriptomics), proteins (proteomics) and metabolites (metabolomics) in LB have recently emerged with a potential to advance the development of disease biomarkers in early, disseminated and posttreatment disease stages. These technologies may permit defining the disease stage and facilitate its early detection to improve diagnosis. They will also likely allow elucidating the underlying molecular pathways to aid in identifying molecular targets for therapy. This article reviews the findings within the field of omics relevant to LB and its prospective utility in developing an array of biomarkers that can be employed in LB diagnosis and detection particularly at the early disease stages.
Collapse
Affiliation(s)
- Alaa Badawi
- Public Health Risk Sciences Division, Public Health Agency of Canada, 180 Queen Street West, Toronto, ON, Canada. .,Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College Street, Toronto, ON, Canada.
| |
Collapse
|
26
|
Kraiczy P. Hide and Seek: How Lyme Disease Spirochetes Overcome Complement Attack. Front Immunol 2016; 7:385. [PMID: 27725820 PMCID: PMC5036304 DOI: 10.3389/fimmu.2016.00385] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/13/2016] [Indexed: 11/15/2022] Open
Abstract
Overcoming the first line of the innate immune system is a general hallmark of pathogenic microbes to avoid recognition and to enter the human host. In particular, spirochetes belonging to the Borrelia burgdorferi sensu lato complex have developed various means to counter the immune response and to successfully survive in diverse host environments for a prolonged period of time. In regard to complement resistance, Borrelia utilize a plethora of immune evasion strategies involves capturing of host-derived complement regulators, terminating complement activation as well as shedding of cell-destroying complement complexes to manipulate and to expeditiously inhibit human complement. Owing to their mode of action, the interacting surface-exposed proteins identified among B. burgdorferi sensu stricto (s.s.), Borrelia afzelii, Borrelia spielmanii, and Borrelia bavariensis can be classified into at least two major categories, namely, molecules that directly interfere with distinct complement components including BBK32, CspA, BGA66, BGA71, and a CD59-like protein or molecules, which indirectly counteract complement activation by binding various complement regulators such as Factor H, Factor H-like protein 1 (FHL-1), Factor H-related proteins FHR-1, FHR-2, or C4Bp. The latter group of genetically and structurally unrelated proteins has been collectively referred to as “complement regulator-acquiring surface proteins” and consists of CspA, CspZ, ErpA, ErpC, ErpP, and the as yet unidentified protein p43. This review focuses on the current knowledge of immune evasion mechanisms exhibited by Lyme disease spirochetes and highlights the role of complement-interfering, infection-associated molecules playing an important part in these processes. Deciphering the immune evasion strategies may provide novel avenues for improved diagnostic approaches and therapeutic interventions.
Collapse
Affiliation(s)
- Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt , Frankfurt am Main , Germany
| |
Collapse
|
27
|
Longitudinal Transcriptome Analysis Reveals a Sustained Differential Gene Expression Signature in Patients Treated for Acute Lyme Disease. mBio 2016; 7:e00100-16. [PMID: 26873097 PMCID: PMC4791844 DOI: 10.1128/mbio.00100-16] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lyme disease is a tick-borne illness caused by the bacterium Borrelia burgdorferi, and approximately 10 to 20% of patients report persistent symptoms lasting months to years despite appropriate treatment with antibiotics. To gain insights into the molecular basis of acute Lyme disease and the ensuing development of post-treatment symptoms, we conducted a longitudinal transcriptome study of 29 Lyme disease patients (and 13 matched controls) enrolled at the time of diagnosis and followed for up to 6 months. The differential gene expression signature of Lyme disease following the acute phase of infection persisted for at least 3 weeks and had fewer than 44% differentially expressed genes (DEGs) in common with other infectious or noninfectious syndromes. Early Lyme disease prior to antibiotic therapy was characterized by marked upregulation of Toll-like receptor signaling but lack of activation of the inflammatory T-cell apoptotic and B-cell developmental pathways seen in other acute infectious syndromes. Six months after completion of therapy, Lyme disease patients were found to have 31 to 60% of their pathways in common with three different immune-mediated chronic diseases. No differential gene expression signature was observed between Lyme disease patients with resolved illness to those with persistent symptoms at 6 months post-treatment. The identification of a sustained differential gene expression signature in Lyme disease suggests that a panel of selected human host-based biomarkers may address the need for sensitive clinical diagnostics during the “window period” of infection prior to the appearance of a detectable antibody response and may also inform the development of new therapeutic targets. Lyme disease is the most common tick-borne infection in the United States, and some patients report lingering symptoms lasting months to years despite antibiotic treatment. To better understand the role of the human host response in acute Lyme disease and the development of post-treatment symptoms, we conducted the first longitudinal gene expression (transcriptome) study of patients enrolled at the time of diagnosis and followed up for up to 6 months after treatment. Importantly, we found that the gene expression signature of early Lyme disease is distinct from that of other acute infectious diseases and persists for at least 3 weeks following infection. This study also uncovered multiple previously undescribed pathways and genes that may be useful in the future as human host biomarkers for diagnosis and that constitute potential targets for the development of new therapies.
Collapse
|
28
|
Application of Nanotrap technology for high sensitivity measurement of urinary outer surface protein A carboxyl-terminus domain in early stage Lyme borreliosis. J Transl Med 2015; 13:346. [PMID: 26537892 PMCID: PMC4634744 DOI: 10.1186/s12967-015-0701-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/19/2015] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Prompt antibiotic treatment of early stage Lyme borreliosis (LB) prevents progression to severe multisystem disease. There is a clinical need to improve the diagnostic specificity of early stage Lyme assays in the period prior to the mounting of a robust serology response. Using a novel analyte harvesting nanotechnology, Nanotrap particles, we evaluated urinary Borrelia Outer surface protein A (OspA) C-terminus peptide in early stage LB before and after treatment, and in patients suspected of late stage disseminated LB. METHOD We employed Nanotrap particles to concentrate urinary OspA and used a highly specific anti-OspA monoclonal antibody (mAb) as a detector of the C-terminus peptides. We mapped the mAb epitope to a narrow specific OspA C-terminal domain OspA236-239 conserved across infectious Borrelia species but with no homology to human proteins and no cross-reactivity with relevant viral and non-Borrelia bacterial proteins. 268 urine samples from patients being evaluated for all categories of LB were collected in a LB endemic area. The urinary OspA assay, blinded to outcome, utilized Nanotrap particle pre-processing, western blotting to evaluate the OspA molecular size, and OspA peptide competition for confirmation. RESULTS OspA test characteristics: sensitivity 1.7 pg/mL (lowest limit of detection), % coefficient of variation (CV) = 8 %, dynamic range 1.7-30 pg/mL. Pre-treatment, 24/24 newly diagnosed patients with an erythema migrans (EM) rash were positive for urinary OspA while false positives for asymptomatic patients were 0/117 (Chi squared p < 10(-6)). For 10 patients who exhibited persistence of the EM rash during the course of antibiotic therapy, 10/10 were positive for urinary OspA. Urinary OspA of 8/8 patients switched from detectable to undetectable following symptom resolution post-treatment. Specificity of the urinary OspA test for the clinical symptoms was 40/40. Specificity of the urinary OspA antigen test for later serology outcome was 87.5 % (21 urinary OspA positive/24 serology positive, Chi squared p = 4.072e(-15)). 41 of 100 patients under surveillance for persistent LB in an endemic area were positive for urinary OspA protein. CONCLUSIONS OspA urinary shedding was strongly linked to concurrent active symptoms (e.g. EM rash and arthritis), while resolution of these symptoms after therapy correlated with urinary conversion to OspA negative.
Collapse
|
29
|
McManus M, Cincotta A. Effects of Borrelia on host immune system: Possible consequences for diagnostics. ADVANCES IN INTEGRATIVE MEDICINE 2015. [DOI: 10.1016/j.aimed.2014.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Persister Development by Borrelia burgdorferi Populations In Vitro. Antimicrob Agents Chemother 2015; 59:6288-95. [PMID: 26248368 DOI: 10.1128/aac.00883-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/20/2015] [Indexed: 01/29/2023] Open
Abstract
Doxycycline is an antibiotic commonly used to treat Lyme disease and other bacterial infections. The MIC and minimum bactericidal concentration (MBC) for Borrelia burgdorferi have been investigated by different groups but were experimentally established in this study as a function of input cell density. We demonstrated that B. burgdorferi treated in the stationary phase has a higher probability of regrowth following removal of antibiotic. In addition, we determined experimentally and mathematically that the spirochetes which persist posttreatment do not have a longer lag phase but exhibit a lower growth rate than untreated spirochetes. Finally, we found that treating the spirochetes by pulse-dosing did not eliminate growth or reduce the persister population in vitro. From these data, we propose that B. burgdorferi persister development is stochastic and driven by slowed growth.
Collapse
|
31
|
Cameron DJ, Johnson LB, Maloney EL. Evidence assessments and guideline recommendations in Lyme disease: the clinical management of known tick bites, erythema migrans rashes and persistent disease. Expert Rev Anti Infect Ther 2014; 12:1103-35. [PMID: 25077519 PMCID: PMC4196523 DOI: 10.1586/14787210.2014.940900] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Evidence-based guidelines for the management of patients with Lyme disease were developed by the International Lyme and Associated Diseases Society (ILADS). The guidelines address three clinical questions - the usefulness of antibiotic prophylaxis for known tick bites, the effectiveness of erythema migrans treatment and the role of antibiotic retreatment in patients with persistent manifestations of Lyme disease. Healthcare providers who evaluate and manage patients with Lyme disease are the intended users of the new ILADS guidelines, which replace those issued in 2004 (Exp Rev Anti-infect Ther 2004;2:S1-13). These clinical practice guidelines are intended to assist clinicians by presenting evidence-based treatment recommendations, which follow the Grading of Recommendations Assessment, Development and Evaluation system. ILADS guidelines are not intended to be the sole source of guidance in managing Lyme disease and they should not be viewed as a substitute for clinical judgment nor used to establish treatment protocols.
Collapse
Affiliation(s)
- Daniel J Cameron
- International Lyme and Associated Diseases Society,PO Box 341461, Bethesda MD, 20827-1461,USA
| | | | | |
Collapse
|
32
|
Abstract
Lyme disease represents a growing public health threat. The controversial science and politics of Lyme disease have created barriers to reliable diagnosis and effective treatment of this protean illness. Two major clinical hurdles are the absence of a therapeutic end point in treating Borrelia burgdorferi, the spirochetal agent of Lyme disease, and the presence of tickborne coinfections with organisms such as Babesia, Anaplasma, Ehrlichia and Bartonella that may complicate the course of the disease. From a pathophysiologic standpoint, the affinity of Borrelia burgdorferi for multiple cell types and the presence of nonreplicating forms of the Lyme disease spirochete have contributed to persistent infection and failure of simple antibiotic regimens. Newer approaches to the treatment of Lyme disease should take into account its clinical complexity in coinfected patients and the possible need for prolonged combination therapy in patients with persistent symptoms of this potentially debilitating illness. The optimal antibiotic regimen for chronic Lyme disease remains to be determined.
Collapse
Affiliation(s)
- Raphael B Stricker
- California Pacific Medical Center , 450 Sutter Street, Suite 1504, San Francisco, CA 94108, USA.
| | | | | |
Collapse
|
33
|
Caesar JJE, Wallich R, Kraiczy P, Zipfel PF, Lea SM. Further structural insights into the binding of complement factor H by complement regulator-acquiring surface protein 1 (CspA) of Borrelia burgdorferi. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:629-33. [PMID: 23722839 PMCID: PMC3668580 DOI: 10.1107/s1744309113012748] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/09/2013] [Indexed: 06/02/2023]
Abstract
Borrelia burgdorferi has evolved many mechanisms of evading the different immune systems across its range of reservoir hosts, including the capture and presentation of host complement regulators factor H and factor H-like protein-1 (FHL-1). Acquisition is mediated by a family of complement regulator-acquiring surface proteins (CRASPs), of which the atomic structure of CspA (BbCRASP-1) is known and shows the formation of a homodimeric species which is required for binding. Mutagenesis studies have mapped a putative factor H binding site to a cleft between the two subunits. Presented here is a new atomic structure of CspA which shows a degree of flexibility between the subunits which may be critical for factor H scavenging by increasing access to the binding interface and allows the possibility that the assembly can clamp around the bound complement regulators.
Collapse
Affiliation(s)
- Joseph J. E. Caesar
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, England
| | - Reinhard Wallich
- Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, Frankfurt University Hospital, Paul-Ehrlich-Strasse 40, 60596 Frankfurt, Germany
| | - Peter F. Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Products Research and Infection Biology, Beutenbergstrasse 11a, 07745 Jena, Germany
- Friedrich Schiller University of Jena, 07737 Jena, Germany
| | - Susan M. Lea
- Oxford Martin School of Vaccine Design, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, England
| |
Collapse
|
34
|
Caesar JJE, Johnson S, Kraiczy P, Lea SM. ErpC, a member of the complement regulator-acquiring family of surface proteins from Borrelia burgdorferi, possesses an architecture previously unseen in this protein family. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:624-8. [PMID: 23722838 PMCID: PMC3668579 DOI: 10.1107/s1744309113013249] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/14/2013] [Indexed: 12/11/2022]
Abstract
Borrelia burgdorferi is a spirochete responsible for Lyme disease, the most commonly occurring vector-borne disease in Europe and North America. The bacterium utilizes a set of proteins, termed complement regulator-acquiring surface proteins (CRASPs), to aid evasion of the human complement system by recruiting and presenting complement regulator factor H on its surface in a manner that mimics host cells. Presented here is the atomic resolution structure of a member of this protein family, ErpC. The structure provides new insights into the mechanism of recruitment of factor H and other factor H-related proteins by acting as a molecular mimic of host glycosaminoglycans. It also describes the architecture of other CRASP proteins belonging to the OspE/F-related paralogous protein family and suggests that they have evolved to bind specific complement proteins, aiding survival of the bacterium in different hosts.
Collapse
Affiliation(s)
- Joseph J. E. Caesar
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, England
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, England
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, Frankfurt University Hospital, Paul-Ehrlich-Strasse 40, 60596 Frankfurt, Germany
| | - Susan M. Lea
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, England
| |
Collapse
|
35
|
Brangulis K, Tars K, Petrovskis I, Kazaks A, Ranka R, Baumanis V. Structure of an outer surface lipoprotein BBA64 from the Lyme disease agentBorrelia burgdorferiwhich is critical to ensure infection after a tick bite. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1099-107. [DOI: 10.1107/s0907444913005726] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/27/2013] [Indexed: 11/10/2022]
|
36
|
Mearls EB, Izquierdo JA, Lynd LR. Formation and characterization of non-growth states in Clostridium thermocellum: spores and L-forms. BMC Microbiol 2012; 12:180. [PMID: 22897981 PMCID: PMC3438076 DOI: 10.1186/1471-2180-12-180] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 07/03/2012] [Indexed: 11/11/2022] Open
Abstract
Background Clostridium thermocellum is an anaerobic thermophilic bacterium that exhibits high levels of cellulose solublization and produces ethanol as an end product of its metabolism. Using cellulosic biomass as a feedstock for fuel production is an attractive prospect, however, growth arrest can negatively impact ethanol production by fermentative microorganisms such as C. thermocellum. Understanding conditions that lead to non-growth states in C. thermocellum can positively influence process design and culturing conditions in order to optimize ethanol production in an industrial setting. Results We report here that Clostridium thermocellum ATCC 27405 enters non-growth states in response to specific growth conditions. Non-growth states include the formation of spores and a L-form-like state in which the cells cease to grow or produce the normal end products of metabolism. Unlike other sporulating organisms, we did not observe sporulation of C. thermocellum in low carbon or nitrogen environments. However, sporulation did occur in response to transfers between soluble and insoluble substrates, resulting in approximately 7% mature spores. Exposure to oxygen caused a similar sporulation response. Starvation conditions during continuous culture did not result in spore formation, but caused the majority of cells to transition to a L-form state. Both spores and L-forms were determined to be viable. Spores exhibited enhanced survival in response to high temperature and prolonged storage compared to L-forms and vegetative cells. However, L-forms exhibited faster recovery compared to both spores and stationary phase cells when cultured in rich media. Conclusions Both spores and L-forms cease to produce ethanol, but provide other advantages for C. thermocellum including enhanced survival for spores and faster recovery for L-forms. Understanding the conditions that give rise to these two different non-growth states, and the implications that each has for enabling or enhancing C. thermocellum survival may promote the efficient cultivation of this organism and aid in its development as an industrial microorganism.
Collapse
|
37
|
Al-Robaiy S, Dihazi H, Kacza J, Seeger J, Schiller J, Huster D, Knauer J, Straubinger RK. Metamorphosis of Borrelia burgdorferi organisms--RNA, lipid and protein composition in context with the spirochetes' shape. J Basic Microbiol 2011; 50 Suppl 1:S5-17. [PMID: 20967786 DOI: 10.1002/jobm.201000074] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 06/21/2010] [Indexed: 11/12/2022]
Abstract
Borrelia burgdorferi, the agent of Lyme borreliosis, has the ability to undergo morphological transformation from a motile spirochetal to non-motile spherical shape when it encounters unfavorable conditions. However, little information is available on the mechanism that enables the bacterium to change its shape and whether major components of the cells--nucleic acids, proteins, lipids--are possibly modified during the process. Deducing from investigations utilizing electron microscopy, it seems that shape alteration begins with membrane budding followed by folding of the protoplasmatic cylinder inside the outer surface membrane. Scanning electron microscopy confirmed that a deficiency in producing functioning periplasmic flagella did not hinder sphere formation. Further, it was shown that the spirochetes' and spheres' lipid compositions were indistinguishable. Neither phosphatidylcholine nor phosphatidylglycerol were altered by the structural transformation. In addition, no changes in differential protein expression were detected during this process. However, minimal degradation of RNA and a reduced antigen-antibody binding activity were observed with advanced age of the spheres. The results of our comparisons and the failure to generate mutants lacking the ability to convert to spheres suggest that the metamorphosis of B. burgdorferi results in a conditional reconstruction of the outer membrane. The spheres, which appear to be more resistant to unfavorable conditions and exhibit reduced immune reactivity when compared to spirochetes, might allow the B. burgdorferi to escape complete clearance and possibly ensure long-term survival in the host.
Collapse
Affiliation(s)
- Samiya Al-Robaiy
- Institute of Immunology, College of Veterinary Medicine, and Center for Biotechnology and Biomedicine, University of Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Rupprecht TA, Fingerle V. Neuroborreliosis: pathogenesis, symptoms, diagnosis and treatment. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.10.89] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Lyme disease is the most common human tick-borne disease in the northern hemisphere. This article describes the current knowledge of several aspects of Lyme neuroborreliosis. The epidemiology is reviewed first, with special respect to the difference between European and American disease. Then, the current knowledge about the pathogenesis of Lyme neuroborreliosis is presented, with emphasis on immune evasion strategies. Furthermore, the clinical picture of acute Lyme neuroborreliosis and the frequently discussed post-Lyme disease syndrome are critically discussed. The commonly used diagnostic strategies, as well as the relevance of the lymphocyte transformation test, CD57+/CD3- cell count and CXCL13, are presented. Finally, the therapeutic options are described to give a balanced overview of all aspects of this disease.
Collapse
Affiliation(s)
- Tobias A Rupprecht
- Abteilung für Neurologie, AmperKliniken AG Dachau, Krankenhausstr. 15, 85221 Dachau, Germany
| | - Volker Fingerle
- National Reference Centre for Borrelia, LGL Oberschleißheim, Germany
| |
Collapse
|
39
|
Abstract
Although Lyme disease remains a controversial illness, recent events have created an unprecedented opportunity to make progress against this serious tick-borne infection. Evidence presented during the legally mandated review of the restrictive Lyme guidelines of the Infectious Diseases Society of America (IDSA) has confirmed the potential for persistent infection with the Lyme spirochete, Borrelia burgdorferi, as well as the complicating role of tick-borne coinfections such as Babesia, Anaplasma, Ehrlichia, and Bartonella species associated with failure of short-course antibiotic therapy. Furthermore, renewed interest in the role of cell wall-deficient (CWD) forms in chronic bacterial infection and progress in understanding the molecular mechanisms of biofilms has focused attention on these processes in chronic Lyme disease. Recognition of the importance of CWD forms and biofilms in persistent B. burgdorferi infection should stimulate pharmaceutical research into new antimicrobial agents that target these mechanisms of chronic infection with the Lyme spirochete. Concurrent clinical implementation of proteomic screening offers a chance to correct significant deficiencies in Lyme testing. Advances in these areas have the potential to revolutionize the diagnosis and treatment of Lyme disease in the coming decade.
Collapse
|
40
|
CsrA modulates levels of lipoproteins and key regulators of gene expression critical for pathogenic mechanisms of Borrelia burgdorferi. Infect Immun 2010; 79:732-44. [PMID: 21078860 DOI: 10.1128/iai.00882-10] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carbon storage regulator A (CsrA) is an RNA binding protein that has been characterized in many bacterial species to play a central regulatory role by modulating several metabolic processes. We recently showed that a homolog of CsrA in Borrelia burgdorferi (CsrA(Bb), BB0184) was upregulated in response to propagation of B. burgdorferi under mammalian host-specific conditions. In order to further delineate the role of CsrA(Bb), we generated a deletion mutant designated ES10 in a linear plasmid 25-negative isolate of B. burgdorferi strain B31 (ML23). The deletion mutant was screened by PCR and Southern blot hybridization, and a lack of synthesis of CsrA(Bb) in ES10 was confirmed by immunoblot analysis. Analysis of ES10 propagated at pH 6.8/37°C revealed a significant reduction in the levels of OspC, DbpA, BBK32, and BBA64 compared to those for the parental wild-type strain propagated under these conditions, while there were no significant changes in the levels of either OspA or P66. Moreover, the levels of two regulatory proteins, RpoS and BosR, were also found to be lower in ES10 than in the control strain. Quantitative real-time reverse transcription-PCR analysis of total RNA extracted from the parental strain and csrA(Bb) mutant revealed significant differences in gene expression consistent with the changes at the protein level. Neither the csrA(Bb) mutant nor the trans-complemented strain was capable of infection following intradermal needle inoculation in C3H/HeN mice at either 10³ or 10⁵ spirochetes per mouse. The further characterization of molecular basis of regulation mediated by CsrA(Bb) will provide significant insights into the pathophysiology of B. burgdorferi.
Collapse
|
41
|
Myers TA, Kaushal D, Philipp MT. Microglia are mediators of Borrelia burgdorferi-induced apoptosis in SH-SY5Y neuronal cells. PLoS Pathog 2009; 5:e1000659. [PMID: 19911057 PMCID: PMC2771360 DOI: 10.1371/journal.ppat.1000659] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 10/19/2009] [Indexed: 12/31/2022] Open
Abstract
Inflammation has long been implicated as a contributor to pathogenesis in many CNS illnesses, including Lyme neuroborreliosis. Borrelia burgdorferi is the spirochete that causes Lyme disease and it is known to potently induce the production of inflammatory mediators in a variety of cells. In experiments where B. burgdorferi was co-cultured in vitro with primary microglia, we observed robust expression and release of IL-6 and IL-8, CCL2 (MCP-1), CCL3 (MIP-1α), CCL4 (MIP-1β) and CCL5 (RANTES), but we detected no induction of microglial apoptosis. In contrast, SH-SY5Y (SY) neuroblastoma cells co-cultured with B. burgdorferi expressed negligible amounts of inflammatory mediators and also remained resistant to apoptosis. When SY cells were co-cultured with microglia and B. burgdorferi, significant neuronal apoptosis consistently occurred. Confocal microscopy imaging of these cell cultures stained for apoptosis and with cell type-specific markers confirmed that it was predominantly the SY cells that were dying. Microarray analysis demonstrated an intense microglia-mediated inflammatory response to B. burgdorferi including up-regulation in gene transcripts for TLR-2 and NFκβ. Surprisingly, a pathway that exhibited profound changes in regard to inflammatory signaling was triggering receptor expressed on myeloid cells-1 (TREM1). Significant transcript alterations in essential p53 pathway genes also occurred in SY cells cultured in the presence of microglia and B. burgdorferi, which indicated a shift from cell survival to preparation for apoptosis when compared to SY cells cultured in the presence of B. burgdorferi alone. Taken together, these findings indicate that B. burgdorferi is not directly toxic to SY cells; rather, these cells become distressed and die in the inflammatory surroundings generated by microglia through a bystander effect. If, as we hypothesized, neuronal apoptosis is the key pathogenic event in Lyme neuroborreliosis, then targeting microglial responses may be a significant therapeutic approach for the treatment of this form of Lyme disease. Lyme disease, which is transmitted to humans through the bite of a tick, is currently the most frequently reported vector-borne illness in the northern hemisphere. Borrelia burgdorferi is the bacterium that causes Lyme disease and it is known to readily induce inflammation within a variety of infected tissues. Many of the neurological signs and symptoms that may affect patients with Lyme disease have been associated with B. burgdorferi-induced inflammation in the central nervous system (CNS). In this report we investigated which of the primary cell types residing in the CNS might be functioning to create the inflammatory environment that, in addition to helping clear the pathogen, could simultaneously be harming nearby neurons. We report findings that implicate microglia, a macrophage cell type in the CNS, as the key responders to infection with B. burgdorferi. We also present evidence indicating that this organism is not directly toxic to neurons; rather, a bystander effect is generated whereby the inflammatory surroundings created by microglia in response to B. burgdorferi may themselves be toxic to neuronal cells.
Collapse
Affiliation(s)
- Tereance A. Myers
- Division of Bacteriology & Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Louisiana, United States of America
| | - Deepak Kaushal
- Division of Bacteriology & Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Louisiana, United States of America
| | - Mario T. Philipp
- Division of Bacteriology & Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
42
|
IDSA Lyme Guidelines: Response to Dr. Gershon’s Letter. South Med J 2009. [DOI: 10.1097/smj.0b013e3181b26cb2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Racine R, Winslow GM. IgM in microbial infections: taken for granted? Immunol Lett 2009; 125:79-85. [PMID: 19539648 PMCID: PMC2747358 DOI: 10.1016/j.imlet.2009.06.003] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/08/2009] [Accepted: 06/08/2009] [Indexed: 12/20/2022]
Abstract
Much has been learned about the structure, function, and production of IgM, since the antibody's initial characterization. It is widely accepted that IgM provides a first line of defense during microbial infections, prior to the generation of adaptive, high-affinity IgG responses that are important for long-lived immunity and immunological memory. Although IgM responses are commonly used as a measure of exposure to infectious diseases, it is perhaps surprising that the role of and requirement for IgM in many microbial infections has not been well explored in vivo. This is in part due to the lack of capabilities, until relatively recently, to evaluate the requirement for IgM in the absence of coincident IgG responses. Such evaluations are now possible, using gene-targeted mouse strains that produce only IgM, or isotype-switched IgG. A number of studies have revealed that IgM, produced either innately, or in response to antigen challenge, plays an important and perhaps under appreciated role in many microbial infections. Moreover, the characterization of the roles of various B cell subsets, in the production of IgM, and in host defense, has revealed important and divergent roles for B-1a and B-1b cells. This review will highlight studies in which IgM, in its own right, has been found to play an important role, not only in early immunity, but also in long-term protection, against a variety of microbial pathogens. Observations that long-lived IgM responses can be generated in vivo suggest that it may be feasible to target IgM production as part of vaccination strategies.
Collapse
Affiliation(s)
- Rachael Racine
- The Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY 12201-0509
| | - Gary M. Winslow
- Wadsworth Center, New York State Department of Health, P.O. Box 22002, Albany, NY 12201-2002
- The Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY 12201-0509
| |
Collapse
|
44
|
Chauhan VS, Sterka DG, Furr SR, Young AB, Marriott I. NOD2 plays an important role in the inflammatory responses of microglia and astrocytes to bacterial CNS pathogens. Glia 2009; 57:414-23. [PMID: 18803303 PMCID: PMC2628967 DOI: 10.1002/glia.20770] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
While glial cells are recognized for their roles in maintaining neuronal function, there is growing appreciation that resident central nervous system (CNS) cells initiate and/or augment inflammation following trauma or infection. We have recently demonstrated that microglia and astrocytes constitutively express nucleotide-binding oligomerization domain-2 (NOD2), a member of the novel nucleotide-binding domain leucine-rich repeat region containing a family of proteins (NLR) that functions as an intracellular receptor for a minimal motif present in all bacterial peptidoglycans. In this study, we have confirmed the functional nature of NOD2 expression in astrocytes and microglia and begun to determine the relative contribution that this NLR makes in inflammatory CNS responses to clinically relevant bacterial pathogens. We demonstrate the increased association of NOD2 with its downstream effector molecule, Rip2 kinase, in primary cultures of murine microglia and astrocytes following exposure to bacterial antigens. We show that this cytosolic receptor underlies the ability of muramyl dipeptide to augment the production of inflammatory cytokines by glia following exposure to specific ligands for disparate Toll-like receptor homologues. In addition, we demonstrate that NOD2 is an important component in the in vitro inflammatory responses of resident glia to N. meningitidis and B. burgdorferi antigens. Finally, we have established that NOD2 is required, at least in part, for the astrogliosis, demyelination, behavioral changes, and elevated inflammatory cytokine levels observed following in vivo infection with these pathogens. As such, we have identified NOD2 as an important component in the generation of damaging CNS inflammation following bacterial infection.
Collapse
Affiliation(s)
- Vinita S. Chauhan
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223
| | - David G. Sterka
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223
| | - Samantha R. Furr
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223
| | - Amy B. Young
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223
| | - Ian Marriott
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223
| |
Collapse
|
45
|
Siegel C, Schreiber J, Haupt K, Skerka C, Brade V, Simon MM, Stevenson B, Wallich R, Zipfel PF, Kraiczy P. Deciphering the ligand-binding sites in the Borrelia burgdorferi complement regulator-acquiring surface protein 2 required for interactions with the human immune regulators factor H and factor H-like protein 1. J Biol Chem 2008; 283:34855-63. [PMID: 18824548 PMCID: PMC2596382 DOI: 10.1074/jbc.m805844200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 09/12/2008] [Indexed: 11/06/2022] Open
Abstract
Borrelia burgdorferi, the etiologic agent of Lyme disease, employs sophisticated means to evade killing by its mammalian hosts. One important immune escape mechanism is the inhibition of complement activation mediated by interactions of the host-derived immune regulators factor H (CFH) and factor H-like protein 1 (CFHL1) with borrelial complement regulator-acquiring surface proteins (BbCRASPs). BbCRASP-2 is a distinctive CFH- and CFHL1-binding protein that is produced by serum-resistant B. burgdorferi strains. Here we show that binding of CFH by BbCRASP-2 is due to electrostatic as well as hydrophobic forces. In addition, 14 individual amino acid residues of BbCRASP-2 were identified as being involved in CFH and CFHL1 binding. Alanine substitutions of most of those residues significantly inhibited binding of CFH and/or CFHL1 by recombinant BbCRASP-2 proteins. To conclusively define the effects of BbCRASP-2 residue substitutions on serum sensitivity in the bacterial context, a serum-sensitive Borrelia garinii strain was transformed with plasmids that directed production of either wild-type or mutated BbCRASP-2 proteins. Critical amino acid residues within BbCRASP-2 were identified, with bacteria producing distinct mutant proteins being unable to bind either CFH or CFHL1, showing high levels of complement components C3, C6, and C5b-9 deposited on their surfaces and being highly sensitive to killing by normal serum. Collectively, we mapped a structurally sensitive CFH/CFHL1 binding site within borrelial BbCRASP-2 and identified single amino acid residues potentially involved in the interaction with both complement regulators.
Collapse
Affiliation(s)
- Corinna Siegel
- Institute of Medical Microbiology and
Infection Control, University Hospital of Frankfurt, Paul-Ehrlich-Strasse 40,
60596 Frankfurt, Germany, the Department of
Infection Biology, Leibniz-Institute for Natural Products Research and
Infection Biology, 07745 Jena, Germany, the
Metschnikoff Laboratory, Max-Planck-Institute
for Immunobiology, 79108 Freiburg, Germany, the
Department of Microbiology, Immunology and
Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536, the
Institute of Immunology, University of Heidelberg,
69120 Heidelberg, Germany, and the
Friedrich Schiller University, 07743
Jena, Germany
| | - Johanna Schreiber
- Institute of Medical Microbiology and
Infection Control, University Hospital of Frankfurt, Paul-Ehrlich-Strasse 40,
60596 Frankfurt, Germany, the Department of
Infection Biology, Leibniz-Institute for Natural Products Research and
Infection Biology, 07745 Jena, Germany, the
Metschnikoff Laboratory, Max-Planck-Institute
for Immunobiology, 79108 Freiburg, Germany, the
Department of Microbiology, Immunology and
Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536, the
Institute of Immunology, University of Heidelberg,
69120 Heidelberg, Germany, and the
Friedrich Schiller University, 07743
Jena, Germany
| | - Katrin Haupt
- Institute of Medical Microbiology and
Infection Control, University Hospital of Frankfurt, Paul-Ehrlich-Strasse 40,
60596 Frankfurt, Germany, the Department of
Infection Biology, Leibniz-Institute for Natural Products Research and
Infection Biology, 07745 Jena, Germany, the
Metschnikoff Laboratory, Max-Planck-Institute
for Immunobiology, 79108 Freiburg, Germany, the
Department of Microbiology, Immunology and
Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536, the
Institute of Immunology, University of Heidelberg,
69120 Heidelberg, Germany, and the
Friedrich Schiller University, 07743
Jena, Germany
| | - Christine Skerka
- Institute of Medical Microbiology and
Infection Control, University Hospital of Frankfurt, Paul-Ehrlich-Strasse 40,
60596 Frankfurt, Germany, the Department of
Infection Biology, Leibniz-Institute for Natural Products Research and
Infection Biology, 07745 Jena, Germany, the
Metschnikoff Laboratory, Max-Planck-Institute
for Immunobiology, 79108 Freiburg, Germany, the
Department of Microbiology, Immunology and
Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536, the
Institute of Immunology, University of Heidelberg,
69120 Heidelberg, Germany, and the
Friedrich Schiller University, 07743
Jena, Germany
| | - Volker Brade
- Institute of Medical Microbiology and
Infection Control, University Hospital of Frankfurt, Paul-Ehrlich-Strasse 40,
60596 Frankfurt, Germany, the Department of
Infection Biology, Leibniz-Institute for Natural Products Research and
Infection Biology, 07745 Jena, Germany, the
Metschnikoff Laboratory, Max-Planck-Institute
for Immunobiology, 79108 Freiburg, Germany, the
Department of Microbiology, Immunology and
Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536, the
Institute of Immunology, University of Heidelberg,
69120 Heidelberg, Germany, and the
Friedrich Schiller University, 07743
Jena, Germany
| | - Markus M. Simon
- Institute of Medical Microbiology and
Infection Control, University Hospital of Frankfurt, Paul-Ehrlich-Strasse 40,
60596 Frankfurt, Germany, the Department of
Infection Biology, Leibniz-Institute for Natural Products Research and
Infection Biology, 07745 Jena, Germany, the
Metschnikoff Laboratory, Max-Planck-Institute
for Immunobiology, 79108 Freiburg, Germany, the
Department of Microbiology, Immunology and
Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536, the
Institute of Immunology, University of Heidelberg,
69120 Heidelberg, Germany, and the
Friedrich Schiller University, 07743
Jena, Germany
| | - Brian Stevenson
- Institute of Medical Microbiology and
Infection Control, University Hospital of Frankfurt, Paul-Ehrlich-Strasse 40,
60596 Frankfurt, Germany, the Department of
Infection Biology, Leibniz-Institute for Natural Products Research and
Infection Biology, 07745 Jena, Germany, the
Metschnikoff Laboratory, Max-Planck-Institute
for Immunobiology, 79108 Freiburg, Germany, the
Department of Microbiology, Immunology and
Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536, the
Institute of Immunology, University of Heidelberg,
69120 Heidelberg, Germany, and the
Friedrich Schiller University, 07743
Jena, Germany
| | - Reinhard Wallich
- Institute of Medical Microbiology and
Infection Control, University Hospital of Frankfurt, Paul-Ehrlich-Strasse 40,
60596 Frankfurt, Germany, the Department of
Infection Biology, Leibniz-Institute for Natural Products Research and
Infection Biology, 07745 Jena, Germany, the
Metschnikoff Laboratory, Max-Planck-Institute
for Immunobiology, 79108 Freiburg, Germany, the
Department of Microbiology, Immunology and
Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536, the
Institute of Immunology, University of Heidelberg,
69120 Heidelberg, Germany, and the
Friedrich Schiller University, 07743
Jena, Germany
| | - Peter F. Zipfel
- Institute of Medical Microbiology and
Infection Control, University Hospital of Frankfurt, Paul-Ehrlich-Strasse 40,
60596 Frankfurt, Germany, the Department of
Infection Biology, Leibniz-Institute for Natural Products Research and
Infection Biology, 07745 Jena, Germany, the
Metschnikoff Laboratory, Max-Planck-Institute
for Immunobiology, 79108 Freiburg, Germany, the
Department of Microbiology, Immunology and
Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536, the
Institute of Immunology, University of Heidelberg,
69120 Heidelberg, Germany, and the
Friedrich Schiller University, 07743
Jena, Germany
| | - Peter Kraiczy
- Institute of Medical Microbiology and
Infection Control, University Hospital of Frankfurt, Paul-Ehrlich-Strasse 40,
60596 Frankfurt, Germany, the Department of
Infection Biology, Leibniz-Institute for Natural Products Research and
Infection Biology, 07745 Jena, Germany, the
Metschnikoff Laboratory, Max-Planck-Institute
for Immunobiology, 79108 Freiburg, Germany, the
Department of Microbiology, Immunology and
Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536, the
Institute of Immunology, University of Heidelberg,
69120 Heidelberg, Germany, and the
Friedrich Schiller University, 07743
Jena, Germany
| |
Collapse
|
46
|
The failure of immune response evasion by linear plasmid 28-1-deficient Borrelia burgdorferi is attributable to persistent expression of an outer surface protein. Infect Immun 2008; 76:3984-91. [PMID: 18625742 DOI: 10.1128/iai.00387-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infectivity and persistence by Borrelia burgdorferi, the etiologic agent of Lyme disease, rely stringently on regulatory events. Among these is the downregulation of lipoprotein antigen expression, exemplified by outer surface protein C (OspC), at the advent of specific immunity in the mammalian host. B. burgdorferi spirochetes that lack the linear plasmid 28-1 (lp28-1) succumb to the host's immune response. We thus explored the notion that these two phenomena were related--that lp28-1(-) organisms fail to downregulate ospC and thus are cleared following the appearance of anti-OspC antibody in the murine host. The lp-28-1(-) isolate and a wild-type (wt) isolate bearing the complete set of plasmids were grown in dialysis membrane chambers that were implanted into rat peritoneal cavities. Analysis of mRNA and protein from these cultures showed that OspC expression levels by lp28-1(-) organisms are abnormally high in vivo. A time course analysis of ospC expression in tissues following infection indicates also that temporal diminution of the dominant antigen OspC is impaired in lp28-1(-) spirochetes. Finally, passive transfer of monoclonal OspC-specific antibody into SCID mice 8 days postinfection cleared lp28-1(-) spirochetes, yet the wt organisms persisted in a majority of animals. These findings indicate that incomplete repression of OspC by lp28-1(-) organisms renders them susceptible to immune-mediated clearance. The lp28-1 plasmid must harbor one or more genes involved in OspC downregulation.
Collapse
|
47
|
Savely VR. Update on Lyme Disease. JOURNAL OF INFUSION NURSING 2008; 31:236-40. [DOI: 10.1097/01.nan.0000326832.59655.d7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Rupprecht TA, Koedel U, Fingerle V, Pfister HW. The pathogenesis of lyme neuroborreliosis: from infection to inflammation. Mol Med 2008; 14:205-12. [PMID: 18097481 DOI: 10.2119/2007-00091.rupprecht] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 12/10/2007] [Indexed: 01/14/2023] Open
Abstract
This review describes the current knowledge of the pathogenesis of acute Lyme neuroborreliosis (LNB), from invasion to inflammation of the central nervous system. Borrelia burgdorferi (B.b.) enters the host through a tick bite on the skin and may disseminate from there to secondary organs, including the central nervous system. To achieve this, B.b. first has to evade the hostile immune system. In a second step, the borrelia have to reach the central nervous system and cross the blood-brain barrier. Once in the cerebrospinal fluid (CSF), the spirochetes elicit an inflammatory response. We describe current knowledge about the infiltration of leukocytes into the CSF in LNB. In the final section, we discuss the mechanisms by which the spirochetal infection leads to the observed neural dysfunction. To conclude, we construct a stringent concept of the pathogenesis of LNB.
Collapse
|
49
|
Iliopoulou BP, Alroy J, Huber BT. CD28 deficiency exacerbates joint inflammation upon Borrelia burgdorferi infection, resulting in the development of chronic Lyme arthritis. THE JOURNAL OF IMMUNOLOGY 2008; 179:8076-82. [PMID: 18056348 DOI: 10.4049/jimmunol.179.12.8076] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lyme disease, caused by the tick-borne spirochete Borrelia burgdorferi (Bb), is a multisystem illness, affecting many organs, such as the heart, the nervous system, and the joints. Months after Bb infection, approximately 60% of patients experience intermittent arthritic attacks, a condition that in some individuals progresses to chronic joint inflammation. Although mice develop acute arthritis in response to Bb infection, the joint inflammation clears after 2 wk, despite continuous infection, only very rarely presenting with chronic Lyme arthritis. Thus, the lack of an animal system has so far prevented the elucidation of this persistent inflammatory process that occurs in humans. In this study, we report that the majority of Bb-infected CD28-/- mice develop chronic Lyme arthritis. Consistent with observations in chronic Lyme arthritis patients, the infected mutant, but not wild-type mice present recurring monoarticular arthritis over an extended time period, as well as anti-outer surface protein A of Bb serum titers. Furthermore, we demonstrate that anti-outer surface protein A Abs develop in these mice only after establishment of chronic Lyme arthritis. Thus, the Bb-infected CD28-/- mice provide a murine model for studying chronic Lyme arthritis.
Collapse
Affiliation(s)
- Bettina P Iliopoulou
- Department of Pathology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | |
Collapse
|
50
|
Cruz AR, Moore MW, La Vake CJ, Eggers CH, Salazar JC, Radolf JD. Phagocytosis of Borrelia burgdorferi, the Lyme disease spirochete, potentiates innate immune activation and induces apoptosis in human monocytes. Infect Immun 2008; 76:56-70. [PMID: 17938216 PMCID: PMC2223637 DOI: 10.1128/iai.01039-07] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 09/07/2007] [Accepted: 10/08/2007] [Indexed: 01/07/2023] Open
Abstract
We have previously demonstrated that phagocytosed Borrelia burgdorferi induces activation programs in human peripheral blood mononuclear cells that differ qualitatively and quantitatively from those evoked by equivalent lipoprotein-rich lysates. Here we report that ingested B. burgdorferi induces significantly greater transcription of proinflammatory cytokine genes than do lysates and that live B. burgdorferi, but not B. burgdorferi lysate, is avidly internalized by monocytes, where the bacteria are completely degraded within phagolysosomes. In the course of these experiments, we discovered that live B. burgdorferi also induced a dose-dependent decrease in monocytes but not a decrease in dendritic cells or T cells and that the monocyte population displayed morphological and biochemical hallmarks of apoptosis. Particularly noteworthy was the finding that apoptotic changes occurred predominantly in monocytes that had internalized spirochetes. Abrogation of phagocytosis with cytochalasin D prevented the death response. Heat-killed B. burgdorferi, which was internalized as well as live organisms, induced a similar degree of apoptosis of monocytes but markedly less cytokine production. Surprisingly, opsonophagocytosis of Treponema pallidum did not elicit a discernible cell death response. Our combined results demonstrate that B. burgdorferi confined to phagolysosomes is a potent inducer of cytosolic signals that result in (i) production of NF-kappaB-dependent cytokines, (ii) assembly of the inflammasome and activation of caspase-1, and (iii) induction of programmed cell death. We propose that inflammation and apoptosis represent mutually reinforcing components of the immunologic arsenal that the host mobilizes to defend itself against infection with Lyme disease spirochetes.
Collapse
Affiliation(s)
- Adriana R Cruz
- Department of Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3715, USA
| | | | | | | | | | | |
Collapse
|