1
|
Gunasekaran H, Ranganathan UD, Bethunaickan R. The importance of inflammatory biomarkers in detecting and managing latent tuberculosis infection. Front Immunol 2025; 16:1538127. [PMID: 39981231 PMCID: PMC11839662 DOI: 10.3389/fimmu.2025.1538127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/17/2025] [Indexed: 02/22/2025] Open
Abstract
Infection with Mycobacterium tuberculosis (Mtb) triggers an autoimmune-like response in the host leading to further complications. One of the major concerns in eliminating Tuberculosis (TB) is identifying individuals with Latent Tuberculosis Infection (LTBI) who serve as major reservoirs of Mtb making them the important target group for TB eradication. Since no gold standard tests are available for detecting LTBI, the global burden of LTBI cannot be precisely determined. Since LTBI poses several challenges to worldwide healthcare, managing LTBI must be the key priority to achieve a TB-free status. The inflammatory mediators play a major role in determining the outcome of the Mtb infection and also their levels seem to change according to the disease severity. Identification of inflammatory mediators and utilizing them as diagnostic biomarkers for detecting the various stages of TB disease might help identify the reservoirs of Mtb infection even before they become symptomatic so that preventative treatment can be started early. In summary, this review primarily focuses on exploring different inflammatory markers along the course of the Mtb infection. Identifying LTBI-specific biomarkers helps to identify individuals who are at higher risk of developing TB and preparing them to adhere to preventive therapy thus minimizing the global burden of TB.
Collapse
Affiliation(s)
- Harinisri Gunasekaran
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chennai, India
- University of Madras, Chennai, India
| | - Uma Devi Ranganathan
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chennai, India
- University of Madras, Chennai, India
- Faculty of Medical Research, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ramalingam Bethunaickan
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chennai, India
- University of Madras, Chennai, India
- Faculty of Medical Research, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Shen X, Jin Z, Chen X, Wang Z, Yi L, Ou Y, Gong L, Zhu C, Xu G, Wang Y. Single-cell transcriptome atlas revealed bronchoalveolar immune features related to disease severity in pediatric Mycoplasma pneumoniae pneumonia. MedComm (Beijing) 2024; 5:e748. [PMID: 39399649 PMCID: PMC11471001 DOI: 10.1002/mco2.748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024] Open
Abstract
The mechanisms underlying protective immunity in mild Mycoplasma pneumoniae pneumonia (MPP) and the pathogenesis of severe MPP, characterized by dysregulated immune responses, remain unclear. Here, we performed single-cell RNA sequencing (scRNA-seq) to profile bronchoalveolar lavage fluid (BALF) samples from 13 healthy donors and 24 hospitalized pediatric patients with MPP, covering both mild and severe cases. Severe MPP patients exhibited high levels of exhausted T cells and M1-like macrophages, with the exhaustion of T cells attributed to persistent type I interferon signaling and inadequate assistance from CD4+ T cells. Significant cell-cell interactions between exhausted T cells and programmed death-ligand 1+ (PD-L1+) macrophages were detected in severe patients, potentially mediated through inhibitor molecules (e.g., PD1) and their receptors (e.g., PD-L1), as well as human leukocyte antigen class I molecules and their receptors (e.g., KLRC1/D2), resulting in the dysfunction of anti-MP immune responses. Mild MPP patients were featured by an increased abundance of neutrophils, coupled with enhanced activation, contributing to protective immunity. Together, our study provides a detailed characterization of the BALF immune landscape in MPP patients, revealing distinct immune characteristics between mild and severe cases, which offers a valuable resource for understanding MPP immunopathogenesis and formulating effective therapeutic strategies.
Collapse
Affiliation(s)
- Xiantao Shen
- State Key Laboratory of Environment Health (Incubation)Key Laboratory of Environment and HealthMinistry of EducationKey Laboratory of Environment and Health (Wuhan)Ministry of Environmental ProtectionSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhengjiang Jin
- Department of Clinical LaboratoryMaternal and Child Health Hospital of Hubei ProvinceTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaomin Chen
- Department of Disinfection and Pest ControlWuhan Center for Disease Control & PreventionWuhanChina
| | - Zhenhui Wang
- Department of Clinical LaboratoryMaternal and Child Health Hospital of Hubei ProvinceTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lu Yi
- Department of Clinical LaboratoryMaternal and Child Health Hospital of Hubei ProvinceTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yangwei Ou
- Department of RadiologyMaternal and Child Health Hospital of Hubei ProvinceTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lin Gong
- State Key Laboratory of Environment Health (Incubation)Key Laboratory of Environment and HealthMinistry of EducationKey Laboratory of Environment and Health (Wuhan)Ministry of Environmental ProtectionSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Disinfection and Pest ControlWuhan Center for Disease Control & PreventionWuhanChina
| | - Chengliang Zhu
- Department of Clinical LaboratoryInstitute of Translational MedicineRenmin Hospital of Wuhan UniversityWuhanChina
| | - Guogang Xu
- Health Management InstituteThe Second Medical Center & National Clinical Research Center for Geriatric DiseasesChinese PLA General HospitalBeijingChina
| | - Yi Wang
- Experimental Research CenterCapital Institute of PediatricsBeijingChina
| |
Collapse
|
3
|
Paterson RL, La Manna MP, Arena De Souza V, Walker A, Gibbs-Howe D, Kulkarni R, Fergusson JR, Mulakkal NC, Monteiro M, Bunjobpol W, Dembek M, Martin-Urdiroz M, Grant T, Barber C, Garay-Baquero DJ, Tezera LB, Lowne D, Britton-Rivet C, Pengelly R, Chepisiuk N, Singh PK, Woon AP, Powlesland AS, McCully ML, Caccamo N, Salio M, Badami GD, Dorrell L, Knox A, Robinson R, Elkington P, Dieli F, Lepore M, Leonard S, Godinho LF. An HLA-E-targeted TCR bispecific molecule redirects T cell immunity against Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2024; 121:e2318003121. [PMID: 38691588 PMCID: PMC11087797 DOI: 10.1073/pnas.2318003121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/08/2024] [Indexed: 05/03/2024] Open
Abstract
Peptides presented by HLA-E, a molecule with very limited polymorphism, represent attractive targets for T cell receptor (TCR)-based immunotherapies to circumvent the limitations imposed by the high polymorphism of classical HLA genes in the human population. Here, we describe a TCR-based bispecific molecule that potently and selectively binds HLA-E in complex with a peptide encoded by the inhA gene of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis in humans. We reveal the biophysical and structural bases underpinning the potency and specificity of this molecule and demonstrate its ability to redirect polyclonal T cells to target HLA-E-expressing cells transduced with mycobacterial inhA as well as primary cells infected with virulent Mtb. Additionally, we demonstrate elimination of Mtb-infected cells and reduction of intracellular Mtb growth. Our study suggests an approach to enhance host T cell immunity against Mtb and provides proof of principle for an innovative TCR-based therapeutic strategy overcoming HLA polymorphism and therefore applicable to a broader patient population.
Collapse
Affiliation(s)
| | - Marco P. La Manna
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, University of Palermo, Palermo90127, Italy
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Azienda Ospedaliera Universitaria Policlinico Paolo Giaccone, University of Palermo, Palermo90127, Italy
| | | | - Andrew Walker
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Dawn Gibbs-Howe
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Rakesh Kulkarni
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | | | | | - Mauro Monteiro
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | | | - Marcin Dembek
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | | | - Tressan Grant
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Claire Barber
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Diana J. Garay-Baquero
- National Institute for Health and Care Research, Biomedical Research Centre and Institute for Life Sciences, Faculty of Medicine, University of Southampton, SouthamptonSO16 6YD, United Kingdom
| | - Liku Bekele Tezera
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, University of Palermo, Palermo90127, Italy
| | - David Lowne
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | | | - Robert Pengelly
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | | | | | - Amanda P. Woon
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | | | | | - Nadia Caccamo
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, University of Palermo, Palermo90127, Italy
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Azienda Ospedaliera Universitaria Policlinico Paolo Giaccone, University of Palermo, Palermo90127, Italy
| | - Mariolina Salio
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Giusto Davide Badami
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, University of Palermo, Palermo90127, Italy
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Azienda Ospedaliera Universitaria Policlinico Paolo Giaccone, University of Palermo, Palermo90127, Italy
| | - Lucy Dorrell
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Andrew Knox
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Ross Robinson
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Paul Elkington
- National Institute for Health and Care Research, Biomedical Research Centre and Institute for Life Sciences, Faculty of Medicine, University of Southampton, SouthamptonSO16 6YD, United Kingdom
| | - Francesco Dieli
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, University of Palermo, Palermo90127, Italy
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Azienda Ospedaliera Universitaria Policlinico Paolo Giaccone, University of Palermo, Palermo90127, Italy
| | - Marco Lepore
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Sarah Leonard
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Luis F. Godinho
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| |
Collapse
|
4
|
Wang Y, Sun Q, Zhang Y, Li X, Liang Q, Guo R, Zhang L, Han X, Wang J, Shao L, Xue Y, Yang Y, Li H, Nie L, Shi W, Liu Q, Zhang J, Duan H, Huang H, Luu LDW, Tai J, Yang X, Wang G. Systemic immune dysregulation in severe tuberculosis patients revealed by a single-cell transcriptome atlas. J Infect 2023; 86:421-438. [PMID: 37003521 DOI: 10.1016/j.jinf.2023.03.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/04/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, is currently the deadliest infectious disease in human that can evolve to severe forms. A comprehensive immune landscape for Mtb infection is critical for achieving TB cure, especially for severe TB patients. We performed single-cell RNA transcriptome and T-cell/B-cell receptor (TCR/BCR) sequencing of 213,358 cells from 27 samples, including 6 healthy donors and 21 active TB patients with varying severity (6 mild, 6 moderate and 9 severe cases). Two published profiles of latent TB infection were integrated for the analysis. We observed an obviously elevated proportion of inflammatory immune cells (e.g., monocytes), as well as a markedly decreased abundance of various lymphocytes (e.g., NK and γδT cells) in severe patients, revealing that lymphopenia might be a prominent feature of severe disease. Further analyses indicated that significant activation of cell apoptosis pathways, including perforin/granzyme-, TNF-, FAS- and XAF1-induced apoptosis, as well as cell migration pathways might confer this reduction. The immune landscape in severe patients was characterized by widespread immune exhaustion in Th1, CD8+T and NK cells as well as high cytotoxic state in CD8+T and NK cells. We also discovered that myeloid cells in severe TB patients may involve in the immune paralysis. Systemic upregulation of S100A12 and TNFSF13B, mainly by monocytes in the peripheral blood, may contribute to the inflammatory cytokine storms in severe patients. Our data offered a rich resource for understanding of TB immunopathogenesis and designing effective therapeutic strategies for TB, especially for severe patients.
Collapse
Affiliation(s)
- Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, P.R. China.
| | - Qing Sun
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, 101149, P.R. China
| | - Yun Zhang
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Xuelian Li
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Qingtao Liang
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Ru Guo
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Liqun Zhang
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Xiqin Han
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Jing Wang
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Lingling Shao
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Yu Xue
- Department of Emergency, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Yang Yang
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Hua Li
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Lihui Nie
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Wenhui Shi
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Qiuyue Liu
- Department of Intensive Care Unit, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Jing Zhang
- Department of Emergency, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Hongfei Duan
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, 101149, P.R. China
| | | | - Jun Tai
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing, 100020, P.R. China.
| | - Xinting Yang
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China.
| | - Guirong Wang
- Department of Clinical Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, 101149, P.R. China.
| |
Collapse
|
5
|
Lu T, Wang M, Liu N, Zhang S, Shi L, Bao L, Luo F, Shi L, Liu S, Yao Y. Transporter Associated with Antigen Processing 1 Gene Polymorphisms Increase the Susceptibility to Tuberculosis. Pharmgenomics Pers Med 2023; 16:325-336. [PMID: 37077653 PMCID: PMC10108862 DOI: 10.2147/pgpm.s404339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/31/2023] [Indexed: 04/21/2023] Open
Abstract
Purpose Tuberculosis (TB) is known to result from a complex interaction between the host immune response and Mycobacterium infection. The transporter associated with antigen processing (TAP) plays an important role in the processing and presentation pathways for the Mycobacterium tuberculosis (M. tb) antigen. To investigate the possible association of the TAP1 and TAP2 genes with TB. Patients and Methods A total of 449 TB patients and 435 control subjects were included in this study, and single nucleotide polymorphisms (SNPs) in the TAP gene, as well as TAP1 and TAP2 alleles, were genotyped. Results TAP gene association analysis of TB diseases showed that rs41551515-T in the TAP1 gene was significantly associated with susceptibility to TB (P=7.96E-04, OR=4.124, 95% CI: 1.683-10.102), especially pulmonary TB (PTB, P=6.84E-04, OR=4.350, 95% CI: 1.727-10.945), and the combination of rs1057141-T-rs1135216-C in the TAP1 gene significantly increased the risk of TB susceptibility (P=5.51E-05, OR=10.899, 95% CI: 2.555-46.493). Five novel TAP1 alleles were detected in Yunnan Han people, and the allele frequency of TAP1*unknown_3 (rs41555220-rs41549617-rs1057141-rs1135216-rs1057149-rs41551515: C-A-T-C-C-T) was notably increased in all TB patients, including in the PTB and EPTB subgroups, and was significantly associated with the risk of susceptibility to TB. However, no association between the TAP2 gene and TB was found in this study. Conclusion Host genetic variants of rs41551515-T and the combination rs1057141-T-rs1135216-C, as well as TAP1*unknown_3 may play a critical role in susceptibility to TB disease.
Collapse
Affiliation(s)
- Tianchang Lu
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, People’s Republic of China
| | - Minyi Wang
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, People’s Republic of China
- School of Life Science, Yunnan University, Kunming, 650500, People’s Republic of China
| | - Nannan Liu
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, People’s Republic of China
| | - Shuqiong Zhang
- Department of Clinical Laboratory, The Third People’s Hospital of Kunming, Kunming, 650041, People’s Republic of China
| | - Lei Shi
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, People’s Republic of China
| | - Ling Bao
- Department of Clinical Laboratory, The Third People’s Hospital of Kunming, Kunming, 650041, People’s Republic of China
| | - Feng Luo
- Department of Clinical Laboratory, The Third People’s Hospital of Kunming, Kunming, 650041, People’s Republic of China
| | - Li Shi
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, People’s Republic of China
| | - Shuyuan Liu
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, People’s Republic of China
- Correspondence: Shuyuan Liu, Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, People’s Republic of China, Tel +86 871 68334483, Email
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, 650118, People’s Republic of China
- Yufeng Yao, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, 650118, People’s Republic of China, Tel +86 871 68335632, Email
| |
Collapse
|
6
|
Li Q, Liu S, Li X, Yang R, Liang C, Yu J, Lin W, Liu Y, Yao C, Pang Y, Dai X, Li C, Tang S. The Association of Peripheral T Lymphocyte Subsets Disseminated Infection by Mycobacterium Tuberculosis in HIV-Negative Patients: A Retrospective Observational Study. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1606. [PMID: 36363564 PMCID: PMC9692453 DOI: 10.3390/medicina58111606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 09/10/2024]
Abstract
Background and Objective: This study was performed to investigate the association of peripheral T lymphocyte subsets with disseminated infection (DI) by Mycobacterium tuberculosis (MTB) in HIV-negative patients. Methods and Materials: The study included 587 HIV-negative tuberculosis (TB) patients. Results: In TB patients with DI, the proportion of CD4+ T cells decreased, the proportion of CD8+ T cells increased, and the ratio of CD4+/CD8+ T cells decreased. According to univariate analysis, smoking, alcohol consumption, rifampicin-resistance, retreatment, and high sputum bacterial load were linked to lower likelihood of developing MTB dissemination. Multivariate analysis indicated that after adjustment for alcohol use, smoking, retreatment, smear, culture, rifampicin-resistance, and CD4+/CD8+, the proportion of CD8+ T cells (but not CD4+ T cells) was independently and positively associated with the prevalence of DI in HIV-negative pulmonary TB (PTB) patients. Conclusions: Examining T lymphocyte subsets is of great value for evaluating the immune function of HIV-negative TB patients, and an increase in the CD8+ T cell proportion may be a critical clue regarding the cause of DI in such patients.
Collapse
Affiliation(s)
- Qiao Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Shengsheng Liu
- Department of Tuberculosis, Anhui Chest Hospital, Hefei 230022, China
| | - Xiaomeng Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Ruifang Yang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Chen Liang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Jiajia Yu
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Wenhong Lin
- Department of Tuberculosis, Anhui Chest Hospital, Hefei 230022, China
| | - Yi Liu
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Cong Yao
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Xiaowei Dai
- Beijing Center for Disease Prevention and Control, Beijing 100035, China
| | - Chuanyou Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Shenjie Tang
- Multidisciplinary Diagnosis and Treatment Centre for Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| |
Collapse
|
7
|
Bahuaud O, Genestet C, Hoffmann J, Dumitrescu O, Ader F. Opti-4TB: A protocol for a prospective cohort study evaluating the performance of new biomarkers for active tuberculosis outcome prediction. Front Med (Lausanne) 2022; 9:998972. [PMID: 36186786 PMCID: PMC9515406 DOI: 10.3389/fmed.2022.998972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Tuberculosis (TB) treatment requires the combination of multiple anti-TB drugs during 6 months or more depending on strain drug susceptibility profile. Optimizing the monitoring of anti-TB therapy efficacy is required to provide adequate care and prevent drug resistance emergence. Moreover, accurate monitoring tools are needed for the development of strategies aiming at reducing treatment duration. Opti-4TB is a “proof of concept” study aiming at developing a blood-based monitoring of TB outcome by deciphering host immune signatures associated with latency or disease activity through the combination of “omic” methods. The primary objective is to assess the performances of new biomarkers for TB outcome prediction and to determine specific profiles associated with the outcome of treated TB patients. Methods and analysis Opti-4TB is a prospective, single center study including adult patients hospitalized for pulmonary TB. A workflow will be set up to study the immune status of 40 TB patients and 20 controls with latent TB infection. Blood samples will be collected at four timepoints: before treatment initiation (V1), at day 15 (V2), at 2 months (V3) and at 6 months (V4). Mtb-specific immune responses will be assessed at each timepoint with three different assays: (1) A whole blood transcriptomic signature assessing the “RISK-6” score; (2) A proteomic signature based on 27 cytokines and chemokines measured in plasma; (3) An immunophenotypic monitoring of circulating T-cell subpopulations using spectral flow cytometry. This in depth characterization of Mtb-specific immune response throughout the treatment, correlated with clinical outcomes, will lay the basis for the elaboration of the most basic and universal stage-specific immune signatures associated with latency, active disease and cure. Ethics and dissemination Ethical approval has been obtained from the institutional review board (n°69HCL18_0757). Results will be communicated at scientific meetings and submitted for publication in peer-reviewed journals. Trial registration number NCT04271397.
Collapse
Affiliation(s)
- Olivier Bahuaud
- Département des Maladies Infectieuses et Tropicales, Hospices Civils de Lyon, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, Université Claude Bernard Lyon I, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Charlotte Genestet
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, Université Claude Bernard Lyon I, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
- Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Lyon, France
| | | | - Oana Dumitrescu
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, Université Claude Bernard Lyon I, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
- Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Lyon, France
- Faculté de Médecine, Université Claude Bernard Lyon 1, Lyon, France
| | - Florence Ader
- Département des Maladies Infectieuses et Tropicales, Hospices Civils de Lyon, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, Université Claude Bernard Lyon I, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
- Faculté de Médecine, Université Claude Bernard Lyon 1, Lyon, France
- *Correspondence: Florence Ader
| |
Collapse
|
8
|
Saha A, Escuduero J, Layouni T, Richardson B, Hou S, Mugo N, Mujugira A, Celum C, Baeten JM, Lingappa J, John-Stewart GC, LaCourse SM, Shah JA. Mycobacterium tuberculosis-Specific T-Cell Responses Are Impaired During Late Pregnancy With Elevated Biomarkers of Tuberculosis Risk Postpartum. J Infect Dis 2022; 225:1663-1674. [PMID: 34929030 PMCID: PMC9071276 DOI: 10.1093/infdis/jiab614] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/16/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Pregnancy is a risk factor for progression from latent tuberculosis infection to symptomatic tuberculosis. However, how pregnancy influences T-cell responses to Mycobacterium tuberculosis is unknown. METHODS We measured M. tuberculosis-specific cytokines, T-cell memory markers, and overall CD4+ and CD8+ T-cell activation by flow cytometry from 49 women (18 with and 31 without HIV) who became pregnant while enrolled in a randomized controlled trial of preexposure prophylaxis for HIV. We analyzed data using COMPASS, an established statistical method for evaluating overall antigen-specific T-cell responses. RESULTS Pregnant women with latent tuberculosis infection demonstrated significantly diminished M. tuberculosis-specific CD4+ cytokine responses in the third trimester (COMPASS polyfunctional score [PFS], 0.07) compared before (PFS, 0.15), during (PFS, 0.13 and 0.16), and after pregnancy (PFS, 0.14; P = .0084, Kruskal-Wallis test). Paradoxically, M. tuberculosis-specific CD8+ cytokines and nonspecifically activated T-cells increased during late pregnancy. Nonspecific T-cell activation, a validated biomarker for progression from latent tuberculosis infection to tuberculosis disease, increased in latent tuberculosis infection-positive women postpartum, compared with latent tuberculosis infection-negative women. CONCLUSIONS Pregnancy-related functional T-cell changes were most pronounced during late pregnancy. Both M. tuberculosis-specific T-cell changes during pregnancy and increases in immune activation postpartum may contribute to increased risk for tuberculosis progression. CLINICAL TRIALS REGISTRATION NCT0557245.
Collapse
Affiliation(s)
- Aparajita Saha
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Jaclyn Escuduero
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Troy Layouni
- VA Puget Sound Health Care System, Seattle, Washington, USA
| | - Barbra Richardson
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Sharon Hou
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Nelly Mugo
- Kenya Medical Research Institute, Nairobi, Kenya
| | - Andrew Mujugira
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Connie Celum
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Jared M Baeten
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Gilead Sciences, Foster City, California, USA
| | - Jairam Lingappa
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Grace C John-Stewart
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Sylvia M LaCourse
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Javeed A Shah
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- VA Puget Sound Health Care System, Seattle, Washington, USA
| |
Collapse
|
9
|
Liu Q, Yan W, Liu R, Bo E, Liu J, Liu M. The Association Between Diabetes Mellitus and the Risk of Latent Tuberculosis Infection: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2022; 9:899821. [PMID: 35547228 PMCID: PMC9082645 DOI: 10.3389/fmed.2022.899821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The estimated global latent tuberculosis infection (LTBI) burden indicates a large reservoir of population at risk of developing active tuberculosis (TB). Previous studies suggested diabetes mellitus (DM) might associate with LTBI, though still controversial. We aimed to systematically assess the association between DM and LTBI. METHODS We searched PubMed, Embase, Cochrane Library and Web of Science. Observational studies reporting the number of LTBI and non-LTBI individuals with and without DM were included. Random-effects or fixed-effects models were used to estimate the pooled effect by risk ratios (RRs) and odds ratios (ORs) and its 95% confidence interval (CI), using the original number of participants involved. RESULTS 20 studies involving 4,055,082 participants were included. The pooled effect showed a significant association between DM and LTBI (for cohort studies, RR = 1.62, 95% CI: 1.02-2.56; for cross-sectional studies, OR = 1.55, 95% CI: 1.30-1.84). The pooled OR was high in studies with healthcare workers (5.27, 95% CI: 1.52-8.20), refugees (2.88, 95% CI: 1.93-4.29), sample size of 1,000-5,000 (1.99, 95% CI: 1.49-2.66), and male participants accounted for less than 40% (2.28, 95% CI: 1.28-4.06). Prediabetes also associated with LTBI (OR = 1.36, 95% CI: 1.01-1.84). CONCLUSION The risk of LTBI was found to be a 60% increase in DM patients, compared with non-DM patients. LTBI screening among DM patients could be of vital importance. More studies are needed to explore appropriate strategies for targeted LTBI screening among DM patients.
Collapse
Affiliation(s)
- Qiao Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Wenxin Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Runqing Liu
- School of Health Humanities, Peking University, Beijing, China
| | - Ershu Bo
- School of Basic Medicine, Peking University, Beijing, China
| | - Jue Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Min Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
10
|
Chedid C, Andrieu T, Kokhreidze E, Tukvadze N, Biswas S, Ather MF, Uddin MKM, Banu S, De Maio F, Delogu G, Endtz H, Goletti D, Vocanson M, Dumitrescu O, Hoffmann J, Ader F. In-Depth Immunophenotyping With Mass Cytometry During TB Treatment Reveals New T-Cell Subsets Associated With Culture Conversion. Front Immunol 2022; 13:853572. [PMID: 35392094 PMCID: PMC8980213 DOI: 10.3389/fimmu.2022.853572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/22/2022] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis (TB) is a difficult-to-treat infection because of multidrug regimen requirements based on drug susceptibility profiles and treatment observance issues. TB cure is defined by mycobacterial sterilization, technically complex to systematically assess. We hypothesized that microbiological outcome was associated with stage-specific immune changes in peripheral whole blood during TB treatment. The T-cell phenotypes of treated TB patients were prospectively characterized in a blinded fashion using mass cytometry after Mycobacterium tuberculosis (Mtb) antigen stimulation with QuantiFERON-TB Gold Plus, and then correlated to sputum culture status. At two months of treatment, cytotoxic and terminally differentiated CD8+ T-cells were under-represented and naïve CD4+ T-cells were over-represented in positive- versus negative-sputum culture patients, regardless of Mtb drug susceptibility. At treatment completion, a T-cell immune shift towards differentiated subpopulations was associated with TB cure. Overall, we identified specific T-cell profiles associated with slow sputum converters, which brings new insights in TB prognostic biomarker research designed for clinical application.
Collapse
Affiliation(s)
- Carole Chedid
- Centre International de Recherche en Infectiologie, Legionella Pathogenesis Group, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, École Normale Supérieure de Lyon, Lyon, France.,Medical and Scientific Department, Fondation Mérieux, Lyon, France.,Département de Biologie, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Thibault Andrieu
- Cytometry Core Facility, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, Inserm 1052, CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Eka Kokhreidze
- National Center for Tuberculosis and Lung Diseases (NCTBLD), Tbilisi, Georgia
| | - Nestani Tukvadze
- National Center for Tuberculosis and Lung Diseases (NCTBLD), Tbilisi, Georgia
| | - Samanta Biswas
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md Fahim Ather
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad Khaja Mafij Uddin
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Sayera Banu
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Flavio De Maio
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Delogu
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Hubert Endtz
- Medical and Scientific Department, Fondation Mérieux, Lyon, France
| | - Delia Goletti
- Department of Epidemiology and Preclinical Research, "L. Spallanzani" National Institute for Infectious Diseases-IRCCS, Rome, Italy
| | - Marc Vocanson
- Centre International de Recherche en Infectiologie, Legionella Pathogenesis Group, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Oana Dumitrescu
- Centre International de Recherche en Infectiologie, Legionella Pathogenesis Group, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, École Normale Supérieure de Lyon, Lyon, France.,Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de Bactériologie, Lyon, France.,Université Lyon 1, Facultés de Médecine et de Pharmacie de Lyon, Lyon, France
| | - Jonathan Hoffmann
- Centre International de Recherche en Infectiologie, Legionella Pathogenesis Group, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, École Normale Supérieure de Lyon, Lyon, France.,Medical and Scientific Department, Fondation Mérieux, Lyon, France
| | - Florence Ader
- Centre International de Recherche en Infectiologie, Legionella Pathogenesis Group, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, École Normale Supérieure de Lyon, Lyon, France.,Hospices Civils de Lyon, Hôpital de la Croix-Rousse, Département des Maladies Infectieuses et Tropicales, Lyon, France
| |
Collapse
|
11
|
Design of a peptide-based vaccine from late stage specific immunogenic cross-reactive antigens of PE/PPE proteins of Mycobacterium tuberculosis. Eur J Pharm Sci 2021; 168:106051. [PMID: 34744006 DOI: 10.1016/j.ejps.2021.106051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/25/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022]
Abstract
Since decades now, Tuberculosis (TB) is among the leading cause of death globally. Innovative and extensive research strategies are necessary to lower TB incidence and achieve the End TB Strategy milestone. Epitope-based vaccine designing and development provides a promising solution with high efficacy and effectiveness. Mining of less studied genes of Mycobacterium tuberculosis (Mtb) is crucial for recognizing potential antigenic peptide epitopes which can mount protective immune response in host. Many proteins from ESX associated Proline-Glutamate (PE)/ Proline-Proline-Glutamate (PPE) family are virulence factors and alter host mediated immune response against the pathogen. In the present study, we have targeted 34 late stage expressing (being expressed at 90 days) PE/PPE proteins of Mtb for prediction and identification of promiscuous, immunogenic and cross-reactive CD4+ T cell specific epitopes. We found a total of 149 promiscuous and cross-reactive epitopes out of which 42 were antigenic as well. Further, we shortlisted top 10 Promiscuous, Cross-reactive CD4+ T cell specific, Antigenic Peptide Epitopes (PCAPEs) which were characterized to be non-allergenic and pro-inflammatory cytokine inducing in nature. These epitopes also showed strong binding affinity for CD8+ T cell restricted Major Histo-compatibility Complex (MHC) class I alleles. Additionally, these PCAPEs showed wide population coverage of 99.6% globally for both MHC class I and class II alleles. Molecular docking studies were conducted to confirm the affinity of these shortlisted peptides for widely occurring MHC alleles. Additionally, we performed codon adaptation and in silico cloning of the recombinant vaccine construct incorporating EsxA (ESAT-6) as an adjuvant and the 10 selected PCAPEs joined by linkers. The recombinant vaccine construct showed strong affinity for Toll-like receptor2 (TLR2) immune receptor in docking studies. In silico prediction based study using C-ImmSim server shows significant population of Th1 type immune cells with memory cells lasting for months in response to our vaccine administration. Since, majority of TB vaccines under clinical trials are antigens expressed at early stages; a combinatorial approach inclusive of peptide epitopes derived from proteins being expressed at all stages could be a promising strategy to design and develop effective TB vaccine. Synthesis and experimental validation of this multi-epitopic recombinant TB vaccine construct may result in an effective vaccine to confer protection against Mtb.
Collapse
|
12
|
Tamburini B, Badami GD, Azgomi MS, Dieli F, La Manna MP, Caccamo N. Role of hematopoietic cells in Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2021; 130:102109. [PMID: 34315045 DOI: 10.1016/j.tube.2021.102109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
Tuberculosis remains one of the most significant causes of mortality worldwide and the current situation shows a re-emergence of TB due to the emergence of new antibiotic-resistant strains and the widespread of disease caused by immunodeficiencies. For these reasons, a big effort is made to improve the therapeutic strategies against Mycobacterium tuberculosis and to perform new therapeutic and diagnostic strategies. This review analyzes the various hematopoietic populations, their role and the different changes they undergo during Mycobacterium tuberculosis infection or disease. We have examined the population of lymphocytes, monocytes, neutrophils, eosinophils and platelets, in orderto understand how each of them is modulated during the course of infection/disease. In this way it will be possible to highlight the correlations between these cell populations and the different stages of tubercular infection. In fact, Mycobacterium tuberculosis is able to influence both proliferation and differentiation of hematopoietic stem cells. Several studies have highlighted that Mycobacterium tuberculosis can also infect progenitor cells in the bone marrow during active disease driving towards an increase of myeloid differentiation. This review focuses how the different stages of tubercular infection could impact on the different hematopoietic populations, with the aim to correlate the changes of different populations as biomarkers useful to discriminate infection from disease and to evaluate the effectiveness of new therapies.
Collapse
Affiliation(s)
- Bartolo Tamburini
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Italy; Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.); University of Palermo, Palermo 90127, Italy
| | - Giusto Davide Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Italy; Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.); University of Palermo, Palermo 90127, Italy
| | - Mojtaba Shekarkar Azgomi
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Italy; Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.); University of Palermo, Palermo 90127, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Italy; Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.); University of Palermo, Palermo 90127, Italy
| | - Marco Pio La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Italy; Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.); University of Palermo, Palermo 90127, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Italy; Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.); University of Palermo, Palermo 90127, Italy.
| |
Collapse
|
13
|
Jagadeb M, Pattanaik KP, Rath SN, Sonawane A. Identification and evaluation of immunogenic MHC-I and MHC-II binding peptides from Mycobacterium tuberculosis. Comput Biol Med 2020; 130:104203. [PMID: 33450502 DOI: 10.1016/j.compbiomed.2020.104203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 11/18/2022]
Abstract
Due to several limitations of the only available BCG vaccine, to generate adequate protective immune responses, it is important to develop potent and cost-effective vaccines against tuberculosis (TB). In this study, we have used an immune-informatics approach to identify potential peptide based vaccine targets against TB. The proteome of Mycobacterium tuberculosis (Mtb), the causative agent of TB, was analyzed for secretory or surface localized antigenic proteins as potential vaccine candidates. The T- and B-cell epitopes as well as MHC molecule binding efficiency were identified and mapped in the modelled structures of the selected proteins. Based on antigenicity score and molecular dynamic simulation (MD) studies two peptides namely Pep-9 and Pep-15 were analyzed, modelled and docked with MHC-I and MHC-II structures. Both peptides exhibited no cytotoxicity and were able to induce proinflammatory cytokine secretion in stimulated macrophages. The molecular docking, MD and in-vitro studies of the predicted B and T-cell epitopes of Pep-9 and Pep-15 peptides with the modelled MHC structures exhibited strong binding affinity and antigenic properties, suggesting that the complex is stable, and that these peptides can be considered as a potential candidates for the development of vaccine against TB.
Collapse
Affiliation(s)
- Manaswini Jagadeb
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India.
| | | | - Surya Narayan Rath
- Department of Bioinformatics, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India.
| | - Avinash Sonawane
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India; Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore (IIT Indore), Simrol, Madhya Pradesh, India.
| |
Collapse
|
14
|
Diverse immune environments in human lung tuberculosis granulomas assessed by quantitative multiplexed immunofluorescence. Mod Pathol 2020; 33:2507-2519. [PMID: 32591586 DOI: 10.1038/s41379-020-0600-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 01/07/2023]
Abstract
The precise nature of the local immune responses in lung tuberculosis (TB) granulomas requires a comprehensive understanding of their environmental complexities. At its most basic level, a granuloma is a compact, organized immune aggregate of macrophages surrounded by myeloid, B and T cells. We established two complementary multiplex immunolabeling panels to simultaneously evaluate the myeloid and lymphocytic contexture of 14 human lung TB granulomas in formalin-fixed paraffin-embedded tissue samples. We observed diverse CD3+ and CD8+ T-cell and CD20+ B lymphocyte compositions of the granuloma immune environment and a relatively homogeneous distribution of all myeloid cells. We also found significant associations between CD8+ T-cell densities and the myeloid marker CD11b and phagocytic cell marker CD68. In addition, significantly more CD68+ macrophages and CD8+ T cells were found in Mycobacterium tuberculosis-infected granulomas, as detected by Ziehl-Neelsen staining. FOXP3 expression was predominately found in a small subset of CD4+ T cells in different granulomas. As the success or failure of each granuloma is determined by the immune response within that granuloma at a local and not a systemic level, we attempted to identify the presence of reactive T cells based on expression of the T-cell activation marker CD137 (4-1BB) and programmed cell death-1 (PD-1). Only a small fraction of the CD4+ and CD8+ T cells expressed PD-1. CD137 expression was found only in a very small fraction of the CD4+ T cells in two granulomas. Our results also showed that multinucleated giant cells showed strong PD-L1 but not CTLA-4 membrane staining. This study offers new insights into the heterogeneity of immune cell infiltration in lung TB granulomas, suggesting that each TB granuloma represents a unique immune environment that might be independently influenced by the local adaptive immune response, bacterial state, and overall host disease status.
Collapse
|
15
|
Kathamuthu GR, Moideen K, Sridhar R, Baskaran D, Babu S. Diminished Frequencies of Cytotoxic Marker Expressing T- and NK Cells at the Site of Mycobacterium tuberculosis Infection. Front Immunol 2020; 11:585293. [PMID: 33101317 PMCID: PMC7546427 DOI: 10.3389/fimmu.2020.585293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/07/2020] [Indexed: 11/25/2022] Open
Abstract
Tuberculous lymphadenitis (TBL) individuals exhibit reduced frequencies of CD8+ T cells expressing cytotoxic markers in peripheral blood. However, the frequencies of cytotoxic marker expressing CD4+, CD8+ T cells, and NK cells at the site of infection is not known. Therefore, we measured the baseline and mycobacterial antigen specific frequencies of cytotoxic markers expressing CD4+, CD8+ T cells, and NK cells in the LN (n = 18) and whole blood (n = 10) of TBL individuals. TBL LN is associated with lower frequencies of CD4+ T cells expressing cytotoxic markers (Granzyme B, CD107a) compared to peripheral blood at baseline and in response to PPD, ESAT-6, and CFP-10 antigen stimulation. Similarly, lower frequencies of CD8+ T cells expressing cytotoxic markers (Perforin, Granzyme B, and CD107a) were also present in the TBL LN at baseline and following (except perforin) antigen stimulation. Finally, at baseline and after antigen (PPD, ESAT-6, and CFP-10) stimulation, frequencies of NK cells expressing cytotoxic markers were also significantly lower in TBL LN compared to whole blood. Hence, TBL is characterized by diminished frequencies of cytotoxic marker expressing CD4+, CD8+ T cells, and NK cells at the site of infection, which might reflect the lack of protective immune responses at the site of Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Gokul Raj Kathamuthu
- International Center for Excellence in Research, National Institutes of Health, National Institute for Research in Tuberculosis, Chennai, India.,National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | - Kadar Moideen
- International Center for Excellence in Research, National Institutes of Health, National Institute for Research in Tuberculosis, Chennai, India
| | | | - Dhanaraj Baskaran
- National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | - Subash Babu
- International Center for Excellence in Research, National Institutes of Health, National Institute for Research in Tuberculosis, Chennai, India.,Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
16
|
Litvinov IS, Dolgikh DA. Analysis of the Healthy Subject Response to Prolonged Contact with Tuberculosis Patients. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2019; 488:153-155. [PMID: 31732902 DOI: 10.1134/s001249661905003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 11/22/2022]
Abstract
Prolonged contact of healthy subjects with Mycobacterium tuberculosis can change their blood formula and immune status, thus reflecting adaptive reactions to constant antigenic load. The peripheral blood analysis of health care workers in a tuberculosis hospital demonstrates changes in cell populations which prevent development of tuberculosis, in particular, CD4+ Т cells and CD3+ Т cells. It is shown that the number of the memory CD4+ Т cells specific to M.tuberculosis antigens which produce interferon gamma depends on the duration of work contact with tuberculosis patients. The use of health care workers' blood characteristics as a control for tuberculosis patients is discussed.
Collapse
Affiliation(s)
- I S Litvinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - D A Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
17
|
Hartmann N, McMurtrey C, Sorensen ML, Huber ME, Kurapova R, Coleman FT, Mizgerd JP, Hildebrand W, Kronenberg M, Lewinsohn DM, Harriff MJ. Riboflavin Metabolism Variation among Clinical Isolates of Streptococcus pneumoniae Results in Differential Activation of Mucosal-associated Invariant T Cells. Am J Respir Cell Mol Biol 2019; 58:767-776. [PMID: 29356555 DOI: 10.1165/rcmb.2017-0290oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Streptococcus pneumoniae is an important bacterial pathogen that causes a range of noninvasive and invasive diseases. The mechanisms underlying variability in the ability of S. pneumoniae to transition from nasopharyngeal colonization to disease-causing pathogen are not well defined. Mucosal-associated invariant T (MAIT) cells are prevalent in mucosal tissues such as the airways and are believed to play an important role in the early response to infection with bacterial pathogens. The ability of MAIT cells to recognize and contain infection with S. pneumoniae is not known. In the present study, we analyzed MAIT-cell responses to infection with clinical isolates of S. pneumoniae serotype 19A, a serotype linked to invasive pneumococcal disease. We found that although MAIT cells were capable of responding to human dendritic and airway epithelial cells infected with S. pneumoniae, the magnitude of response to different serotype 19A isolates was determined by genetic differences in the expression of the riboflavin biosynthesis pathway. MAIT-cell release of cytokines correlated with differences in the ability of MAIT cells to respond to and control S. pneumoniae in vitro and in vivo in a mouse challenge model. Together, these results demonstrate first that there are genetic differences in riboflavin metabolism among clinical isolates of the same serotype and second that these likely determine MAIT-cell function in response to infection with S. pneumoniae. These differences are critical when considering the role that MAIT cells play in early responses to pneumococcal infection and determining whether invasive disease will develop.
Collapse
Affiliation(s)
- Nadine Hartmann
- 1 La Jolla Institute for Allergy and Immunology, San Diego, California
| | - Curtis McMurtrey
- 2 Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Michelle L Sorensen
- 3 Department of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon
| | - Megan E Huber
- 3 Department of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon
| | - Regina Kurapova
- 3 Department of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon
| | - Fadie T Coleman
- 4 Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts; and
| | - Joseph P Mizgerd
- 4 Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts; and
| | - William Hildebrand
- 2 Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | - David M Lewinsohn
- 3 Department of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon.,5 VA Portland Health Care System, Portland, Oregon
| | - Melanie J Harriff
- 3 Department of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon.,5 VA Portland Health Care System, Portland, Oregon
| |
Collapse
|
18
|
Karbalaei Zadeh Babaki M, Taghiabadi M, Soleimanpour S, Saleh Moghadam M, Mosavat A, Amini AA, Mohammadi A, Rezaee SA. Mycobacterium tuberculosis Ag85b:hfcγ1 recombinant fusion protein as a selective receptor-dependent delivery system for antigen presentation. Microb Pathog 2019; 129:68-73. [DOI: 10.1016/j.micpath.2019.01.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 02/03/2023]
|
19
|
Litvinov IS, Dolgich DA. An Analysis of Adaptive Reactions in Healthy Subjects Who Have Persistent and Prolonged Contact with Tuberculosis Patients. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Yang L, Ji Y, Chen L, Li M, Wu F, Hu J, Jiang J, Cui X, Chen Y, Pang L, Wei Y, Li F. Genetic variability in LMP2 and LMP7 is associated with the risk of esophageal squamous cell carcinoma in the Kazakh population but is not associated with HPV infection. PLoS One 2017; 12:e0186319. [PMID: 29073155 PMCID: PMC5657974 DOI: 10.1371/journal.pone.0186319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/28/2017] [Indexed: 02/06/2023] Open
Abstract
The Kazakh population in Xinjiang Province in northwestern China exhibits a high incidence of esophageal squamous cell carcinoma (ESCC). Although the etiology of esophageal carcinoma (EC) has not been elucidated, there are reports of the involvement of an immunologic mechanism. In the current study, 268 Kazakh ESCC patients and 500 age- and sex-matched control subjects were recruited. DNA was extracted from paraffin-embedded tumor specimens from the patients and peripheral blood lymphocytes from the controls and used for LMP2/LMP7 genotyping. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis was performed to detect LMP2/LMP7 gene single-nucleotide polymorphisms (SNPs). We found a clear increased risk of ESCC in the Kazakh population for the heterozygous LMP2 R/C genotype and the homozygous C/C genotype (OR = 1.470, 95%CI = 1.076–2.008, p = 0.015 forLMP2R/C; OR = 2.048, 95% CI = 1.168–3.591, p = 0.011 for LMP2 C/C). Conversely, the heterozygous LMP7 Q/K polymorphism was found to decrease the risk of ESCC in this population (OR = 0.421, 95% CI = 0.286–0.621, p = 8.83×10−6). Moreover, LMP2 R/C+C/C genotype was associated with increased tumor invasion depth (p = 0.041). Haplotype analysis showed that haplotype A, which includes wild-type homozygous LMP2/TAP1 and mutant LMP7, decreases susceptibility to ESCC in the Kazakh population; in contrast, haplotype E, which includes wild-type homozygous LMP2/LMP7/TAP1, acts as a risk factor for increased susceptibility to ESCC. This is the first study to report that the heterozygous LMP2 R/C and homozygous C/C genotypes increase susceptibility to ESCC in the Kazakh population and that the heterozygous LMP7 Q/K genotype decreases susceptibility to ESCC in this population. Nevertheless, neither LMP2 nor LMP7 was associated with human papillomavirus (HPV) infection. Understanding LMP2/LMP7 genetic variability will provide a new therapeutic perspective for Kazakh patients with ESCC.
Collapse
Affiliation(s)
- Lan Yang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yu Ji
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Ling Chen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Mei Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Fei Wu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jianming Hu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jinfang Jiang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xiaobin Cui
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yunzhao Chen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Lijuan Pang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yutao Wei
- The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Pathology, Beijing ChaoYang Hospital, Capital Medical University, Beijing, China
- * E-mail:
| |
Collapse
|
21
|
Fløe A, Løppke C, Hilberg O, Wejse C, Brix L, Jacobsen K. Development of an epitope panel for consistent identification of antigen-specific T-cells in humans. Immunology 2017; 152:298-307. [PMID: 28564390 DOI: 10.1111/imm.12769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 11/27/2022] Open
Abstract
We aimed to establish a panel of MHC-peptide multimers suitable as a positive control in the detection of HLA A*0201 restricted antigen specific T cells (ASTC) by flow cytometry. MHC Dextramers were loaded with HLA A*0201 binding peptides from viral antigens and melanoma targets identified from a literature search and in silico prediction. Peripheral blood mononuclear cells (PBMC) from healthy donors were analysed with the MHC Dextramers using flow cytometry. The best performing epitopes were tested on PBMC from patients undergoing testing for Mycobacterium tuberculosis infection to assess the coverage of this epitope panel. Of 21 candidate epitopes, ASTC could be detected against 12 (57·1%) in at least one of 18 healthy blood donors. Reactivity to two or more epitopes was seen in 17 of the 18 donors (94·4%). We selected the six best-performing epitopes and demonstrated a positive response in 42 (97·7%) of 43 patient samples (healthy, latent and active M. tuberculosis infection). The selected panel of six antigenic epitopes sufficed as a positive control in the detection of ASTC in HLA A*0201. Performance was robust in different stages of latent and active M. tuberculosis infection, indicating reliability also during infection.
Collapse
Affiliation(s)
- Andreas Fløe
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark.,Immudex ApS, Copenhagen, Denmark
| | | | - Ole Hilberg
- University of Southern Denmark, Odense, Denmark.,Department of Respiratory Medicine, Sygehus Lillabaelt, Vejle, Denmark
| | - Christian Wejse
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.,GloHAU Centre for Global Health, Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
22
|
Kumar Nathella P, Babu S. Influence of diabetes mellitus on immunity to human tuberculosis. Immunology 2017; 152:13-24. [PMID: 28543817 DOI: 10.1111/imm.12762] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes mellitus(DM) is a major risk factor for the development of active pulmonary tuberculosis (TB), with development of DM pandemic in countries where TB is also endemic. Understanding the impact of DM on TB and the determinants of co-morbidity is essential in responding to this growing public health problem with improved therapeutic approaches. Despite the clinical and public health significance posed by the dual burden of TB and DM, little is known about the immunological and biochemical mechanisms of susceptibility. One possible mechanism is that an impaired immune response in patients with DM facilitates either primary infection with Mycobacterium tuberculosis or reactivation of latent TB. Diabetes is associated with immune dysfunction and alterations in the components of the immune system, including altered levels of specific cytokines and chemokines. Some effects of DM on adaptive immunity that are potentially relevant to TB defence have been identified in humans. In this review, we summarize current findings regarding the alterations in the innate and adaptive immune responses and immunological mechanisms of susceptibility of patients with DM to M. tuberculosis infection and disease.
Collapse
Affiliation(s)
- Pavan Kumar Nathella
- National Institutes of Health-International Centre for Excellence in Research, Chennai, India.,National Institute for Research in Tuberculosis, Chennai, India
| | - Subash Babu
- National Institutes of Health-International Centre for Excellence in Research, Chennai, India.,Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Bian Y, Shang S, Siddiqui S, Zhao J, Joosten SA, Ottenhoff THM, Cantor H, Wang CR. MHC Ib molecule Qa-1 presents Mycobacterium tuberculosis peptide antigens to CD8+ T cells and contributes to protection against infection. PLoS Pathog 2017; 13:e1006384. [PMID: 28475642 PMCID: PMC5435364 DOI: 10.1371/journal.ppat.1006384] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/17/2017] [Accepted: 04/26/2017] [Indexed: 11/18/2022] Open
Abstract
A number of nonclassical MHC Ib molecules recognizing distinct microbial antigens have been implicated in the immune response to Mycobacterium tuberculosis (Mtb). HLA-E has been identified to present numerous Mtb peptides to CD8+ T cells, with multiple HLA-E-restricted cytotoxic T lymphocyte (CTL) and regulatory T cell lines isolated from patients with active and latent tuberculosis (TB). In other disease models, HLA-E and its mouse homolog Qa-1 can act as antigen presenting molecules as well as regulators of the immune response. However, it is unclear what precise role(s) HLA-E/Qa-1 play in the immune response to Mtb. In this study, we found that murine Qa-1 can bind and present Mtb peptide antigens to CD8+ T effector cells during aerosol Mtb infection. Further, mice lacking Qa-1 (Qa-1-/-) were more susceptible to high-dose Mtb infection compared to wild-type controls, with higher bacterial burdens and increased mortality. The increased susceptibility of Qa-1-/- mice was associated with dysregulated T cells that were more activated and produced higher levels of pro-inflammatory cytokines. T cells from Qa-1-/- mice also had increased expression of inhibitory and apoptosis-associated cell surface markers such as CD94/NKG2A, KLRG1, PD-1, Fas-L, and CTLA-4. As such, they were more prone to cell death and had decreased capacity in promoting the killing of Mtb in infected macrophages. Lastly, comparing the immune responses of Qa-1 mutant knock-in mice deficient in either Qa-1-restricted CD8+ Tregs (Qa-1 D227K) or the inhibitory Qa-1-CD94/NKG2A interaction (Qa-1 R72A) with Qa-1-/- and wild-type controls indicated that both of these Qa-1-mediated mechanisms were involved in suppression of the immune response in Mtb infection. Our findings reveal that Qa-1 participates in the immune response to Mtb infection by presenting peptide antigens as well as regulating immune responses, resulting in more effective anti-Mtb immunity. The disease tuberculosis (TB) is caused by the microbe Mycobacterium tuberculosis (Mtb), and remains a major public health concern. More research is needed to understand the diverse immune responses against Mtb to develop better vaccines. Mouse Qa-1 and its human counterpart HLA-E are nonclassical MHC I molecules that can activate or inhibit immune responses in a variety of diseases. However, their role during the immune response to Mtb remains unknown. We found that Qa-1 can present Mtb peptides to activate CD8+ T effector cells during aerosol Mtb infection. Further, Mtb-infected mice that lacked Qa-1 (Qa-1-/-) had higher numbers of bacteria and died more often than infected mice that expressed Qa-1 (Qa-1+/+). The lack of Qa-1 results in over-activation of the immune response upon infection, which is less efficient in controlling Mtb. Using mice expressing different mutant forms of Qa-1, we showed that Qa-1 can regulate immune responses against Mtb through the interaction with inhibitory CD94/NKG2A receptors as well as the activation of regulatory CD8+ T cells. We believe our study sheds light on the diverse mechanisms at play in generating protective immune responses against Mtb and will inform future mouse and human studies.
Collapse
Affiliation(s)
- Yao Bian
- Department of Microbiology and Immunology, Feinberg School of Medicine Northwestern University, Chicago, Illinois, United States of America
| | - Shaobin Shang
- Department of Microbiology and Immunology, Feinberg School of Medicine Northwestern University, Chicago, Illinois, United States of America
| | - Sarah Siddiqui
- Department of Microbiology and Immunology, Feinberg School of Medicine Northwestern University, Chicago, Illinois, United States of America
| | - Jie Zhao
- Department of Microbiology and Immunology, Feinberg School of Medicine Northwestern University, Chicago, Illinois, United States of America
| | - Simone A. Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Harvey Cantor
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School Boston, Massachusetts, United States of America
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Feinberg School of Medicine Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
24
|
Abstract
Peptide-specific conventional T cells have been major targets for designing most antimycobacterial vaccines. Immune responses mediated by conventional T cells exhibit a delayed onset upon primary infection and are highly variable in different human populations. In contrast, innate-like T cells quickly respond to pathogens and display effector functions without undergoing extensive clonal expansion. Specifically, the activation of innate-like T cells depends on the promiscuous interaction of highly conserved antigen-presenting molecules, non-peptidic antigens, and likely semi-invariant T cell receptors. In antimicrobial immune responses, mucosal-associated invariant T cells are activated by riboflavin precursor metabolites presented by major histocompatibility complex-related protein I, while lipid-specific T cells including natural killer T cells are activated by lipid metabolites presented by CD1 proteins. Multiple innate-like T cell subsets have been shown to be protective or responsive in mycobacterial infections. Through rapid cytokine secretion, innate-like T cells function in early defense and memory response, offering novel advantages over conventional T cells in the design of anti-tuberculosis strategies.
Collapse
Affiliation(s)
- Shouxiong Huang
- Department of Environmental Health, University of Cincinnati College of Medicine , Cincinnati, OH , USA
| |
Collapse
|
25
|
Schrager LK, Izzo A, Velmurugan K. Immunopathogenesis of tuberculosis and novel mechanisms of vaccine activity. Tuberculosis (Edinb) 2016; 99 Suppl 1:S3-7. [DOI: 10.1016/j.tube.2016.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Yi L, Sasaki Y, Nagai H, Ishikawa S, Takamori M, Sakashita K, Saito T, Fukushima K, Igarashi Y, Aono A, Chikamatsu K, Yamada H, Takaki A, Mori T, Mitarai S. Evaluation of QuantiFERON-TB Gold Plus for Detection of Mycobacterium tuberculosis infection in Japan. Sci Rep 2016; 6:30617. [PMID: 27470684 PMCID: PMC4965764 DOI: 10.1038/srep30617] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/05/2016] [Indexed: 11/21/2022] Open
Abstract
Performance of interferon-γ (IFN-γ) release assays still needs to be improved. The data on the performance of QuantiFERON-TB Gold Plus (QFT-Plus), a new-generation of QFT assay are limited. This study evaluated the diagnostic performance of QFT-Plus, and compared to that of QuantiFERON-TB Gold In-Tube (QFT-GIT). Blood samples were collected from 162 bacteriologically confirmed tuberculosis (TB) patients and 212 Mycobacterium tuberculosis-uninfected volunteers; these samples were then tested with QFT-GIT and QFT-Plus. The IFN-γ concentration of QFT-Plus was lower than that of QFT-GIT in TB patients (p < 0.001). Receiver operating characteristic curves were compared between QFT-GIT and QFT-Plus. Both assays showed area under the curve values over 0.99 without significant difference. Using the conventional cut-off (0.35 IU/mL) for QFT-GIT, QFT-Plus had a lower sensitivity of 91.1% compared to 96.2% (p = 0.008) at its optimum cut-off (0.168 IU/mL) with the same specificity. Moreover, IFN-γ values were significantly reduced with age in QFT-GIT (p = 0.035) but not in QFT-Plus. The diagnostic performance of QFT-Plus was as accurate as that of QFT-GIT despite a lack of TB7.7 antigen and despite the decrease in quantitative values. However, the cut-off value for QFT-Plus should be considered independently from that of QFT-GIT to obtain the best sensitivity without compromising specificity.
Collapse
Affiliation(s)
- Lina Yi
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Kiyose, Japan
- Department of Basic Mycobacteriology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yuka Sasaki
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Hideaki Nagai
- Department of Respiratory Medicine, National Hospital Organization Tokyo National Hospital, Kiyose, Japan
| | - Satoru Ishikawa
- Department of Respiratory Medicine, National Hospital Organization Chiba Higashi National Hospital, Chiba, Japan
| | - Mikio Takamori
- Department of Respiratory Medicine, Tokyo Metropolitan Tama Medical Centre, Fuchu, Japan
| | - Kentaro Sakashita
- Department of Basic Mycobacteriology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Respiratory Medicine, Tokyo Metropolitan Tama Medical Centre, Fuchu, Japan
| | - Takefumi Saito
- Department of Respiratory Medicine, National Hospital Organization Ibaraki Higashi National Hospital, Ibaraki, Japan
| | - Kiyoyasu Fukushima
- Department of Respiratory Medicine, Nagasaki Genbaku Isahaya Hospital, Nagasaki, Japan
| | - Yuriko Igarashi
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Akio Aono
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Kinuyo Chikamatsu
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Hiroyuki Yamada
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Akiko Takaki
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Toru Mori
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
- Department of Basic Mycobacteriology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
27
|
Hussain Bhat K, Mukhopadhyay S. Macrophage takeover and the host-bacilli interplay during tuberculosis. Future Microbiol 2016; 10:853-72. [PMID: 26000654 DOI: 10.2217/fmb.15.11] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Macrophages are key type of antigen-presenting cells that arbitrate the first line of defense against various intracellular pathogens. Tuberculosis, both pulmonary and extrapulmonary, is an infectious disease of global concern caused by Mycobacterium tuberculosis. The bacillus is a highly successful pathogen and has acquired various strategies to downregulate critical innate-effector immune responses of macrophages, such as phagosome-lysosome fusion, autophagy, induction of cytokines, generation of reactive oxygen and nitrogen species and antigen presentation. In addition, the bacilli also subvert acquired immunity. In this review, we aim to provide an overview of different antimycobacterial immune functions of macrophage and the strategies adopted by the bacilli to manipulate these functions to favor its survival and replication inside the host.
Collapse
|
28
|
Kumar NP, Moideen K, George PJ, Dolla C, Kumaran P, Babu S. Impaired Cytokine but Enhanced Cytotoxic Marker Expression in Mycobacterium tuberculosis-Induced CD8+ T Cells in Individuals With Type 2 Diabetes and Latent Mycobacterium tuberculosis Infection. J Infect Dis 2015; 213:866-70. [PMID: 26486635 DOI: 10.1093/infdis/jiv484] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/02/2015] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes mellitus (DM) is a risk factor for tuberculosis among individuals with latent Mycobacterium tuberculosis infection. To explore the influence of DM on CD8(+) T-cell responses during latent M. tuberculosis infection, we estimated the cytokine and cytotoxic marker expression pattern in individuals with latent M. tuberculosis infection with DM and those with latent M. tuberculosis infection without DM. Among individuals with latent M. tuberculosis infection, those with DM had diminished frequencies of CD8(+) T-helper type 1 (Th1), Th2, and Th17 cells following stimulation by M. tuberculosis antigen and enhanced frequencies of CD8(+) T cells expressing cytotoxic markers, compared with those without DM. Thus, our results suggest that coincident DM modulates CD8(+) T-cell function during latent M. tuberculosis infection.
Collapse
Affiliation(s)
- Nathella Pavan Kumar
- National Institutes of Health-National Institute for Research in Tuberculosis-International Center for Excellence in Research
| | - Kadar Moideen
- National Institutes of Health-National Institute for Research in Tuberculosis-International Center for Excellence in Research
| | - Parakkal Jovvian George
- National Institutes of Health-National Institute for Research in Tuberculosis-International Center for Excellence in Research
| | | | - Paul Kumaran
- National Institute for Research in Tuberculosis, Chennai, India
| | - Subash Babu
- National Institutes of Health-National Institute for Research in Tuberculosis-International Center for Excellence in Research
| |
Collapse
|
29
|
Lin PL, Flynn JL. CD8 T cells and Mycobacterium tuberculosis infection. Semin Immunopathol 2015; 37:239-49. [PMID: 25917388 PMCID: PMC4439333 DOI: 10.1007/s00281-015-0490-8] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/06/2015] [Indexed: 12/25/2022]
Abstract
Tuberculosis is primarily a respiratory disease that is caused by Mycobacterium tuberculosis. M. tuberculosis can persist and replicate in macrophages in vivo, usually in organized cellular structures called granulomas. There is substantial evidence for the importance of CD4 T cells in control of tuberculosis, but the evidence for a requirement for CD8 T cells in this infection has not been proven in humans. However, animal model data support a non-redundant role for CD8 T cells in control of M. tuberculosis infection. In humans, infection with this pathogen leads to generation of specific CD8 T cell responses. These responses include classical (MHC Class I restricted) and non-classical CD8 T cells. Here, we discuss the potential roles of CD8 T cells in defense against tuberculosis, and our current understanding of the wide range of CD8 T cell types seen in M. tuberculosis infection.
Collapse
Affiliation(s)
- Philana Ling Lin
- Department of Pediatrics, Division of Infectious Disease, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, PA, 15224, USA
| | | |
Collapse
|
30
|
Human IL-32 expression protects mice against a hypervirulent strain of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2015; 112:5111-6. [PMID: 25820174 DOI: 10.1073/pnas.1424302112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Silencing of interleukin-32 (IL-32) in a differentiated human promonocytic cell line impairs killing of Mycobacterium tuberculosis (MTB) but the role of IL-32 in vivo against MTB remains unknown. To study the effects of IL-32 in vivo, a transgenic mouse was generated in which the human IL-32γ gene is expressed using the surfactant protein C promoter (SPC-IL-32γTg). Wild-type and SPC-IL-32γTg mice were infected with a low-dose aerosol of a hypervirulent strain of MTB (W-Beijing HN878). At 30 and 60 d after infection, the transgenic mice had 66% and 85% fewer MTB in the lungs and 49% and 68% fewer MTB in the spleens, respectively; the transgenic mice also exhibited greater survival. Increased numbers of host-protective innate and adaptive immune cells were present in SPC-IL-32γTg mice, including tumor necrosis factor-alpha (TNFα) positive lung macrophages and dendritic cells, and IFN-gamma (IFNγ) and TNFα positive CD4(+) and CD8(+) T cells in the lungs and mediastinal lymph nodes. Alveolar macrophages from transgenic mice infected with MTB ex vivo had reduced bacterial burden and increased colocalization of green fluorescent protein-labeled MTB with lysosomes. Furthermore, mouse macrophages made to express IL-32γ but not the splice variant IL-32β were better able to limit MTB growth than macrophages capable of producing both. The lungs of patients with tuberculosis showed increased IL-32 expression, particularly in macrophages of granulomas and airway epithelial cells but also B cells and T cells. We conclude that IL-32γ enhances host immunity to MTB.
Collapse
|
31
|
Lindestam Arlehamn CS, Lewinsohn D, Sette A, Lewinsohn D. Antigens for CD4 and CD8 T cells in tuberculosis. Cold Spring Harb Perspect Med 2014; 4:a018465. [PMID: 24852051 DOI: 10.1101/cshperspect.a018465] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis (MTB), represents an important cause of morbidity and mortality worldwide for which an improved vaccine and immunodiagnostics are urgently needed. CD4(+) and CD8(+) T cells play an important role in host defense to TB. Definition of the antigens recognized by these T cells is critical for improved understanding of the immunobiology of TB and for development of vaccines and diagnostics. Herein, the antigens and epitopes recognized by classically HLA class I- and II-restricted CD4(+) and CD8(+) T cells in humans infected with MTB are reviewed. Immunodominant antigens and epitopes have been defined using approaches targeting particular TB proteins or classes of proteins and by genome-wide discovery approaches. Antigens and epitopes recognized by classically restricted CD4(+) and CD8(+) T cells show extensive breadth and diversity in MTB-infected humans.
Collapse
Affiliation(s)
| | - David Lewinsohn
- Oregon Health and Science University, Portland, Oregon 97239 Portland VA Medical Center, Portland, Oregon 97239
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California 92037
| | | |
Collapse
|
32
|
Harriff MJ, Cansler ME, Toren KG, Canfield ET, Kwak S, Gold MC, Lewinsohn DM. Human lung epithelial cells contain Mycobacterium tuberculosis in a late endosomal vacuole and are efficiently recognized by CD8⁺ T cells. PLoS One 2014; 9:e97515. [PMID: 24828674 PMCID: PMC4020835 DOI: 10.1371/journal.pone.0097515] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/16/2014] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is transmitted via inhalation of aerosolized particles. While alveolar macrophages are thought to play a central role in the acquisition and control of this infection, Mtb also has ample opportunity to interact with the airway epithelium. In this regard, we have recently shown that the upper airways are enriched with a population of non-classical, MR1-restricted, Mtb-reactive CD8⁺ T cells (MAIT cells). Additionally, we have demonstrated that Mtb-infected epithelial cells lining the upper airways are capable of stimulating IFNγ production by MAIT cells. In this study, we demonstrate that airway epithelial cells efficiently stimulate IFNγ release by MAIT cells as well as HLA-B45 and HLA-E restricted T cell clones. Characterization of the intracellular localization of Mtb in epithelial cells indicates that the vacuole occupied by Mtb in epithelial cells is distinct from DC in that it acquires Rab7 molecules and does not retain markers of early endosomes such as Rab5. The Mtb vacuole is also heterogeneous as there is a varying degree of association with Lamp1 and HLA-I. Although the Mtb vacuole shares markers associated with the late endosome, it does not acidify, and the bacteria are able to replicate within the cell. This work demonstrates that Mtb infected lung epithelial cells are surprisingly efficient at stimulating IFNγ release by CD8⁺ T cells.
Collapse
Affiliation(s)
- Melanie J. Harriff
- Portland Veterans Administration Medical Center, Portland, Oregon, United States of America
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - Meghan E. Cansler
- Department of Pediatrics, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - Katelynne Gardner Toren
- Department of Pediatrics, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - Elizabeth T. Canfield
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - Stephen Kwak
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - Marielle C. Gold
- Portland Veterans Administration Medical Center, Portland, Oregon, United States of America
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Sciences University, Portland, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - David M. Lewinsohn
- Portland Veterans Administration Medical Center, Portland, Oregon, United States of America
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Sciences University, Portland, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States of America
| |
Collapse
|
33
|
Nair SK, Tomaras GD, Sales AP, Boczkowski D, Chan C, Plonk K, Cai Y, Dannull J, Kepler TB, Pruitt SK, Weinhold KJ. High-throughput identification and dendritic cell-based functional validation of MHC class I-restricted Mycobacterium tuberculosis epitopes. Sci Rep 2014; 4:4632. [PMID: 24755960 PMCID: PMC4894389 DOI: 10.1038/srep04632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/24/2014] [Indexed: 11/12/2022] Open
Abstract
Emergence of drug-resistant strains of the pathogen Mycobacterium tuberculosis (Mtb) and the ineffectiveness of BCG in curtailing Mtb infection makes vaccine development for tuberculosis an important objective. Identifying immunogenic CD8+ T cell peptide epitopes is necessary for peptide-based vaccine strategies. We present a three-tiered strategy for identifying and validating immunogenic peptides: first, identify peptides that form stable complexes with class I MHC molecules; second, determine whether cytotoxic T lymphocytes (CTLs) raised against the whole protein antigen recognize and lyse target cells pulsed with peptides that passed step 1; third, determine whether peptides that passed step 2, when administered in vivo as a vaccine in HLA-A2 transgenic mice, elicit CTLs that lyse target cells expressing the whole protein antigen. Our innovative approach uses dendritic cells transfected with Mtb antigen-encoding mRNA to drive antigen expression. Using this strategy, we have identified five novel peptide epitopes from the Mtb proteins Apa, Mtb8.4 and Mtb19.
Collapse
Affiliation(s)
- Smita K Nair
- 1] Departments of Surgery, Duke University Medical Center, Durham, NC 27710 [2]
| | - Georgia D Tomaras
- 1] Departments of Surgery, Duke University Medical Center, Durham, NC 27710 [2]
| | - Ana Paula Sales
- 1] Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710 [2]
| | - David Boczkowski
- Departments of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Cliburn Chan
- Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710
| | - Kelly Plonk
- Departments of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Yongting Cai
- 1] Departments of Surgery, Duke University Medical Center, Durham, NC 27710 [2]
| | - Jens Dannull
- Departments of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Thomas B Kepler
- 1] Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710 [2]
| | - Scott K Pruitt
- 1] Departments of Surgery, Duke University Medical Center, Durham, NC 27710 [2]
| | - Kent J Weinhold
- Departments of Surgery, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
34
|
Devasundaram S, Deenadayalan A, Raja A. In silicoanalysis of potential human T Cell antigens fromMycobacterium tuberculosisfor the development of subunit vaccines against tuberculosis. Immunol Invest 2014; 43:137-59. [DOI: 10.3109/08820139.2013.857353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
35
|
Mycobacterium tuberculosis subverts the TLR-2-MyD88 pathway to facilitate its translocation into the cytosol. PLoS One 2014; 9:e86886. [PMID: 24475192 PMCID: PMC3903598 DOI: 10.1371/journal.pone.0086886] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/04/2013] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb) has evolved mechanisms to evade its destruction in phagolysosomes, where it successfully survives and replicates within phagocytes. Recent studies have shown that virulent strains of M.tb can translocate from the phagosome into the cytosol of dendritic cells (DC). The molecular mechanisms by which virulent M.tb strains can escape the phagosome remain unknown. Here we show that the virulent M.tb strain H37Rv, but not the vaccine strain Bacille Calmette-Guérin (BCG), escapes from the phagolysosome and enters the cytosol by interfering with the TLR-2-MyD88 signaling pathway. Using H37Rv mutants, we further demonstrate that the region of difference-1 (RD-1) locus and ESAT-6, a gene within the RD-1 locus, play an important role in the capacity of M.tb to migrate from the phagosome to the cytosol of macrophages. H37Rv, BCG, H37RvΔRD1, and H37RvΔESAT6 were able to translocate to the cytosol in macrophages derived from TLR-2- and MyD88-deficient animals, whereas only virulent H37Rv was able to enter the cytosol in macrophages from wild type mice. Therefore, signaling through the TLR-2-MyD88 pathway in macrophages plays an important role in confining M.tb within phagolysomes. Virulent strains of M.tb have evolved mechanisms to subvert this pathway, thus facilitating their translocation to the cytosol and to escape the toxic microenvironment of the phagosome or phagolysosome.
Collapse
|
36
|
Araújo LCC, Aguiar JS, Napoleão TH, Mota FVB, Barros ALS, Moura MC, Coriolano M, Coelho LCBB, Silva TG, Paiva PMG. Evaluation of cytotoxic and anti-inflammatory activities of extracts and lectins from Moringa oleifera seeds. PLoS One 2013; 8:e81973. [PMID: 24349164 PMCID: PMC3857229 DOI: 10.1371/journal.pone.0081973] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/18/2013] [Indexed: 01/03/2023] Open
Abstract
Background The extract from Moringa oleifera seeds is used worldwide, especially in rural areas of developing countries, to treat drinking water. M. oleifera seeds contain the lectins cmol and WSMoL, which are carbohydrate-binding proteins that are able to reduce water turbidity because of their coagulant activity. Studies investigating the ability of natural products to damage normal cells are essential for the safe use of these substances. This study evaluated the cytotoxic and anti-inflammatory properties of the aqueous seed extract, the extract used by population to treat water (named diluted seed extract in this work), and the isolated lectins cmol and WSMoL. Methodology/Principal Findings The data showed that the aqueous seed extract and cmol were potentially cytotoxic to human peripheral blood mononuclear cells, while WSMoL and diluted seed extract were not cytotoxic. The M. oleifera aqueous seed extract and the lectins cmol and WSMoL were weakly/moderately cytotoxic to the NCI-H292, HT-29 and HEp-2 cancer cell lines and were not hemolytic to murine erythrocytes. Evaluation of acute toxicity in mice revealed that the aqueous seed extract (2.000 mg/kg) did not cause systemic toxicity. The aqueous seed extract, cmol and WSMoL (6.25 µg/mL) and diluted seed extract at 50 µg/mL exhibited anti-inflammatory activity on lipopolyssaccharide-stimulated murine macrophages by regulating the production of nitric oxide, TNF-α and IL-1β. The aqueous seed extract reduced leukocyte migration in a mouse model of carrageenan-induced pleurisy; the myeloperoxidase activity and nitric oxide, TNF-α and IL-1β levels were similarly reduced. Histological analysis of the lungs showed that the extract reduced the number of leukocytes. Conclusion/Significance This study shows that the extract prepared according to folk use and WSMoL may be non-toxic to mammalian cells; however, the aqueous seed extract and cmol may be cytotoxic to immune cells which may explain the immunosuppressive potential of the extract.
Collapse
Affiliation(s)
- Larissa Cardoso Corrêa Araújo
- Departamento de Antibióticos, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil
| | - Jaciana Santos Aguiar
- Departamento de Antibióticos, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil
| | - Fernanda Virgínia Barreto Mota
- Departamento de Antibióticos, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil
| | - André Luiz Souza Barros
- Departamento de Antibióticos, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil
| | - Maiara Celine Moura
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil
| | - Marília Cavalcanti Coriolano
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil
| | | | - Teresinha Gonçalves Silva
- Departamento de Antibióticos, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil
- * E-mail:
| | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil
| |
Collapse
|
37
|
Harriff MJ, Burgdorf S, Kurts C, Wiertz EJHJ, Lewinsohn DA, Lewinsohn DM. TAP mediates import of Mycobacterium tuberculosis-derived peptides into phagosomes and facilitates loading onto HLA-I. PLoS One 2013; 8:e79571. [PMID: 24244525 PMCID: PMC3823705 DOI: 10.1371/journal.pone.0079571] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/02/2013] [Indexed: 01/14/2023] Open
Abstract
Processing and presentation of antigen on MHC-I class I molecules serves to present peptides derived from cytosolic proteins to CD8+ T cells. Infection with bacteria that remain in phagosomal compartments, such as Mycobacterium tuberculosis (Mtb), provides a challenge to this immune recognition as bacterial proteins are segregated from the cytosol. Previously we identified the Mtb phagosome itself as an organelle capable of loading MHC Class I molecules with Mtb antigens. Here, we find that the TAP transporter, responsible for importing peptides into the ER for loading in Class I molecules, is both present and functional in Mtb phagosomes. Furthermore, we describe a novel peptide reagent, representing the N-terminal domain of the bovine herpes virus UL49.5 protein, which is capable of specifically inhibiting the lumenal face of TAP. Together, these results provide insight into the mechanism by which peptides from intra-phagosomal pathogens are loaded onto Class I molecules.
Collapse
Affiliation(s)
- Melanie J. Harriff
- Portland VA Medical Center, Portland, Oregon, United States of America
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Sciences University, Portland, Oregon, United States of America
- * E-mail: (DL); (MH)
| | - Sven Burgdorf
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Institutes of Molecular Medicine and Experimental Immunology (IMMEI), University of Bonn, Bonn, Germany
| | - Christian Kurts
- Institutes of Molecular Medicine and Experimental Immunology (IMMEI), University of Bonn, Bonn, Germany
| | - Emmanuel J. H. J. Wiertz
- University Medical Center Utrecht, Utrecht, The Netherlands
- Leiden University Medical Center, Leiden, The Netherlands
| | - Deborah A. Lewinsohn
- Department of Pediatrics, Oregon Health & Sciences University, Portland, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - David M. Lewinsohn
- Portland VA Medical Center, Portland, Oregon, United States of America
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Sciences University, Portland, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States of America
- * E-mail: (DL); (MH)
| |
Collapse
|
38
|
Lewinsohn DM, Swarbrick GM, Cansler ME, Null MD, Rajaraman V, Frieder MM, Sherman DR, McWeeney S, Lewinsohn DA. Human Mycobacterium tuberculosis CD8 T Cell Antigens/Epitopes Identified by a Proteomic Peptide Library. PLoS One 2013; 8:e67016. [PMID: 23805289 PMCID: PMC3689843 DOI: 10.1371/journal.pone.0067016] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 05/17/2013] [Indexed: 12/31/2022] Open
Abstract
Identification of CD8+ T cell antigens/epitopes expressed by human pathogens with large genomes is especially challenging, yet necessary for vaccine development. Immunity to tuberculosis, a leading cause of mortality worldwide, requires CD8+ T cell immunity, yet the repertoire of CD8 antigens/epitopes remains undefined. We used integrated computational and proteomic approaches to screen 10% of the Mycobacterium tuberculosis (Mtb) proteome for CD8 Mtb antigens. We designed a weighting schema based upon a Multiple Attribute Decision Making:framework to select 10% of the Mtb proteome with a high probability of containing CD8+ T cell epitopes. We created a synthetic peptide library consisting of 15-mers overlapping by 11 aa. Using the interferon-γ ELISPOT assay and Mtb-infected dendritic cells as antigen presenting cells, we screened Mtb-specific CD8+ T cell clones restricted by classical MHC class I molecules (MHC class Ia molecules), that were isolated from Mtb-infected humans, against this library. Three novel CD8 antigens were unambiguously identified: the EsxJ family (Rv1038c, Rv1197, Rv3620c, Rv2347c, Rv1792), PE9 (Rv1088), and PE_PGRS42 (Rv2487c). The epitopes are B5701-restricted EsxJ24–34, B3905-restricted PE953–67, and B3514-restricted PE_PGRS4248–56, respectively. The utility of peptide libraries in identifying unknown epitopes recognized by classically restricted CD8+ T cells was confirmed, which can be applied to other intracellular pathogens with large size genomes. In addition, we identified three novel Mtb epitopes/antigens that may be evaluated for inclusion in vaccines and/or diagnostics for tuberculosis.
Collapse
Affiliation(s)
- David M. Lewinsohn
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Sciences University, Portland, Oregon
- Portland Veterans Administration Medical Center, Portland, Oregon
- * E-mail:
| | | | - Meghan E. Cansler
- Department of Pediatrics, Oregon Health & Sciences University, Portland, Oregon
| | - Megan D. Null
- Department of Pediatrics, Oregon Health & Sciences University, Portland, Oregon
| | - Veena Rajaraman
- Portland Veterans Administration Medical Center, Portland, Oregon
- Oregon Cancer Institute, Oregon Health & Sciences University, Portland, Oregon
| | - Marisa M. Frieder
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Sciences University, Portland, Oregon
- Portland Veterans Administration Medical Center, Portland, Oregon
| | | | - Shannon McWeeney
- Oregon Cancer Institute, Oregon Health & Sciences University, Portland, Oregon
| | | |
Collapse
|
39
|
Espinosa E, Romero-Rodríguez DP, Cantoral-Díaz MT, Reyes-Terán G. Transient expansion of activated CD8(+) T cells characterizes tuberculosis-associated immune reconstitution inflammatory syndrome in patients with HIV: a case control study. JOURNAL OF INFLAMMATION-LONDON 2013; 10:21. [PMID: 23688318 PMCID: PMC3679878 DOI: 10.1186/1476-9255-10-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 05/13/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND CD4(+) T cell activation indicators have been reported to be a common phenomenon underlying diverse manifestations of immune reconstitution inflammatory syndrome (IRIS). However, we have found that a high frequency of circulating CD8(+) T cells is a specific risk factor for mycobacterial IRIS. Therefore, we investigated whether CD8(+) T cells from patients who develop TB IRIS were specifically activated. METHODS We obtained PBMCs from HIV+ patients prior to and 4, 8, 12, 24, 52 and 104 weeks after initiating antiretroviral therapy. CD38 and HLADR expression on naive, central memory and effector memory CD8(+) and CD4(+) T cells were determined by flow cytometry. Absolute counts and frequencies of CD8(+) T cell subsets were compared between patients who developed TB IRIS, who developed other IRIS forms and who remained IRIS-free. RESULTS TB IRIS patients showed significantly higher counts of naive CD8(+) T cells than the other groups at most time points, with a contraction of the effector memory subpopulation occurring later in the follow-up period. Activated (CD38(+) HLADR(+)) CD8(+) T cells from all groups decreased with treatment but transiently peaked in TB IRIS patients. This increase was due to an increase in activated naive CD8(+) T cell counts during IRIS. Additionally, the CD8(+) T cell subpopulations of TB IRIS patients expressed HLADR without CD38 more frequently and expressed CD38 without HLADR less frequently than cells from other groups. CONCLUSIONS CD8(+) T cell activation is specifically relevant to TB IRIS. Different IRIS forms may involve different alterations in T cell subsets, suggesting different underlying inflammatory processes.
Collapse
Affiliation(s)
- Enrique Espinosa
- Center for Infectious Diseases Research (CIENI), Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calzada de Tlalpan 4502, 14080 México, D.F.Mexico.,Present address: Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calzada de Tlalpan 4502, 14080 México, D.F.Mexico
| | - Dámaris P Romero-Rodríguez
- Center for Infectious Diseases Research (CIENI), Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calzada de Tlalpan 4502, 14080 México, D.F.Mexico.,Present address: Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calzada de Tlalpan 4502, 14080 México, D.F.Mexico
| | - María-Teresa Cantoral-Díaz
- Center for Infectious Diseases Research (CIENI), Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calzada de Tlalpan 4502, 14080 México, D.F.Mexico
| | - Gustavo Reyes-Terán
- Center for Infectious Diseases Research (CIENI), Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calzada de Tlalpan 4502, 14080 México, D.F.Mexico
| |
Collapse
|
40
|
Kato G, Kondo H, Aoki T, Hirono I. Mycobacterium bovis BCG vaccine induces non-specific immune responses in Japanese flounder against Nocardia seriolae. FISH & SHELLFISH IMMUNOLOGY 2012; 33:243-250. [PMID: 22609413 DOI: 10.1016/j.fsi.2012.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/06/2012] [Indexed: 06/01/2023]
Abstract
Nocardiosis caused by Nocardia seriolae has been causing severe loss of fish production, so that an effective vaccine is urgently needed. Mycobacterium bovis BCG (BCG) is a live attenuated vaccine for tuberculosis, which is effective against various infectious diseases including nocardiosis in mammals. In this study, the protective efficacy of BCG against N. seriolae was evaluated in Japanese flounder Paralichthys olivaceus and antigen-specific immune responses induced in BCG vaccinated fish were investigated. Cumulative mortality of BCG-vaccinated fish was 21.4% whereas that of PBS-injected fish was 56.7% in N. seriolae challenge. However, gene expression level of IFN-γ was only slightly up-regulated in BCG-vaccinated fish after injection of N. seriolae antigen. In order to reveal non-specific immune responses induced by BCG vaccination, transcriptome of the kidney after BCG vaccination was investigated using oligo DNA microarray. Gene expression levels of antimicrobial peptides such as C-type and G-type lysozyme were significantly up-regulated after BCG vaccination. Consistently, BCG vaccination appeared to increase the bacteriolysis activity of the serum against Micrococcus luteus and N. seriolae. These results suggest that BCG-vaccinated Japanese flounder fight N. seriolae infection mainly by non-specific immune responses such as by the production of bacteriolytic lysozymes.
Collapse
Affiliation(s)
- Goshi Kato
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
41
|
Bold TD, Ernst JD. CD4+ T cell-dependent IFN-γ production by CD8+ effector T cells in Mycobacterium tuberculosis infection. THE JOURNAL OF IMMUNOLOGY 2012; 189:2530-6. [PMID: 22837486 DOI: 10.4049/jimmunol.1200994] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Both CD4+ and CD8+ T cells contribute to immunity to tuberculosis, and both can produce the essential effector cytokine IFN-γ. However, the precise role and relative contribution of each cell type to in vivo IFN-γ production are incompletely understood. To identify and quantitate the cells that produce IFN-γ at the site of Mycobacterium tuberculosis infection in mice, we used direct intracellular cytokine staining ex vivo without restimulation. We found that CD4+ and CD8+ cells were predominantly responsible for production of this cytokine in vivo, and we observed a remarkable linear correlation between the fraction of CD4+ cells and the fraction of CD8+ cells producing IFN-γ in the lungs. In the absence of CD4+ cells, a reduced fraction of CD8+ cells was actively producing IFN-γ in vivo, suggesting that CD4+ effector cells are continually required for optimal IFN-γ production by CD8+ effector cells. Accordingly, when infected mice were treated i.v. with an MHC-II-restricted M. tuberculosis epitope peptide to stimulate CD4+ cells in vivo, we observed rapid activation of both CD4+ and CD8+ cells in the lungs. Indirect activation of CD8+ cells was dependent on the presence of CD4+ cells but independent of IFN-g responsiveness of the CD8+ cells. These data provide evidence that CD4+ cell deficiency impairs IFN-γ production by CD8+ effector cells and that ongoing cross-talk between distinct effector T cell types in the lungs may contribute to a protective immune response against M. tuberculosis. Conversely, defects in these interactions may contribute to susceptibility to tuberculosis and other infections.
Collapse
Affiliation(s)
- Tyler D Bold
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
42
|
Nemeth J, Winkler HM, Zwick RH, Müller C, Rumetshofer R, Boeck L, Burghuber OC, Winkler S. Peripheral T cell cytokine responses for diagnosis of active tuberculosis. PLoS One 2012; 7:e35290. [PMID: 22523581 PMCID: PMC3327656 DOI: 10.1371/journal.pone.0035290] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 03/14/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND A test for diagnosis of active Tuberculosis (TB) from peripheral blood could tremendously improve clinical management of patients. METHODS Of 178 prospectively enrolled patients with possible TB, 60 patients were diagnosed with pulmonary and 27 patients with extrapulmonary TB. The frequencies of Mycobacterium tuberculosis (MTB) specific CD4(+) T cells and CD8(+) T cells producing cytokines were assessed using overnight stimulation with purified protein derivate (PPD) or early secretory antigenic target (ESAT)-6, respectively. RESULTS Among patients with active TB, an increased type 1 cytokine profile consisting of mainly CD4(+) T cell derived interferon (IFN)-γ was detectable. Despite contributing to the cytokine profile as a whole, the independent diagnostic performance of one cytokine producing T cells as well as polyfunctional T cells was poor. IFN-γ/Interleukin(IL)-2 cytokine ratios discriminated best between active TB and other diseases. CONCLUSION T cells producing one cytokine and polyfunctional T cells have a limited role in diagnosis of active TB. The significant shift from a "memory type" to an "effector type" cytokine profile may be useful for further development of a rapid immune-diagnostic tool for active TB.
Collapse
Affiliation(s)
- Johannes Nemeth
- Department of Internal Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Heide-Maria Winkler
- Department of Internal Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Ralph H. Zwick
- Department of Respiratory and Critical Care Medicine, Otto-Wagner-Hospital, Vienna, Austria
| | - Catharina Müller
- Department of Internal Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Rudolf Rumetshofer
- Department of Respiratory and Critical Care Medicine, Otto-Wagner-Hospital, Vienna, Austria
| | - Lucas Boeck
- Clinic of Pulmonary Medicine and Respiratory Cell Research, University Hospital Basel, Basel, Switzerland
| | - Otto C. Burghuber
- Department of Respiratory and Critical Care Medicine, Otto-Wagner-Hospital, Vienna, Austria
| | - Stefan Winkler
- Department of Internal Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
43
|
Both CD4⁺ and CD8⁺ lymphocytes participate in the IFN-γ response to filamentous hemagglutinin from Bordetella pertussis in infants, children, and adults. Clin Dev Immunol 2012; 2012:795958. [PMID: 22550536 PMCID: PMC3329133 DOI: 10.1155/2012/795958] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/23/2011] [Accepted: 12/23/2011] [Indexed: 01/06/2023]
Abstract
Infant CD4+ T-cell responses to bacterial infections or vaccines have been extensively studied, whereas studies on CD8+ T-cell responses focused mainly on viral and intracellular parasite infections. Here we investigated CD8+ T-cell responses upon Bordetella pertussis infection in infants, children, and adults and pertussis vaccination in infants. Filamentous hemagglutinin-specific IFN-γ secretion by circulating lymphocytes was blocked by anti-MHC-I or -MHC-II antibodies, suggesting that CD4+ and CD8+ T lymphocytes are involved in IFN-γ production. Flow cytometry analyses confirmed that both cell types synthesized antigen-specific IFN-γ, although CD4+ lymphocytes were the major source of this cytokine. IFN-γ synthesis by CD8+ cells was CD4+ T cell dependent, as evidenced by selective depletion experiments. Furthermore, IFN-γ synthesis by CD4+ cells was sometimes inhibited by CD8+ lymphocytes, suggesting the presence of CD8+ regulatory T cells. The role of this dual IFN-γ secretion by CD4+ and CD8+ T lymphocytes in pertussis remains to be investigated.
Collapse
|
44
|
Harriff MJ, Purdy GE, Lewinsohn DM. Escape from the Phagosome: The Explanation for MHC-I Processing of Mycobacterial Antigens? Front Immunol 2012; 3:40. [PMID: 22566923 PMCID: PMC3342008 DOI: 10.3389/fimmu.2012.00040] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/17/2012] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is thought to live in an altered phagosomal environment. In this setting, the mechanisms by which mycobacterial antigens access the major histocompatibility class I (MHC-I) processing machinery remain incompletely understood. There is evidence that Mtb antigens can be processed in both endocytic and cytosolic environments, with different mechanisms being proposed for how Mtb antigens can access the cytosol. Recently, electron microscopy was used to demonstrate that Mtb has the potential to escape the phagosome and reside in the cytosol. This was postulated as the primary mechanism by which Mtb antigens enter the MHC-I processing and presentation pathway. In this commentary, we will review data on the escape of Mtb from the cytosol and whether this escape is required for antigen presentation to CD8+ T cells.
Collapse
|
45
|
Ritz N, Dutta B, Donath S, Casalaz D, Connell TG, Tebruegge M, Robins-Browne R, Hanekom WA, Britton WJ, Curtis N. The Influence of Bacille Calmette-Guérin Vaccine Strain on the Immune Response against Tuberculosis. Am J Respir Crit Care Med 2012; 185:213-22. [DOI: 10.1164/rccm.201104-0714oc] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
46
|
Mehra S, Golden NA, Dutta NK, Midkiff CC, Alvarez X, Doyle LA, Asher M, Russell-Lodrigue K, Monjure C, Roy CJ, Blanchard JL, Didier PJ, Veazey RS, Lackner AA, Kaushal D. Reactivation of latent tuberculosis in rhesus macaques by coinfection with simian immunodeficiency virus. J Med Primatol 2011; 40:233-43. [PMID: 21781131 DOI: 10.1111/j.1600-0684.2011.00485.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Tuberculosis (TB) and AIDS together present a devastating public health challenge. Over 3 million deaths every year are attributed to these twin epidemics. Annually, ∼11 million people are coinfected with HIV and Mycobacterium tuberculosis (Mtb). AIDS is thought to alter the spontaneous rate of latent TB reactivation. METHODOLOGY Macaques are excellent models of both TB and AIDS. Therefore, it is conceivable that they can also be used to model coinfection. Using clinical, pathological, and microbiological data, we addressed whether latent TB infection in rhesus macaques can be reactivated by infection with simian immunodeficiency virus (SIV). RESULTS A low-dose aerosol infection of rhesus macaques with Mtb caused latent, asymptomatic TB infection. Infection of macaques exhibiting latent TB with a rhesus-specific strain of SIV significantly reactivated TB. CONCLUSIONS Rhesus macaques are excellent model of TB/AIDS coinfection and can be used to study the phenomena of TB latency and reactivation.
Collapse
Affiliation(s)
- Smriti Mehra
- Divisions of Bacteriology & Parasitology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Commandeur S, Lin MY, van Meijgaarden KE, Friggen AH, Franken KLMC, Drijfhout JW, Korsvold GE, Oftung F, Geluk A, Ottenhoff THM. Double- and monofunctional CD4+ and CD8+ T-cell responses to Mycobacterium tuberculosis DosR antigens and peptides in long-term latently infected individuals. Eur J Immunol 2011; 41:2925-36. [DOI: 10.1002/eji.201141602] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/19/2011] [Accepted: 06/22/2011] [Indexed: 11/09/2022]
|
48
|
Day CL, Abrahams DA, Lerumo L, Janse van Rensburg E, Stone L, O'rie T, Pienaar B, de Kock M, Kaplan G, Mahomed H, Dheda K, Hanekom WA. Functional capacity of Mycobacterium tuberculosis-specific T cell responses in humans is associated with mycobacterial load. THE JOURNAL OF IMMUNOLOGY 2011; 187:2222-32. [PMID: 21775682 DOI: 10.4049/jimmunol.1101122] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High Ag load in chronic viral infections has been associated with impairment of Ag-specific T cell responses; however, the relationship between Ag load in chronic Mycobacterium tuberculosis infection and functional capacity of M. tuberculosis-specific T cells in humans is not clear. We compared M. tuberculosis-specific T cell-associated cytokine production and proliferative capacity in peripheral blood from adults with progressively higher mycobacterial loads-that is, persons with latent M. tuberculosis infection (LTBI), with smear-negative pulmonary tuberculosis (TB), and smear-positive TB. Patients with smear-positive TB had decreased polyfunctional IFN-γ(+)IL-2(+)TNF-α(+) and IL-2-producing specific CD4 T cells and increased TNF-α single-positive cells, when compared with smear-negative TB and LTBI. TB patients also had increased frequencies of M. tuberculosis-specific CD8 T cells, compared with LTBI. M. tuberculosis-specific CD4 and CD8 T cell proliferative capacity was profoundly impaired in individuals with smear-positive TB, and correlated positively with ex vivo IFN-γ(+)IL-2(+)TNF-α(+) CD4 T cells, and inversely with TNF-α single-positive CD4 T cells. During 6 mo of anti-TB treatment, specific IFN-γ(+)IL-2(+)TNF-α(+) CD4 and CD8 T cells increased, whereas TNF-α and IFN-γ single-positive T cells decreased. These results suggest progressive impairment of M. tuberculosis-specific T cell responses with increasing mycobacterial load and recovery of responses during therapy. Furthermore, these data provide a link between specific cytokine-producing subsets and functional capacity of M. tuberculosis-specific T cells, and between the presence of specific CD8 T cells ex vivo and active TB disease. These data have potentially significant applications for the diagnosis of TB and for the identification of T cell correlates of TB disease progression.
Collapse
Affiliation(s)
- Cheryl L Day
- South African Tuberculosis Vaccine Initiative and School of Child and Adolescent Health, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chattopadhyay S, Chakraborty NG. GITR expression on T-cell receptor-stimulated human CD8 T cell in a JNK-dependent pathway. INDIAN JOURNAL OF HUMAN GENETICS 2011; 15:121-4. [PMID: 21088717 PMCID: PMC2922628 DOI: 10.4103/0971-6866.60188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucocorticoid-induced tumor necrosis factor receptor (TNFR) (GITR) family-related gene is a member of the TNFR super family. GITR works as one of the immunoregulatory molecule on CD4+ regulatory T cells and has an important role on cell survival or cell death in CD4+ T cells. Little is known about the expression of GITR on human CD8+ T cells on antigen-specific and non-specific activation. Here, we report that expression of GITR on human CD8+ T cells on T-cell receptor (TCR) (anti-CD3)-mediated stimulation is dependent on the JNK pathway. The activation of CD8+ T cells was measured by the expression of IL-2 receptor-α (CD25), GITR and by IFN-γ production upon re-stimulation with anti-CD3 antibody. We studied the signaling pathway of such inducible expression of GITR on CD8+ T cells. We found that a known JNK-specific inhibitor, SP600125, significantly down-regulates GITR expression on anti-CD3 antibody-mediated activated CD8+ T cells by limiting JNK phosphorylation. Subsequently, after stimulation of the CD8+ cells, we tested for the production of IFN-γ by the activated cells following restimulation with the same stimulus. It appears that the expression of GITR on activated human CD8+ T cells might also be regulated through the JNK pathway when the activation is through TCR stimulation. Therefore, GITR serves as an activation marker on activated CD8+ cells and interference with JNK phosphorylation, partially or completely, by varying the doses of SP600125 might have implications in CD8+ cytotoxic T cell response in translational research.
Collapse
Affiliation(s)
- Subhasis Chattopadhyay
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030 - 1628, USA
| | | |
Collapse
|
50
|
Lv Y, Yan B, Yang H, Liu J, Zhong W, Li K, Chen Z, Xu C. LMP2/LMP7 gene variant: a risk factor for intestinal Mycobacterium tuberculosis infection in the Chinese population. J Gastroenterol Hepatol 2011; 26:1145-50. [PMID: 21303409 DOI: 10.1111/j.1440-1746.2011.06693.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIMS Low molecular mass protein-2 (LMP2) and low molecular mass protein-7 (LMP7) genes play a critical role in foreign antigen processing on the major histocompatibility complex-I CD8(+) cytotoxic T-lymphocyte pathway. This study was designed to investigate whether the sequence variants in the LMP2/LMP7 coding region were associated with intestinal Mycobacterium tuberculosis (M. tuberculosis) infection or with the co-infection of pulmonary tuberculosis. METHODS A total of 168 patients with intestinal tuberculosis and 235 normal controls were recruited for this study. Two polymorphisms of LMP2 (Arg60-His) and LMP7 (Gln145-Lys) were identified by polymerase chain reaction-restriction fragment length polymorphism method. The associations of the LMP2/LMP7 genotype and haplotype with intestinal M. tuberculosis infection were assessed by using logistic regression analysis. RESULTS The results revealed that LMP7 position codon 145 Lys/Lys and Gln/Lys alleles in the coding region were associated with the infection of intestinal M. tuberculosis (P=0.003, odds ratio [OR]= 3.86 and P < 0.001, OR = 2.28, respectively). Meanwhile, the Arg-Lys and Cys-Lys haplotypes exhibited significant relation to the intestinal M. tuberculosis infection (P= 0.006, OR=1.87; P=0.021, OR=1.83, respectively). No significant associations were observed for any of the single-nucleotide polymorphism genotypes or haplotypes with the co-infection of pulmonary tuberculosis (P > 0.05). CONCLUSIONS The results indicated that the genetic variant within the LMP2/LMP7 gene would increase the risk of intestinal M. tuberculosis infection.
Collapse
Affiliation(s)
- Yuan Lv
- Department of Anti-Infection and Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|