1
|
Converso TR, Assoni L, André GO, Darrieux M, Leite LCC. The long search for a serotype independent pneumococcal vaccine. Expert Rev Vaccines 2020; 19:57-70. [PMID: 31903805 DOI: 10.1080/14760584.2020.1711055] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Serotype replacement - a consequence of polysaccharide vaccine use - will continue to drive the inclusion of new serotypes on conjugate vaccines, increasing production complexity and costs, and making an already expensive vaccine less accessible to developing countries, where prevalence is higher and resources available for health systems, scarcer. Serotype-independent formulations are a promising option, but so far they have not been successful in reducing colonization/transmission.Areas covered: Protein-based and whole-cell vaccine candidates studied in the past 30 years. Challenges for serotype-independent vaccine development and alternative approaches.Expert opinion: Clinical trials performed so far demonstrated the importance to establish more reliable animal models and better correlates of protection. Defining appropriate endpoints for clinical trials of serotype-independent vaccine candidates has been a challenge. Inhibition of colonization has been evaluated, but concern on the extent of bacterial elimination is still a matter of debate. Challenges on establishing representative sites for clinical trials, sample sizes and appropriate age groups are discussed. On a whole, although many challenges will have to be overcome, establishing protein-based antigens as serotype-independent vaccines is still the best alternative against the huge burden of pneumococcal diseases in the world.
Collapse
Affiliation(s)
- T R Converso
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - L Assoni
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - G O André
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - M Darrieux
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - L C C Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Darrieux M, Goulart C, Briles D, Leite LCDC. Current status and perspectives on protein-based pneumococcal vaccines. Crit Rev Microbiol 2013; 41:190-200. [DOI: 10.3109/1040841x.2013.813902] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
3
|
Olaya-Abril A, Jiménez-Munguía I, Gómez-Gascón L, Obando I, Rodríguez-Ortega MJ. Identification of potential new protein vaccine candidates through pan-surfomic analysis of pneumococcal clinical isolates from adults. PLoS One 2013; 8:e70365. [PMID: 23894641 PMCID: PMC3720901 DOI: 10.1371/journal.pone.0070365] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/17/2013] [Indexed: 11/23/2022] Open
Abstract
Purified polysaccharide and conjugate vaccines are widely used for preventing infections in adults and in children against the Gram-positive bacterium Streptococcus pneumoniae, a pathogen responsible for high morbidity and mortality rates, especially in developing countries. However, these polysaccharide-based vaccines have some important limitations, such as being serotype-dependent, being subjected to losing efficacy because of serotype replacement and high manufacturing complexity and cost. It is expected that protein-based vaccines will overcome these issues by conferring a broad coverage independent of serotype and lowering production costs. In this study, we have applied the “shaving” proteomic approach, consisting of the LC/MS/MS analysis of peptides generated by protease treatment of live cells, to a collection of 16 pneumococcal clinical isolates from adults, representing the most prevalent strains circulating in Spain during the last years. The set of unique proteins identified in all the isolates, called “pan-surfome”, consisted of 254 proteins, which included most of the protective protein antigens reported so far. In search of new candidates with vaccine potential, we identified 32 that were present in at least 50% of the clinical isolates analyzed. We selected four of them (Spr0012, Spr0328, Spr0561 and SP670_2141), whose protection capacity has not yet been tested, for assaying immunogenicity in human sera. All of them induced the production of IgM antibodies in infected patients, thus indicating that they could enter the pipeline for vaccine studies. The pan-surfomic approach shows its utility in the discovery of new proteins that can elicit protection against infectious microorganisms.
Collapse
Affiliation(s)
- Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3; Hospital Universitario Reina Sofía, Córdoba; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba; and Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Jiménez-Munguía
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3; Hospital Universitario Reina Sofía, Córdoba; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba; and Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Ignacio Obando
- Sección de Enfermedades Infecciosas Pediátricas e Inmunopatología, Hospital Universitario Infantil Virgen del Rocío, Sevilla, Spain
| | - Manuel J. Rodríguez-Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba; Campus de Excelencia Internacional CeiA3; Hospital Universitario Reina Sofía, Córdoba; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba; and Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|
4
|
Pelton SI, Pettigrew MM, Barenkamp SJ, Godfroid F, Grijalva CG, Leach A, Patel J, Murphy TF, Selak S, Bakaletz LO. Panel 6: Vaccines. Otolaryngol Head Neck Surg 2013; 148:E90-101. [PMID: 23536534 DOI: 10.1177/0194599812466535] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To update progress on the effectiveness of vaccine for prevention of acute otitis media (AOM) and identification of promising candidate antigens against Streptococcus pneumoniae, nontypeable Haemophilus influenzae, and Moraxella catarrhalis. REVIEW METHODS Literature searches were performed in OvidSP and PubMed restricted to articles published between June 2007 and September 2011. Search terms included otitis media, vaccines, vaccine antigens, and each of the otitis pathogens and candidate antigens identified in the ninth conference report. CONCLUSIONS The current report provides further evidence for the effectiveness of pneumococcal conjugate vaccines (PCVs) in the prevention of otitis media. Observational studies demonstrate a greater decline in AOM episodes than reported in clinical efficacy trials. Unmet challenges include extending protection to additional serotypes and additional pathogens, the need to prevent early episodes, the development of correlates of protection for protein antigens, and the need to define where an otitis media vaccine strategy fits with priorities for child health. IMPLICATIONS FOR PRACTICE Acute otitis media continues to be a burden on children and families, especially those who suffer from frequent recurrences. The 7-valent PCV (PCV7) has reduced the burden of disease as well as shifted the pneumococcal serotypes and the distribution of otopathogens currently reported in children with AOM. Antibiotic resistance remains an ongoing challenge. Multiple candidate antigens have demonstrated the necessary requirements of conservation, surface exposure, immunogenicity, and protection in animal models. Further research on the role of each antigen in pathogenesis, in the development of correlates of protection in animal models, and in new adjuvants to elicit responses in the youngest infants is likely to be productive and permit more antigens to move into human clinical trials.
Collapse
Affiliation(s)
- Stephen I Pelton
- Boston University School of Medicine, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Protection against pneumococcal infection elicited by immunization with multiple pneumococcal heat shock proteins. Vaccine 2013; 31:3564-71. [PMID: 23727004 DOI: 10.1016/j.vaccine.2013.05.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 01/09/2013] [Accepted: 05/16/2013] [Indexed: 11/21/2022]
Abstract
Heat shock proteins (HSPs) play important roles in the pathogenesis of pneumococcal infection, and they are considered as potential protein vaccine antigens. In this study, we investigated the efficacy of immunization with pneumococcal HSPs, including ClpP (hsp100/Clp peptidase subunit), DnaJ (hsp40) and GroEL (hsp60), to protect against pneumococcal carriage, lung colonization and sepsis in mouse models using different serotypes of Streptococcus pneumoniae. In a nasopharyngeal colonization model by serotype 6B or 14 and in a lung colonization model by serotype 19F, immunization with pneumococcal HSPs could elicit effective protection. Likewise, vaccination with ClpP, DnaJ or GroEL allowed significantly longer mouse survival times after lethal intranasal challenge with serotype pneumococcal 2, 3 or 4. Interestingly, combinations of these HSPs could consistently enhance the protection against nasopharynx carriage, lung colonization as well as invasive infection caused by different pneumococcal serotypes. In an in vitro killing assay, anti-sera against ClpP, DnaJ or GroEL could kill S. pneumoniae by polymorphonuclear leukocytes in a complement-dependent way, and combinations of multiple anti-sera against these HSPs could increase the killing ability compared with single anti-sera. Finally, passive immunization studies with anti-sera against pneumococcal HSPs also demonstrated that an additive effect could be achieved by using multiple anti-sera when compared with single anti-sera. Thus, inclusion of multiple pneumococcal HSPs is important for the development of protein-based pneumococcal vaccines.
Collapse
|
6
|
Cao J, Gong Y, Dong S, Zhang L, Lai X, Zhang X, Yin Y. Pneumococcal ClpP modulates the maturation and activation of human dendritic cells: implications for pneumococcal infections. J Leukoc Biol 2013; 93:737-49. [PMID: 23381472 DOI: 10.1189/jlb.0812428] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
DCs are essential for host immune response to pathogens. Pneumococcal diseases still remain to be a major global-health issue, and HSP100/ClpP is a ubiquitously present virulence determinant for Streptococcus pneumoniae. Here, we show that ClpP expression facilitates the uptake and phagocytosis of pneumococci by human DCs, and it could increase apoptosis of DCs infected with pneumococci. Furthermore, pneumococcal ClpP is required for optimal production of inflammatory cytokines and chemokines and an efficient activation of adaptive immune response in DCs. Complementary, purified rClpP protein recognizes TLR4 and functionally activates human DCs by augmenting the expression of surface molecules and the production of inflammatory cytokines and chemokines dependent on MAPKs and NF-κB signaling pathways. Besides, ClpP-treated DCs induce T cell proliferation and contribute to Th1 immune response. This study describes a novel role of ClpP in the interaction of DCs with pneumococci that could provide new insight for the progression of pneumococcal diseases and has important implications for designing pneumococcal protein vaccines.
Collapse
Affiliation(s)
- Ju Cao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | | | | | | | | | | | | |
Collapse
|
7
|
Péchiné S, Denève C, Le Monnier A, Hoys S, Janoir C, Collignon A. Immunization of hamsters againstClostridium difficileinfection using the Cwp84 protease as an antigen. ACTA ACUST UNITED AC 2011; 63:73-81. [DOI: 10.1111/j.1574-695x.2011.00832.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
8
|
Moffitt KL, Malley R. Next generation pneumococcal vaccines. Curr Opin Immunol 2011; 23:407-13. [PMID: 21514128 PMCID: PMC3109250 DOI: 10.1016/j.coi.2011.04.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/01/2011] [Accepted: 04/04/2011] [Indexed: 11/15/2022]
Abstract
Currently licensed pneumococcal vaccines are based on the generation of antibodies to the pneumococcal polysaccharide, of which there are more than 90 different types. While these vaccines are highly effective against the serotypes included, their high cost and limited serotype coverage limit their usefulness worldwide, particularly in low resource areas. Thus alternative or adjunctive options are being actively pursued. This review will present these various approaches, including variations of the polysaccharide-protein conjugate strategy, protein-based strategies, and whole cell pneumococcal vaccines. The immunological basis for these different approaches is discussed as well.
Collapse
Affiliation(s)
- Kristin L Moffitt
- Division of Infectious Diseases, Children's Hospital, Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|
9
|
Cui Y, Zhang X, Gong Y, Niu S, Yin N, Yao R, Xu W, Li D, Wang H, He Y, Cao J, Yin Y. Immunization with DnaJ (hsp40) could elicit protection against nasopharyngeal colonization and invasive infection caused by different strains of Streptococcus pneumoniae. Vaccine 2011; 29:1736-44. [PMID: 21238570 DOI: 10.1016/j.vaccine.2010.12.126] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 12/12/2010] [Accepted: 12/27/2010] [Indexed: 11/29/2022]
Abstract
Increasing mortality, morbidity and economic costs have been paid to pneumococcal diseases every year. Currently, vaccination is the most promising strategy to reduce the occurrence of pneumococcal infection. In this study, we investigated the protective efficacy of immunization with recombinant DnaJ (hsp40) protein against infections of different serotypes of Streptococcus pneumoniae. We demonstrated that mucosal immunization with DnaJ antigen could induce both systemic and mucosal antibodies for DnaJ and stimulate the release of high levels of IL-10, IFN-γ and IL-17A. Moreover, this mucosal vaccination could reduce nasal or lung colonization of pneumococcus and elicit protection against different serotypes of invasive pneumococcal infections. As well, we found that intraperitoneal immunization with DnaJ could also protect against invasive infections caused by different serotypes of pneumococcus, and passive immunization with antibodies specific for DnaJ confirmed that this protection was antibody-mediated. Our results therefore support the potential of DnaJ as a conserved pneumococcal protein vaccine.
Collapse
Affiliation(s)
- Yali Cui
- Key Laboratory of Diagnostic Medicine designated by the Ministry of Education, Chongqing Medical University, Department of Laboratory Medicine, Chongqing, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cao J, Gong Y, Cai B, Feng W, Wu Y, Li L, Zou Y, Ying B, Wang L. Modulation of human bronchial epithelial cells by pneumococcal choline binding protein A. Hum Immunol 2011; 72:37-46. [DOI: 10.1016/j.humimm.2010.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 09/25/2010] [Accepted: 10/06/2010] [Indexed: 11/26/2022]
|
11
|
Virulence attenuation of Streptococcus pneumoniae clpP mutant by sensitivity to oxidative stress in macrophages via an NO-mediated pathway. J Microbiol 2010; 48:229-35. [PMID: 20437156 DOI: 10.1007/s12275-010-9300-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Accepted: 10/27/2009] [Indexed: 12/22/2022]
Abstract
ClpP protease is essential for virulence and survival under stress conditions in several pathogenic bacteria. The clpP mutation in a murine infection model has demonstrated both attenuation of virulence and a sensitivity to hydrogen peroxide. However, the underlying mechanisms for these changes have not been resolved. Because macrophages play a major role in immune response and activated macrophages can kill microbes via oxygen-dependant mechanisms, we investigated the effect of the clpP mutation on its sensitivity to macrophage-mediated oxygen-dependant mechanisms. The clpP mutant derived from D39 (serotype 2) exhibited a higher sensitivity to oxidative stresses such as reactive oxygen intermediates, reactive nitrogen intermediates, and H(2)O(2), but no sensitivity to osmotic stress (NaCl) and pH. Moreover, viability of the clpP mutant was significantly increased in murine macrophage cells by treatment with S-methylisothiourea sulfate, which inhibits inducible nitric oxide synthase (iNOS) activity and subsequently elicits lower level secretions of nitric oxide (NO). However, viability of wild type was unchanged. Taken together, these results indicate that ClpP is involved in the resistance to oxidative stresses after entrapment by macrophages and subsequently contributes to virulence via NO mediated pathway.
Collapse
|
12
|
Jambo KC, Sepako E, Heyderman RS, Gordon SB. Potential role for mucosally active vaccines against pneumococcal pneumonia. Trends Microbiol 2009; 18:81-9. [PMID: 20031415 PMCID: PMC2855428 DOI: 10.1016/j.tim.2009.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 11/23/2009] [Accepted: 12/01/2009] [Indexed: 11/26/2022]
Abstract
Pneumococcal pneumonia is a life-threatening disease with high mortality and morbidity among children under 5 years of age, the elderly and immunocompromised individuals worldwide. Protection against pneumococcal pneumonia relies on successful regulation of colonisation in the nasopharynx and a brisk alveolar macrophage-mediated immune response in the lung. Therefore, enhancing pulmonary mucosal immunity (which includes a combination of innate, humoral and cell-mediated immunity) through mucosal vaccination might be the key to prevention of pneumococcal infection. Current challenges include a lack of information in humans on mucosal immunity against pneumococci and a lack of suitable adjuvants for new vaccines. Data from mouse models, however, suggest that mucosally active vaccines will enhance mucosal and systemic immunity for protection against pneumococcal infection.
Collapse
Affiliation(s)
- Kondwani C Jambo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, P.O. Box 30096, Chichiri, Blantyre, Malawi.
| | | | | | | |
Collapse
|
13
|
CD4(+) T lymphocytes mediated protection against invasive pneumococcal infection induced by mucosal immunization with ClpP and CbpA. Vaccine 2009; 27:2838-44. [PMID: 19366577 DOI: 10.1016/j.vaccine.2009.02.093] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Revised: 02/15/2009] [Accepted: 02/24/2009] [Indexed: 11/21/2022]
Abstract
Intranasal delivery of pneumococcal protein vaccines would be a promising way to prevent invasive pneumococcal infection. Using an invasive infection model by intranasal inoculation of pneumococci, we demonstrated that immunizing mice intranasally with a mixture of ClpP (the caseinolytic protease) and CbpA (Choline binding protein A) elicited better protection than that of immunizing either single ClpP or CbpA. Anti-ClpP or anti-CbpA hyperimmune sera from intranasal-immunized mice significantly inhibited the adhesion of Streptococcus pneumoniae to A549 cells and combination of two antisera resulted in an additive effect. Both of two antisera could also kill S. pneumoniae by polymorphonuclear leukocytes in a complement-dependent way. The anti-infection activity and production of hyperimmune antibodies induced by mucosal immunization with ClpP and CbpA could be abrogated by the depletion of CD4(+) T lymphocytes. Our data therefore indicated a critical role for CD4(+) T lymphocytes in developing mucosal protein-based vaccines against invasive pneumococcal infection.
Collapse
|