1
|
Giraud E, Fiette L, Melanitou E. Type 1 diabetes and parasite infection: An exploratory study in NOD mice. PLoS One 2024; 19:e0308868. [PMID: 39436890 PMCID: PMC11495574 DOI: 10.1371/journal.pone.0308868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/29/2024] [Indexed: 10/25/2024] Open
Abstract
Microorganisms have long been suspected to influence the outcome of immune-related syndromes, particularly autoimmune diseases. Type 1 diabetes (T1D) results from the autoimmune destruction of the insulin-producing beta cells of pancreatic islets, causing high glycemia levels. Genetics is part of its aetiology, but environmental factors, particularly infectious microorganisms, also play a role. Bacteria, viruses, and parasites influence the outcome of T1D in mice and humans. We used nonobese diabetic (NOD) mice, which spontaneously develop T1D, to investigate the influence of a parasitic infection, leishmaniasis. Leishmania amazonensis is an intracellular eukaryotic parasite that replicates predominantly in macrophages and is responsible for cutaneous leishmaniasis. The implication of Th1 immune responses in T1D and leishmaniasis led us to study this parasite in the NOD mouse model. We previously constructed osteopontin knockout mice with a NOD genetic background and demonstrated that this protein plays a role in the T1D phenotype. In addition, osteopontin (OPN) has been found to play a role in the immune response to various infectious microorganisms and to be implicated in other autoimmune conditions, such as multiple sclerosis in humans and experimental autoimmune encephalomyelitis (EAE) in mice. We present herein data demonstrating the role of OPN in the response to Leishmania in NOD mice and the influence of this parasitic infection on T1D. This exploratory study aimed to investigate the environmental infectious component of the autoimmune response, including Th1 immunity, which is common to both T1D and leishmaniasis.
Collapse
Affiliation(s)
- Emilie Giraud
- Chemogenomic and Biological Screening Core Facility, C2RT, CNRS UMR 3523, Institut Pasteur, Université Paris Cité, Paris, France
| | - Laurence Fiette
- Human Histopathology, and Animal Models Laboratory, Institut Pasteur, Université Paris Cité, Paris, France
| | - Evie Melanitou
- Department of Parasites & Insect-Vectors, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Boy RL, Hong A, Aoki JI, Floeter-Winter LM, Laranjeira-Silva MF. Reporter gene systems: a powerful tool for Leishmania studies. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100165. [DOI: 10.1016/j.crmicr.2022.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
3
|
Margaroni M, Agallou M, Vasilakaki A, Karagkouni D, Skoufos G, Hatzigeorgiou AG, Karagouni E. Transcriptional Profiling of Leishmania infantum Infected Dendritic Cells: Insights into the Role of Immunometabolism in Host-Parasite Interaction. Microorganisms 2022; 10:microorganisms10071271. [PMID: 35888991 PMCID: PMC9322131 DOI: 10.3390/microorganisms10071271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
Leishmania parasites are capable of effectively invading dendritic cells (DCs), a cell population orchestrating immune responses against several diseases, including leishmaniasis, by bridging innate and adaptive immunity. Leishmania on the other hand has evolved various mechanisms to subvert DCs activation and establish infection. Thus, the transcriptional profile of DCs derived from bone marrow (BMDCs) that have been infected with Leishmania infantum parasite or of DCs exposed to chemically inactivated parasites was investigated via RNA sequencing, aiming to better understand the host–pathogen interplay. Flow cytometry analysis revealed that L. infantum actively inhibits maturation of not only infected but also bystander BMDCs. Analysis of double-sorted L. infantum infected BMDCs revealed significantly increased expression of genes mainly associated with metabolism and particularly glycolysis. Moreover, differentially expressed genes (DEGs) related to DC-T cell interactions were also found to be upregulated exclusively in infected BMDCs. On the contrary, transcriptome analysis of fixed parasites containing BMDCs indicated that energy production was mediated through TCA cycle and oxidative phosphorylation. In addition, DEGs related to differentiation of DCs leading to activation and differentiation of Th17 subpopulations were detected. These findings suggest an important role of metabolism on DCs-Leishmania interplay and eventually disease establishment.
Collapse
Affiliation(s)
- Maritsa Margaroni
- Immunology of Infection Laboratory, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (M.M.); (M.A.); (A.V.)
| | - Maria Agallou
- Immunology of Infection Laboratory, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (M.M.); (M.A.); (A.V.)
| | - Athina Vasilakaki
- Immunology of Infection Laboratory, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (M.M.); (M.A.); (A.V.)
| | - Dimitra Karagkouni
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (D.K.); (G.S.); (A.G.H.)
- Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Giorgos Skoufos
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (D.K.); (G.S.); (A.G.H.)
- Hellenic Pasteur Institute, 11521 Athens, Greece
- Department of Electrical & Computer Engineering, University of Thessaly, 38221 Volos, Greece
| | - Artemis G. Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (D.K.); (G.S.); (A.G.H.)
- Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Evdokia Karagouni
- Immunology of Infection Laboratory, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (M.M.); (M.A.); (A.V.)
- Correspondence: ; Tel.: +30-21-0647-8826
| |
Collapse
|
4
|
Aljedaie MM. Epigenetic paradigms/exemplars of the macrophage: inflammasome axis in Leishmaniasis. Mol Cell Biochem 2022; 477:2553-2565. [PMID: 35595955 DOI: 10.1007/s11010-022-04460-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022]
Abstract
The infectious paradigms have recently led to the recognition interplay of complex phenomenon underpinning disease diagnosis and prognosis. Evidently, parasitic infection studies are depicting converging trends of the epigenetic, environmental, and microbiome contributions, assisting pathogen-directed modulations of host biological system. The molecular details of epigenetic variations and memory, along with the multi-omics data at the interface of the host-pathogen level becomes strong indicator of immune cell plasticity, differentiation, and pathogen survival. Despite being one of the most important aspects of the disease's etiopathology, the epigenetic regulation of host-pathogen interactions and evolutionary epigenetics have received little attention thus far. Recent evidence has focused on the growing need to link epigenetic and microbiome modulations on parasite phenotypic plasticity and pathogen-induced host phenotypic plasticity for designing futuristic therapeutic regimes. Leishmaniasis is a neglected tropical illness with varying degrees of disease severity that is linked to a trans-species and epigenetic heredity process, including the pathogen-induced host and strain-specific modulations. The review configures research findings aligning to the epigenetic epidemiology niche, involving co-evolutionary epigenetic inheritance and plasticity disease models. The epigenetic exemplars focus on the host-pathogen interactome expanse at the macrophage-inflammasome axis.
Collapse
Affiliation(s)
- Manei M Aljedaie
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, PO Box 173, Al-Kharj, 11942, Saudi Arabia.
| |
Collapse
|
5
|
Dantas RF, Torres-Santos EC, Silva FP. Past and future of trypanosomatids high-throughput phenotypic screening. Mem Inst Oswaldo Cruz 2022; 117:e210402. [PMID: 35293482 PMCID: PMC8920514 DOI: 10.1590/0074-02760210402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022] Open
Abstract
Diseases caused by trypanosomatid parasites affect millions of people mainly living in developing countries. Novel drugs are highly needed since there are no vaccines and available treatment has several limitations, such as resistance, low efficacy, and high toxicity. The drug discovery process is often analogous to finding a needle in the haystack. In the last decades a so-called rational drug design paradigm, heavily dependent on computational approaches, has promised to deliver new drugs in a more cost-effective way. Paradoxically however, the mainstay of these computational methods is data-driven, meaning they need activity data for new compounds to be generated and available in databases. Therefore, high-throughput screening (HTS) of compounds still is a much-needed exercise in drug discovery to fuel other rational approaches. In trypanosomatids, due to the scarcity of validated molecular targets and biological complexity of these parasites, phenotypic screening has become an essential tool for the discovery of new bioactive compounds. In this article we discuss the perspectives of phenotypic HTS for trypanosomatid drug discovery with emphasis on the role of image-based, high-content methods. We also propose an ideal cascade of assays for the identification of new drug candidates for clinical development using leishmaniasis as an example.
Collapse
Affiliation(s)
- Rafael Ferreira Dantas
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica Experimental de Computacional de Fármacos, Rio de Janeiro, RJ, Brasil
| | - Eduardo Caio Torres-Santos
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Tripanosomatídeos, Rio de Janeiro, RJ, Brasil
| | - Floriano Paes Silva
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica Experimental de Computacional de Fármacos, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
6
|
Lecoeur H, Rosazza T, Kokou K, Varet H, Coppée JY, Lari A, Commère PH, Weil R, Meng G, Milon G, Späth GF, Prina E. Leishmania amazonensis Subverts the Transcription Factor Landscape in Dendritic Cells to Avoid Inflammasome Activation and Stall Maturation. Front Immunol 2020; 11:1098. [PMID: 32582184 PMCID: PMC7295916 DOI: 10.3389/fimmu.2020.01098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Leishmania parasites are the causative agents of human leishmaniases. They infect professional phagocytes of their mammalian hosts, including dendritic cells (DCs) that are essential for the initiation of adaptive immune responses. These immune functions strictly depend on the DC's capacity to differentiate from immature, antigen-capturing cells to mature, antigen-presenting cells—a process accompanied by profound changes in cellular phenotype and expression profile. Only little is known on how intracellular Leishmania affects this important process and DC transcriptional regulation. Here, we investigate these important open questions analyzing phenotypic, cytokine profile and transcriptomic changes in murine, immature bone marrow-derived DCs (iBMDCs) infected with antibody-opsonized and non-opsonized Leishmania amazonensis (L.am) amastigotes. DCs infected by non-opsonized amastigotes remained phenotypically immature whereas those infected by opsonized parasites displayed a semi-mature phenotype. The low frequency of infected DCs in culture led us to use DsRed2-transgenic parasites allowing for the enrichment of infected BMDCs by FACS. Sorted infected DCs were then subjected to transcriptomic analyses using Affymetrix GeneChip technology. Independent of parasite opsonization, Leishmania infection induced expression of genes related to key DC processes involved in MHC Class I-restricted antigen presentation and alternative NF-κB activation. DCs infected by non-opsonized parasites maintained an immature phenotype and showed a small but significant down-regulation of gene expression related to pro-inflammatory TLR signaling, the canonical NF-kB pathway and the NLRP3 inflammasome. This transcriptomic profile was further enhanced in DCs infected with opsonized parasites that displayed a semi-mature phenotype despite absence of inflammasome activation. This paradoxical DC phenotype represents a Leishmania-specific signature, which to our knowledge has not been observed with other opsonized infectious agents. In conclusion, systems-analyses of our transcriptomics data uncovered important and previously unappreciated changes in the DC transcription factor landscape, thus revealing a novel Leishmania immune subversion strategy directly acting on transcriptional control of gene expression. Our data raise important questions on the dynamic and reciprocal interplay between trans-acting and epigenetic regulators in establishing permissive conditions for intracellular Leishmania infection and polarization of the immune response.
Collapse
Affiliation(s)
- Hervé Lecoeur
- Institut Pasteur, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Département des Parasites et Insectes Vecteurs, Paris, France.,Pasteur Institute of Shanghai, Innate Immunity Unit, Key Laboratory of Molecular Virology and Immunology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| | - Thibault Rosazza
- Institut Pasteur, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Département des Parasites et Insectes Vecteurs, Paris, France.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| | - Kossiwa Kokou
- Institut Pasteur, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Département des Parasites et Insectes Vecteurs, Paris, France.,Pasteur Institute of Shanghai, Innate Immunity Unit, Key Laboratory of Molecular Virology and Immunology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| | - Hugo Varet
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Jean-Yves Coppée
- Institut Pasteur - Transcriptome and Epigenome Platform - Biomics Pole - C2RT, Paris, France
| | - Arezou Lari
- Systems Biomedicine Unit, Institut Pasteur of Iran, Teheran, Iran
| | | | - Robert Weil
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CIMI, Paris, France
| | - Guangxun Meng
- Pasteur Institute of Shanghai, Innate Immunity Unit, Key Laboratory of Molecular Virology and Immunology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| | - Genevieve Milon
- Institut Pasteur, Laboratoire Immunophysiologie et Parasitisme, Département des Parasites et Insectes Vecteurs, Paris, France
| | - Gerald F Späth
- Institut Pasteur, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Département des Parasites et Insectes Vecteurs, Paris, France.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| | - Eric Prina
- Institut Pasteur, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Département des Parasites et Insectes Vecteurs, Paris, France.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| |
Collapse
|
7
|
Lecoeur H, Prina E, Rosazza T, Kokou K, N’Diaye P, Aulner N, Varet H, Bussotti G, Xing Y, Milon G, Weil R, Meng G, Späth GF. Targeting Macrophage Histone H3 Modification as a Leishmania Strategy to Dampen the NF-κB/NLRP3-Mediated Inflammatory Response. Cell Rep 2020; 30:1870-1882.e4. [DOI: 10.1016/j.celrep.2020.01.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/08/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
|
8
|
Wanderley JLM, Deolindo P, Carlsen E, Portugal AB, DaMatta RA, Barcinski MA, Soong L. CD4 + T Cell-Dependent Macrophage Activation Modulates Sustained PS Exposure on Intracellular Amastigotes of Leishmania amazonensis. Front Cell Infect Microbiol 2019; 9:105. [PMID: 31032234 PMCID: PMC6473175 DOI: 10.3389/fcimb.2019.00105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/26/2019] [Indexed: 01/16/2023] Open
Abstract
Leishmania amazonensis amastigotes can make use of surface-exposed phosphatidylserine (PS) molecules to promote infection and non-classical activation of macrophages (MΦ), leading to uncontrolled intracellular proliferation of the parasites. This mechanism was quoted as apoptotic mimicry. Moreover, the amount of PS molecules exposed on the surface of amastigotes correlates with the susceptibility of the host. In this study, we tested whether host cellular responses influence PS expression on intracellular amastigotes. We found that the level of PS exposure on intracellular amastigotes was modulated by CD4+ T cell and MΦ activation status in vitro and in vivo. L. amazonensis infection generated a Th1/Th2-mixed cytokine profile, providing the optimal MΦ stimulation that favored PS exposure on intracellular amastigotes. Maintenance of PS exposed on the parasite was dependent on low, but sustained, levels of nitric oxide and polyamine production. Amastigotes obtained from lymphopenic nude mice did not expose PS on their surface, and adoptive transfer of CD4+ T cells reversed this phenotype. In addition, histopathological analysis of mice treated with anti-PS antibodies showed increased inflammation and similarities to nude mouse lesions. Collectively, our data confirm the role of pathogenic CD4+ T cells for disease progression and point to PS as a critical parasite strategy to subvert host immune responses.
Collapse
Affiliation(s)
- Joao Luiz Mendes Wanderley
- Laboratório de Imunoparasitologia, Unidade de Pesquisa Integrada em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Poliana Deolindo
- Laboratório de Biologia Molecular de Parasitas e Vetores, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Eric Carlsen
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Arieli Bernardo Portugal
- Laboratório de Imunoparasitologia, Unidade de Pesquisa Integrada em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Renato Augusto DaMatta
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Brazil
| | - Marcello Andre Barcinski
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lynn Soong
- Department of Microbiology and Immunology, Center for Tropical Diseases, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
9
|
Giraud E, Rouault E, Fiette L, Colle JH, Smirlis D, Melanitou E. Osteopontin in the host response to Leishmania amazonensis. BMC Microbiol 2019; 19:32. [PMID: 30736736 PMCID: PMC6368773 DOI: 10.1186/s12866-019-1404-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Leishmania (L.) spp are intracellular eukaryotic parasites responsible for cutaneous or visceral leishmaniasis, replicating predominantly in macrophages (MF). In C57BL/6 mice virulence with L. amazonensis has been associated with inhibition of Th1 immune responses and an uncontrolled lesion development, whereas DBA/2 mice control any lesion. Parasitic clearance by the MFs requires the activation of proper immune responses. One of the immune related genes expressed in immune cells including MF, codes for osteopontin (OPN). OPN is a secreted glycoprotein, acting as an immune regulator. Its implication in promoting Th1 immunity in response to infectious microorganisms and its known protective effect against viral and bacterial infections via activation of the immune response, render OPN a molecule of interest in the study of the host response to L. amazonensis. RESULTS We examined the host response to L. amazonensis of opn mutant and wild type C57BL/6 mice. Bone marrow derived MFs were infected with the parasites in vitro, and opn mutant and wild type mice were inoculated in vivo by intradermal injection in the ears. The DBA/2 strain known to control L. amazonensis infection was also used for comparison. Our data indicate that the parasites increased opn gene expression and OPN protein while parasitic proliferation was contained in the presence of OPN. In the presence of parasites the expression of inflammation-related transcripts was inhibited. Interleukin-1-beta (IL-1β), and transcripts of the NLR-family (NLRC4, NLRP3) were down regulated after L. amazonensis infection. In the absence of OPN, the inhibition by the parasites of IL-1β transcripts was less efficient and a pyroptosis-like cell phenotype was detected in vitro, suggesting a central role of OPN in the host-response to L. amazonensis. Similarly, in vivo, in the absence of OPN, while the clinical inflammatory phenotype is more severe, an increase of these transcripts was observed. CONCLUSIONS L. amazonensis infection induces opn gene expression and protein, which in turn participates in shaping the host response to the parasites, seemingly by decreasing the activation of inflammation. OPN, further evaluated as a target for Leishmaniasis control represents an additional interest in improving vaccination strategies against the parasites.
Collapse
Affiliation(s)
- Emilie Giraud
- Immunophysiology and Parasitism Laboratory and Department of Parasites and Insect Vectors, Institut Pasteur, 28 rue du Dr Roux, 75724, Paris Cedex 15, France.,Present address: Insect-Virus Interactions Laboratory / CNRS UMR2000, Institut Pasteur, 28 rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Eline Rouault
- Immunophysiology and Parasitism Laboratory and Department of Parasites and Insect Vectors, Institut Pasteur, 28 rue du Dr Roux, 75724, Paris Cedex 15, France.,Present address : GENOSAFE Laboratories, 1 rue de l'Internationale, Evry, 91000, France
| | - Laurence Fiette
- Human Histopathology and animal models Laboratory, Institut Pasteur, 28 rue du Dr Roux, 75724, Paris Cedex 15, France.,Present address: Institut Mutualiste Montsouris Research, Paris, France
| | - Jean-Hervé Colle
- Nuclear Magnetic Resonance of Biomolecules unit, Institut Pasteur, 28 rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Despoina Smirlis
- Molecular Parasitology Laboratory, Microbiology Department, Hellenic Pasteur Institute, 127 Bas. Sofias Avenue, 11521, Athens, Greece
| | - Evie Melanitou
- Immunophysiology and Parasitism Laboratory and Department of Parasites and Insect Vectors, Institut Pasteur, 28 rue du Dr Roux, 75724, Paris Cedex 15, France.
| |
Collapse
|
10
|
Leishmania proteophosphoglycans regurgitated from infected sand flies accelerate dermal wound repair and exacerbate leishmaniasis via insulin-like growth factor 1-dependent signalling. PLoS Pathog 2018; 14:e1006794. [PMID: 29352310 PMCID: PMC5792026 DOI: 10.1371/journal.ppat.1006794] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/31/2018] [Accepted: 12/07/2017] [Indexed: 12/14/2022] Open
Abstract
Leishmania parasites are transmitted to vertebrate hosts by female phlebotomine sand flies as they bloodfeed by lacerating the upper capillaries of the dermis with their barbed mouthparts. In the sand fly midgut secreted proteophosphoglycans from Leishmania form a biological plug known as the promastigote secretory gel (PSG), which blocks the gut and facilitates the regurgitation of infective parasites. The interaction between the wound created by the sand fly bite and PSG is not known. Here we nanoinjected a sand fly egested dose of PSG into BALB/c mouse skin that lead to the differential expression of 7,907 transcripts. These transcripts were transiently up-regulated during the first 6 hours post-wound and enriched for pathways involved in inflammation, cell proliferation, fibrosis, epithelial cell differentiation and wound remodelling. We found that PSG significantly accelerated wound healing in vitro and in mice; which was associated with an early up-regulation of transcripts involved in inflammation (IL-1β, IL-6, IL-10, TNFα) and inflammatory cell recruitment (CCL2, CCL3, CCL4, CXCL2), followed 6 days later by enhanced expression of transcripts associated with epithelial cell proliferation, fibroplasia and fibrosis (FGFR2, EGF, EGFR, IGF1). Dermal expression of IGF1 was enhanced following an infected sand fly bite and was acutely responsive to the deposition of PSG but not the inoculation of parasites or sand fly saliva. Antibody blockade of IGF1 ablated the gel’s ability to promote wound closure in mouse ears and significantly reduced the virulence of Leishmania mexicana infection delivered by an individual sand fly bite. Dermal macrophages recruited to air-pouches on the backs of mice revealed that IGF1 was pivotal to the PSG’s ability to promote macrophage alternative activation and Leishmania infection. Our data demonstrate that through the regurgitation of PSG Leishmania exploit the wound healing response of the host to the vector bite by promoting the action of IGF1 to drive the alternative activation of macrophages. Female phlebotomine sand flies efficiently transmit Leishmania parasites, yet the underlying mechanisms remain poorly understood. During transmission, promastigote secretory gel (PSG) regurgitated from the blocked sand fly gut promote Leishmania infection and exacerbates disease. Here we investigate mouse ear-skin response to PSG and find that a significant proportion of up-regulated transcripts are involved in wound healing. Following a wound to skin preconditioned with PSG, key transcripts associated with inflammation and cell recruitment were enhanced by 4 hours and those associated with epithelial cell differentiation, proliferation and fibrosis were enhanced in the late phase of wound healing; including insulin growth factor-1 (IGF1) and its receptor. The presence of PSG significantly accelerated wound closure in vitro and in vivo, and this was directed by the presence of IGF1. IGF1 was essential to both the wound healing and disease-exacerbating properties of PSG, arising from its ability to alternatively activate macrophages. IGF1-blockade efficiently reduced the virulence of Leishmania infection from sand fly bite transmission indicating that it is essential to the function of PSG during natural infection. Our findings open the dual possibility of exploiting PSG, or defined components thereof, as a novel wound healing therapy and provide new targets for anti-leishmanial therapeutic design.
Collapse
|
11
|
A transcriptomic network identified in uninfected macrophages responding to inflammation controls intracellular pathogen survival. Cell Host Microbe 2014; 14:357-68. [PMID: 24034621 PMCID: PMC4180915 DOI: 10.1016/j.chom.2013.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 06/04/2013] [Accepted: 08/06/2013] [Indexed: 12/11/2022]
Abstract
Intracellular pathogens modulate host cell function to promote their survival. However, in vitro infection studies do not account for the impact of host-derived inflammatory signals. Examining the response of liver-resident macrophages (Kupffer cells) in mice infected with the parasite Leishmania donovani, we identified a transcriptomic network operating in uninfected Kupffer cells exposed to inflammation but absent from Kupffer cells from the same animal that contained intracellular Leishmania. To test the hypothesis that regulated expression of genes within this transcriptomic network might impact parasite survival, we pharmacologically perturbed the activity of retinoid X receptor alpha (RXRα), a key hub within this network, and showed that this intervention enhanced the innate resistance of Kupffer cells to Leishmania infection. Our results illustrate a broadly applicable strategy for understanding the host response to infection in vivo and identify Rxra as the hub of a gene network controlling antileishmanial resistance. Leishmania infection rapidly activates infected and uninfected Kupffer cells in mice Transcriptomics of inflamed and infected KC uncover distinct and overlapping networks A network centered on RXRα is uniquely activated in inflammation-exposed uninfected KCs Manipulation of RXRα function leads to a reduction in early parasite burden
Collapse
|
12
|
Forestier CL. Imaging host-Leishmania interactions: significance in visceral leishmaniasis. Parasite Immunol 2014; 35:256-66. [PMID: 23772814 DOI: 10.1111/pim.12044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/04/2013] [Indexed: 01/12/2023]
Abstract
Leishmaniasis is a neglected disease that is associated with a spectrum of clinical manifestations ranging from self-healing cutaneous lesions to fatal visceral infections, which primarily depends on the parasite species. In visceral leishmaniasis (VL), as opposed to cutaneous leishmaniasis (CL), parasites that infect host cells at the sand fly bite site have the striking ability to disseminate to visceral organs where they proliferate and persist for long periods of time. Imaging the dynamics of the host-Leishmania interaction in VL provides a powerful approach to understanding the mechanisms underlying host cell invasion, Leishmania dissemination and persistence within visceral organs and, to dissecting the immune responses to infection. Therefore, by allowing the visualization of the critical steps involved in the pathogenesis of VL, state-of-the-art microscopy technologies have the great potential to aid in the identification of better intervention strategies for this devastating disease. In this review, we emphasize the current knowledge and the potential significance of imaging technologies in understanding the infection process of visceralizing Leishmania species. Then, we discuss how application of innovative microscopy technologies to the study of VL will provide rich opportunities for investigating host-parasite interactions at a previously unexplored level and elucidating visceral disease-promoting mechanisms.
Collapse
Affiliation(s)
- C-L Forestier
- INSERM U1095, URMITE-UMR CNRS 7278, University of Aix-Marseille, Marseille, France.
| |
Collapse
|
13
|
Lecoeur H, Giraud E, Prévost MC, Milon G, Lang T. Reprogramming neutral lipid metabolism in mouse dendritic leucocytes hosting live Leishmania amazonensis amastigotes. PLoS Negl Trop Dis 2013; 7:e2276. [PMID: 23785538 PMCID: PMC3681733 DOI: 10.1371/journal.pntd.0002276] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 05/06/2013] [Indexed: 11/18/2022] Open
Abstract
Background After loading with live Leishmania (L) amazonensis amastigotes, mouse myeloid dendritic leucocytes/DLs are known to undergo reprogramming of their immune functions. In the study reported here, we investigated whether the presence of live L. amazonensis amastigotes in mouse bone marrow-derived DLs is able to trigger re-programming of DL lipid, and particularly neutral lipid metabolism. Methodology/Principal Findings Affymetrix-based transcriptional profiles were determined in C57BL/6 and DBA/2 mouse bone marrow-derived DLs that had been sorted from cultures exposed or not to live L. amazonensis amastigotes. This showed that live amastigote-hosting DLs exhibited a coordinated increase in: (i) long-chain fatty acids (LCFA) and cholesterol uptake/transport, (ii) LCFA and cholesterol (re)-esterification to triacyl-sn-glycerol (TAG) and cholesteryl esters (CE), respectively. As these neutral lipids are known to make up the lipid body (LB) core, oleic acid was added to DL cultures and LB accumulation was compared in live amastigote-hosting versus amastigote-free DLs by epi-fluorescence and transmission electron microscopy. This showed that LBs were both significantly larger and more numerous in live amastigote-hosting mouse dendritic leucocytes. Moreover, many of the larger LB showed intimate contact with the membrane of the parasitophorous vacuoles hosting the live L. amazonensis amastigotes. Conclusions/Significance As leucocyte LBs are known to be more than simple neutral lipid repositories, we set about addressing two related questions. Could LBs provide lipids to live amastigotes hosted within the DL parasitophorous vacuole and also deliver? Could LBs impact either directly or indirectly on the persistence of L. amazonensis amastigotes in rodent skin? Once they have gained entry to mammals, live Leishmania (L) amazonensis amastigotes are known to subvert both macrophages and dendritic leucocytes (DLs) as host cells. These L. amazonensis amastigotes then may or may not proliferate in these two phagocytic leucocyte lineages, but in both cases the otherwise versatile differentiation program of these lineages is known to be rapidly remodeled. Here, we describe the rapid reprogramming of C57BL/6 and DBA/2 mouse bone marrow-derived DLs, with a special focus on cytosolic lipid bodies (LBs) that are known to store neutral lipids such as triacyl-sn-glycerol (TAG) and cholesteryl esters (CE). After extracting RNA from carefully sorted amastigote-free DLs and L. amazonensis amastigote-hosting DLs, an Affymetrix-based analysis clearly showed a singular and coordinated increase in DL transcripts involved in (i) long-chain fatty acid uptake, transport and esterification to TAG and (ii) cholesterol uptake and esterification to cholesteryl esters. Oleic acid was added to check that neutral lipid metabolism was both rapidly increased and reprogrammed in amastigote-hosting DLs. It should be noted that the LBs in live amastigote-hosting DLs were more numerous, and that the largest of these LBs were in contact with live amastigote- hosting parasitophorous vacuoles. We further discuss these findings in the context of live L. amazonensis amastigote-rodent host interactions.
Collapse
Affiliation(s)
- Hervé Lecoeur
- Institut Pasteur, Département de Parasitologie et Mycologie, Laboratoire Immunophysiologie et Parasitisme, Paris, France
- * E-mail: (HL); (TL)
| | - Emilie Giraud
- Institut Pasteur, Département de Parasitologie et Mycologie, Laboratoire Immunophysiologie et Parasitisme, Paris, France
| | - Marie-Christine Prévost
- Institut Pasteur, Département Biologie Cellulaire et Infection, Plateforme de Microscopie Ultrastructurale, Paris, France
| | - Geneviève Milon
- Institut Pasteur, Département de Parasitologie et Mycologie, Laboratoire Immunophysiologie et Parasitisme, Paris, France
| | - Thierry Lang
- Institut Pasteur, Département de Parasitologie et Mycologie, Laboratoire Immunophysiologie et Parasitisme, Paris, France
- Institut Pasteur, Département Infection et Epidémiologie, Laboratoire des Processus Infectieux à Trypanosomatidés, Paris, France
- * E-mail: (HL); (TL)
| |
Collapse
|
14
|
Aulner N, Danckaert A, Rouault-Hardoin E, Desrivot J, Helynck O, Commere PH, Munier-Lehmann H, Späth GF, Shorte SL, Milon G, Prina E. High content analysis of primary macrophages hosting proliferating Leishmania amastigotes: application to anti-leishmanial drug discovery. PLoS Negl Trop Dis 2013; 7:e2154. [PMID: 23593521 PMCID: PMC3617141 DOI: 10.1371/journal.pntd.0002154] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/25/2013] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND/OBJECTIVES Human leishmaniases are parasitic diseases causing severe morbidity and mortality. No vaccine is available and numerous factors limit the use of current therapies. There is thus an urgent need for innovative initiatives to identify new chemotypes displaying selective activity against intracellular Leishmania amastigotes that develop and proliferate inside macrophages, thereby causing the pathology of leishmaniasis. METHODOLOGY/PRINCIPAL FINDINGS We have developed a biologically sound High Content Analysis assay, based on the use of homogeneous populations of primary mouse macrophages hosting Leishmania amazonensis amastigotes. In contrast to classical promastigote-based screens, our assay more closely mimics the environment where intracellular amastigotes are growing within acidic parasitophorous vacuoles of their host cells. This multi-parametric assay provides quantitative data that accurately monitors the parasitic load of amastigotes-hosting macrophage cultures for the discovery of leishmanicidal compounds, but also their potential toxic effect on host macrophages. We validated our approach by using a small set of compounds of leishmanicidal drugs and recently published chemical entities. Based on their intramacrophagic leishmanicidal activity and their toxicity against host cells, compounds were classified as irrelevant or relevant for entering the next step in the drug discovery pipeline. CONCLUSIONS/SIGNIFICANCE Our assay represents a new screening platform that overcomes several limitations in anti-leishmanial drug discovery. First, the ability to detect toxicity on primary macrophages allows for discovery of compounds able to cross the membranes of macrophage, vacuole and amastigote, thereby accelerating the hit to lead development process for compounds selectively targeting intracellular parasites. Second, our assay allows discovery of anti-leishmanials that interfere with biological functions of the macrophage required for parasite development and growth, such as organelle trafficking/acidification or production of microbicidal effectors. These data thus validate a novel phenotypic screening assay using virulent Leishmania amastigotes growing inside primary macrophage to identify new chemical entities with bona fide drug potential.
Collapse
Affiliation(s)
| | | | - Eline Rouault-Hardoin
- Institut Pasteur, Laboratoire Immunophysiologie et Parasitisme, Département de Parasitologie et Mycologie, Paris, France
| | - Julie Desrivot
- Institut Pasteur, Laboratoire Immunophysiologie et Parasitisme, Département de Parasitologie et Mycologie, Paris, France
| | - Olivier Helynck
- Institut Pasteur, Unité Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, Paris, France
| | | | - Hélène Munier-Lehmann
- Institut Pasteur, Unité Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, Paris, France
- CNRS, UMR 3523, Paris, France
| | - Gerald F. Späth
- Institut Pasteur, Unité Parasitologie Moléculaire et Signalisation, Département de Parasitologie et Mycologie, Paris, France
- CNRS URA 2581, Paris, France
| | | | - Geneviève Milon
- Institut Pasteur, Laboratoire Immunophysiologie et Parasitisme, Département de Parasitologie et Mycologie, Paris, France
| | - Eric Prina
- Institut Pasteur, Laboratoire Immunophysiologie et Parasitisme, Département de Parasitologie et Mycologie, Paris, France
- Institut Pasteur, Unité Parasitologie Moléculaire et Signalisation, Département de Parasitologie et Mycologie, Paris, France
- CNRS URA 2581, Paris, France
| |
Collapse
|
15
|
Giraud E, Lecoeur H, Soubigou G, Coppée JY, Milon G, Prina E, Lang T. Distinct transcriptional signatures of bone marrow-derived C57BL/6 and DBA/2 dendritic leucocytes hosting live Leishmania amazonensis amastigotes. PLoS Negl Trop Dis 2012; 6:e1980. [PMID: 23272268 PMCID: PMC3521701 DOI: 10.1371/journal.pntd.0001980] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 11/05/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND/OBJECTIVES The inoculation of a low number (10(4)) of L. amazonensis metacyclic promastigotes into the dermis of C57BL/6 and DBA/2 mouse ear pinna results in distinct outcome as assessed by the parasite load values and ear pinna macroscopic features monitored from days 4 to 22-phase 1 and from days 22 to 80/100-phase 2. While in C57BL/6 mice, the amastigote population size was increasing progressively, in DBA/2 mice, it was rapidly controlled. This latter rapid control did not prevent intracellular amastigotes to persist in the ear pinna and in the ear-draining lymph node/ear-DLN. The objectives of the present analysis was to compare the dendritic leukocytes-dependant immune processes that could account for the distinct outcome during the phase 1, namely, when phagocytic dendritic leucocytes of C57BL/6 and DBA/2 mice have been subverted as live amastigotes-hosting cells. METHODOLOGY/PRINCIPAL FINDINGS Being aware of the very low frequency of the tissues' dendritic leucocytes/DLs, bone marrow-derived C57BL/6 and DBA/2 DLs were first generated and exposed or not to live DsRed2 expressing L. amazonensis amastigotes. Once sorted from the four bone marrow cultures, the DLs were compared by Affymetrix-based transcriptomic analyses and flow cytometry. C57BL/6 and DBA/2 DLs cells hosting live L. amazonensis amastigotes do display distinct transcriptional signatures and markers that could contribute to the distinct features observed in C57BL/6 versus DBA/2 ear pinna and in the ear pinna-DLNs during the first phase post L. amazonensis inoculation. CONCLUSIONS/SIGNIFICANCE The distinct features captured in vitro from homogenous populations of C57BL/6 and DBA/2 DLs hosting live amastigotes do offer solid resources for further comparing, in vivo, in biologically sound conditions, functions that range from leukocyte mobilization within the ear pinna, the distinct emigration from the ear pinna to the DLN of live amastigotes-hosting DLs, and their unique signalling functions to either naive or primed T lymphocytes.
Collapse
Affiliation(s)
- Emilie Giraud
- Département de Parasitologie et Mycologie, Laboratoire Immunophysiologie et Parasitisme, Institut Pasteur, Paris, France
| | - Hervé Lecoeur
- Département de Parasitologie et Mycologie, Laboratoire Immunophysiologie et Parasitisme, Institut Pasteur, Paris, France
| | | | - Jean-Yves Coppée
- Plateforme Transcriptome et Epigénome, Institut Pasteur, Paris, France
| | - Geneviève Milon
- Département de Parasitologie et Mycologie, Laboratoire Immunophysiologie et Parasitisme, Institut Pasteur, Paris, France
| | - Eric Prina
- Département de Parasitologie et Mycologie, Laboratoire Immunophysiologie et Parasitisme, Institut Pasteur, Paris, France
| | - Thierry Lang
- Département de Parasitologie et Mycologie, Laboratoire Immunophysiologie et Parasitisme, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
16
|
Calvo-Álvarez E, Guerrero NA, Álvarez-Velilla R, Prada CF, Requena JM, Punzón C, Llamas MÁ, Arévalo FJ, Rivas L, Fresno M, Pérez-Pertejo Y, Balaña-Fouce R, Reguera RM. Appraisal of a Leishmania major strain stably expressing mCherry fluorescent protein for both in vitro and in vivo studies of potential drugs and vaccine against cutaneous leishmaniasis. PLoS Negl Trop Dis 2012; 6:e1927. [PMID: 23209866 PMCID: PMC3510153 DOI: 10.1371/journal.pntd.0001927] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 10/16/2012] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Leishmania major cutaneous leishmaniasis is an infectious zoonotic disease. It is produced by a digenetic parasite, which resides in the phagolysosomal compartment of different mammalian macrophage populations. There is an urgent need to develop new therapies (drugs) against this neglected disease that hits developing countries. The main goal of this work is to establish an easier and cheaper tool of choice for real-time monitoring of the establishment and progression of this pathology either in BALB/c mice or in vitro assays. To validate this new technique we vaccinated mice with an attenuated Δhsp70-II strain of Leishmania to assess protection against this disease. METHODOLOGY We engineered a transgenic L. major strain expressing the mCherry red-fluorescent protein for real-time monitoring of the parasitic load. This is achieved via measurement of fluorescence emission, allowing a weekly record of the footpads over eight weeks after the inoculation of BALB/c mice. RESULTS In vitro results show a linear correlation between the number of parasites and fluorescence emission over a range of four logs. The minimum number of parasites (amastigote isolated from lesion) detected by their fluorescent phenotype was 10,000. The effect of antileishmanial drugs against mCherry+L. major infecting peritoneal macrophages were evaluated by direct assay of fluorescence emission, with IC(50) values of 0.12, 0.56 and 9.20 µM for amphotericin B, miltefosine and paromomycin, respectively. An experimental vaccination trial based on the protection conferred by an attenuated Δhsp70-II mutant of Leishmania was used to validate the suitability of this technique in vivo. CONCLUSIONS A Leishmania major strain expressing mCherry red-fluorescent protein enables the monitoring of parasitic load via measurement of fluorescence emission. This approach allows a simpler, faster, non-invasive and cost-effective technique to assess the clinical progression of the infection after drug or vaccine therapy.
Collapse
Affiliation(s)
| | - Nestor Adrian Guerrero
- Centro de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - Jose María Requena
- Centro de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | - Luis Rivas
- Centro de Investigaciones Biológicas, Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, Madrid, Spain
- Diomune, Parque Cientifico de Madrid, Madrid, Spain
| | | | | | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Universidad de León, León, Spain
| |
Collapse
|
17
|
|
18
|
Millington OR, Myburgh E, Mottram JC, Alexander J. Imaging of the host/parasite interplay in cutaneous leishmaniasis. Exp Parasitol 2010; 126:310-7. [PMID: 20501336 PMCID: PMC3427850 DOI: 10.1016/j.exppara.2010.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 05/17/2010] [Accepted: 05/19/2010] [Indexed: 11/19/2022]
Abstract
An understanding of host-parasite interplay is essential for the development of therapeutics and vaccines. Immunoparasitologists have learned a great deal from 'conventional'in vitro and in vivo approaches, but recent developments in imaging technologies have provided us (immunologists and parasitologists) with the ability to ask new and exciting questions about the dynamic nature of the parasite-immune system interface. These studies are providing us with new insights into the mechanisms involved in the initiation of a Leishmania infection and the consequent induction and regulation of the immune response. Here, we review some of the recent developments and discuss how these observations can be further developed to understand the immunology of cutaneous Leishmania infection in vivo.
Collapse
|