1
|
New highly antigenic linear B cell epitope peptides from PvAMA-1 as potential vaccine candidates. PLoS One 2021; 16:e0258637. [PMID: 34727117 PMCID: PMC8562794 DOI: 10.1371/journal.pone.0258637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 10/01/2021] [Indexed: 11/19/2022] Open
Abstract
Peptide-based vaccines have demonstrated to be an important way to induce long-lived immune responses and, therefore, a promising strategy in the rational of vaccine development. As to malaria, among the classic vaccine targets, the Apical membrane antigen (AMA-1) was proven to have important B cell epitopes that can induce specific immune response and, hence, became key players for a vaccine approach. The peptides selection was carried out using a bioinformatic approach based on Hidden Markov Models profiles of known antigens and propensity scale methods based on hydrophilicity and secondary structure prediction. The antigenicity of the selected B-cell peptides was assessed by multiple serological assays using sera from acute P.vivax infected subjects. The synthetic peptides were recognized by 45.5%, 48.7% and 32.2% of infected subjects for peptides I, II and III respectively. Moreover, when synthetized together (tripeptide), the reactivity increases up to 62%, which is comparable to the reactivity found against the whole protein PvAMA-1 (57%). Furthermore, IgG reactivity against the tripeptide after depletion was reduced by 42%, indicating that these epitopes may be responsible for a considerable part of the protein immunogenicity. These results represent an excellent perspective regarding future chimeric vaccine constructions that may come to contemplate several targets with the potential to generate the robust and protective immune response that a vivax malaria vaccine needs to succeed.
Collapse
|
2
|
De SL, Ntumngia FB, Nicholas J, Adams JH. Progress towards the development of a P. vivax vaccine. Expert Rev Vaccines 2021; 20:97-112. [PMID: 33481638 PMCID: PMC7994195 DOI: 10.1080/14760584.2021.1880898] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Plasmodium vivax causes significant public health problems in endemic regions. A vaccine to prevent disease is critical, considering the rapid spread of drug-resistant parasite strains, and the development of hypnozoites in the liver with potential for relapse. A minimally effective vaccine should prevent disease and transmission while an ideal vaccine provides sterile immunity. AREAS COVERED Despite decades of research, the complex life cycle, technical challenges and a lack of funding have hampered progress of P. vivax vaccine development. Here, we review the progress of potential P. vivax vaccine candidates from different stages of the parasite life cycle. We also highlight the challenges and important strategies for rational vaccine design. These factors can significantly increase immune effector mechanisms and improve the protective efficacy of these candidates in clinical trials to generate sustained protection over longer periods of time. EXPERT OPINION A vaccine that presents functionally-conserved epitopes from multiple antigens from various stages of the parasite life cycle is key to induce broadly neutralizing strain-transcending protective immunity to effectively disrupt parasite development and transmission.
Collapse
Affiliation(s)
- Sai Lata De
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - Francis B. Ntumngia
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - Justin Nicholas
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| |
Collapse
|
3
|
Kale S, Yadav CP, Rao PN, Shalini S, Eapen A, Srivasatava HC, Sharma SK, Pande V, Carlton JM, Singh OP, Mallick PK. Antibody responses within two leading Plasmodium vivax vaccine candidate antigens in three geographically diverse malaria-endemic regions of India. Malar J 2019; 18:425. [PMID: 31842894 PMCID: PMC6916228 DOI: 10.1186/s12936-019-3066-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/08/2019] [Indexed: 01/28/2023] Open
Abstract
Background Identifying highly immunogenic blood stage antigens which can work as target for naturally acquired antibodies in different eco-epidemiological settings is an important step for designing malaria vaccine. Blood stage proteins of Plasmodium vivax, apical membrane antigen-1 (PvAMA-1) and 19 kDa fragment of merozoite surface protein (PvMSP-119) are such promising vaccine candidate antigens. This study determined the naturally-acquired antibody response to PvAMA-1 and PvMSP-119 antigens in individuals living in three geographically diverse malaria endemic regions of India. Methods A total of 234 blood samples were collected from individuals living in three different eco-epidemiological settings, Chennai, Nadiad, and Rourkela of India. Indirect ELISA was performed to measure human IgG antibodies against recombinant PvAMA-1 and PvMSP-119 antigens. The difference in seroprevalence and factors associated with antibody responses at each site was statistically analysed. Results The overall seroprevalence was 40.6% for PvAMA-1 and 62.4% for PvMSP-119. Seroprevalence to PvAMA-1 was higher in Chennai (47%) followed by Nadiad (46.7%) and Rourkela (27.6%). For PvMSP-119, seroprevalence was higher in Chennai (80.3%) as compared to Nadiad (53.3%) and Rourkela (57.9%). Seroprevalence for both the antigens were found to be higher in Chennai where P. vivax is the dominant malaria species. In addition, heterogeneous antibody response was observed for PvAMA-1 and PvMSP-119 antigens at each of the study sites. Two factors, age and malaria positivity were significantly associated with seropositivity for both the antigens PvAMA-1 and PvMSP-119. Conclusion These data suggest that natural acquired antibody response is higher for PvMSP-119 antigen as compared to PvAMA-1 antigen in individuals living in three geographically diverse malaria endemic regions in India. PvMSP-119 appears to be highly immunogenic in Indian population and has great potential as a malaria vaccine candidate. The differences in immune response against vaccine candidate antigens in different endemic settings should be taken into account for development of asexual stage based P. vivax malaria vaccine, which in turn can enhance malaria control efforts.
Collapse
Affiliation(s)
- Sonal Kale
- ICMR-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, India.,Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Chander P Yadav
- ICMR-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, India
| | - Pavitra N Rao
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, USA
| | - Sneh Shalini
- ICMR-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, India
| | - Alex Eapen
- National Institute of Malaria Research Field Unit, Indian Council of Medical Research, National Institute of Epidemiology Campus, Ayapakkam, Chennai, Tamil Nadu, India
| | - Harish C Srivasatava
- National Institute of Malaria Research Field Unit, Civil Hospital, Nadiad, Gujarat, India
| | - Surya K Sharma
- Jigyansha, International Center of Excellence for Malaria Research, Sector 1, Rourkela, Odisha, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Jane M Carlton
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, USA
| | - Om P Singh
- ICMR-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, India.
| | - Prashant K Mallick
- ICMR-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, India.
| |
Collapse
|
4
|
Patgaonkar M, Herbert F, Powale K, Gandhe P, Gogtay N, Thatte U, Pied S, Sharma S, Pathak S. Vivax infection alters peripheral B-cell profile and induces persistent serum IgM. Parasite Immunol 2018; 40:e12580. [PMID: 30102786 DOI: 10.1111/pim.12580] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/03/2018] [Indexed: 01/06/2023]
Abstract
B cell-mediated humoral responses are essential for controlling malarial infection. Studies have addressed the effects of Plasmodium falciparum infection on peripheral B-cell subsets but not much is known for P. vivax infection. Furthermore, majority of the studies investigate changes during acute infection, but not after parasite clearance. In this prospective study, we analysed peripheral B-cell profiles and antibody responses during acute P. vivax infection and upon recovery (30 days post-treatment) in a low-transmission area in India. Dengue patients were included as febrile-condition controls. Both dengue and malaria patients showed a transient increase in atypical memory B cells during acute infection. However, transient B cell-activating factor (BAFF)-independent increase in the percentage of total and activated immature B cells was observed in malaria patients. Naïve B cells from malaria patients also showed increased TLR4 expression. Total IgM levels remained unchanged during acute infection but increased significantly at recovery. Serum antibody profiling showed a parasite-specific IgM response that persisted at recovery. A persistent IgM autoantibody response was also observed in malaria but not dengue patients. Our data suggest that in hypoendemic regions acute P. vivax infection skews peripheral B-cell subsets and results in a persistent parasite-specific and autoreactive IgM response.
Collapse
Affiliation(s)
- Mandar Patgaonkar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Fabien Herbert
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Krushali Powale
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Prajakta Gandhe
- Department of Clinical Pharmacology, King Edward Memorial Hospital, Parel, Mumbai, India
| | - Nithya Gogtay
- Department of Clinical Pharmacology, King Edward Memorial Hospital, Parel, Mumbai, India
| | - Urmila Thatte
- Department of Clinical Pharmacology, King Edward Memorial Hospital, Parel, Mumbai, India
| | - Sylviane Pied
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Shobhona Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sulabha Pathak
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
5
|
Flores-Alanis A, González-Cerón L, Santillán F, Ximenez C, Sandoval MA, Cerritos R. Temporal genetic changes in Plasmodium vivax apical membrane antigen 1 over 19 years of transmission in southern Mexico. Parasit Vectors 2017; 10:217. [PMID: 28464959 PMCID: PMC5414334 DOI: 10.1186/s13071-017-2156-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 04/25/2017] [Indexed: 01/21/2023] Open
Abstract
Background Mexico advanced to the pre-elimination phase in 2009 due to a significant reduction in malaria cases, and since 2000, Plasmodium vivax is the only species transmitted. During the last two decades, malaria transmission has been mostly local and isolated to a few regions. It is important to gain further insights into the impact of control measures on the parasite population structure. Hence, the aim of the current study was to determine detailed changes in P. vivax genetic diversity and population structure based on analysing the gene that encodes the apical membrane antigen 1 (pvama1). This analysis covered from control to pre-elimination (1993–2011) in a hypo-endemic region in southern Mexico. Results The 213 pvama1I-II sequences presently analysed were grouped into six periods of three years each. They showed low genetic diversity, with 15 haplotypes resolved. Among the DNA sequences, there was a gradual decrease in genetic diversity, the number of mixed genotype infections and the intensity of positive selection, in agreement with the parallel decline in malaria cases. At the same time, linkage disequilibrium (R2) increased. The three-dimensional haplotype network revealed that pvama1I-II haplotypes were separated by 1–11 mutational steps, and between one another by 0–3 unsampled haplotypes. In the temporal network, seven haplotypes were detected in at least two of the six-time layers, and only four distinct haplotypes were evidenced in the pre-elimination phase. Structure analysis indicated that three subpopulations fluctuated over time. Only 8.5% of the samples had mixed ancestry. In the pre-elimination phase, subpopulation P1 was drastically reduced, and the admixture was absent. Conclusions The results suggest that P. vivax in southern Mexico evolved based on local adaptation into three “pseudoclonal” subpopulations that diversified at the regional level and persisted over time, although with varying frequency. Control measures and climate events influenced the number of malaria cases and the genetic structure. The sharp decrease in parasite diversity and other related genetic parameters during the pre-elimination phase suggests that malaria elimination is possible in the near future. These results are useful for epidemiological surveillance. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2156-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alejandro Flores-Alanis
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Lilia González-Cerón
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, 30700, Mexico.
| | - Frida Santillán
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, 30700, Mexico
| | - Cecilia Ximenez
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 06729, Mexico
| | - Marco A Sandoval
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, 30700, Mexico
| | - René Cerritos
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| |
Collapse
|
6
|
Uplekar S, Rao PN, Ramanathapuram L, Awasthi V, Verma K, Sutton P, Ali SZ, Patel A, G. SLP, Ravishankaran S, Desai N, Tandel N, Choubey S, Barla P, Kanagaraj D, Eapen A, Pradhan K, Singh R, Jain A, Felgner PL, Davies DH, Carlton JM, Das J. Characterizing Antibody Responses to Plasmodium vivax and Plasmodium falciparum Antigens in India Using Genome-Scale Protein Microarrays. PLoS Negl Trop Dis 2017; 11:e0005323. [PMID: 28118367 PMCID: PMC5291533 DOI: 10.1371/journal.pntd.0005323] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/03/2017] [Accepted: 01/10/2017] [Indexed: 11/19/2022] Open
Abstract
Understanding naturally acquired immune responses to Plasmodium in India is key to improving malaria surveillance and diagnostic tools. Here we describe serological profiling of immune responses at three sites in India by probing protein microarrays consisting of 515 Plasmodium vivax and 500 Plasmodium falciparum proteins with 353 plasma samples. A total of 236 malaria-positive (symptomatic and asymptomatic) plasma samples and 117 malaria-negative samples were collected at three field sites in Raurkela, Nadiad, and Chennai. Indian samples showed significant seroreactivity to 265 P. vivax and 373 P. falciparum antigens, but overall seroreactivity to P. vivax antigens was lower compared to P. falciparum antigens. We identified the most immunogenic antigens of both Plasmodium species that were recognized at all three sites in India, as well as P. falciparum antigens that were associated with asymptomatic malaria. This is the first genome-scale analysis of serological responses to the two major species of malaria parasite in India. The range of immune responses characterized in different endemic settings argues for targeted surveillance approaches tailored to the diverse epidemiology of malaria across the world.
Collapse
Affiliation(s)
- Swapna Uplekar
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, United States of America
| | - Pavitra Nagesh Rao
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, United States of America
| | - Lalitha Ramanathapuram
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, United States of America
| | - Vikky Awasthi
- National Institute of Malaria Research, Indian Council of Medical Research, Sector 8, Dwarka, New Delhi, India
| | - Kalpana Verma
- National Institute of Malaria Research, Indian Council of Medical Research, Sector 8, Dwarka, New Delhi, India
| | - Patrick Sutton
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, United States of America
| | - Syed Zeeshan Ali
- National Institute of Malaria Research Field Unit, Sector 1 Health Center, Raurkela, Odisha, India
| | - Ankita Patel
- National Institute of Malaria Research Field Unit, Civil Hospital, Nadiad, Gujarat, India
| | - Sri Lakshmi Priya G.
- National Institute of Malaria Research Field Unit, Indian Council of Medical Research, National Institute of Epidemiology Campus, Ayapakkam, Chennai, Tamil Nadu, India
| | - Sangamithra Ravishankaran
- National Institute of Malaria Research Field Unit, Indian Council of Medical Research, National Institute of Epidemiology Campus, Ayapakkam, Chennai, Tamil Nadu, India
| | - Nisha Desai
- National Institute of Malaria Research Field Unit, Civil Hospital, Nadiad, Gujarat, India
| | - Nikunj Tandel
- National Institute of Malaria Research Field Unit, Civil Hospital, Nadiad, Gujarat, India
| | - Sandhya Choubey
- National Institute of Malaria Research Field Unit, Sector 1 Health Center, Raurkela, Odisha, India
| | - Punam Barla
- National Institute of Malaria Research Field Unit, Sector 1 Health Center, Raurkela, Odisha, India
| | - Deena Kanagaraj
- National Institute of Malaria Research Field Unit, Indian Council of Medical Research, National Institute of Epidemiology Campus, Ayapakkam, Chennai, Tamil Nadu, India
| | - Alex Eapen
- National Institute of Malaria Research Field Unit, Indian Council of Medical Research, National Institute of Epidemiology Campus, Ayapakkam, Chennai, Tamil Nadu, India
| | - Khageswar Pradhan
- National Institute of Malaria Research Field Unit, Sector 1 Health Center, Raurkela, Odisha, India
| | - Ranvir Singh
- National Institute of Malaria Research Field Unit, Civil Hospital, Nadiad, Gujarat, India
| | - Aarti Jain
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, CA, United States of America
| | - Philip L. Felgner
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, CA, United States of America
| | - D. Huw Davies
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, CA, United States of America
| | - Jane M. Carlton
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, United States of America
| | - Jyoti Das
- National Institute of Malaria Research, Indian Council of Medical Research, Sector 8, Dwarka, New Delhi, India
| |
Collapse
|
7
|
Abstract
SUMMARYPlasmodium vivaxis the most geographically widespread of the malaria parasites causing human disease, yet it is comparatively understudied compared withPlasmodium falciparum.In this article we review what is known about naturally acquired immunity toP. vivax, and importantly, how this differs to that acquired againstP. falciparum.Immunity to clinicalP. vivaxinfection is acquired more quickly than toP. falciparum, and evidence suggests humans in endemic areas also have a greater capacity to mount a successful immunological memory response to this pathogen. Both of these factors give promise to the idea of a successfulP. vivaxvaccine. We review what is known about both the cellular and humoral immune response, including the role of cytokines, antibodies, immunoregulation, immune memory and immune dysfunction. Furthermore, we discuss where the future lies in terms of advancing our understanding of naturally acquired immunity toP. vivax, through the use of well-designed longitudinal epidemiological studies and modern tools available to immunologists.
Collapse
|
8
|
Differing Patterns of Selection and Geospatial Genetic Diversity within Two Leading Plasmodium vivax Candidate Vaccine Antigens. PLoS Negl Trop Dis 2014; 8:e2796. [PMID: 24743266 PMCID: PMC3990511 DOI: 10.1371/journal.pntd.0002796] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 03/05/2014] [Indexed: 02/04/2023] Open
|
9
|
Stanisic DI, Javati S, Kiniboro B, Lin E, Jiang J, Singh B, Meyer EVS, Siba P, Koepfli C, Felger I, Galinski MR, Mueller I. Naturally acquired immune responses to P. vivax merozoite surface protein 3α and merozoite surface protein 9 are associated with reduced risk of P. vivax malaria in young Papua New Guinean children. PLoS Negl Trop Dis 2013; 7:e2498. [PMID: 24244763 PMCID: PMC3828159 DOI: 10.1371/journal.pntd.0002498] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 09/10/2013] [Indexed: 11/19/2022] Open
Abstract
Background Plasmodium vivax is the most geographically widespread human malaria parasite. Cohort studies in Papua New Guinea have identified a rapid onset of immunity against vivax-malaria in children living in highly endemic areas. Although numerous P. vivax merozoite antigens are targets of naturally acquired antibodies, the role of many of these antibodies in protective immunity is yet unknown. Methodology/Principal Findings In a cohort of children aged 1–3 years, antibodies to different regions of Merozoite Surface Protein 3α (PvMSP3α) and Merozoite Surface Protein 9 (PvMSP9) were measured and related to prospective risk of P. vivax malaria during 16 months of active follow-up. Overall, there was a low prevalence of antibodies to PvMSP3α and PvMSP9 proteins (9–65%). Antibodies to the PvMSP3α N-terminal, Block I and Block II regions increased significantly with age while antibodies to the PvMSP3α Block I and PvMSP9 N-terminal regions were positively associated with concurrent P. vivax infection. Independent of exposure (defined as the number of genetically distinct blood-stage infection acquired over time (molFOB)) and age, antibodies specific to both PvMSP3α Block II (adjusted incidence ratio (aIRR) = 0.59, p = 0.011) and PvMSP9 N-terminus (aIRR = 0.68, p = 0.035) were associated with protection against clinical P. vivax malaria. This protection was most pronounced against high-density infections. For PvMSP3α Block II, the effect was stronger with higher levels of antibodies. Conclusions These results indicate that PvMSP3α Block II and PvMSP9 N-terminus should be further investigated for their potential as P. vivax vaccine antigens. Controlling for molFOB assures that the observed associations are not confounded by individual differences in exposure. Plasmodium vivax is the most geographically widespread human malaria parasite. In highly endemic areas such as Papua New Guinea, a very rapid onset of immunity against vivax-malaria is observed. Although it is known that numerous P. vivax merozoite antigens are targets of naturally acquired antibodies, the role of many of these antibodies in protective immunity is yet unknown. In a cohort of 183 children aged 1–3 years, we now show that the presence of antibodies to Merozoite Surface Protein 3α (PvMSP3α) and Merozoite Surface Protein 9 (PvMSP9) are associated with a significant reduction in the burden P. vivax malaria. Antibodies increased with age and in the presence of concurrent P. vivax infections. After adjusting for both age and individual differences in exposure, the strongest reductions in risk were seen in children with antibodies to PvMSP3α Block II (41% reduction, p = 0.001) and PvMSP9 N-terminal region. (32% reduction, p = 0.035). These results indicate that PvMSP3α Block II and PvMSP9 N-terminus should be further investigated for their potential as P. vivax vaccine antigens.
Collapse
Affiliation(s)
- Danielle I. Stanisic
- Walter and Eliza Hall Institute, Parkville, Australia
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- * E-mail: (DIS); (IM)
| | - Sarah Javati
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Benson Kiniboro
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Enmoore Lin
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Jianlin Jiang
- Emory Vaccine Center, Yerkes National Primate Research Centre, Emory University, Atlanta, Georgia, United States of America
| | - Balwan Singh
- Emory Vaccine Center, Yerkes National Primate Research Centre, Emory University, Atlanta, Georgia, United States of America
| | - Esmeralda V. S. Meyer
- Emory Vaccine Center, Yerkes National Primate Research Centre, Emory University, Atlanta, Georgia, United States of America
| | - Peter Siba
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Cristian Koepfli
- Walter and Eliza Hall Institute, Parkville, Australia
- Swiss Tropical Institute and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ingrid Felger
- Swiss Tropical Institute and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Mary R. Galinski
- Emory Vaccine Center, Yerkes National Primate Research Centre, Emory University, Atlanta, Georgia, United States of America
- Department of Medicine, Division of Infectious Disease, Emory University, Atlanta, Georgia, United States of America
| | - Ivo Mueller
- Walter and Eliza Hall Institute, Parkville, Australia
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- * E-mail: (DIS); (IM)
| |
Collapse
|
10
|
Mueller I, Galinski MR, Tsuboi T, Arevalo-Herrera M, Collins WE, King CL. Natural acquisition of immunity to Plasmodium vivax: epidemiological observations and potential targets. ADVANCES IN PARASITOLOGY 2013; 81:77-131. [PMID: 23384622 DOI: 10.1016/b978-0-12-407826-0.00003-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Population studies show that individuals acquire immunity to Plasmodium vivax more quickly than Plasmodium falciparum irrespective of overall transmission intensity, resulting in the peak burden of P. vivax malaria in younger age groups. Similarly, actively induced P. vivax infections in malaria therapy patients resulted in faster and generally more strain-transcending acquisition of immunity than P. falciparum infections. The mechanisms behind the more rapid acquisition of immunity to P. vivax are poorly understood. Natural acquired immune responses to P. vivax target both pre-erythrocytic and blood-stage antigens and include humoral and cellular components. To date, only a few studies have investigated the association of these immune responses with protection, with most studies focussing on a few merozoite antigens (such as the Pv Duffy binding protein (PvDBP), the Pv reticulocyte binding proteins (PvRBPs), or the Pv merozoite surface proteins (PvMSP1, 3 & 9)) or the circumsporozoite protein (PvCSP). Naturally acquired transmission-blocking (TB) immunity (TBI) was also found in several populations. Although limited, these data support the premise that developing a multi-stage P. vivax vaccine may be feasible and is worth pursuing.
Collapse
Affiliation(s)
- Ivo Mueller
- Walter + Eliza Hall Institute, Infection & Immunity Division, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
11
|
Chenet SM, Tapia LL, Escalante AA, Durand S, Lucas C, Bacon DJ. Genetic diversity and population structure of genes encoding vaccine candidate antigens of Plasmodium vivax. Malar J 2012; 11:68. [PMID: 22417572 PMCID: PMC3330009 DOI: 10.1186/1475-2875-11-68] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/14/2012] [Indexed: 11/10/2022] Open
Abstract
Background A major concern in malaria vaccine development is genetic polymorphisms typically observed among Plasmodium isolates in different geographical areas across the world. Highly polymorphic regions have been observed in Plasmodium falciparum and Plasmodium vivax antigenic surface proteins such as Circumsporozoite protein (CSP), Duffy-binding protein (DBP), Merozoite surface protein-1 (MSP-1), Apical membrane antigen-1 (AMA-1) and Thrombospondin related anonymous protein (TRAP). Methods Genetic variability was assessed in important polymorphic regions of various vaccine candidate antigens in P. vivax among 106 isolates from the Amazon Region of Loreto, Peru. In addition, genetic diversity determined in Peruvian isolates was compared to population studies from various geographical locations worldwide. Results The structured diversity found in P. vivax populations did not show a geographic pattern and haplotypes from all gene candidates were distributed worldwide. In addition, evidence of balancing selection was found in polymorphic regions of the trap, dbp and ama-1 genes. Conclusions It is important to have a good representation of the haplotypes circulating worldwide when implementing a vaccine, regardless of the geographic region of deployment since selective pressure plays an important role in structuring antigen diversity.
Collapse
Affiliation(s)
- Stella M Chenet
- Parasitology Program, Naval Medical Research Unit No, 6, Lima, Peru
| | | | | | | | | | | |
Collapse
|
12
|
Lima-Junior JC, Jiang J, Rodrigues-da-Silva RN, Banic DM, Tran TM, Ribeiro RY, Meyer VSE, De-Simone SG, Santos F, Moreno A, Barnwell JW, Galinski MR, Oliveira-Ferreira J. B cell epitope mapping and characterization of naturally acquired antibodies to the Plasmodium vivax merozoite surface protein-3α (PvMSP-3α) in malaria exposed individuals from Brazilian Amazon. Vaccine 2011; 29:1801-11. [PMID: 21215342 PMCID: PMC3065243 DOI: 10.1016/j.vaccine.2010.12.099] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 12/02/2010] [Accepted: 12/22/2010] [Indexed: 10/18/2022]
Abstract
The Plasmodium vivax Merozoite Surface Protein-3α (PvMSP-3α) is considered as a potential vaccine candidate. However, the detailed investigations of the type of immune responses induced in naturally exposed populations are necessary. Therefore, we aim to characterize the naturally induced antibody to PvMSP-3α in 282 individuals with different levels of exposure to malaria infections residents in Brazilian Amazon. PvMSP3 specific antibodies (IgA, IgG and IgG subclass) to five recombinant proteins and the epitope mapping by Spot-synthesis technique to full-protein sequence of amino acids (15aa sequence with overlapping sequence of 9aa) were performed. Our results indicates that PvMSP3 is highly immunogenic in naturally exposed populations, where 78% of studied individuals present IgG immune response against the full-length recombinant protein (PVMSP3-FL) and IgG subclass profile was similar to all five recombinant proteins studied with a high predominance of IgG1 and IgG3. We also observe that IgG and subclass levels against PvMSP3 are associated with malaria exposure. The PvMSP3 epitope mapping by Spot-synthesis shows a natural recognition of at least 15 antigenic determinants, located mainly in the two blocks of repeats, confirming the high immunogenicity of this region. In conclusion, PvMSP-3α is immunogenic in naturally exposed individuals to malaria infections and that antibodies to PvMSP3 are induced to several B cell epitopes. The presence of PvMSP3 cytophilic antibodies (IgG1 and IgG3), suggests that this mechanism could also occur in P. vivax.
Collapse
Affiliation(s)
- JC Lima-Junior
- Laboratory of Immunoparasitology, Institute Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ
| | - J Jiang
- Emory Vaccine Center, Emory University, Atlanta, GA
| | - RN Rodrigues-da-Silva
- Laboratory of Immunoparasitology, Institute Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ
| | - DM Banic
- Laboratory of Malaria Research, Institute Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ
| | - TM Tran
- Laboratory of Biochemical of Proteins and Peptides, Institute Oswaldo Cruz, Fiocruz and Department of Biochemistry and Cellular Biology, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - RY Ribeiro
- Laboratory of Immunoparasitology, Institute Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ
| | - VSE Meyer
- Emory Vaccine Center, Emory University, Atlanta, GA
| | - SG De-Simone
- Laboratory of Biochemical of Proteins and Peptides, Institute Oswaldo Cruz, Fiocruz and Department of Biochemistry and Cellular Biology, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - F Santos
- Department of Entomology, LACEN, Porto Velho, RO
| | - A Moreno
- Emory Vaccine Center, Emory University, Atlanta, GA
| | - JW Barnwell
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA
| | - MR Galinski
- Emory Vaccine Center, Emory University, Atlanta, GA
| | - J Oliveira-Ferreira
- Laboratory of Immunoparasitology, Institute Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ
| |
Collapse
|
13
|
Martinez P, Lopez C, Saravia C, Vanegas M, Patarroyo MA. Evaluation of the antigenicity of universal epitopes from PvDBPII in individuals exposed to Plasmodium vivax malaria. Microbes Infect 2010; 12:1188-97. [DOI: 10.1016/j.micinf.2010.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Revised: 08/13/2010] [Accepted: 08/16/2010] [Indexed: 10/19/2022]
|