1
|
Finatto AN, Meurens F, de Oliveira Costa M. Piggybacking on nature: exploring the multifaceted world of porcine β-defensins. Vet Res 2025; 56:47. [PMID: 40033445 PMCID: PMC11877871 DOI: 10.1186/s13567-025-01465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 12/16/2024] [Indexed: 03/05/2025] Open
Abstract
Porcine β-defensins (pBDs) are cationic peptides that are classically associated with the innate immune system. These molecules yield both antimicrobial and immunomodulatory properties, as evidenced by various in vitro and animal trials. Researchers have revealed that enhancing pBD expression can be achieved through dietary components and gene editing techniques in pigs and porcine cell models. This state-of-the-art review aims to encapsulate the pivotal findings and progress made in the field of pBD over recent decades, with a specific emphasis on the biological role of pBD in infection control and its usage in clinical trials, thereby offering a new landscape of opportunities for research aimed at identifying prophylactic and therapeutic alternatives for both swine medicine and translational purposes.
Collapse
Affiliation(s)
- Arthur Nery Finatto
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - François Meurens
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, St. Hyacinthe, QC, J2S 2M2, Canada
- Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Matheus de Oliveira Costa
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
- Department of Population Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Song S, Li F, Zhao B, Zhou M, Wang X. Ultraviolet Light Causes Skin Cell Senescence: From Mechanism to Prevention Principle. Adv Biol (Weinh) 2025; 9:e2400090. [PMID: 39364703 DOI: 10.1002/adbi.202400090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/23/2024] [Indexed: 10/05/2024]
Abstract
The skin is an effective protective barrier that significantly protects the body from damage caused by external environmental factors. Furthermore, skin condition significantly affects external beauty. In today's era, which is of material and spiritual prosperity, there is growing attention on skincare and wellness. Ultraviolet radiation is one of the most common external factors that lead to conditions like sunburn, skin cancer, and skin aging. In this review, several mechanisms of UV-induced skin cell senescence are discussed, including DNA damage, oxidative stress, inflammatory response, and mitochondrial dysfunction, which have their own characteristics and mutual effects. As an illustration, mitochondrial dysfunction triggers electron evasion and the generation of more reactive oxygen species, leading to oxidative stress and the activation of the NLRP3 inflammasome, which in turn causes mitochondrial DNA (mt DNA) damage. Based on the current mechanism, suitable prevention and treatment strategies are proposed from sunscreen, dietary, and experimental medications respectively, aimed at slowing down skin cell aging and providing protection from ultraviolet radiation. The effects of ultraviolet rays on skin is summarized, offering insights and directions for future studies on mechanism of skin cell senescence, with an anticipation of discovering more effective prevention and cure methods.
Collapse
Affiliation(s)
- Shujia Song
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Fuxing Li
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Bingxiang Zhao
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Min Zhou
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Xiaobo Wang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| |
Collapse
|
3
|
Yilmaz M, He Q, Demir E, Teräsjärvi J, Gürsoy UK. Salivary IL-33 and sST2 levels in relation to TLR2 rs111200466 polymorphism and periodontitis. Oral Dis 2024; 30:2254-2261. [PMID: 37427857 DOI: 10.1111/odi.14675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/30/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVES Toll-like receptor-2 (TLR2) signalling pathway is involved in the regulation of interleukin (IL)-33 and its receptor suppression of tumorigenicity-2 (ST2). This study aimed to compare salivary IL-33 and soluble ST2 (sST2) levels of periodontitis patients with those of periodontally healthy individuals in relation to their TLR2 rs111200466 23-bp insertion/deletion polymorphism within the promoter region. MATERIALS AND METHODS Unstimulated saliva samples were collected, and periodontal parameters were recorded from 35 periodontally healthy individuals and 44 periodontitis patients. Non-surgical treatments were applied to periodontitis patients, and sample collections and clinical measurements were repeated 3 months following therapy. Salivary IL-33 and sST2 levels were measured with enzyme-linked immunosorbent assay kits, and TLR2 rs111200466 polymorphism was detected by polymerase chain reaction. RESULTS Elevated salivary IL-33 (p = 0.007) and sST2 (p = 0.020) levels were observed in periodontitis patients, in comparison to controls. sST2 levels declined 3-months following treatment (p < 0.001). Increased salivary IL-33 and sST2 levels were found to be associated with periodontitis, with no significant relation to the TLR2 polymorphism. CONCLUSION Periodontitis, but not TLR2 rs111200466 polymorphism, is associated with elevated salivary sST2 and possibly IL-33 levels, and periodontal treatment is effective in reducing salivary sST2 levels.
Collapse
Affiliation(s)
- Mustafa Yilmaz
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
- Department of Periodontology, Faculty of Dentistry, Biruni University, Istanbul, Turkey
| | - Qiushui He
- Institute of Biomedicine, Research Centre for Infections and Immunity, University of Turku, Turku, Finland
- InFLAMES Research Flagship Centre, University of Turku, Turku, Finland
| | - Esra Demir
- Department of Periodontology, Faculty of Dentistry, Bezmialem Vakif University, Istanbul, Turkey
| | - Johanna Teräsjärvi
- Institute of Biomedicine, Research Centre for Infections and Immunity, University of Turku, Turku, Finland
| | - Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
4
|
Fayadh Sameer A, Hassan Barraj A, Jamaal Mahmood H. NOD1/CARD4(G796A) and NOD2/CARD15(R702W, G908R and L1007fsinC) polymorphisms associated with Crohn's disease in Iraqi patients. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.03.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Inflammatory bowel disease (IBD) applies to two main forms of chronic relapsing inflammatory intestinal disorders: Crohn's disease (CD), Ulcerative colitis (UC). CD requires an irregular immune reaction that induces intense inflammation. The cause of CD disease is not yet fully known; previous research, however, indicated inflammation of the intestines elevated or continues due to inappropriate immune responses due to associations between genetic factors, intestinal microbiota, and environmental factors contributing to the production of IBD. This study aimed to investigate predisposing genes, single nucleotide Polymorphisms (SNPs) NOD1/CARD4 and NOD2/CARD15) with CD in Iraqi patients. The common NOD1 (G796A) SNP and NOD2 SNPs R702W, G908R and L1007fsinC for NOD2 SNPs were selected. Thirty Iraqi citizens with a recognized diagnosis of CD and twenty apparently healthy controls were included in the study from November 2019 to December 2020; the common NOD1 and NOD2 polymorphisms have been screened by the polymerase chain reaction/restriction analysis length polymorphism (PCR/RFLP). The results of the current investigation for NOD1 polymorphism in studied patients and controls, the allelic and genotypic data show a highly significant association of G796A SNPs in the NOD1 with Crohn's disease, GA percentage was 56.67% in patients as compared to controls genotype was (0.00%).
Furthermore, the G allele was more common in Crohn's patients than the A allele 0.72 vs. 0.28. Also, the allelic and genotypic frequency distribution of the studied NOD2 SNPs in the current study were (R702W, G908R, and L1007fs) in Iraqi patients, and controls revealed a highly significant connection between the G908R SNP with Crohn's disease susceptibility. The proportion of the genotype GC was 30% in patients while 0% in the control group, the frequency of the G allele was 0.85 vs 0.15 respectively, which was more than the frequency of the A allele. There were no significant changes in genotypic and allelic frequencies of the R702W and L1007fs SNPs in Iraqi Crohn's disease patients. The present study concluded that the NOD1 SNP of allelic and genotypic data show a highly significant association of G796A with a predisposition to Crohn's disease in Iraqi patients. And the NOD2 SNPs of G908R were also revealed to be highly effective. While the other studied SNPs were R702W and L1007fsinsC of NOD2, which showed no significant changes in the allelic and genotypic frequencies of the SNPs with Crohn's disease Iraqi patients.
Keywords: Inflammatory bowel disease, Crohn's disease, NOD1/CARD4, NOD2/CARD15, polymorphisms.
Collapse
Affiliation(s)
| | | | - Hayder Jamaal Mahmood
- Gastroenterologist and Hepatologist, Gastrointestinal of the hospital, City of medicine
| |
Collapse
|
5
|
Qin S, Huang X, Qu S. Baicalin Induces a Potent Innate Immune Response to Inhibit Respiratory Syncytial Virus Replication via Regulating Viral Non-Structural 1 and Matrix RNA. Front Immunol 2022; 13:907047. [PMID: 35812414 PMCID: PMC9259847 DOI: 10.3389/fimmu.2022.907047] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection is the most frequent cause of hospitalization in pediatric patients. Current systemic treatment and vaccines are not curative and re-infection is often associated with a more drastic incidence of the disease. Baicalin is a flavonoid isolated from Scutellaria baicalensis with potent anti-viral characteristics, namely against RSV. However, its precise mechanism of action remains unclear. Here, using in vitro methods and an in vivo murine model of RSV infection, we showed that baicalin inhibits RSV replication induces translational upregulation of type I interferons (IFNs), IFN-α and IFN-β, and reverses epithelial thickening in lung tissues. Moreover, baicalin inhibits transcription of the RSV non-structural proteins NS1 and NS2. Molecular docking and surface plasmon resonance-based affinity analysis showed that baicalin also binds to the α3 helix of the NS1 protein with an affinity constant of 1.119 × 10−5 M. Polysome profiling showed that baicalin inhibits translation of the RSV matrix protein (M) RNA. Baicalin mediates increased release of the ribosomal protein L13a from the large ribosomal subunit, where the extra ribosomal subunit L13a inhibits M RNA translation. These results comprehensively establish the multiple mechanisms by which baicalin induces a potent innate immune response against RSV infection.
Collapse
Affiliation(s)
- Sheng Qin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Xianzhang Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Shaogang Qu, ; Xianzhang Huang,
| | - Shaogang Qu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
- *Correspondence: Shaogang Qu, ; Xianzhang Huang,
| |
Collapse
|
6
|
The Role of Reactive Oxygen Species and Nitric Oxide in the Inhibition of Trichophyton rubrum Growth by HaCaT Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8548619. [PMID: 32104540 PMCID: PMC7038170 DOI: 10.1155/2020/8548619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/28/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
Trichophyton rubrum (T. rubrum) is one of the most important agents of dermatophyte infection in humans. The aim of this experiment was to evaluate the effect of HaCaT cells on T. rubrum, investigate the responsible mechanism of action, and explore the role of reactive oxygen species (ROS) and nitric oxide (NO) in the inhibition of T. rubrum growth by HaCaT cells. The viability of fungi treated with HaCaT cells alone and with HaCaT cells combined with pretreatment with the NADPH oxidase inhibitor (DPI) or the nitric oxide synthase (NOS) inhibitor L-NMMA was determined by enumerating the colony-forming units. NOS, ROS, and NO levels were quantified using fluorescent probes. The levels of the NOS inhibitor asymmetric dimethylarginine (ADMA) were determined by enzyme-linked immunosorbent assay (ELISA). Micromorphology was observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In addition, fungal keratinase activity was assessed by measuring dye release from keratin azure. In vitro fungal viability, keratinase activity, and ADMA content decreased after HaCaT cell intervention, whereas the levels of ROS, NO, and NOS increased. The micromorphology was abnormal. Fungi pretreated with DPI and L-NMMA exhibited opposite effects. HaCaT cells inhibited the growth and pathogenicity of T. rubrum in vitro. A suggested mechanism is that ROS and NO play an important role in the inhibition of T. rubrum growth by HaCaT cells.
Collapse
|
7
|
Tsepkolenko A, Tsepkolenko V, Dash S, Mishra A, Bader A, Melerzanov A, Giri S. The regenerative potential of skin and the immune system. Clin Cosmet Investig Dermatol 2019; 12:519-532. [PMID: 31410045 PMCID: PMC6643261 DOI: 10.2147/ccid.s196364] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/22/2019] [Indexed: 12/11/2022]
Abstract
Skin has the natural ability to heal and replace dead cells regulated by a network of complex immune processes. This ability is conferred by the population of resident immune cells that act in coordination with other players to provide a homeostatic environment under constant challenge. Other than providing structure and integrity, the epidermis and dermis also house distinct immune properties. The dermal part is represented by fibroblasts and endothelial cells followed by an array of immune cells which includes dendritic cells (DCs), macrophages, mast cells, NK-cells, neutrophils, basophils, eosinophils, αβ T lymphocytes, B-cells and platelets. On the other hand, the functionally active immune cells in the epidermis comprise keratinocytes, DCs, NKT-cells, γδ T cells and αβ T cells (CD4+ and CD8+). Keratinocytes create a unique microenvironment for the cells of the immune system by promoting immune recognition and cellular differentiation. T lymphocytes exhibit tissue-specific tropism toward the epidermis and the lymphatic drainage system important for their function in immune regulation. This diversity in immune regulators makes the skin a unique organ to overcome pathogenic or foreign invasion. In addition, the highly coordinated molecular events make the skin an attractive model to understand and explore its regenerative potential.
Collapse
Affiliation(s)
| | | | - Sabyasachi Dash
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10044, USA
| | - Apoorva Mishra
- Moscow Institute of Physics and Technology
, Dolgoprudny, Moscow Region141700, Russia
| | - Augustinus Bader
- Applied Stem Cell Biology and Cell Technology, Biomedical and Biotechnological Center (BBZ), Medical Faculty, University of Leipzig, Leipzig, D-04103, Germany
| | - Alexander Melerzanov
- Moscow Institute of Physics and Technology
, Dolgoprudny, Moscow Region141700, Russia
| | - Shibashish Giri
- Applied Stem Cell Biology and Cell Technology, Biomedical and Biotechnological Center (BBZ), Medical Faculty, University of Leipzig, Leipzig, D-04103, Germany
- Department of Plastic and Hand Surgery, University Hospital Rechts der Isar, Munich Technical University, Munich, Germany
| |
Collapse
|
8
|
Propionibacterium acnes and Acne Vulgaris: New Insights from the Integration of Population Genetic, Multi-Omic, Biochemical and Host-Microbe Studies. Microorganisms 2019; 7:microorganisms7050128. [PMID: 31086023 PMCID: PMC6560440 DOI: 10.3390/microorganisms7050128] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/25/2022] Open
Abstract
The anaerobic bacterium Propionibacterium acnes is believed to play an important role in the pathophysiology of the common skin disease acne vulgaris. Over the last 10 years our understanding of the taxonomic and intraspecies diversity of this bacterium has increased tremendously, and with it the realisation that particular strains are associated with skin health while others appear related to disease. This extensive review will cover our current knowledge regarding the association of P. acnes phylogroups, clonal complexes and sequence types with acne vulgaris based on multilocus sequence typing of isolates, and direct ribotyping of the P. acnes strain population in skin microbiome samples based on 16S rDNA metagenomic data. We will also consider how multi-omic and biochemical studies have facilitated our understanding of P. acnes pathogenicity and interactions with the host, thus providing insights into why certain lineages appear to have a heightened capacity to contribute to acne vulgaris development, while others are positively associated with skin health. We conclude with a discussion of new therapeutic strategies that are currently under investigation for acne vulgaris, including vaccination, and consider the potential of these treatments to also perturb beneficial lineages of P. acnes on the skin.
Collapse
|
9
|
Hesse-Macabata J, Morgner B, Morgenstern S, Grimm MO, Elsner P, Hipler UC, Wiegand C. Innate immune response of human epidermal keratinocytes and dermal fibroblasts to in vitro incubation of Trichophyton benhamiae DSM 6916. J Eur Acad Dermatol Venereol 2019; 33:1177-1188. [PMID: 30720896 DOI: 10.1111/jdv.15472] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/14/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Superficial cutaneous infection caused by the zoophilic dermatophyte Trichophyton benhamiae is often associated with a highly inflammatory immune response. As non-professional immune cells, epidermal keratinocytes and dermal fibroblasts contribute to the first line of defence by producing pro-inflammatory cytokines and antimicrobial peptides (AMP). OBJECTIVE Purpose of this study was to gain a deeper understanding of the pathogenesis and the fungal-host interaction as not much is known about the innate immune response of these cutaneous cells against T. benhamiae. METHODS Using a dermatophytosis model of fibroblasts and keratinocytes incubated with T. benhamiae DSM 6916, analyses included determination of cell viability and cytotoxicity, effects on the innate immune response including expression and secretion of pro-inflammatory cytokines/chemokines and expression of AMP, as well as alterations of genes involved in cell adhesion. RESULTS Trichophyton benhamiae DSM 6916 infection led to severe cell damage and direct induction of a broad spectrum of pro-inflammatory cytokines and chemokines in both cutaneous cells. Only keratinocytes differentially up-regulated AMP genes expression after T. benhamiae DSM 6916 infection. Expression of AMPs in fibroblasts was not inducible by fungal infection, whereas their absences potentially contributed to a continuous increase in the fungal biomass on fibroblasts, which in turn was reduced in keratinocytes possibly due to the antimicrobial actions of induced AMPs. On mRNA level, T. benhamiae DSM 6916 infection altered cell-cell contact proteins in keratinocytes, indicating that targeting specific cell-cell adhesion proteins might be part of dermatophytes' virulence strategy. CONCLUSION This study showed that in addition to immune cells, keratinocytes and fibroblasts could participate in antimicrobial defence against an exemplary infection with T. benhamiae DSM 6916.
Collapse
Affiliation(s)
- J Hesse-Macabata
- Department of Dermatology, Jena University Hospital, Jena, Germany
| | - B Morgner
- Department of Dermatology, Jena University Hospital, Jena, Germany
| | - S Morgenstern
- Department of Urology, Jena University Hospital, Jena, Germany
| | - M O Grimm
- Department of Urology, Jena University Hospital, Jena, Germany
| | - P Elsner
- Department of Dermatology, Jena University Hospital, Jena, Germany
| | - U C Hipler
- Department of Dermatology, Jena University Hospital, Jena, Germany
| | - C Wiegand
- Department of Dermatology, Jena University Hospital, Jena, Germany
| |
Collapse
|
10
|
Proença MA, Biselli JM, Succi M, Severino FE, Berardinelli GN, Caetano A, Reis RM, Hughes DJ, Silva AE. Relationship between Fusobacterium nucleatum, inflammatory mediators and microRNAs in colorectal carcinogenesis. World J Gastroenterol 2018; 24:5351-5365. [PMID: 30598580 PMCID: PMC6305535 DOI: 10.3748/wjg.v24.i47.5351] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/29/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To examine the effect of Fusobacterium nucleatum (F. nucleatum) on the microenvironment of colonic neoplasms and the expression of inflammatory mediators and microRNAs (miRNAs).
METHODS Levels of F. nucleatum DNA, cytokine gene mRNA (TLR2, TLR4, NFKB1, TNF, IL1B, IL6 and IL8), and potentially interacting miRNAs (miR-21-3p, miR-22-3p, miR-28-5p, miR-34a-5p, miR-135b-5p) were measured by quantitative polymerase chain reaction (qPCR) TaqMan® assays in DNA and/or RNA extracted from the disease and adjacent normal fresh tissues of 27 colorectal adenoma (CRA) and 43 colorectal cancer (CRC) patients. KRAS mutations were detected by direct sequencing and microsatellite instability (MSI) status by multiplex PCR. Cytoscape v3.1.1 was used to construct the postulated miRNA:mRNA interaction network.
RESULTS Overabundance of F. nucleatum in neoplastic tissue compared to matched normal tissue was detected in CRA (51.8%) and more markedly in CRC (72.1%). We observed significantly greater expression of TLR4, IL1B, IL8, and miR-135b in CRA lesions and TLR2, IL1B, IL6, IL8, miR-34a and miR-135b in CRC tumours compared to their respective normal tissues. Only two transcripts for miR-22 and miR-28 were exclusively downregulated in CRC tumour samples. The mRNA expression of IL1B, IL6, IL8 and miR-22 was positively correlated with F. nucleatum quantification in CRC tumours. The mRNA expression of miR-135b and TNF was inversely correlated. The miRNA:mRNA interaction network suggested that the upregulation of miR-34a in CRC proceeds via a TLR2/TLR4-dependent response to F. nucleatum. Finally, KRAS mutations were more frequently observed in CRC samples infected with F. nucleatum and were associated with greater expression of miR-21 in CRA, while IL8 was upregulated in MSI-high CRC.
CONCLUSION Our findings indicate that F. nucleatum is a risk factor for CRC by increasing the expression of inflammatory mediators through a possible miRNA-mediated activation of TLR2/TLR4.
Collapse
Affiliation(s)
- Marcela Alcântara Proença
- Department of Biology, UNESP, Univ. Estadual Paulista, Campus of São José do Rio Preto, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Joice Matos Biselli
- Department of Biology, UNESP, Univ. Estadual Paulista, Campus of São José do Rio Preto, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Maysa Succi
- Department of Biology, UNESP, Univ. Estadual Paulista, Campus of São José do Rio Preto, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Fábio Eduardo Severino
- Department of Surgery and Orthopedics, Faculty of Medicine, UNESP, Univ. Estadual Paulista, Campus of Botucatu, Botucatu, São Paulo 18618-687, Brazil
| | | | - Alaor Caetano
- Endoscopy Center of Rio Preto, São José do Rio Preto, São Paulo 15015-700, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil
- Life and Health Sciences Research Institute, University of Minho, Campus Gualtar, Braga 4710-057, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Campus Gualtar, Braga 4710-057, Portugal
| | - David J Hughes
- Cancer Biology and Therapeutics Group, UCD Conway Institute, University College Dublin, Dublin D04 V1W8, Ireland
| | - Ana Elizabete Silva
- Department of Biology, UNESP, Univ. Estadual Paulista, Campus of São José do Rio Preto, São José do Rio Preto, São Paulo 15054-000, Brazil
| |
Collapse
|
11
|
Coates M, Blanchard S, MacLeod AS. Innate antimicrobial immunity in the skin: A protective barrier against bacteria, viruses, and fungi. PLoS Pathog 2018; 14:e1007353. [PMID: 30522130 PMCID: PMC6283644 DOI: 10.1371/journal.ppat.1007353] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Margaret Coates
- Department of Dermatology, Duke University, Durham, North Carolina, United States of America
| | - Sarah Blanchard
- Department of Dermatology, Duke University, Durham, North Carolina, United States of America
| | - Amanda S. MacLeod
- Department of Dermatology, Duke University, Durham, North Carolina, United States of America
- Department of Immunology, Duke University, Durham, North Carolina, United States of America
- Pinnell Center for Investigative Dermatology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
12
|
Herman A, Herman AP. Antimicrobial peptides activity in the skin. Skin Res Technol 2018; 25:111-117. [DOI: 10.1111/srt.12626] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/23/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Anna Herman
- Faculty of Health SciencesWarsaw College of Health and Engineering Warsaw Poland
| | - Andrzej P. Herman
- Department of Genetic EngineeringThe Kielanowski Institute of Animal Physiology and NutritionPolish Academy of Sciences Jabłonna, Warsaw Poland
| |
Collapse
|
13
|
Cutaneous Barriers and Skin Immunity: Differentiating A Connected Network. Trends Immunol 2018; 39:315-327. [DOI: 10.1016/j.it.2018.02.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/12/2022]
|
14
|
Spittaels KJ, Coenye T. Developing an in vitro artificial sebum model to study Propionibacterium acnes biofilms. Anaerobe 2017; 49:21-29. [PMID: 29175428 DOI: 10.1016/j.anaerobe.2017.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/07/2017] [Accepted: 11/20/2017] [Indexed: 12/20/2022]
Abstract
AIM The aim of the present study was to develop a new model system to study Propionibacterium acnes biofilms. This model should be representative for the conditions encountered in the pilosebaceous unit. METHODS AND RESULTS The new model, consists of an artificial sebum pellet supported by a silicone disc. Sebum pellets were inoculated with various P. acnes strains isolated from both normal and acneic skin. Growth and biofilm formation was verified by conventional plating at different time points, as well as by resazurin assays and fluorescence microscopy after LIVE/DEAD staining. The artificial sebum pellets were also used in assays to measure the production of certain virulence factors implicated in the pathogenesis of acne, including lipase, protease and the presence of CAMP factors. CONCLUSION The artificial sebum model can sustain biofilm growth of P. acnes, as was determined by increasing CFU counts for up to 1 week after inoculation. Metabolic activity and biofilm formation were confirmed using resazurin staining and fluorescence microscopy respectively. The production of virulence factors in this model was demonstrated as well.
Collapse
Affiliation(s)
- Karl-Jan Spittaels
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.
| |
Collapse
|
15
|
Moliva JI, Turner J, Torrelles JB. Immune Responses to Bacillus Calmette-Guérin Vaccination: Why Do They Fail to Protect against Mycobacterium tuberculosis? Front Immunol 2017; 8:407. [PMID: 28424703 PMCID: PMC5380737 DOI: 10.3389/fimmu.2017.00407] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/22/2017] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis (TB), is the current leading cause of death due to a single infectious organism. Although curable, the broad emergence of multi-, extensive-, extreme-, and total-drug resistant strains of M.tb has hindered eradication efforts of this pathogen. Furthermore, computational models predict a quarter of the world’s population is infected with M.tb in a latent state, effectively serving as the largest reservoir for any human pathogen with the ability to cause significant morbidity and mortality. The World Health Organization has prioritized new strategies for improved vaccination programs; however, the lack of understanding of mycobacterial immunity has made it difficult to develop new successful vaccines. Currently, Mycobacterium bovis bacillus Calmette–Guérin (BCG) is the only vaccine approved for use to prevent TB. BCG is highly efficacious at preventing meningeal and miliary TB, but is at best 60% effective against the development of pulmonary TB in adults and wanes as we age. In this review, we provide a detailed summary on the innate immune response of macrophages, dendritic cells, and neutrophils in response to BCG vaccination. Additionally, we discuss adaptive immune responses generated by BCG vaccination, emphasizing their specific contributions to mycobacterial immunity. The success of future vaccines against TB will directly depend on our understanding of mycobacterial immunity.
Collapse
Affiliation(s)
- Juan I Moliva
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Joanne Turner
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA.,Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, USA
| | - Jordi B Torrelles
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA.,Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
16
|
Huang XZ, Liang PP, Ma H, Yi JL, Yin SC, Chen ZR, Li MR, Lai W, Chen J. Effect of Culture Supernatant Derived from Trichophyton Rubrum Grown in the Nail Medium on the Innate Immunity-related Molecules of HaCaT. Chin Med J (Engl) 2016; 128:3094-100. [PMID: 26608992 PMCID: PMC4795267 DOI: 10.4103/0366-6999.169106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Trichophyton rubrum is superficial fungi characteristically confined to dead keratinized tissues. These observations suggest that the soluble components released by the fungus could influence the host immune response in a cell in contact-free manner. Therefore, this research aimed to analyze whether the culture supernatant derived from T. rubrum grown in the nail medium could elicit the immune response of keratinocyte effectively. METHODS The culture supernatants of two strains (T1a, T XHB ) were compared for the β-glucan concentrations and their capacity to impact the innate immunity of keratinocytes. The β-glucan concentrations in the supernatants were determined with the fungal G-test kit and protein concentrations with bicinchoninic acid protein quantitative method, then HaCaT was stimulated with different concentrations of culture supernatants by adopting morphological method to select a suitable dosage. Expressions of host defense genes were assessed by quantitative polymerase chain reaction after the HaCaT was stimulated with the culture supernatants. Data were analyzed with one-way analysis of variance, followed by the least significant difference test. RESULTS The T. rubrum strains (T1a and T XHB ) released β-glucan of 87.530 ± 37.581 pg/ml and 15.747 ± 6.453 pg/ml, respectively into the media. The messenger RNA (mRNA) expressions of toll-like receptor-2 (TLR2), TLR4, and CARD9 were moderately up-regulated in HaCaT within 6-h applications of both supernatants. HaCaT cells were more responsive to T1a than T XHB . The slight increase of dendritic cells-specific intercellular adhesion molecule 3-grabbing nonintegrin expression was faster and stronger, induced by T1a supernatant than T XHB . The moderate decreases of RNase 7, the slight up-regulations of Dectin-1 and interleukin-8 at the mRNA level were detected only in response to T1a rather than T XHB . After a long-time contact, all the elevated defense genes decreased after 24 h. CONCLUSION The culture supernatant of T. rubrum could directly and transiently activate the innate immune response of keratinocytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jian Chen
- Department of Dermatology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| |
Collapse
|
17
|
Gale P, Hill A, Kelly L, Bassett J, McClure P, Le Marc Y, Soumpasis I. Applications of omics approaches to the development of microbiological risk assessment using RNA virus dose-response models as a case study. J Appl Microbiol 2014; 117:1537-48. [PMID: 25269811 PMCID: PMC7166579 DOI: 10.1111/jam.12656] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/26/2014] [Indexed: 12/27/2022]
Abstract
T e in the amount of ‘omics’ data available and in our ability to interpret those data. The aim of this paper was to consider how omics techniques can be used to improve and refine microbiological risk assessment, using dose–response models for RNA viruses, with particular reference to norovirus through the oral route as the case study. The dose–response model for initial infection in the gastrointestinal tract is broken down into the component steps at the molecular level and the feasibility of assigning probabilities to each step assessed. The molecular mechanisms are not sufficiently well understood at present to enable quantitative estimation of probabilities on the basis of omics data. At present, the great strength of gene sequence data appears to be in giving information on the distribution and proportion of susceptible genotypes (for example due to the presence of the appropriate pathogen‐binding receptor) in the host population rather than in predicting specificities from the amino acid sequences concurrently obtained. The nature of the mutant spectrum in RNA viruses greatly complicates the application of omics approaches to the development of mechanistic dose–response models and prevents prediction of risks of disease progression (given infection has occurred) at the level of the individual host. However, molecular markers in the host and virus may enable more broad predictions to be made about the consequences of exposure in a population. In an alternative approach, comparing the results of deep sequencing of RNA viruses in the faeces/vomitus from donor humans with those from their infected recipients may enable direct estimates of the average probability of infection per virion to be made.
Collapse
Affiliation(s)
- P Gale
- Animal Health and Veterinary Laboratories Agency, Surrey, UK
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
UNLABELLED We report a novel extraribosomal innate immune function of mammalian ribosomal protein L13a, whereby it acts as an antiviral agent. We found that L13a is released from the 60S ribosomal subunit in response to infection by respiratory syncytial virus (RSV), an RNA virus of the Pneumovirus genus and a serious lung pathogen. Unexpectedly, the growth of RSV was highly enhanced in L13a-knocked-down cells of various lineages as well as in L13a knockout macrophages from mice. In all L13a-deficient cells tested, translation of RSV matrix (M) protein was specifically stimulated, as judged by a greater abundance of M protein and greater association of the M mRNA with polyribosomes, while general translation was unaffected. In silico RNA folding analysis and translational reporter assays revealed a putative hairpin in the 3'untranslated region (UTR) of M mRNA with significant structural similarity to the cellular GAIT (gamma-activated inhibitor of translation) RNA hairpin, previously shown to be responsible for assembling a large, L13a-containing ribonucleoprotein complex that promoted translational silencing in gamma interferon (IFN-γ)-activated myeloid cells. However, RNA-protein interaction studies revealed that this complex, which we named VAIT (respiratory syncytial virus-activated inhibitor of translation) is functionally different from the GAIT complex. VAIT is the first report of an extraribosomal L13a-mediated, IFN-γ-independent innate antiviral complex triggered in response to virus infection. We provide a model in which the VAIT complex strongly hinders RSV replication by inhibiting the translation of the rate-limiting viral M protein, which is a new paradigm in antiviral defense. IMPORTANCE The innate immune mechanisms of host cells are diverse in nature and act as a broad-spectrum cellular defense against viruses. Here, we report a novel innate immune mechanism functioning against respiratory syncytial virus (RSV), in which the cellular ribosomal protein L13a is released from the large ribosomal subunit soon after infection and inhibits the translation of a specific viral mRNA, namely, that of the matrix protein M. Regarding its mechanism, we show that the recognition of a specific secondary structure in the 3' untranslated region of the M mRNA leads to translational arrest of the mRNA. We also show that the level of M protein in the infected cell is rate limiting for viral morphogenesis, providing a rationale for L13a to target the M mRNA for suppression of RSV growth. Translational silencing of a viral mRNA by a deployed ribosomal protein is a new paradigm in innate immunity.
Collapse
|
19
|
Zaikovska O, Pilmane M, Kisis J. Morphopathological aspects of healthy nails and nails affected by onychomycosis. Mycoses 2014; 57:531-6. [PMID: 24661598 DOI: 10.1111/myc.12191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/08/2014] [Accepted: 02/23/2014] [Indexed: 01/17/2023]
Abstract
Patients of onychomycosis are common in the dermatology practice. Contemporary morphology creates opportunities to study the functional units of the nail when such infections occur from morphopathological point of view. There were 22 nails biopsies from onychomycosis patients taken for the research of morphopathological changes in the thickened nail plate affected by onychomycosis. Samples of cadaverous' nails were used as a control material. The material was stained with haematoxylin and eosin and immunohistochemical methods. Terminal deoxynucleotidyl transferase dUTP nick end labelling reaction and periodic acid-Schiff reaction were also performed. We found patchy hypertrophy in the granulose layer of the epidermis, with focal acanthosis. In the horn layer, we identified nests of parakeratosis of various sizes, with incorporations of homogenous and eosinophil masses. We found high levels of interleukin 6 and interleukin 10 positive cells in the nail bed and in the bloodstream. Interleukin 1, however, was not a part of any of the functional units of any of the nails. Significant amount of fibres containing human beta defensin-2 were found in the bed and plate of the nail. Therefore one can conclude that as regards the nails affected by onychomycosis, the most effective morphopathogenical processes include cytokine and defensin excretion occurrence in the nail bed.
Collapse
Affiliation(s)
- Olga Zaikovska
- RSU Doctoral Department, Riga Stradins University, Riga, Latvia
| | | | | |
Collapse
|
20
|
Harder J, Schröder JM, Gläser R. The skin surface as antimicrobial barrier: present concepts and future outlooks. Exp Dermatol 2012; 22:1-5. [DOI: 10.1111/exd.12046] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2012] [Indexed: 12/12/2022]
Affiliation(s)
- Jürgen Harder
- Department of Dermatology; University Hospital of Schleswig-Holstein; Kiel; Germany
| | | | - Regine Gläser
- Department of Dermatology; University Hospital of Schleswig-Holstein; Kiel; Germany
| |
Collapse
|