1
|
Zafar K, Azuama OC, Parveen N. Current and emerging approaches for eliminating Borrelia burgdorferi and alleviating persistent Lyme disease symptoms. Front Microbiol 2024; 15:1459202. [PMID: 39345262 PMCID: PMC11427371 DOI: 10.3389/fmicb.2024.1459202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
Lyme disease is the most prevalent tick-borne infection caused by Borrelia burgdorferi bacteria in North America. Other Borrelia species are predominately the cause of this disease in Eurasia with some distinct and various overlapping manifestations. Consequently, caution must be exercised when comparing the disease and its manifestations and treatment regimens in North America and Europe. Diagnosis of the early Lyme disease remains difficult using the currently FDA approved serological tests in the absence of a reported tick bite or of erythema migrans in many individuals, non-specific initial symptoms, and the absence of detectable anti-Borrelia antibodies in the prepatent period of infection. Furthermore, it is difficult to distinguish persistence of infection and disease versus reinfection in the endemic regions of Lyme disease by serological assays. If early infection remains untreated, spirochetes can disseminate and could affect various organs in the body with a variety of disease manifestations including arthralgias and musculoskeletal pain, neurologic symptoms and anomalies, and acrodermatitis chronicum atrophicans (ACA) in Europe. Although most patients recover after antibiotic treatment, an estimated ∼10-20% patients in the United States show persistence of symptoms known as post-treatment Lyme disease syndrome (PTLDS). The causes and biomarkers of PTLDS are not well-defined; however, several contributing factors with inconsistent degree of supporting evidence have been suggested. These include antigenic debris, dysregulation of immunological response, bacterial persisters, or combination of these features. This review highlights currently employed treatment approaches describing different antimicrobials used, and vaccine candidates tried to prevent B. burgdorferi infection.
Collapse
Affiliation(s)
| | | | - Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
2
|
Berthold A, Lloyd VK. Changes in the Transcriptome and Long Non-Coding RNAs but Not the Methylome Occur in Human Cells Exposed to Borrelia burgdorferi. Genes (Basel) 2024; 15:1010. [PMID: 39202370 PMCID: PMC11353914 DOI: 10.3390/genes15081010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Lyme disease, caused by infection with members of the Lyme borreliosis group of Borrelia spirochete bacteria, is increasing in frequency and distribution worldwide. Epigenetic interactions between the mammalian host, tick, and bacterial pathogen are poorly understood. In this study, high-throughput next-generation sequencing (NGS) allowed for the in vitro study of the transcriptome, non-coding RNAs, and methylome in human host cells in response to Borrelia burgdorferi infection. We tested the effect of the Borrelia burgdorferi strain B31 on a human primary cell line (HUVEC) and an immortalized cell line (HEK-293) for 72 h, a long-duration time that might allow for epigenetic responses in the exposed human host cells. Differential gene expression was detected in both cell models in response to B. burgdorferi. More differentially expressed genes were found in HUVECs compared to HEK-293 cells. Borrelia burgdorferi exposure significantly induced genes in the interferon, in addition to cytokine and other immune response signaling in HUVECs. In HEK-293 cells, pre-NOTCH processing in Golgi was significantly downregulated in Borrelia-exposed cells. Other significantly altered gene expressions were found in genes involved in the extracellular matrix. No significant global methylation changes were detected in HUVECs or HEK-293 cells exposed to B. burgdorferi; however, two long non-coding RNAs and a pseudogene were deregulated in response to B. burgdorferi in HUVECs, suggesting that other epigenetic mechanisms may be initiated by infection.
Collapse
Affiliation(s)
| | - Vett K. Lloyd
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada;
| |
Collapse
|
3
|
Sloupenska K, Koubkova B, Horak P, Dolezilkova J, Hutyrova B, Racansky M, Miklusova M, Mares J, Raska M, Krupka M. Antigenicity and immunogenicity of different morphological forms of Borrelia burgdorferi sensu lato spirochetes. Sci Rep 2024; 14:4014. [PMID: 38369537 PMCID: PMC10874929 DOI: 10.1038/s41598-024-54505-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/13/2024] [Indexed: 02/20/2024] Open
Abstract
Borrelia burgdorferi sensu lato is a species complex of pleomorphic spirochetes, including species that cause Lyme disease (LD) in humans. In addition to classic spiral forms, these bacteria are capable of creating morphological forms referred to as round bodies and aggregates. The subject of discussion is their possible contribution to the persistence of infection or post-infection symptoms in LD. This study investigates the immunological properties of these forms by monitoring reactivity with early (n = 30) and late stage (n = 30) LD patient sera and evaluating the immune response induced by vaccination of mice. In patient sera, we found a quantitative difference in reactivity with individual morphotypes, when aggregates were recognized most intensively, but the difference was statistically significant in only half of the tested strains. In post-vaccination mouse sera, we observed a statistically significant higher reactivity with antigens p83 and p25 (OspC) in mice vaccinated with aggregates compared to mice vaccinated with spiral forms. The importance of the particulate nature of the antigen for the induction of a Th1-directed response has also been demonstrated. In any of morphological forms, the possibility of inducing antibodies cross-reacting with human nuclear and myositis specific/associated autoantigens was not confirmed by vaccination of mice.
Collapse
Affiliation(s)
- Kristyna Sloupenska
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic
| | - Barbora Koubkova
- Department of Allergology and Clinical Immunology, University Hospital Olomouc, Zdravotniku 248/7, 779 00, Olomouc, Czech Republic
| | - Pavel Horak
- Third Department of Internal Medicine-Nephrology, Rheumatology and Endocrinology, University Hospital Olomouc, Zdravotniku 248/7, 779 00, Olomouc, Czech Republic
- Third Department of Internal Medicine-Nephrology, Rheumatology and Endocrinology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic
| | - Jana Dolezilkova
- Laboratory of Medical Parasitology and Zoology, Public Health Institute Ostrava, Partyzanske Namesti 2633/7, Moravska Ostrava, 702 00, Ostrava, Czech Republic
| | - Beata Hutyrova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic
- Department of Allergology and Clinical Immunology, University Hospital Olomouc, Zdravotniku 248/7, 779 00, Olomouc, Czech Republic
| | - Mojmir Racansky
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic
- Department of Allergology and Clinical Immunology, University Hospital Olomouc, Zdravotniku 248/7, 779 00, Olomouc, Czech Republic
| | - Martina Miklusova
- Department of Neurology, University Hospital Olomouc, Zdravotniku 248/7, 779 00, Olomouc, Czech Republic
| | - Jan Mares
- Department of Neurology, University Hospital Olomouc, Zdravotniku 248/7, 779 00, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic
| | - Milan Raska
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic
- Department of Immunology, University Hospital Olomouc, Zdravotniku 248/7, 779 00, Olomouc, Czech Republic
| | - Michal Krupka
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 779 00, Olomouc, Czech Republic.
| |
Collapse
|
4
|
Birmingham SW, Saeed L, Thurlow CM, Vilfort K, Pillay A, Rojek NW, Doan LT, Lee BA. Round Bodies Detected by Treponema pallidum Immunohistochemical Stain in Two Cases of Cutaneous Syphilitic Gummata. Am J Dermatopathol 2024; 46:31-35. [PMID: 37982491 PMCID: PMC11465137 DOI: 10.1097/dad.0000000000002583] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
ABSTRACT Tertiary syphilis may present a diagnostic challenge due to negative nontreponemal serologies in up to 30% of cases and frequent lack of identifiable spirochetes on histopathology or other direct detection tests. We report 2 cases of round bodies staining with Treponema pallidum immunohistochemistry by light microscopy in biopsies from cutaneous syphilitic gummata. In 1 case, the finding was validated 3 times by 2 independent laboratories; in the other case, T. pallidum was detected by polymerase chain reaction in the biopsy sample. Spirochete round bodies have previously been reported in the setting of electron microscopy and fluorography, but to the best of our knowledge, have not been reported by light microscopy in a routine skin biopsy. Although the clinical implications are unclear, this may represent a helpful new paradigm for the diagnosis of tertiary syphilis.
Collapse
Affiliation(s)
| | - Lina Saeed
- Department of Dermatology, University of California, Irvine, Irvine, CA
| | - Charles M. Thurlow
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| | - Kendra Vilfort
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| | - Allan Pillay
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| | - Nathan W. Rojek
- Department of Dermatology, University of California, Irvine, Irvine, CA
| | - Linda T. Doan
- Department of Dermatology, University of California, Irvine, Irvine, CA
| | - Bonnie A. Lee
- Department of Dermatology, University of California, Irvine, Irvine, CA
| |
Collapse
|
5
|
Bland J, McGowan C, Bush E, Lloyd V. Constructing an ELISA for Detection of Anti-Borrelia in Wildlife and Agricultural Animals. Methods Mol Biol 2024; 2742:47-67. [PMID: 38165614 DOI: 10.1007/978-1-0716-3561-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Zoonotic diseases have major impacts on human and animal health, as well as being ecologically significant. Lyme Borreliosis or Lyme disease, caused by infection by pathogenic members of the Borrelia genus, is among these zoonotic diseases. Serology is one of the most accessible means for indirect surveillance of pathogen presence by monitoring the presence, abundance, and type of immune response to the pathogen or pathogen-associated epitopes. Serological surveillance of wild animals is important as wild animals are the primary reservoirs of many zoonotic diseases. Similarly, serological surveillance of agricultural animals is important due to their economic importance, in addition to animal welfare concerns. However, serology in any non-model animal such as wildlife or agricultural animals is difficult because serology necessarily relies on blood samples from the animals being tested. While companion or laboratory animals are generally sufficiently accustomed to humans that blood samples can be obtained, obtaining blood samples from wild or agricultural animals is more challenging. This initial challenge is compounded by the absence of validated serological tools to evaluate antibody titres in the sera. In this chapter, we provide methods for constructing an ELISA for the detection of anti-Borrelia antibodies in non-model animals, using studies on horses and cows as a proof of principle. The methods focus on the problems specific to non-model animals including obtaining sera, options for determining positive and negative controls without the ability to perform controlled infections, and methods for test optimization and validation.
Collapse
Affiliation(s)
- Julia Bland
- Department of Biology, Mount Allison University, Sackville, NB, Canada
- Atlantic Veterinary College, Charlottetown, PE, Canada
| | - Caitlin McGowan
- Atlantic Veterinary College, Charlottetown, PE, Canada
- Nova Scotia, Society for Prevention of Cruelty to Animals (SPCA), Dartmouth, NS, Canada
| | - Emma Bush
- Department of Biology, Mount Allison University, Sackville, NB, Canada
- Atlantic Veterinary College, Charlottetown, PE, Canada
| | - Vett Lloyd
- Department of Biology, Mount Allison University, Sackville, NB, Canada.
| |
Collapse
|
6
|
Strnad M, Rudenko N, Rego RO. Pathogenicity and virulence of Borrelia burgdorferi. Virulence 2023; 14:2265015. [PMID: 37814488 PMCID: PMC10566445 DOI: 10.1080/21505594.2023.2265015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/25/2023] [Indexed: 10/11/2023] Open
Abstract
Infection with Borrelia burgdorferi often triggers pathophysiologic perturbations that are further augmented by the inflammatory responses of the host, resulting in the severe clinical conditions of Lyme disease. While our apprehension of the spatial and temporal integration of the virulence determinants during the enzootic cycle of B. burgdorferi is constantly being improved, there is still much to be discovered. Many of the novel virulence strategies discussed in this review are undetermined. Lyme disease spirochaetes must surmount numerous molecular and mechanical obstacles in order to establish a disseminated infection in a vertebrate host. These barriers include borrelial relocation from the midgut of the feeding tick to its body cavity and further to the salivary glands, deposition to the skin, haematogenous dissemination, extravasation from blood circulation system, evasion of the host immune responses, localization to protective niches, and establishment of local as well as distal infection in multiple tissues and organs. Here, the various well-defined but also possible novel strategies and virulence mechanisms used by B. burgdorferi to evade obstacles laid out by the tick vector and usually the mammalian host during colonization and infection are reviewed.
Collapse
Affiliation(s)
- Martin Strnad
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
| | - Natalie Rudenko
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic
| | - Ryan O.M. Rego
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
| |
Collapse
|
7
|
Adkison H, Embers ME. Lyme disease and the pursuit of a clinical cure. Front Med (Lausanne) 2023; 10:1183344. [PMID: 37293310 PMCID: PMC10244525 DOI: 10.3389/fmed.2023.1183344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
Lyme disease, caused by the spirochete Borrelia burgdorferi, is the most common vector-borne illness in the United States. Many aspects of the disease are still topics of controversy within the scientific and medical communities. One particular point of debate is the etiology behind antibiotic treatment failure of a significant portion (10-30%) of Lyme disease patients. The condition in which patients with Lyme disease continue to experience a variety of symptoms months to years after the recommended antibiotic treatment is most recently referred to in the literature as post treatment Lyme disease syndrome (PTLDS) or just simply post treatment Lyme disease (PTLD). The most commonly proposed mechanisms behind treatment failure include host autoimmune responses, long-term sequelae from the initial Borrelia infection, and persistence of the spirochete. The aims of this review will focus on the in vitro, in vivo, and clinical evidence that either validates or challenges these mechanisms, particularly with regard to the role of the immune response in disease and resolution of the infection. Next generation treatments and research into identifying biomarkers to predict treatment responses and outcomes for Lyme disease patients are also discussed. It is essential that definitions and guidelines for Lyme disease evolve with the research to translate diagnostic and therapeutic advances to patient care.
Collapse
Affiliation(s)
| | - Monica E. Embers
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, United States
| |
Collapse
|
8
|
Čorak N, Anniko S, Daschkin-Steinborn C, Krey V, Koska S, Futo M, Široki T, Woichansky I, Opašić L, Kifer D, Tušar A, Maxeiner HG, Domazet-Lošo M, Nicolaus C, Domazet-Lošo T. Pleomorphic Variants of Borreliella (syn. Borrelia) burgdorferi Express Evolutionary Distinct Transcriptomes. Int J Mol Sci 2023; 24:5594. [PMID: 36982667 PMCID: PMC10057712 DOI: 10.3390/ijms24065594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Borreliella (syn. Borrelia) burgdorferi is a spirochete bacterium that causes tick-borne Lyme disease. Along its lifecycle B. burgdorferi develops several pleomorphic forms with unclear biological and medical relevance. Surprisingly, these morphotypes have never been compared at the global transcriptome level. To fill this void, we grew B. burgdorferi spirochete, round body, bleb, and biofilm-dominated cultures and recovered their transcriptomes by RNAseq profiling. We found that round bodies share similar expression profiles with spirochetes, despite their morphological differences. This sharply contrasts to blebs and biofilms that showed unique transcriptomes, profoundly distinct from spirochetes and round bodies. To better characterize differentially expressed genes in non-spirochete morphotypes, we performed functional, positional, and evolutionary enrichment analyses. Our results suggest that spirochete to round body transition relies on the delicate regulation of a relatively small number of highly conserved genes, which are located on the main chromosome and involved in translation. In contrast, spirochete to bleb or biofilm transition includes substantial reshaping of transcription profiles towards plasmids-residing and evolutionary young genes, which originated in the ancestor of Borreliaceae. Despite their abundance the function of these Borreliaceae-specific genes is largely unknown. However, many known Lyme disease virulence genes implicated in immune evasion and tissue adhesion originated in this evolutionary period. Taken together, these regularities point to the possibility that bleb and biofilm morphotypes might be important in the dissemination and persistence of B. burgdorferi inside the mammalian host. On the other hand, they prioritize the large pool of unstudied Borreliaceae-specific genes for functional characterization because this subset likely contains undiscovered Lyme disease pathogenesis genes.
Collapse
Affiliation(s)
- Nina Čorak
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Sirli Anniko
- BCA-Research, BCA-Clinic Betriebs GmbH & Co. KG, D-86159 Augsburg, Germany
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | | | - Viktoria Krey
- BCA-Research, BCA-Clinic Betriebs GmbH & Co. KG, D-86159 Augsburg, Germany
- Physics of Synthetic Biological Systems-E14, Physics Department and ZNN, Technische Universität München, D-85748 Garching, Germany
| | - Sara Koska
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Momir Futo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
- Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| | - Tin Široki
- Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000 Zagreb, Croatia
| | | | - Luka Opašić
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Domagoj Kifer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, HR-10000 Zagreb, Croatia
| | - Anja Tušar
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Horst-Günter Maxeiner
- BCA-Research, BCA-Clinic Betriebs GmbH & Co. KG, D-86159 Augsburg, Germany
- Comlamed, Friedrich-Bergius Ring 15, D-97076 Würzburg, Germany
| | - Mirjana Domazet-Lošo
- Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000 Zagreb, Croatia
| | - Carsten Nicolaus
- BCA-Research, BCA-Clinic Betriebs GmbH & Co. KG, D-86159 Augsburg, Germany
| | - Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| |
Collapse
|
9
|
Saylor TC, Casselli T, Lethbridge KG, Moore JP, Owens KM, Brissette CA, Zückert WR, Stevenson B. Borrelia burgdorferi, the Lyme disease spirochete, possesses genetically-encoded responses to doxycycline, but not to amoxicillin. PLoS One 2022; 17:e0274125. [PMID: 36178885 PMCID: PMC9524633 DOI: 10.1371/journal.pone.0274125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Some species of bacteria respond to antibiotic stresses by altering their transcription profiles, in order to produce proteins that provide protection against the antibiotic. Understanding these compensatory mechanisms allows for informed treatment strategies, and could lead to the development of improved therapeutics. To this end, studies were performed to determine whether Borrelia burgdorferi, the spirochetal agent of Lyme disease, also exhibits genetically-encoded responses to the commonly prescribed antibiotics doxycycline and amoxicillin. After culturing for 24 h in a sublethal concentration of doxycycline, there were significant increases in a substantial number of transcripts for proteins that are involved with translation. In contrast, incubation with a sublethal concentration of amoxicillin did not lead to significant changes in levels of any bacterial transcript. We conclude that B. burgdorferi has a mechanism(s) that detects translational inhibition by doxycycline, and increases production of mRNAs for proteins involved with translation machinery in an attempt to compensate for that stress.
Collapse
Affiliation(s)
- Timothy C. Saylor
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, School of Medicine, Lexington, Kentucky, United States of America
| | - Timothy Casselli
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Kathryn G. Lethbridge
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, School of Medicine, Lexington, Kentucky, United States of America
| | - Jessamyn P. Moore
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, School of Medicine, Lexington, Kentucky, United States of America
| | - Katie M. Owens
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, School of Medicine, Lexington, Kentucky, United States of America
| | - Catherine A. Brissette
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Wolfram R. Zückert
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kentucky, United States of America
| | - Brian Stevenson
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, School of Medicine, Lexington, Kentucky, United States of America
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
10
|
Cabello FC, Embers ME, Newman SA, Godfrey HP. Borreliella burgdorferi Antimicrobial-Tolerant Persistence in Lyme Disease and Posttreatment Lyme Disease Syndromes. mBio 2022; 13:e0344021. [PMID: 35467428 PMCID: PMC9239140 DOI: 10.1128/mbio.03440-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The annual incidence of Lyme disease, caused by tick-transmitted Borreliella burgdorferi, is estimated to be at least 476,000 cases in the United States and many more worldwide. Ten to 20% of antimicrobial-treated Lyme disease patients display posttreatment Lyme disease syndrome (PTLDS), a clinical complication whose etiology and pathogenesis remain uncertain. Autoimmunity, cross-reactivity, molecular mimicry, coinfections, and borrelial tolerance to antimicrobials/persistence have been hypothesized and studied as potential causes of PTLDS. Studies of borrelial tolerance/persistence in vitro in response to antimicrobials and experimental studies in mice and nonhuman primates, taken together with clinical reports, have revealed that B. burgdorferi becomes tolerant to antimicrobials and may sometimes persist in animals and humans after the currently recommended antimicrobial treatment. Moreover, B. burgdorferi is pleomorphic and can generate viable-but-nonculturable bacteria, states also involved in antimicrobial tolerance. The multiple regulatory pathways and structural genes involved in mediating this tolerance to antimicrobials and environmental stressors by persistence might include the stringent (rel and dksA) and host adaptation (rpoS) responses, sugar metabolism (glpD), and polypeptide transporters (opp). Application of this recently reported knowledge to clinical studies can be expected to clarify the potential role of bacterial antibacterial tolerance/persistence in Lyme disease and PTLDS.
Collapse
Affiliation(s)
- Felipe C. Cabello
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Monica E. Embers
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, Louisiana, USA
| | - Stuart A. Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| | - Henry P. Godfrey
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
11
|
Karvonen K, Nykky J, Marjomäki V, Gilbert L. Distinctive Evasion Mechanisms to Allow Persistence of Borrelia burgdorferi in Different Human Cell Lines. Front Microbiol 2021; 12:711291. [PMID: 34712208 PMCID: PMC8546339 DOI: 10.3389/fmicb.2021.711291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Lyme borreliosis is a multisystemic disease caused by the pleomorphic bacteria of the Borrelia burgdorferi sensu lato complex. The exact mechanisms for the infection to progress into a prolonged sequelae of the disease are currently unknown, although immune evasion and persistence of the bacteria in the host are thought to be major contributors. The current study investigated B. burgdorferi infection processes in two human cell lines, both non-immune and non-phagocytic, to further understand the mechanisms of infection of this bacterium. By utilizing light, confocal, helium ion, and transmission electron microscopy, borrelial infection of chondrosarcoma (SW1353) and dermal fibroblast (BJ) cells were examined from an early 30-min time point to a late 9-days post-infection. Host cell invasion, viability of both the host and B. burgdorferi, as well as, co-localization with lysosomes and the presence of different borrelial pleomorphic forms were analyzed. The results demonstrated differences of infection between the cell lines starting from early entry as B. burgdorferi invaded BJ cells in coiled forms with less pronounced host cell extensions, whereas in SW1353 cells, micropodial interactions with spirochetes were always seen. Moreover, infection of BJ cells increased in a dose dependent manner throughout the examined 9 days, while the percentage of infection, although dose dependent, decreased in SW1353 cells after reaching a peak at 48 h. Furthermore, blebs, round body and damaged B. burgdorferi forms, were mostly observed from the infected SW1353 cells, while spirochetes dominated in BJ cells. Both infected host cell lines grew and remained viable after 9 day post-infection. Although damaged forms were noticed in both cell lines, co-localization with lysosomes was low in both cell lines, especially in BJ cells. The invasion of non-phagocytic cells and the lack of cytopathic effects onto the host cells by B. burgdorferi indicated one mechanism of immune evasion for the bacteria. The differences in attachment, pleomorphic form expressions, and the lack of lysosomal involvement between the infected host cells likely explain the ability of a bacterium to adapt to different environments, as well as, a strategy for persistence inside a host.
Collapse
Affiliation(s)
- Kati Karvonen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Jonna Nykky
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Varpu Marjomäki
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | | |
Collapse
|
12
|
A simple method to detect Borrelia burgdorferi sensu lato proteins in different sub-cellular compartments by immunofluorescence. Ticks Tick Borne Dis 2021; 12:101808. [PMID: 34455142 DOI: 10.1016/j.ttbdis.2021.101808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 01/15/2023]
Abstract
Spirochaetes constitute a unique phylum of bacteria, many of which cause severe clinical diseases. Borrelia burgdorferi sensu lato (B. burgdorferi s.l.)-the primary agent of Lyme borreliosis (LB)-is a quintessential member of this poorly understood phylum and the leading cause of tick-borne illness throughout most of the northern hemisphere. Despite its importance in human health, we lack a fundamental understanding of how B. burgdorferi s.l. is able to accomplish basic physiological tasks, such as DNA replication/segregation, and cell elongation or division. Recent advances in molecular tools to probe these essential cellular processes are great strides forward but require genetic manipulation. The latter is important since not all agents of LB are genetically tractable. Here, we describe a single method that is capable of fluorescently labeling B. burgdorferi s.l. proteins in different sub-cellular compartments. A comparative analysis of six different methods indicates that our optimized procedure outperforms all others and is the first to localize a cytoplasmic protein in B. burgdorferi s.l. by immunofluorescence. We contend that this strategy could be easily adapted to study the localization of any protein, in many Borrelia genospecies, information that will yield functional insights into the complex biology of this fascinating group of bacteria. In addition, it may provide new avenues of research in both in situ studies and in Lyme diagnostics.
Collapse
|
13
|
Garg K, Jokiranta TS, Filén S, Gilbert L. Assessing the Need for Multiplex and Multifunctional Tick-Borne Disease Test in Routine Clinical Laboratory Samples from Lyme Disease and Febrile Patients with a History of a Tick Bite. Trop Med Infect Dis 2021; 6:38. [PMID: 33803065 PMCID: PMC8005980 DOI: 10.3390/tropicalmed6010038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 11/17/2022] Open
Abstract
Human polymicrobial infections in tick-borne disease (TBD) patients is an emerging public health theme. However, the requirement for holistic TBD tests in routine clinical laboratories is ambiguous. TICKPLEX® PLUS is a holistic TBD test utilized herein to assess the need for multiplex and multifunctional diagnostic tools in a routine clinical laboratory. The study involved 150 specimens categorized into Lyme disease (LD)-positive (n = 48), LD-negative (n = 30), and febrile patients from whom borrelia serology was requested (n = 72, later "febrile patients") based on reference test results from United Medix, Finland. Reference tests from DiaSorin, Immunetics, and Mikrogen Diagnostik followed the two-tier LD testing system. A comparison between the reference tests and TICKPLEX® PLUS produced 86%, 88%, and 87% positive, negative, and overall agreement, respectively. Additionally, up to 15% of LD and 11% of febrile patients responded to TBD related coinfections and opportunistic microbes. The results demonstrated that one (TICKPLEX® PLUS) test can aid in a LD diagnosis instead of four tests. Moreover, TBD is not limited to just LD, as the specimens produced immune responses to several TBD microbes. Lastly, the study indicated that the screening of febrile patients for TBDs could be a missed opportunity at reducing unreported patient cases.
Collapse
Affiliation(s)
- Kunal Garg
- Tezted Ltd., Mattilaniemi 6-8, 40100 Jyväskylä, Finland
| | - T. Sakari Jokiranta
- United Medix Laboratories, Kivihaantie 7, 00310 Helsinki, Finland; (T.S.J.); (S.F.)
| | - Sanna Filén
- United Medix Laboratories, Kivihaantie 7, 00310 Helsinki, Finland; (T.S.J.); (S.F.)
| | - Leona Gilbert
- Tezted Ltd., Mattilaniemi 6-8, 40100 Jyväskylä, Finland
| |
Collapse
|
14
|
Schwarzer S, Rodriguez-Franco M, Oksanen HM, Quax TEF. Growth Phase Dependent Cell Shape of Haloarcula. Microorganisms 2021; 9:231. [PMID: 33499340 PMCID: PMC7911496 DOI: 10.3390/microorganisms9020231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 01/08/2023] Open
Abstract
Several haloarchaea are reported to be pleomorphic, while others exhibit remarkable shapes, such as squares. Recently, Haloferax volcanii was found to alter its morphology during growth. Cells are motile rods in early exponential phase, and immotile plates in stationary phase. It is unknown if this growth phase dependent cell shape alteration is a specific feature of Hfx. volcanii, or conserved amongst haloarchaea. Here, we studied the cell shape and motility of two haloarchaea species Haloarcula hispanica and Haloarcula californiae. With a combination of light and electron microscopy, we observed that both strains undergo a growth phase dependent morphological development, albeit in a slightly different fashion as Hfx. volcanii. For both Haloarcula strains, the cell size is changing throughout growth. Cell shape seems to be related with motility, as highly motile cells on semi-solid agar plates are predominantly rod-shaped. We conclude that the growth phase dependent cell morphology alteration might be a common feature amongst haloarchaea, and that cell shape is generally linked with a motile life style. The conservation of this phenomenon underscores the importance of studies of the molecular mechanisms regulating cell shape in archaea.
Collapse
Affiliation(s)
- Sabine Schwarzer
- Archaeal Virus-Host Interactions, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany;
| | - Marta Rodriguez-Franco
- Cell Biology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany;
| | - Hanna M. Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland;
| | - Tessa E. F. Quax
- Archaeal Virus-Host Interactions, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany;
| |
Collapse
|
15
|
Das S, Hammond-McKibben D, Guralski D, Lobo S, Fiedler PN. Development of a sensitive molecular diagnostic assay for detecting Borrelia burgdorferi DNA from the blood of Lyme disease patients by digital PCR. PLoS One 2020; 15:e0235372. [PMID: 33253179 PMCID: PMC7703891 DOI: 10.1371/journal.pone.0235372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
Lyme disease patients would greatly benefit from a timely, sensitive, and specific molecular diagnostic test that can detect the causal agent Borrelia burgdorferi at the onset of symptoms. Currently available diagnostic methods recommended by the Centers for Disease Control and Prevention for Lyme disease involve indirect serological tests that rely on the detection of a host-antibody response, which often takes more than three weeks to develop. With this process, many positive cases are not detected within a timely manner, preventing a complete cure. In this study, we have developed a digital polymerase chain reaction (PCR) assay that detects Lyme disease on clinical presentation with a sensitivity two-fold higher than that of the currently available diagnostic methods, using a cohort of patient samples collected from the Lyme disease endemic state of Connecticut, USA, in 2016-2018. Digital PCR technology was chosen as it is more advanced and sensitive than other PCR techniques in detecting rare targets. The analytical detection sensitivity of this diagnostic assay is approximately three genome copies of B. burgdorferi. The paucity of spirochetes in the bloodstream of Lyme disease patients has hindered the clinical adoption of PCR-based diagnostic tests. However, this drawback was overcome by using a comparatively larger sample volume, applying pre-analytical processing to the blood samples, and implementing a pre-amplification step to enrich for B. burgdorferi-specific gene targets before the patient samples are analyzed via digital PCR technology. Pre-analytical processing of blood samples from acute patients revealed that the best sample type for Lyme disease detection is platelet-rich plasma rather than whole blood. If detected in a timely manner, Lyme disease can be completely cured, thus limiting antibiotic overuse and associated morbidities.
Collapse
Affiliation(s)
- Srirupa Das
- Department of Pathology Research, Nuvance Health, Danbury, CT, United States of America
- Rudy L. Ruggles Biomedical Research Institute, Nuvance Health, Danbury, CT, United States of America
- * E-mail:
| | - Denise Hammond-McKibben
- Department of Pathology Research, Nuvance Health, Danbury, CT, United States of America
- Rudy L. Ruggles Biomedical Research Institute, Nuvance Health, Danbury, CT, United States of America
| | - Donna Guralski
- Department of Pathology Research, Nuvance Health, Danbury, CT, United States of America
- Rudy L. Ruggles Biomedical Research Institute, Nuvance Health, Danbury, CT, United States of America
| | - Sandra Lobo
- Rudy L. Ruggles Biomedical Research Institute, Nuvance Health, Danbury, CT, United States of America
| | - Paul N. Fiedler
- Department of Pathology Research, Nuvance Health, Danbury, CT, United States of America
- Rudy L. Ruggles Biomedical Research Institute, Nuvance Health, Danbury, CT, United States of America
| |
Collapse
|
16
|
Garg K, Meriläinen L, Franz O, Pirttinen H, Quevedo-Diaz M, Croucher S, Gilbert L. Evaluating polymicrobial immune responses in patients suffering from tick-borne diseases. Sci Rep 2018; 8:15932. [PMID: 30374055 PMCID: PMC6206025 DOI: 10.1038/s41598-018-34393-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/15/2018] [Indexed: 02/06/2023] Open
Abstract
There is insufficient evidence to support screening of various tick-borne diseases (TBD) related microbes alongside Borrelia in patients suffering from TBD. To evaluate the involvement of multiple microbial immune responses in patients experiencing TBD we utilized enzyme-linked immunosorbent assay. Four hundred and thirty-two human serum samples organized into seven categories followed Centers for Disease Control and Prevention two-tier Lyme disease (LD) diagnosis guidelines and Infectious Disease Society of America guidelines for post-treatment Lyme disease syndrome. All patient categories were tested for their immunoglobulin M (IgM) and G (IgG) responses against 20 microbes associated with TBD. Our findings recognize that microbial infections in patients suffering from TBDs do not follow the one microbe, one disease Germ Theory as 65% of the TBD patients produce immune responses to various microbes. We have established a causal association between TBD patients and TBD associated co-infections and essential opportunistic microbes following Bradford Hill's criteria. This study indicated an 85% probability that a randomly selected TBD patient will respond to Borrelia and other related TBD microbes rather than to Borrelia alone. A paradigm shift is required in current healthcare policies to diagnose TBD so that patients can get tested and treated even for opportunistic infections.
Collapse
Affiliation(s)
- Kunal Garg
- Department of Biological and Environmental Sciences, NanoScience Center, University of Jyväskylä, Jyväskylä, Finland
- Te?ted Ltd, Mattilaniemi 6-8, Jyväskylä, Finland
| | - Leena Meriläinen
- Department of Biological and Environmental Sciences, NanoScience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Ole Franz
- Department of Biological and Environmental Sciences, NanoScience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Heidi Pirttinen
- Department of Biological and Environmental Sciences, NanoScience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Marco Quevedo-Diaz
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Stephen Croucher
- School of Communication, Journalism, and Marketing, Massey University, Wellington, New Zealand
| | - Leona Gilbert
- Department of Biological and Environmental Sciences, NanoScience Center, University of Jyväskylä, Jyväskylä, Finland.
- Te?ted Ltd, Mattilaniemi 6-8, Jyväskylä, Finland.
| |
Collapse
|
17
|
Middelveen MJ, Sapi E, Burke J, Filush KR, Franco A, Fesler MC, Stricker RB. Persistent Borrelia Infection in Patients with Ongoing Symptoms of Lyme Disease. Healthcare (Basel) 2018; 6:E33. [PMID: 29662016 PMCID: PMC6023324 DOI: 10.3390/healthcare6020033] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/27/2018] [Accepted: 04/11/2018] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Lyme disease is a tickborne illness that generates controversy among medical providers and researchers. One of the key topics of debate is the existence of persistent infection with the Lyme spirochete, Borreliaburgdorferi, in patients who have been treated with recommended doses of antibiotics yet remain symptomatic. Persistent spirochetal infection despite antibiotic therapy has recently been demonstrated in non-human primates. We present evidence of persistent Borrelia infection despite antibiotic therapy in patients with ongoing Lyme disease symptoms. METHODS In this pilot study, culture of body fluids and tissues was performed in a randomly selected group of 12 patients with persistent Lyme disease symptoms who had been treated or who were being treated with antibiotics. Cultures were also performed on a group of ten control subjects without Lyme disease. The cultures were subjected to corroborative microscopic, histopathological and molecular testing for Borrelia organisms in four independent laboratories in a blinded manner. RESULTS Motile spirochetes identified histopathologically as Borrelia were detected in culture specimens, and these spirochetes were genetically identified as Borreliaburgdorferi by three distinct polymerase chain reaction (PCR)-based approaches. Spirochetes identified as Borrelia burgdorferi were cultured from the blood of seven subjects, from the genital secretions of ten subjects, and from a skin lesion of one subject. Cultures from control subjects without Lyme disease were negative for Borrelia using these methods. CONCLUSIONS Using multiple corroborative detection methods, we showed that patients with persistent Lyme disease symptoms may have ongoing spirochetal infection despite antibiotic treatment, similar to findings in non-human primates. The optimal treatment for persistent Borrelia infection remains to be determined.
Collapse
Affiliation(s)
| | - Eva Sapi
- Department of Biology and Environmental Science, University of New Haven, West Haven, CT 06516, USA.
| | - Jennie Burke
- Australian Biologics, Sydney, NSW 2000, Australia.
| | - Katherine R Filush
- Department of Biology and Environmental Science, University of New Haven, West Haven, CT 06516, USA.
| | - Agustin Franco
- School of Health Sciences, Universidad Catolica Santiago de Guayaquil, Guayaquil 090615, Ecuador.
| | - Melissa C Fesler
- Union Square Medical Associates, 450 Sutter Street, Suite 1504, San Francisco, CA 94108, USA.
| | - Raphael B Stricker
- Union Square Medical Associates, 450 Sutter Street, Suite 1504, San Francisco, CA 94108, USA.
| |
Collapse
|
18
|
Orsel K, Plummer P, Shearer J, De Buck J, Carter SD, Guatteo R, Barkema HW. Missing pieces of the puzzle to effectively control digital dermatitis. Transbound Emerg Dis 2017; 65 Suppl 1:186-198. [PMID: 29124910 DOI: 10.1111/tbed.12729] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Indexed: 12/14/2022]
Abstract
Since the first report of bovine digital dermatitis (DD) in 1974, there is a large body of the literature published; however, effective prevention and control of the disease remain elusive. Although many aspects of the pathogenesis of DD have been investigated, even some of the most basic questions such as the aetiology of this disease remain under debate. Treponema spp. have been strongly associated with DD lesions and occur in abundance in advanced lesions; however, efforts to induce disease with pure cultures of these organisms have been largely underwhelming and inconsistent. Furthermore, although the disease has been presented for several decades, there is limited scientific evidence regarding effective treatment of DD. Apparent discrepancies between effectiveness in vitro and in vivo have challenged the scientific community to identify new potential treatment options. With no treatment resulting in a 100% cure rate, the current expectation is manageable control, but prospects for the eradication of the disease are unlikely using current approaches. In order to develop more effective approaches to control DD on-farm, there is a critical need for a deeper understanding regarding the causation, ecology, transmission and treatment of this disease. In this article, we attempt to provide insights into specific research needs related to DD in order to assist the industry, researchers, pharmaceutical companies and research sponsors with decision-making and identified research gaps.
Collapse
Affiliation(s)
- K Orsel
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - P Plummer
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University College of Veterinary Medicine, Ames, IA, USA.,Department of Veterinary Microbiology and Preventative Medicine, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| | - J Shearer
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| | - J De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - S D Carter
- Department of Infection Biology, Institute of Veterinary Science, University of Liverpool, Liverpool, UK
| | - R Guatteo
- BIOEPAR, INRA, Oniris, Nantes, France
| | - H W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|