1
|
Alum EU, Uti DE, Ugwu OPC, Alum BN, Edeh FO, Ainebyoona C. Unveiling the microbial orchestra: exploring the role of microbiota in cancer development and treatment. Discov Oncol 2025; 16:646. [PMID: 40304829 PMCID: PMC12044139 DOI: 10.1007/s12672-025-02352-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025] Open
Abstract
The human microbiota comprises a diverse microbial ecosystem that significantly impacts health and disease. Among its components, the gut microbiota plays a crucial role in regulating metabolic, immunologic, and inflammatory responses. Dysbiosis, an imbalance in microbial composition, has been linked to carcinogenesis through mechanisms such as chronic inflammation, metabolic disturbances, epigenetic modifications, and immune system dysregulation. Additionally, dysbiosis influences the efficacy and toxicity of cancer therapies. Given these associations, there is growing interest in leveraging the microbiota as a biomarker for cancer detection and outcome prediction. Notably, distinct microbial signatures have been identified across various cancer types, suggesting their potential as diagnostic markers. Furthermore, modulation of the microbiota presents a promising avenue for improving cancer treatment outcomes through strategies such as antibiotics, prebiotics, probiotics, fecal microbiota transplantation, dietary interventions, small-molecule inhibitors, and phage therapy. To explore these relationships, we conducted a comprehensive literature review using Web of Science, Scopus, PubMed, MEDLINE, Embase, and Google Scholar as our primary online databases, focusing on indexed peer-reviewed articles up to the present year. This review aims to elucidate the role of dysbiosis in cancer development, examine the molecular mechanisms involved, and assess the impact of microbiota on cancer therapies. Additionally, we highlight microbiota-based therapeutic strategies and discuss their potential applications in cancer management. A deeper understanding of the intricate interplay between the microbiota and cancer may pave the way for novel approaches to cancer prevention, early detection, and treatment optimization.
Collapse
Affiliation(s)
- Esther Ugo Alum
- Department of Research and Publications, Kampala International University, Main Campus, P. O. Box 20000, Kampala, Uganda.
| | - Daniel Ejim Uti
- Department of Research and Publications, Kampala International University, Main Campus, P. O. Box 20000, Kampala, Uganda.
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria.
| | - Okechukwu Paul-Chima Ugwu
- Department of Research and Publications, Kampala International University, Main Campus, P. O. Box 20000, Kampala, Uganda
| | - Benedict Nnachi Alum
- Department of Research and Publications, Kampala International University, Main Campus, P. O. Box 20000, Kampala, Uganda
| | - Friday Ogbu Edeh
- College of Economics and Management, Kampala International University, Kampala, Uganda
| | - Christine Ainebyoona
- Faculty of Business and Management Sciences, Kampala International University, Kampala, Uganda
| |
Collapse
|
2
|
Davidova-Gerzova L, Lausova J, Sukkar I, Nechutna L, Kubackova P, Krutova M, Bezdicek M, Dolejska M. Multidrug-resistant ESBL-producing Klebsiella pneumoniae complex in Czech hospitals, wastewaters and surface waters. Antimicrob Resist Infect Control 2024; 13:141. [PMID: 39593189 PMCID: PMC11590221 DOI: 10.1186/s13756-024-01496-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Multidrug-resistant (MDR) bacteria pose a significant challenge to the treatment of infectious diseases. Of particular concern are members of the Klebsiella pneumoniae species complex (KpSC), which are frequently associated with hospital-acquired infections and have the potential to spread outside hospitals via wastewaters. In this study, we aimed to investigate the occurrence and phylogenetic relatedness of MDR KpSC from patients with urinary tract infections (UTIs), hospital sewage, municipal wastewater treatment plants (mWWTPs) and surface waters and to evaluate the clinical relevance of the KpSC subspecies. METHODS A total of 372 KpSC isolates resistant to third-generation cephalosporins and/or meropenem were collected from patients (n = 130), hospital sewage (n = 95), inflow (n = 54) and outflow from the mWWTPs (n = 63), river upstream (n = 13) and downstream mWWTPs (n = 17) from three cities in the Czech Republic. The isolates were characterized by antimicrobial susceptibility testing and whole-genome sequencing (Illumina). The presence of antibiotic resistance genes, plasmid replicons and virulence-associated factors was determined. A phylogenetic tree and single nucleotide polymorphism matrix were created to reveal the relatedness between isolates. RESULTS The presence of MDR KpSC isolates (95%) was identified in all water sources and locations. Most isolates (99.7%) produced extended-spectrum beta-lactamases encoded by blaCTX-M-15. Resistance to carbapenems (5%) was observed mostly in wastewaters, but carbapenemase genes, such as blaGES-51 (n = 10), blaOXA-48 (n = 4), blaNDM-1 (n = 4) and blaKPC-3 (n = 1), were found in isolates from all tested locations and different sources except rivers. Among the 73 different sequence types (STs), phylogenetically related isolates were observed only among the ST307 lineage. Phylogenetic analysis revealed the transmission of this lineage from patients to the mWWTP and from the mWWTP to the adjacent river and the presence of the ST307 clone in the mWWTP over eight months. We confirmed the frequent abundance of K. pneumoniae (K. pneumoniae sensu stricto and K. pneumoniae subsp. ozaenae) in patients suffering from UTIs. K. variicola isolates formed only a minor proportion of UTIs, and K. quasipneumoniae was not found among UTIs isolates; however, these subspecies were frequently observed in hospital sewage communities during the first sampling period. CONCLUSION This study provides evidence of the transmission and persistence of the ST307 lineage from UTIs isolates via mWWTPs to surface waters. Isolates from UTIs consisted mostly of K. pneumoniae. Other isolates of KpSC were observed in hospital wastewaters, which implies the impact of sources other than UTIs. This study highlights the influence of urban wastewaters on the spread of MDR KpSC to receiving environments.
Collapse
Affiliation(s)
- Lenka Davidova-Gerzova
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Jarmila Lausova
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Biology and Wildlife Diseases, University of Veterinary Sciences VETUNI Brno, Brno, Czech Republic
| | - Iva Sukkar
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Microbiology, Faculty of Medicine and University Hospital Pilsen, Charles University, Pilsen, Czech Republic
| | - Lucie Nechutna
- Department of Microbiology, Faculty of Medicine and University Hospital Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Petra Kubackova
- Division of Clinical Microbiology and Immunology, Department of Laboratory Medicine, The University Hospital Brno, Brno, Czech Republic
| | - Marcela Krutova
- Department of Medical Microbiology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Matej Bezdicek
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Monika Dolejska
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic.
- Department of Biology and Wildlife Diseases, University of Veterinary Sciences VETUNI Brno, Brno, Czech Republic.
- Department of Microbiology, Faculty of Medicine and University Hospital Pilsen, Charles University, Pilsen, Czech Republic.
- Division of Clinical Microbiology and Immunology, Department of Laboratory Medicine, The University Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
3
|
Pei C, Yu J, Wang G, Jia YR, Shi X, Zhang L. Exploring the mechanism of Sendeng-4 against rheumacid arthritis through integrated serum pharmacochemistry, transcriptomics, and network pharmacology. Biomed Chromatogr 2024; 38:e5893. [PMID: 38853700 DOI: 10.1002/bmc.5893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 06/11/2024]
Abstract
Mongolian medicine Sendeng-4 (SD-4) has demonstrated satisfactory clinical treatment outcomes for rheumatoid arthritis (RA); nevertheless, its bioactive components and the related mechanisms have not yet been clearly elucidated. To explore the bioactive chemical components of SD-4 in the treatment of RA and its possible mechanisms, an High Performance Liquid Chromatography-tandem mass spectrometry (HPLC-MS/MS) method was established to simultaneously quantify the main components in SD-4, and ultraperformance LC-Q-Exactive-MS/MS (UPLC-Q-Exactive-MS/MS) was used to identify the phytochemicals absorbed in the serum. Then, using network pharmacology methods, these components were constructed into a compound-target network of RA to predict possible biological targets of SD-4 as well as potential signaling pathways. Transcriptomics analysis and molecular docking were used to validate the results of network pharmacology. Subsequently, we established a complete Freund's adjuvant-induced RA rat model and observed the anti-RA effects of SD-4 through assessments of foot swelling, ankle diameter, arthritis score, morphology, serum inflammatory factors, and histopathological analysis of synovial tissue. Specifically, reverse transcription-quantitative polymerase chain reaction, Western blot, and immunohistochemical analysis were used in animal experiments to validate the pathways of serum phytochemistry, network pharmacology, and transcriptomics. Tannic acid, gallic acid, corilagin, crocin I, gardenoside, ferulic acid, quercetin, limonin, rutin, chlorogenic acid, verbascoside, catechin, epicatechin, myricetin, and dihydromyricetin in SD-4 showed good linearity within their respective concentration ranges (r ≥ 0.9991); the average recovery rate was 93.77%-109.17% (relative standard deviation < 2%). A total of 37 compounds were identified in serum samples. Based on this, network pharmacology methods collected 739 genes related to these identified compounds in SD-4 and 3807 genes related to RA. Network pharmacology and transcriptomic analysis demonstrated that the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) signaling pathway is the most relevant pathway affected by SD-4 in RA. In the experiments, SD-4 treatment reduced ankle swelling and arthritis scores in RA rats, improved symptoms, and reduced the production of inflammatory factors. Compared with the RA model group, SD-4 treatment significantly reduced the expression of PI3K-Akt pathway-related messenger RNA and proteins. In addition, immunohistochemical analysis confirmed these results. This study combined serum phytochemistry, network pharmacology, and transcriptomics to demonstrate that SD-4 can alleviate RA by regulating the PI3K-Akt signaling pathway. This research provides a theoretical basis for the clinical application of SD-4 and offers an effective strategy for the identification of bioactive substances in traditional Chinese medicine formulas and the study of their potential mechanisms.
Collapse
Affiliation(s)
- Chenyue Pei
- Hohhot Hospital of Traditional Chinese Medicine and Mongolian Medicine, Hohhot, Inner Mongolia, P. R. China
| | - Jiuwang Yu
- Hohhot Hospital of Traditional Chinese Medicine and Mongolian Medicine, Hohhot, Inner Mongolia, P. R. China
| | - Guanglong Wang
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, P. R. China
| | - Yan Ru Jia
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, P. R. China
| | - Xinran Shi
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, P. R. China
| | - Liang Zhang
- Hohhot Hospital of Traditional Chinese Medicine and Mongolian Medicine, Hohhot, Inner Mongolia, P. R. China
| |
Collapse
|
4
|
Weis AM, Matthews OJ, Mulvey MA, Round JL. Draft genome of a human-derived pks+ E. coli that caused spontaneous disseminated infection in a mouse. Microbiol Resour Announc 2024; 13:e0038724. [PMID: 38832767 PMCID: PMC11256781 DOI: 10.1128/mra.00387-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024] Open
Abstract
We present the draft genome of a novel human-derived Escherichia coli strain isolated from a healthy control human microbiota that, when put into a mouse, spontaneously disseminated from the gut to the kidneys.
Collapse
Affiliation(s)
- Allison M. Weis
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - O’Connor J. Matthews
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
- Henry Eyring Center for Cell & Genome Science, University of Utah, Salt Lake City, Utah, USA
| | - Matthew A. Mulvey
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
- Henry Eyring Center for Cell & Genome Science, University of Utah, Salt Lake City, Utah, USA
| | - June L. Round
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
5
|
Stair MI, Carrasco SE, Annamalai D, Jordan EB, Mannion A, Feng Y, Fabian N, Ge Z, Muthupalani S, Dzink-Fox J, Krzisch MA, Fox JG. The Epidemiology of Invasive, Multipleantibiotic-resistant Klebsiella pneumoniae Infection in a Breeding Colony of Immunocompromised NSG Mice. Comp Med 2022; 72:220-229. [PMID: 35882504 PMCID: PMC9413526 DOI: 10.30802/aalas-cm-21-000088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/21/2021] [Accepted: 02/21/2022] [Indexed: 02/03/2023]
Abstract
Klebsiella pneumoniae (Kp) is a gram-negative opportunistic pathogen that causes severe pneumonia, pyelonephritis, and sepsis in immunocompromised hosts. During a 4-mo interval, several NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) breeders and pups in our facilities were diagnosed with Kp infections. An initial 6 adult and 1 juvenile NSG mice were submitted for necropsy and histologic examination because of acute onset of diarrhea and death. The evaluation revealed typhlocolitis in 2 of the mice and tritrichomoniasis in all 7. Escherichia coli positive for polyketide synthase (pks+) and Kp were isolated from the intestines. Given a history of sepsis due to pks+ E. coli in NSG mice in our facilities and determination of its antimicrobial susceptibility, trimethoprim-sulfamethoxazole (TMP-SMX) was administered to the colony in the drinking water for 4 wk. After this intervention, an additional 21 mice became ill or died; 11 of these mice had suppurative pneumonia, meningoencephalitis, hepatitis, metritis, pyelonephritis, or sepsis. Kp was cultured from pulmonary abscesses or blood of 10 of the mice. Whole-genome sequencing (WGS) indicated that the Kp isolates contained genes associated with phenotypes found in pore-forming Kp isolates cultured from humans with ulcerative colitis and primary sclerosing cholangitis. None of the Kp isolates exhibited a hyperviscous phenotype, but 13 of 14 were resistant to TMP-SMX. Antimicrobial susceptibility testing indicated sensitivity of the Kp to enrofloxacin, which was administered in the drinking water. Antibiotic sensitivity profiles were confirmed by WGS of the Kp strains; key virulence and resistance genes to quaternary ammonia compounds were also identified. Enrofloxacin treatment resulted in a marked reduction in mortality, and the study using the NSG mice was completed successfully. Our findings implicate intestinal translocation of Kp as the cause of pneumonia and systemic infections in NSG mice and highlight the importance of identification of enteric microbial pathogens and targeted antibiotic selection when treating bacterial infections in immunocompromised mice.
Collapse
Affiliation(s)
- Melissa I Stair
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Sebastian E Carrasco
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Damodaran Annamalai
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ellen B Jordan
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Anthony Mannion
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Yan Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Niora Fabian
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - JoAnn Dzink-Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts;,
| |
Collapse
|
6
|
Mannion A, McGee W, Feng Y, Shen Z, Buckley-Jordan E, Dzink-Fox JL, Fox JG. Characterization of genotoxin-encoding Escherichia coli isolated from specific-pathogen free cats with impaired fertility. Vet Microbiol 2022; 266:109337. [DOI: 10.1016/j.vetmic.2022.109337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/18/2021] [Accepted: 01/08/2022] [Indexed: 10/19/2022]
|
7
|
Morgan RN, Saleh SE, Farrag HA, Aboulwafa MM. Bacterial cyclomodulins: types and roles in carcinogenesis. Crit Rev Microbiol 2021; 48:42-66. [PMID: 34265231 DOI: 10.1080/1040841x.2021.1944052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Various studies confirmed that bacterial infections contribute to carcinogenesis through the excessive accumulation of reactive oxygen species (ROS) and the expression of toxins that disrupt the cell cycle phases, cellular regulatory mechanisms and stimulate the production of tumorigenic inflammatory mediators. These toxins mimic carcinogens which act upon key cellular targets and result in mutations and genotoxicities. The cyclomodulins are bacterial toxins that incur cell cycle modulating effects rendering the expressing bacterial species of high carcinogenic potentiality. They are either cellular proliferating or cell cycle arrest cyclomodulins. Notably, cyclomodulins expressing bacterial species have been linked to different human carcinomas. For instance, Escherichia coli species producing the colibactin were highly prevalent among colorectal carcinoma patients, CagA+ Helicobacter pylori species were associated with MALT lymphomas and gastric carcinomas and Salmonella species producing CdtB were linked to hepatobiliary carcinomas. These species stimulated the overgrowth of pre-existing carcinomas and induced hyperplasia in in vivo animal models suggesting a role for the cyclomodulins in carcinogenesis. Wherefore, the prevalence and mode of action of these toxins were the focus of many researchers and studies. This review discusses different types of bacterial cyclomodulins highlighting their mode of action and possible role in carcinogenesis.
Collapse
Affiliation(s)
- Radwa N Morgan
- Drug radiation research Department, Egyptian Atomic Energy Authority (EAEA), National Center for Radiation Research and Technology (NCRRT), Cairo, Egypt
| | - Sarra E Saleh
- Faculty of Pharmacy, Microbiology and Immunology Department, Ain Shams University, Cairo, Egypt
| | - Hala A Farrag
- Drug radiation research Department, Egyptian Atomic Energy Authority (EAEA), National Center for Radiation Research and Technology (NCRRT), Cairo, Egypt
| | - Mohammad M Aboulwafa
- Faculty of Pharmacy, Microbiology and Immunology Department, Ain Shams University, Cairo, Egypt.,Faculty of Pharmacy, King Salman International University, Ras-Sedr, Egypt
| |
Collapse
|
8
|
Strakova N, Korena K, Karpiskova R. Klebsiella pneumoniae producing bacterial toxin colibactin as a risk of colorectal cancer development - A systematic review. Toxicon 2021; 197:126-135. [PMID: 33901549 DOI: 10.1016/j.toxicon.2021.04.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/24/2021] [Accepted: 04/11/2021] [Indexed: 12/12/2022]
Abstract
Microbiota can significantly contribute to colorectal cancer initiation and development. It was described that E. coli harbouring polyketide synthase (pks) genes can synthetize bacterial toxin colibactin, which was first described by Nougayrede's group in 2006. E. coli positive for pks genes were overrepresented in colorectal cancer biopsies and, therefore, prevalence and the effect of pks positive bacteria as a risk factor in colorectal cancer development is in our interest. Interestingly, pks gene cluster in E. coli shares a striking 100% sequence identity with K. pneumoniae, suggesting that their function and regulation are conserved. Moreover, K. pneumoniae can express a variety of virulence factors, including capsules, siderophores, iron-scavenging systems, adhesins and endotoxins. It was reported that pks cluster and thereby colibactin is also related to the hypervirulence of K. pneumoniae. Acquisition of the pks locus is associated with K. pneumoniae gut colonisation and mucosal invasion. Colibactin also increases the likelihood of serious complications of bacterial infections, such as development of meningitis and potentially tumorigenesis. Even though K. pneumoniae is undoubtedly a gut colonizer, the role of pks positive K. pneumoniae in GIT has not yet been investigated. It seems that CRC-distinctive microbiota is already present in the early stages of cancer development and, therefore, microbiome analysis could help to discover the early stages of cancer, which are crucial for effectiveness of anticancer therapy. We hypothesize, that pks positive K. pneumoniae can be a potential biomarker of tumour prevalence and anticancer therapy response.
Collapse
Affiliation(s)
- Nicol Strakova
- Laboratory of Zoonoses and Antibiotic Resistance, Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Hudcova 296/70, Brno, Czech Republic.
| | - Kristyna Korena
- Laboratory of Zoonoses and Antibiotic Resistance, Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Hudcova 296/70, Brno, Czech Republic
| | - Renata Karpiskova
- Laboratory of Zoonoses and Antibiotic Resistance, Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Hudcova 296/70, Brno, Czech Republic
| |
Collapse
|
9
|
García A, Fox JG. A One Health Perspective for Defining and Deciphering Escherichia coli Pathogenic Potential in Multiple Hosts. Comp Med 2021; 71:3-45. [PMID: 33419487 PMCID: PMC7898170 DOI: 10.30802/aalas-cm-20-000054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/17/2020] [Accepted: 09/19/2020] [Indexed: 11/05/2022]
Abstract
E. coli is one of the most common species of bacteria colonizing humans and animals. The singularity of E. coli 's genus and species underestimates its multifaceted nature, which is represented by different strains, each with different combinations of distinct virulence factors. In fact, several E. coli pathotypes, or hybrid strains, may be associated with both subclinical infection and a range of clinical conditions, including enteric, urinary, and systemic infections. E. coli may also express DNA-damaging toxins that could impact cancer development. This review summarizes the different E. coli pathotypes in the context of their history, hosts, clinical signs, epidemiology, and control. The pathotypic characterization of E. coli in the context of disease in different animals, including humans, provides comparative and One Health perspectives that will guide future clinical and research investigations of E. coli infections.
Collapse
Key Words
- aa, aggregative adherence
- a/e, attaching and effacing
- aepec, atypical epec
- afa, afimbrial adhesin
- aida-i, adhesin involved in diffuse adherence
- aiec, adherent invasive e. coli
- apec, avian pathogenic e. coli
- atcc, american type culture collection
- bfp, bundle-forming pilus
- cd, crohn disease
- cdt, cytolethal distending toxin gene
- clb, colibactin
- cnf, cytotoxic necrotizing factor
- cs, coli surface (antigens)
- daec, diffusely adhering e. coli
- db, dutch belted
- eae, e. coli attaching and effacing gene
- eaec, enteroaggregative e. coli
- eaf, epec adherence factor (plasmid)
- eahec, entero-aggregative-hemorrhagic e. coli
- east-1, enteroaggregative e. coli heat-stable enterotoxin
- e. coli, escherichia coli
- ed, edema disease
- ehec, enterohemorrhagic e. coli
- eiec, enteroinvasive e. coli
- epec, enteropathogenic e. coli
- esbl, extended-spectrum β-lactamase
- esp, e. coli secreted protein
- etec, enterotoxigenic e. coli
- expec, extraintestinal pathogenic e. coli
- fyua, yersiniabactin receptor gene
- gi, gastrointestinal
- hly, hemolysin
- hus, hemolytic uremic syndrome
- ibd, inflammatory bowel disease
- la, localized adherence
- lee, locus of enterocyte effacement
- lpf, long polar fimbriae
- lt, heat-labile (enterotoxin)
- mlst, multilocus sequence typing
- ndm, new delhi metallo-β-lactamase
- nzw, new zealand white
- pap, pyelonephritis-associated pilus
- pks, polyketide synthase
- sfa, s fimbrial adhesin
- slt, shiga-like toxin
- st, heat-stable (enterotoxin)
- stec, stx-producing e. coli
- stx, shiga toxin
- tepec, typical epec
- upec, uropathogenic e. coli
- uti, urinary tract infection
Collapse
Affiliation(s)
- Alexis García
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts;,
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
10
|
Cytotoxic Escherichia coli strains encoding colibactin, cytotoxic necrotizing factor, and cytolethal distending toxin colonize laboratory common marmosets (Callithrix jacchus). Sci Rep 2021; 11:2309. [PMID: 33504843 PMCID: PMC7841143 DOI: 10.1038/s41598-020-80000-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/08/2020] [Indexed: 11/09/2022] Open
Abstract
Cyclomodulins are virulence factors that modulate cellular differentiation, apoptosis, and proliferation. These include colibactin (pks), cytotoxic necrotizing factor (cnf), and cytolethal distending toxin (cdt). Pathogenic pks+, cnf+, and cdt+ E. coli strains are associated with inflammatory bowel disease (IBD) and colorectal cancer in humans and animals. Captive marmosets are frequently afflicted with IBD-like disease, and its association with cyclomodulins is unknown. Cyclomodulin-encoding E. coli rectal isolates were characterized using PCR-based assays in healthy and clinically affected marmosets originating from three different captive sources. 139 E. coli isolates were cultured from 122 of 143 marmosets. The pks gene was detected in 56 isolates (40%), cnf in 47 isolates (34%), and cdt in 1 isolate (0.7%). The prevalences of pks+ and cnf+ E. coli isolates were significantly different between the three marmoset colonies. 98% of cyclomodulin-positive E. coli belonged to phylogenetic group B2. Representative isolates demonstrated cyclomodulin cytotoxicity, and serotyping and whole genome sequencing were consistent with pathogenic E. coli strains. However, the presence of pks+, cnf+, or cdt+ E. coli did not correlate with clinical gastrointestinal disease in marmosets. Cyclomodulin-encoding E. coli colonize laboratory common marmosets in a manner dependent on the source, potentially impacting reproducibility in marmoset models.
Collapse
|
11
|
Morgan RN, Farrag HA, Aboulwafa MM, Saleh SE. "Effect of Subinhibitory Concentrations of Some Antibiotics and Low Doses of Gamma Radiation on the Cytotoxicity and Expression of Colibactin by an Uropathogenic Escherichia coli isolate". Curr Microbiol 2021; 78:544-557. [PMID: 33388934 DOI: 10.1007/s00284-020-02331-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/10/2020] [Indexed: 01/10/2023]
Abstract
Colibactin and cytotoxic necrotizing factor 1 (Cnf 1) are cyclomodulins secreted by uropathogenic E. coli. In this study, uropathogenic E. coli expressing colibactin and Cnf 1 was exposed to antibiotics subMICs and gamma radiation to investigate their effects on its cytotoxicity and expression of colibactin. The test isolate was exposed to three subMIC levels of levofloxacin, ciprofloxacin, trimethoprim/sulfamethoxazole and ceftriaxone and irradiated with gamma rays at 10 and 24.4 Gy. The cytotoxicity for either antibiotic or gamma rays treated cultures was measured using MTT assay and the expression of colibactin encoding genes was determined by RT-PCR. Treatment with fluoroquinolones nearly abolished the cytotoxicity of E. coli isolate and significantly downregulated clbA gene expression at the tested subMICs (P ≤ 0.05) while trimethoprim/sulfamethoxazole treated cultures exerted significant downregulation of clbA and clbQ genes at 0.5 MIC only (P ≤ 0.05). Ceftriaxone treated cultured exhibited reduction in the cytotoxicity and insignificant effects on expression of clbA, clbQ and clbM genes. On contrast, significant upregulation in the expression of clbA and clbQ genes was observed in irradiated cultures (P ≤ 0.05). Fluoroquinolones reduced both the cytotoxicity of UPEC isolate and colibactin expression at different subMICs while ceftriaxone at subMICs failed to suppress the expression of genotoxin, colibactin, giving an insight to the risks associated upon their choice for UTI treatment. Colibactin expression was enhanced by gamma irradiation at doses resembling these received during pelvic radiotherapy which might contribute to post-radiotherapy complications.
Collapse
Affiliation(s)
- Radwa N Morgan
- National Centre for Radiation Research and Technology (NCRRT), Drug Radiation Research Department, Egyptian Atomic Energy Authority (EAEA), Ahmed El-Zomor Street, Nasr city, Cairo, 11787, Egypt
| | - Hala A Farrag
- National Centre for Radiation Research and Technology (NCRRT), Drug Radiation Research Department, Egyptian Atomic Energy Authority (EAEA), Ahmed El-Zomor Street, Nasr city, Cairo, 11787, Egypt
| | - Mohammad M Aboulwafa
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African union organization Street, Abbassia, Cairo, 11566, Egypt.
- Faculty of Pharmacy, King Salman International University, South Sinai, Ras-Sedr, Egypt.
| | - Sarra E Saleh
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African union organization Street, Abbassia, Cairo, 11566, Egypt
| |
Collapse
|
12
|
Fabian NJ, Mannion AJ, Feng Y, Madden CM, Fox JG. Intestinal colonization of genotoxic Escherichia coli strains encoding colibactin and cytotoxic necrotizing factor in small mammal pets. Vet Microbiol 2019; 240:108506. [PMID: 31902483 DOI: 10.1016/j.vetmic.2019.108506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022]
Abstract
Escherichia coli encoding colibactin (clb), cytolethal distending toxin (cdt), and hemolysin-associated cytotoxic necrotizing factor (cnf) are associated with various intestinal and extra-intestinal diseases in humans and animals. Small mammal pets are not evaluated for genotoxin-encoding E. coli. Thus, the prevalence of such strains is unknown. The objective of this study was to isolate and characterize genotoxin-encoding E. coli from healthy and ill small mammal pets examined at a veterinary clinic and at two animal adoption centers. E. coli isolates were cultured from fecal samples and biochemically characterized. A total of 65 animals, including mice, rats, rabbits, guinea pigs, and hedgehogs, were screened. Twenty-six E. coli isolates were obtained from 24 animals. Twelve of the 26 isolates (46.2 %) were PCR-positive for the pks genes clbA and clbQ. Two isolates (7.7 %) were PCR-positive for cnf. All isolates were PCR-negative for cdt. All genotoxin-encoding isolates belonged to the pathogen-associated phylogenetic group B2. Representative genotoxin-encoding isolates had serotypes previously associated with clinical disease in humans and animals. Isolates encoding pks or cnf induced megalocytosis and cytotoxicity to HeLa cells in vitro. Although most isolates were obtained from healthy pets, two guinea pigs with diarrhea had pks-positive isolates cultured from their feces. Whole genome sequencing on four representative isolates confirmed the presence of pks and cnf genes and identified other virulence factors associated with pathogenicity in animals and humans. Our results suggest that small mammalian pets may serve as a reservoir for potentially pathogenic E. coli and implicate a zoonotic risk.
Collapse
Affiliation(s)
- Niora J Fabian
- Division of Comparative Medicine, Massachusetts Institute of Technology, Building 16-825, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA.
| | - Anthony J Mannion
- Division of Comparative Medicine, Massachusetts Institute of Technology, Building 16-825, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA.
| | - Yan Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, Building 16-825, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA.
| | - Carolyn M Madden
- Division of Comparative Medicine, Massachusetts Institute of Technology, Building 16-825, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA.
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Building 16-825, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA.
| |
Collapse
|
13
|
Morgan RN, Saleh SE, Farrag HA, Aboulwafa MM. Prevalence and pathologic effects of colibactin and cytotoxic necrotizing factor-1 (Cnf 1) in Escherichia coli: experimental and bioinformatics analyses. Gut Pathog 2019; 11:22. [PMID: 31139264 PMCID: PMC6525971 DOI: 10.1186/s13099-019-0304-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/02/2019] [Indexed: 12/29/2022] Open
Abstract
Background The colibactin and cytotoxic necrotizing factor 1 (Cnf 1) are toxins with cell cycle modulating effects that contribute to tumorgenesis and hyperproliferation. This study aimed to investigate the prevalence and pathologic effects of Cnf 1 and colibactin among hemolytic uropathogenic Escherichia coli (UPEC). The bioinformatics approach incorporated in this study aimed to expand the domain of the in vitro study and explore the prevalence of both toxins among other bacterial species. A total of 125 E. coli isolates were recovered from UTIs patients. The isolates were tested for their hemolytic activity, subjected to tissue culture and PCR assays to detect the phenotypic and genotypic features of both toxins. A rat ascending UTI in vivo model was conducted using isolates expressing or non-expressing Cnf 1 and colibactin (ClbA and ClbQ). The bioinformatics analyses were inferred by Maximum likelihood method and the evolutionary relatedness was deduced by MEGA X. Results Only 21 (16.8%) out of 125 isolates were hemolytic and 10 of these (47.62%) harbored the toxins encoding genes (cnf 1+, clbA+ and clbQ+). The phenotypic features of both toxins were exhibited by only 7 of the (cnf 1+clbA+clbQ+) harboring isolates. The severest infections, hyperplastic and genotoxic changes in kidneys and bladders were observed in rats infected with the cnf 1+clbA+clbQ+ isolates. Conclusion Only 33.3% of the hemolytic UPEC isolates exhibited the phenotypic and genotypic features of Cnf 1 and Colibactin. The in vivo animal model results gives an evidence of active Cnf 1 and Colibactin expression and indicates the risks associated with recurrent and chronic UTIs caused by UPEC. The bioinformatics analyses confirmed the predominance of colibactin pks island among Enterobacteriaceae family (92.86%), with the highest occurrence among Escherichia species (53.57%), followed by Klebsiella (28.57%), Citrobacter (7.14%), and Enterobacter species (3.57%). The Cnf 1 is predominant among Escherichia coli (94.05%) and sporadically found among Shigella species (1.08%), Salmonella enterica (0.54%), Yersinia pseudotuberculosis (1.08%), Photobacterium (1.08%), Moritella viscosa (0.54%), and Carnobacterium maltaromaticum (0.54%). A close relatedness was observed between the 54-kb pks island of Escherichia coli, the probiotic Escherichia coli Nissle 1917, Klebsiella aerogenes, Klebsiella pneumoniae and Citrobacter koseri. Electronic supplementary material The online version of this article (10.1186/s13099-019-0304-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Radwa N Morgan
- 1Drug Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), 3 Ahmed El-Zomor Street, Nasr City, Cairo, 11787 Egypt
| | - Sarra E Saleh
- 2Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, 11566 Egypt
| | - Hala A Farrag
- 1Drug Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), 3 Ahmed El-Zomor Street, Nasr City, Cairo, 11787 Egypt
| | - Mohammad M Aboulwafa
- 2Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, 11566 Egypt
| |
Collapse
|
14
|
Ge Z, Feng Y, Sheh A, Muthupalani S, Gong G, Chawanthayatham S, Essigmann JM, Fox JG. Mutagenicity of Helicobacter hepaticus infection in the lower bowel mucosa of 129/SvEv Rag2 -/- Il10 -/- gpt delta mice is influenced by sex. Int J Cancer 2019; 145:1042-1054. [PMID: 30977112 DOI: 10.1002/ijc.32332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 04/05/2019] [Indexed: 12/29/2022]
Abstract
Inflammatory bowel disease and colonic tumors induced by Helicobacter hepaticus (Hh) infection in susceptible mouse strains are utilized to dissect the mechanisms underlying similar human diseases. In our study, infection with genotoxic cytolethal distending toxin-producing Hh in 129/SvEv Rag2-/- Il10-/- gpt delta (RagIl10gpt) mice of both sexes for 21 weeks induced significantly more severe cecal and colonic pathology compared to uninfected controls. The mutation frequencies in the infected RagIl10gpt males were 2.1-fold higher for the cecum and 1.7-fold higher for the colon than male RagIl10gpt controls. In addition, there was a 12.5-fold increase of G:C-to-T:A transversions in the colon of Hh-infected males compared to controls. In contrast, there was no statistical significance in mutation frequencies between infected female Rag2Il10gpt mice and controls. Moreover, Hh infection in RagIl10gpt males significantly up-regulated transcription of Tnfα and iNos, and decreased mRNA levels of cecal Atm compared to the infected females; there was no significant difference in mRNA levels of Il-22, Il-17A, Ifnγ and Atr between the infected males and females. Significantly higher levels of cecal and colonic iNos expression and γH2AX-positive epithelial cells (a biomarker for double-strand DNA breaks [DSB]) in Hh-infected Rag2Il10gpt males vs. Hh-infected females were noted. Finally, Hh infection and associated inflammation increased levels of intestinal mucosa-associated genotoxic colibactin-producing pks+ Escherichia coli. Elevated Tnfα and iNos responses and bacterial genotoxins, in concert with suppression of the DSB repair responses, may have promoted mutagenesis in the lower bowel mucosa of Hh-infected male RagIl10gpt mice.
Collapse
Affiliation(s)
- Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yan Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexander Sheh
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Guanyu Gong
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - John M Essigmann
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
15
|
Kurnick SA, Mannion AJ, Feng Y, Madden CM, Chamberlain P, Fox JG. Genotoxic Escherichia coli Strains Encoding Colibactin, Cytolethal Distending Toxin, and Cytotoxic Necrotizing Factor in Laboratory Rats. Comp Med 2019; 69:103-113. [PMID: 30902120 PMCID: PMC6464076 DOI: 10.30802/aalas-cm-18-000099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/13/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
Although many Escherichia coli strains are considered commensals in mammals, strains encoding the cyclomodulin genotoxins are associated with clinical and subclinical disease in the urogenital and gastrointestinal tracts, meningitis, and inflammatory disorders. These genotoxins include the polyketide synthase (pks) pathogenicity island, cytolethal distending toxin (cdt), and hemolysin-associated cytotoxic necrotizing factor (cnf). E. coli strains are not excluded from rodents housed under SPF conditions in academic or vendor facilities. This study isolated and characterized genotoxin-encoding E. coli from laboratory rats obtained from 4 academic institutions and 3 vendors. A total of 69 distinct E. coli isolates were cultured from feces, rectal swab, nares, or vaginal swab of 52 rats and characterized biochemically. PCR analysis for cyclomodulin genes and phylogroup was performed on all 69 isolates. Of the 69 isolates, 45 (65%) were positive for pks, 20/69 (29%) were positive for cdt, and 4 (6%) were positive for cnf. Colibactin was the sole genotoxin identified in 21 of 45 pks+ isolates (47%), whereas cdt or cnf was also present in the remaining 24 isolates (53%); cdt and cnf were never present together or without pks. All genotoxin-associated strains were members of pathogen-associated phylogroup B2. Fisher exact and χ² tests demonstrated significant differences in genotoxin prevalence and API code distribution with regard to vendor. Select E. coli isolates were characterized by HeLa cell in vitro cytotoxicity assays, serotyped, and whole-genome sequenced. All isolates encoding cyclomodulins induced megalocytosis. Serotypes corresponded with vendor origin and cyclomodulin composition, with the cnf+ serotype representing a known human uropathogen. Whole-genome sequencing confirmed the presence of complete pks, cdt, and hemolysin-cnf pathogenicity islands. These findings indicate that genotoxin-encoding E. coli colonize laboratory rats from multiple commercial vendors and academic institutions and suggest the potential to contribute to clinical disease and introduce confounding variables into experimental rat models.
Collapse
Affiliation(s)
- Susanna A Kurnick
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Anthony J Mannion
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Yan Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Carolyn M Madden
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Paul Chamberlain
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts;,
| |
Collapse
|
16
|
Bakthavatchalu V, Wert KJ, Feng Y, Mannion A, Ge Z, Garcia A, Scott KE, Caron TJ, Madden CM, Jacobsen JT, Victora G, Jaenisch R, Fox JG. Cytotoxic Escherichia coli strains encoding colibactin isolated from immunocompromised mice with urosepsis and meningitis. PLoS One 2018; 13:e0194443. [PMID: 29554148 PMCID: PMC5858775 DOI: 10.1371/journal.pone.0194443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 03/02/2018] [Indexed: 01/19/2023] Open
Abstract
Immune-compromised mouse models allow for testing the preclinical efficacy of human cell transplantations and gene therapy strategies before moving forward to clinical trials. However, CRISPR/Cas9 gene editing of the Wsh/Wsh mouse strain to create an immune-compromised model lacking function of Rag2 and Il2rγ led to unexpected morbidity and mortality. This warranted an investigation to ascertain the cause and predisposing factors associated with the outbreak. Postmortem examination was performed on 15 moribund mice. The main lesions observed in these mice consisted of ascending urogenital tract infections, suppurative otitis media, pneumonia, myocarditis, and meningoencephalomyelitis. As Escherichia coli strains harboring polyketide synthase (pks) genomic island were recently isolated from laboratory mice, the tissue sections from the urogenital tract, heart, and middle ear were subjected to E. coli specific PNA-FISH assay that revealed discrete colonies of E. coli associated with the lesions. Microbiological examination and 16S rRNA sequencing confirmed E. coli-induced infection and septicemia in the affected mice. Further characterization by clb gene analysis and colibactin toxicity assays of the pks+ E. coli revealed colibactin-associated cytotoxicity. Rederivation of the transgenic mice using embryo transfer produced mice with an intestinal flora devoid of pks+ E. coli. Importantly, these barrier-maintained rederived mice have produced multiple litters without adverse health effects. This report is the first to describe acute morbidity and mortality associated with pks+ E. coli urosepsis and meningitis in immunocompromised mice, and highlights the importance of monitoring and exclusion of colibactin-producing pks+ E. coli.
Collapse
Affiliation(s)
- Vasudevan Bakthavatchalu
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Katherine J. Wert
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Yan Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Anthony Mannion
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alexis Garcia
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Kathleen E. Scott
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Tyler J. Caron
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Carolyn M. Madden
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Johanne T. Jacobsen
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Gabriel Victora
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
17
|
Feng Y, Mannion A, Madden CM, Swennes AG, Townes C, Byrd C, Marini RP, Fox JG. Cytotoxic Escherichia coli strains encoding colibactin and cytotoxic necrotizing factor (CNF) colonize laboratory macaques. Gut Pathog 2017; 9:71. [PMID: 29225701 PMCID: PMC5718112 DOI: 10.1186/s13099-017-0220-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023] Open
Abstract
Background Many Escherichia coli strains are considered to be a component of the normal flora found in the human and animal intestinal tracts. While most E. coli strains are commensal, some strains encode virulence factors that enable the bacteria to cause intestinal and extra-intestinal clinically-relevant infections. Colibactin, encoded by a genomic island (pks island), and cytotoxic necrotizing factor (CNF), encoded by the cnf gene, are genotoxic and can modulate cellular differentiation, apoptosis and proliferation. Some commensal and pathogenic pks+ and cnf+ E. coli strains have been associated with inflammation and cancer in humans and animals. Results In the present study, E. coli strains encoding colibactin and CNF were identified in macaque samples. We performed bacterial cultures utilizing rectal swabs and extra-intestinal samples from clinically normal macaques. A total of 239 E. coli strains were isolated from 266 macaques. The strains were identified biochemically and selected isolates were serotyped as O88:H4, O25:H4, O7:H7, OM:H14, and OM:H16. Specific PCR for pks and cnf1 gene amplification, and phylogenetic group identification were performed on all E. coli strains. Among the 239 isolates, 41 (17.2%) were pks+/cnf1−, 19 (7.9%) were pks−/cnf1+, and 31 (13.0%) were pks+/cnf1+. One hundred forty-eight (61.9%) E. coli isolates were negative for both genes (pks−/cnf1−). In total, 72 (30.1%) were positive for pks genes, and 50 (20.9%) were positive for cnf1. No cnf2+ isolates were detected. Both pks+ and cnf1+ E. coli strains belonged mainly to phylogenetic group B2, including B21. Colibactin and CNF cytotoxic activities were observed using a HeLa cell cytotoxicity assay in representative isolates. Whole genome sequencing of 10 representative E. coli strains confirmed the presence of virulence factors and antibiotic resistance genes in rhesus macaque E. coli isolates. Conclusions Our findings indicate that colibactin- and CNF-encoding E. coli colonize laboratory macaques and can potentially cause clinical and subclinical diseases that impact macaque models. Electronic supplementary material The online version of this article (10.1186/s13099-017-0220-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 16-825, Cambridge, MA 02139 USA
| | - Anthony Mannion
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 16-825, Cambridge, MA 02139 USA
| | - Carolyn M Madden
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 16-825, Cambridge, MA 02139 USA
| | - Alton G Swennes
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 16-825, Cambridge, MA 02139 USA.,Present Address: Center for Comparative Medicine, Baylor College of Medicine, Houston, TX USA
| | - Catherine Townes
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 16-825, Cambridge, MA 02139 USA
| | - Charles Byrd
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 16-825, Cambridge, MA 02139 USA.,Present Address: North Powers Animal Hospital, Colorado Springs, CO USA
| | - Robert P Marini
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 16-825, Cambridge, MA 02139 USA
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 16-825, Cambridge, MA 02139 USA
| |
Collapse
|
18
|
Wang C, Gong G, Sheh A, Muthupalani S, Bryant EM, Puglisi DA, Holcombe H, Conaway EA, Parry NAP, Bakthavatchalu V, Short SP, Williams CS, Wogan GN, Tannenbaum SR, Fox JG, Horwitz BH. Interleukin-22 drives nitric oxide-dependent DNA damage and dysplasia in a murine model of colitis-associated cancer. Mucosal Immunol 2017; 10:1504-1517. [PMID: 28198364 PMCID: PMC5557711 DOI: 10.1038/mi.2017.9] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 12/21/2016] [Accepted: 01/03/2017] [Indexed: 02/08/2023]
Abstract
The risk of colon cancer is increased in patients with Crohn's disease and ulcerative colitis. Inflammation-induced DNA damage could be an important link between inflammation and cancer, although the pathways that link inflammation and DNA damage are incompletely defined. RAG2-deficient mice infected with Helicobacter hepaticus (Hh) develop colitis that progresses to lower bowel cancer. This process depends on nitric oxide (NO), a molecule with known mutagenic potential. We have previously hypothesized that production of NO by macrophages could be essential for Hh-driven carcinogenesis, however, whether Hh infection induces DNA damage in this model and whether this depends on NO has not been determined. Here we demonstrate that Hh infection of RAG2-deficient mice rapidly induces expression of iNOS and the development of DNA double-stranded breaks (DSBs) specifically in proliferating crypt epithelial cells. Generation of DSBs depended on iNOS activity, and further, induction of iNOS, the generation of DSBs, and the subsequent development of dysplasia were inhibited by depletion of the Hh-induced cytokine IL-22. These results demonstrate a strong association between Hh-induced DNA damage and the development of dysplasia, and further suggest that IL-22-dependent induction of iNOS within crypt epithelial cells rather than macrophages is a driving force in this process.
Collapse
Affiliation(s)
- C Wang
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - G Gong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - A Sheh
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - S Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - EM Bryant
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - DA Puglisi
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - H Holcombe
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - EA Conaway
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - NAP Parry
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - V Bakthavatchalu
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - SP Short
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - CS Williams
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, and Department of Cancer Biology, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA
| | - GN Wogan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - SR Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - JG Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - BH Horwitz
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|
19
|
Draft Genome Sequences of Five Novel Polyketide Synthetase-Containing Mouse Escherichia coli Strains. GENOME ANNOUNCEMENTS 2016; 4:4/5/e01082-16. [PMID: 27795251 PMCID: PMC5054322 DOI: 10.1128/genomea.01082-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We report herein the draft genomes of five novel Escherichia coli strains isolated from surveillance and experimental mice housed at MIT and the Whitehead Institute and describe their genomic characteristics in context with the polyketide synthetase (PKS)-containing pathogenic E. coli strains NC101, IHE3034, and A192PP.
Collapse
|