1
|
Nicholson TL, Shore SM. Comparative analysis of antimicrobial resistance and genetic diversity of Bordetella bronchiseptica isolates obtained from swine within the United States. Front Microbiol 2024; 15:1501373. [PMID: 39669782 PMCID: PMC11634850 DOI: 10.3389/fmicb.2024.1501373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/04/2024] [Indexed: 12/14/2024] Open
Abstract
Introduction Bordetella bronchiseptica is bacterial pathogen that is pervasive in swine populations and serves multiple roles in respiratory disease. Methods This study utilized whole-genome sequencing (WGS) analysis to assess the sequence type (ST), identify the genetic diversity of genes predicted to encode regulatory and virulence factors, and evaluated any potential antimicrobial resistance harbored by B. bronchiseptica isolates obtained from swine within the U.S. Results While a generally high degree of genomic conservation was observed among the swine B. bronchiseptica isolates, genetic diversity was identified within the fimNX locus and among the sequence type six (ST6) isolates. The majority of B. bronchiseptica isolates exhibited phenotypic resistance to four antibiotic classes, however, only three antimicrobial resistance genes were identified. Discussion Combined the data suggests that B. bronchiseptica isolates are not serving as a source of antimicrobial resistance gene transference in the swine production environment.
Collapse
Affiliation(s)
- Tracy L. Nicholson
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | | |
Collapse
|
2
|
Lichterfeld H, Trittmacher S, Gerdes K, Schmies K, Miguel J, Galé I, Puigredon Fontanet A, Ballarà I, Tenbrink KM, Hennig-Pauka I. Porcine Nose Atrophy Assessed by Automatic Imaging and Detection of Bordetella bronchiseptica and Other Respiratory Pathogens in Lung and Nose. Animals (Basel) 2024; 14:3113. [PMID: 39518836 PMCID: PMC11545279 DOI: 10.3390/ani14213113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The nasal mucosa is a crucial filtering organ to prevent attachment and invasion of pathogens. To assess nasal health in relation to lung health, transverse cross sections of the nasal turbinates of 121 pigs suffering from respiratory disease and sent for diagnostic necropsy were scored visually and by an artificial intelligence (AI) medical diagnostic application (AI DIAGNOS), resulting in a high correlation of both scores (p < 0.001). Nasal samples of the diseased pigs were examined only for Bordetella (B.) bronchiseptica (PCR and bacteriological culture) and Pasteurella (P.) multocida (bacteriological culture). All pigs showed various degrees of inflammatory lung tissue alterations, and 35.5% of the pigs had atrophy of the nasal turbinates with no relation to detection rates of B. bronchiseptica (54.5%) and P. multocida (29.0%) in the nose. All P. multocida strains from nose samples were negative for the toxA gene so non-progressive atrophic rhinitis was diagnosed. Pigs positive for B. bronchiseptica in the nose were more often positive for B. bronchiseptica in the lung (p < 0.001) and for other bacterial species in the lower respiratory tract (p = 0.005). The new diagnostic application for scoring cross sections of nasal turbinates is a valuable tool for a fast and reproducible diagnostic.
Collapse
Affiliation(s)
- Hanna Lichterfeld
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, 49456 Bakum, Germany; (H.L.); (K.G.); (K.S.)
| | - Sara Trittmacher
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, 49456 Bakum, Germany; (H.L.); (K.G.); (K.S.)
| | - Kathrin Gerdes
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, 49456 Bakum, Germany; (H.L.); (K.G.); (K.S.)
| | - Kathrin Schmies
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, 49456 Bakum, Germany; (H.L.); (K.G.); (K.S.)
| | - Joaquín Miguel
- HIPRA, 17170 Amer, Spain; (J.M.); (I.G.); (A.P.F.); (I.B.)
| | - Irene Galé
- HIPRA, 17170 Amer, Spain; (J.M.); (I.G.); (A.P.F.); (I.B.)
| | | | - Isaac Ballarà
- HIPRA, 17170 Amer, Spain; (J.M.); (I.G.); (A.P.F.); (I.B.)
| | | | - Isabel Hennig-Pauka
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, 49456 Bakum, Germany; (H.L.); (K.G.); (K.S.)
| |
Collapse
|
3
|
Si HR, Wu K, Su J, Dong TY, Zhu Y, Li B, Chen Y, Li Y, Shi ZL, Zhou P. Individual virome analysis reveals the general co-infection of mammal-associated viruses with SARS-related coronaviruses in bats. Virol Sin 2024; 39:565-573. [PMID: 38945213 PMCID: PMC11401474 DOI: 10.1016/j.virs.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024] Open
Abstract
Bats are the natural reservoir hosts for SARS-related coronavirus (SARSr-CoV) and other highly pathogenic microorganisms. Therefore, it is conceivable that an individual bat may harbor multiple microbes. However, there is limited knowledge on the overall co-circulation of microorganisms in bats. Here, we conducted a 16-year monitoring of bat viruses in south and central China and identified 238 SARSr-CoV positive samples across nine bat species from ten provinces or administrative districts. Among these, 76 individual samples were selected for further metagenomics analysis. We found a complex microenvironment characterized by the general co-circulation of microbes from two different sources: mammal-associated viruses or environment-associated microbes. The later includes commensal bacteria, enterobacteria-related phages, and insect or fungal viruses of food origin. Results showed that 25% (19/76) of the samples contained at least one another mammal-associated virus, notably alphacoronaviruses (13/76) such as AlphaCoV/YN2012, HKU2-related CoV and AlphaCoV/Rf-HuB2013, along with viruses from other families. Notably, we observed three viruses co-circulating within a single bat, comprising two coronavirus species and one picornavirus. Our analysis also revealed the potential presence of pathogenic bacteria or fungi in bats. Furthermore, we obtained 25 viral genomes from the 76 bat SARSr-CoV positive samples, some of which formed new evolutionary lineages. Collectively, our study reveals the complex microenvironment of bat microbiome, facilitating deeper investigations into their pathogenic potential and the likelihood of cross-species transmission.
Collapse
Affiliation(s)
- Hao-Rui Si
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 43000, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Ke Wu
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou 510005, China
| | - Jia Su
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 43000, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Tian-Yi Dong
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 43000, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Yan Zhu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 43000, China
| | - Bei Li
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 43000, China
| | - Ying Chen
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 43000, China
| | - Yang Li
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 43000, China
| | - Zheng-Li Shi
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 43000, China; Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou 510005, China.
| | - Peng Zhou
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou 510005, China; State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical School, Guangzhou 510005, China.
| |
Collapse
|
4
|
Imrie RM, Walsh SK, Roberts KE, Lello J, Longdon B. Investigating the outcomes of virus coinfection within and across host species. PLoS Pathog 2023; 19:e1011044. [PMID: 37216391 DOI: 10.1371/journal.ppat.1011044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/02/2023] [Indexed: 05/24/2023] Open
Abstract
Interactions between coinfecting pathogens have the potential to alter the course of infection and can act as a source of phenotypic variation in susceptibility between hosts. This phenotypic variation may influence the evolution of host-pathogen interactions within host species and interfere with patterns in the outcomes of infection across host species. Here, we examine experimental coinfections of two Cripaviruses-Cricket Paralysis Virus (CrPV), and Drosophila C Virus (DCV)-across a panel of 25 Drosophila melanogaster inbred lines and 47 Drosophilidae host species. We find that interactions between these viruses alter viral loads across D. melanogaster genotypes, with a ~3 fold increase in the viral load of DCV and a ~2.5 fold decrease in CrPV in coinfection compared to single infection, but we find little evidence of a host genetic basis for these effects. Across host species, we find no evidence of systematic changes in susceptibility during coinfection, with no interaction between DCV and CrPV detected in the majority of host species. These results suggest that phenotypic variation in coinfection interactions within host species can occur independently of natural host genetic variation in susceptibility, and that patterns of susceptibility across host species to single infections can be robust to the added complexity of coinfection.
Collapse
Affiliation(s)
- Ryan M Imrie
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Sarah K Walsh
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Katherine E Roberts
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Joanne Lello
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Ben Longdon
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| |
Collapse
|
5
|
Hau SJ, Nielsen DW, Mou KT, Alt DP, Kellner S, Brockmeier SL. Resilience of swine nasal microbiota to influenza A virus challenge in a longitudinal study. Vet Res 2023; 54:38. [PMID: 37131235 PMCID: PMC10152739 DOI: 10.1186/s13567-023-01167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/24/2023] [Indexed: 05/04/2023] Open
Abstract
Influenza A virus (IAV) is an important contributing pathogen of porcine respiratory disease complex (PRDC) infections. Evidence in humans has shown that IAV can disturb the nasal microbiota and increase host susceptibility to bacterial secondary infections. Few, small-scale studies have examined the impact of IAV infection on the swine nasal microbiota. To better understand the effects of IAV infection on the nasal microbiota and its potential indirect impacts on the respiratory health of the host, a larger, longitudinal study was undertaken to characterize the diversity and community composition of the nasal microbiota of pigs challenged with an H3N2 IAV. The microbiome of challenged pigs was compared with non-challenged animals over a 6-week period using 16S rRNA gene sequencing and analysis workflows to characterize the microbiota. Minimal changes to microbial diversity and community structure were seen between the IAV infected and control animals the first 10 days post-IAV infection. However, on days 14 and 21, the microbial populations were significantly different between the two groups. Compared to the control, there were several genera showing significant increases in abundance in the IAV group during acute infection, such as Actinobacillus and Streptococcus. The results here highlight areas for future investigation, including the implications of these changes post-infection on host susceptibility to secondary bacterial respiratory infections.
Collapse
Affiliation(s)
- Samantha J Hau
- USDA, ARS, National Animal Disease Center, Ames, IA, USA
| | - Daniel W Nielsen
- USDA, ARS, National Animal Disease Center, Ames, IA, USA
- ORAU/ORISE, Oak Ridge, TN, USA
| | - Kathy T Mou
- USDA, ARS, National Animal Disease Center, Ames, IA, USA
- ORAU/ORISE, Oak Ridge, TN, USA
| | - David P Alt
- USDA, ARS, National Animal Disease Center, Ames, IA, USA
| | - Steven Kellner
- USDA, ARS, National Animal Disease Center, Ames, IA, USA
| | | |
Collapse
|
6
|
Vereecke N, Zwickl S, Gumbert S, Graaf A, Harder T, Ritzmann M, Lillie-Jaschniski K, Theuns S, Stadler J. Viral and Bacterial Profiles in Endemic Influenza A Virus Infected Swine Herds Using Nanopore Metagenomic Sequencing on Tracheobronchial Swabs. Microbiol Spectr 2023; 11:e0009823. [PMID: 36853049 PMCID: PMC10100764 DOI: 10.1128/spectrum.00098-23] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
Swine influenza A virus (swIAV) plays an important role in porcine respiratory infections. In addition to its ability to cause severe disease by itself, it is important in the multietiological porcine respiratory disease complex. Still, to date, no comprehensive diagnostics with which to study polymicrobial infections in detail have been offered. Hence, veterinary practitioners rely on monospecific and costly diagnostics, such as Reverse Transcription quantitative PCR (RT-qPCR), antigen detection, and serology. This prevents the proper understanding of the entire disease context, thereby hampering effective preventive and therapeutic actions. A new, nanopore-based, metagenomic diagnostic platform was applied to study viral and bacterial profiles across 4 age groups on 25 endemic swIAV-infected German farms with respiratory distress in the nursery. Farms were screened for swIAV using RT-qPCR on nasal and tracheobronchial swabs (TBS). TBS samples were pooled per age, prior to metagenomic characterization. The resulting data showed a correlation between the swIAV loads and the normalized reads, supporting a (semi-)quantitative interpretation of the metagenomic data. Interestingly, an in-depth characterization using beta diversity and PERMANOVA analyses allowed for the observation of an age-dependent interplay of known microbial agents. Also, lesser-known microbes, such as porcine polyoma, parainfluenza, and hemagglutinating encephalomyelitis viruses, were observed. Analyses of swIAV incidence and clinical signs showed differing microbial communities, highlighting age-specific observations of various microbes in porcine respiratory disease. In conclusion, nanopore metagenomics were shown to enable a panoramic view on viral and bacterial profiles as well as putative pathogen dynamics in endemic swIAV-infected herds. The results also highlighted the need for better insights into lesser studied agents that are potentially associated with porcine respiratory disease. IMPORTANCE To date, no comprehensive diagnostics for the study of polymicrobial infections that are associated with porcine respiratory disease have been offered. This precludes the proper understanding of the entire disease landscape, thereby hampering effective preventive and therapeutic actions. Compared to the often-costly diagnostic procedures that are applied for the diagnostics of porcine respiratory disease nowadays, a third-generation nanopore sequencing diagnostics workflow presents a cost-efficient and informative tool. This approach offers a panoramic view of microbial agents and contributes to the in-depth observation and characterization of viral and bacterial profiles within the respiratory disease context. While these data allow for the study of age-associated, swIAV-associated, and clinical symptom-associated observations, it also suggests that more effort should be put toward the investigation of coinfections and lesser-known pathogens (e.g., PHEV and PPIV), along with their potential roles in porcine respiratory disease. Overall, this approach will allow veterinary practitioners to tailor treatment and/or management changes on farms in a quicker, more complete, and cost-efficient way.
Collapse
Affiliation(s)
- Nick Vereecke
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- PathoSense BV, Lier, Belgium
| | - Sophia Zwickl
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| | - Sophie Gumbert
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| | - Annika Graaf
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Germany
| | - Mathias Ritzmann
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| | | | - Sebastiaan Theuns
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- PathoSense BV, Lier, Belgium
| | - Julia Stadler
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| |
Collapse
|
7
|
Luczo JM, Hamidou Soumana I, Reagin KL, Dihle P, Ghedin E, Klonowski KD, Harvill ET, Tompkins SM. Bordetella bronchiseptica-Mediated Interference Prevents Influenza A Virus Replication in the Murine Nasal Cavity. Microbiol Spectr 2023; 11:e0473522. [PMID: 36728413 PMCID: PMC10100957 DOI: 10.1128/spectrum.04735-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
Colonization resistance, also known as pathogen interference, describes the ability of a colonizing microbe to interfere with the ability of an incoming microbe to establish infection, and in the case of pathogenic organisms, cause disease in a susceptible host. Furthermore, colonization-associated dysbiosis of the commensal microbiota can alter host immunocompetence and infection outcomes. Here, we investigated the role of Bordetella bronchiseptica nasal colonization and associated disruption of the nasal microbiota on the ability of influenza A virus to establish infection in the murine upper respiratory tract. Targeted sequencing of the microbial 16S rRNA gene revealed that B. bronchiseptica colonization of the nasal cavity efficiently displaced the resident commensal microbiota-the peak of this effect occurring 7 days postcolonization-and was associated with reduced influenza associated-morbidity and enhanced recovery from influenza-associated clinical disease. Anti-influenza A virus hemagglutinin-specific humoral immune responses were not affected by B. bronchiseptica colonization, although the cellular influenza PA-specific CD8+ immune responses were dampened. Notably, influenza A virus replication in the nasal cavity was negated in B. bronchiseptica-colonized mice. Collectively, this work demonstrates that B. bronchiseptica-mediated pathogen interference prevents influenza A virus replication in the murine nasal cavity. This may have direct implications for controlling influenza A virus replication in, and transmission events originating from, the upper respiratory tract. IMPORTANCE The interplay of microbial species in the upper respiratory tract is important for the ability of an incoming pathogen to establish and, in the case of pathogenic organisms, cause disease in a host. Here, we demonstrate that B. bronchiseptica efficiently colonizes and concurrently displaces the commensal nasal cavity microbiota, negating the ability of influenza A virus to establish infection. Furthermore, B. bronchiseptica colonization also reduced influenza-associated morbidity and enhanced recovery from influenza-associated disease. Collectively, this study indicates that B. bronchiseptica-mediated interference prevents influenza A virus replication in the upper respiratory tract. This result demonstrates the potential for respiratory pathogen-mediated interference to control replication and transmission dynamics of a clinically important respiratory pathogen like influenza A virus.
Collapse
Affiliation(s)
- Jasmina M. Luczo
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, Georgia, USA
| | | | - Katie L. Reagin
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Preston Dihle
- Center for Genomics and Systems Biology, New York University, New York City, New York, USA
| | - Elodie Ghedin
- Center for Genomics and Systems Biology, New York University, New York City, New York, USA
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | | - Eric T. Harvill
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Stephen M. Tompkins
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, Georgia, USA
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Center for Influenza Disease and Emergence Response (CIDER), Athens, Georgia, USA
| |
Collapse
|
8
|
Nguyen NTD, Pathak AK, Cattadori IM. Gastrointestinal helminths increase Bordetella bronchiseptica shedding and host variation in supershedding. eLife 2022; 11:e70347. [PMID: 36346138 PMCID: PMC9642997 DOI: 10.7554/elife.70347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
Co-infected hosts, individuals that carry more than one infectious agent at any one time, have been suggested to facilitate pathogen transmission, including the emergence of supershedding events. However, how the host immune response mediates the interactions between co-infecting pathogens and how these affect the dynamics of shedding remains largely unclear. We used laboratory experiments and a modeling approach to examine temporal changes in the shedding of the respiratory bacterium Bordetella bronchiseptica in rabbits with one or two gastrointestinal helminth species. Experimental data showed that rabbits co-infected with one or both helminths shed significantly more B. bronchiseptica, by direct contact with an agar petri dish, than rabbits with bacteria alone. Co-infected hosts generated supershedding events of higher intensity and more frequently than hosts with no helminths. To explain this variation in shedding an infection-immune model was developed and fitted to rabbits of each group. Simulations suggested that differences in the magnitude and duration of shedding could be explained by the effect of the two helminths on the relative contribution of neutrophils and specific IgA and IgG to B. bronchiseptica neutralization in the respiratory tract. However, the interactions between infection and immune response at the scale of analysis that we used could not capture the rapid variation in the intensity of shedding of every rabbit. We suggest that fast and local changes at the level of respiratory tissue probably played a more important role. This study indicates that co-infected hosts are important source of variation in shedding, and provides a quantitative explanation into the role of helminths to the dynamics of respiratory bacterial infections.
Collapse
Affiliation(s)
- Nhat TD Nguyen
- Center for Infectious Disease Dynamics, The Pennsylvania State UniversityUniversity ParkUnited States
- Department of Biology, The Pennsylvania State UniversityUniversity ParkUnited States
| | - Ashutosh K Pathak
- Center for Infectious Disease Dynamics, The Pennsylvania State UniversityUniversity ParkUnited States
- Department of Biology, The Pennsylvania State UniversityUniversity ParkUnited States
- Department of Infectious Diseases, University of GeorgiaAthensUnited States
| | - Isabella M Cattadori
- Center for Infectious Disease Dynamics, The Pennsylvania State UniversityUniversity ParkUnited States
- Department of Biology, The Pennsylvania State UniversityUniversity ParkUnited States
| |
Collapse
|
9
|
Huang X, Wu W, Tian X, Hou X, Cui X, Xiao Y, Jiao Q, Zhou P, Liu L, Shi W, Chen L, Sun Y, Yang Y, Chen J, Zhang G, Liu J, Holmes EC, Cai X, An T, Shi M. A total infectome approach to understand the etiology of infectious disease in pigs. MICROBIOME 2022; 10:73. [PMID: 35538563 PMCID: PMC9086151 DOI: 10.1186/s40168-022-01265-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The global pork industry is continuously affected by infectious diseases that can result in large-scale mortality, trade restrictions, and major reductions in production. Nevertheless, the cause of many infectious diseases in pigs remains unclear, largely because commonly used diagnostic tools fail to capture the full diversity of potential pathogens and because pathogen co-infection is common. RESULTS We used a meta-transcriptomic approach to systematically characterize the pathogens in 136 clinical cases representing different disease syndromes in pigs, as well as in 12 non-diseased controls. This enabled us to simultaneously determine the diversity, abundance, genomic information, and detailed epidemiological history of a wide range of potential pathogens. We identified 34 species of RNA viruses, nine species of DNA viruses, seven species of bacteria, and three species of fungi, including two novel divergent members of the genus Pneumocystis. While most of these pathogens were only apparent in diseased animals or were at higher abundance in diseased animals than in healthy animals, others were present in healthy controls, suggesting opportunistic infections. Importantly, most of the cases examined here were characterized by co-infection with more than two species of viral, bacterial, or fungal pathogens, some with highly correlated occurrence and abundance levels. Examination of clinical signs and necropsy results in the context of relevant pathogens revealed that a multiple-pathogen model was better associated with the data than a single-pathogen model was. CONCLUSIONS Our data demonstrate that most of the pig diseases examined were better explained by the presence of multiple rather than single pathogens and that infection with one pathogen can facilitate infection or increase the prevalence/abundance of another. Consequently, it is generally preferable to consider the cause of a disease based on a panel of co-infecting pathogens rather than on individual infectious agents. Video abstract.
Collapse
Affiliation(s)
- Xinyi Huang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Weichen Wu
- School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xiaoxiao Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xin Hou
- School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xingyang Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yihong Xiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Qiulin Jiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Pei Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Liqiang Liu
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Weilin Shi
- Harbin Weike Biotechnology Development Company, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ligong Chen
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yue Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongbo Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jianxin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Guihong Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jinling Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Life & Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Mang Shi
- School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
10
|
Suderman M, Moniwa M, Alkie TN, Ojkic D, Broes A, Pople N, Berhane Y. Comparative Susceptibility of Madin–Darby Canine Kidney (MDCK) Derived Cell Lines for Isolation of Swine Origin Influenza A Viruses from Different Clinical Specimens. Viruses 2021; 13:v13122346. [PMID: 34960614 PMCID: PMC8704103 DOI: 10.3390/v13122346] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022] Open
Abstract
Madin–Darby canine kidney (MDCK) cells are commonly used for the isolation of mammalian influenza A viruses. The goal of this study was to compare the sensitivity and suitability of the original MDCK cell line in comparison with MDCK-derived cell lines, MDCK.2, MDCK SIAT-1 and MDCK-London for isolation of swine-origin influenza A viruses (IAV-S) from clinical specimens. One-hundred thirty clinical specimens collected from pigs in the form of nasal swabs, lung tissue and oral fluids that were positive by PCR for the presence of IAV-S RNA were inoculated in the cell cultures listed above. MDCK-SIAT1 cells yielded the highest proportion of positive IAV-S isolations from all specimen types. For nasal swabs, 58.62% of the specimens were IAV-S positive in MDCK-SIAT1 cells, followed by MDCK-London (36.21%), and conventional MDCK and MDCK.2 cells (27.5%). For lung specimens, 59.38% were IAV-S positive in MDCK-SIAT1 cells, followed by MDCK-London (40.63%), and conventional MDCK and MDCK.2 cells (18.75–31.25%). Oral fluids yielded the lowest number of positive virus isolation results, but MDCK-SIAT1 cells were still had the highest rate (35%) of IAV-S isolation, whereas the isolation rate in other cells ranged from 5–7.5%. Samples with lower IAV-S PCR cycle threshold (Ct) values were more suitable for culturing and isolation. The isolated IAV-S represented H1N1-β, H1N2-α, H1N1pdm and H3N2 cluster IV and cluster IVB viruses. The result of the current study demonstrated the importance of using the most appropriate MDCK cells when isolating IAV-S from clinical samples.
Collapse
Affiliation(s)
- Matthew Suderman
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3R2, Canada; (M.S.); (M.M.); (T.N.A.)
| | - Mariko Moniwa
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3R2, Canada; (M.S.); (M.M.); (T.N.A.)
| | - Tamiru N. Alkie
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3R2, Canada; (M.S.); (M.M.); (T.N.A.)
| | - Davor Ojkic
- Animal Health Laboratory, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Andre Broes
- Biovet Inc., Saint-Hyacinthe, QC J2S 8W2, Canada;
| | - Neil Pople
- Veterinary Diagnostic Services, Manitoba Agriculture and Resource Development, 545 University Crescent, Winnipeg, MB R3T 5S6, Canada;
| | - Yohannes Berhane
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3R2, Canada; (M.S.); (M.M.); (T.N.A.)
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Correspondence:
| |
Collapse
|
11
|
Polymicrobial Interactions Operative during Pathogen Transmission. mBio 2021; 12:mBio.01027-21. [PMID: 34006664 PMCID: PMC8262881 DOI: 10.1128/mbio.01027-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Pathogen transmission is a key point not only for infection control and public health interventions but also for understanding the selective pressures in pathogen evolution. The “success” of a pathogen lies not in its ability to cause signs and symptoms of illness but in its ability to be shed from the initial hosts, survive between hosts, and then establish infection in a new host. Recent insights have shown the importance of the interaction between the pathogen and both the commensal microbiome and coinfecting pathogens on shedding, environmental survival, and acquisition of infection. Pathogens have evolved in the context of cooperation and competition with other microbes, and the roles of these cooperations and competitions in transmission can inform novel preventative and therapeutic strategies.
Collapse
|
12
|
Respiratory viral infections drive different lung cytokine profiles in pigs. BMC Vet Res 2021; 17:5. [PMID: 33407470 PMCID: PMC7786461 DOI: 10.1186/s12917-020-02722-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Background Swine influenza A virus (IAV) and porcine reproductive and respiratory syndrome virus (PRRSV) are considered key viral pathogens involved in the porcine respiratory disease complex. Concerning the effect of one virus on another with respect to local immune response is still very limited. Determination of presence and quantity of cytokines in the lung tissue and its relation to the lung pathology can lead to a better understanding of the host inflammatory response and its influence on the lung pathology during single or multi-virus infection. The aim of the present study was to explore and compare the patterns of lung cytokine protein response in pigs after single or dual infection with swine IAV and/or PRRSV. Results Inoculation with IAV alone causes an increase in lung concentration of IFN-α, IFN-ɣ, TNF-α, IL-6, IL-8 and IL-10, especially at 2 and 4 DPI. In PRRSV group, beyond early IFN-α, IFN-ɣ, IL-6, IL-8 and IL-10 induction, elevated levels of cytokines at 10 and 21 DPI have been found. In IAV+PRRSV inoculated pigs the lung concentrations of all cytokines were higher than in control pigs. Conclusions Current results indicate that experimental infection of pigs with IAV or PRRSV alone and co-infection with both pathogens induce different kinetics of local cytokine response. Due to strong positive correlation between local TNF-α and IL-10 concentration and lung pathology, we hypothesize that these cytokines are involved in the induction of lung lesions during investigates infection. Nevertheless, no apparent increase in lung cytokine response was seen in pigs co-inoculated simultaneously with both pathogens compared to single inoculated groups. It may also explain no significant effect of co-infection on the lung pathology and pathogen load, compared to single infections. Strong correlation between local concentration of TNF-α, IFN-ɣ, IL-8 and SwH1N1 load in the lung, as well as TNF-α, IL-8 and PRRSV lung titres suggested that local replication of both viruses also influenced the local cytokine response during infection.
Collapse
|
13
|
Chamba Pardo FO, W Allerson M, R Culhane M, B Morrison R, R Davies P, Perez A, Torremorell M. Effect of influenza A virus sow vaccination on infection in pigs at weaning: A prospective longitudinal study. Transbound Emerg Dis 2020; 68:183-193. [PMID: 32652870 DOI: 10.1111/tbed.13688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 05/12/2020] [Accepted: 06/10/2020] [Indexed: 12/28/2022]
Abstract
Although vaccination is the main measure to control influenza A virus (IAV) in swine, there is limited information on the efficacy of sow vaccination on reducing IAV infections in pigs at weaning. We assessed the effect of sow vaccination on IAV infection in pigs at weaning in a cohort of 52 breeding herds studied prospectively. Herds were voluntarily enrolled according to their IAV history, sow vaccination protocol and monitored during six months (prospective longitudinal study). On each herd, nasal swabs were collected monthly from 30 pigs at weaning and tested for IAV by RT-PCR. IAV was detected in 25% (75/305) of sampling events. Of 9,150 nasal swab pools (3 individual nasal swabs/pool), 15% (458/3050) of pools tested IAV positive. IAV infections in pigs at weaning were lower in vaccinated herds compared to non-vaccinated ones. Moreover, no significant differences were seen between prefarrow and whole herd protocols, or the use of commercial versus autogenous IAV vaccines. Prefarrow and whole herd vaccination protocols reduced the odds of groups testing IAV positive at weaning in comparison with no vaccination. Our results are relevant when considering implementation of sow vaccination to control influenza infections in pigs at weaning and, hence, minimize transmission to growing pigs and other farms.
Collapse
Affiliation(s)
- Fabian O Chamba Pardo
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, USA
| | | | - Marie R Culhane
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, USA
| | - Robert B Morrison
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, USA
| | - Peter R Davies
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, USA
| | - Andres Perez
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, USA
| | | |
Collapse
|
14
|
A descriptive study of acute outbreaks of respiratory disease in Norwegian fattening pig herds. Acta Vet Scand 2020; 62:35. [PMID: 32580726 PMCID: PMC7312110 DOI: 10.1186/s13028-020-00529-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Respiratory diseases are major health concerns in the pig production sector worldwide, contributing adversely to morbidity and mortality. Over the past years there was a rise in reported incidents of respiratory disease in pigs in Norway, despite population wide freedom from Aujeszky´s disease, porcine reproductive and respiratory syndrome, porcine respiratory corona virus and enzootic pneumonia. The main objective of this study was to investigate acute outbreaks of respiratory disease in conventional Norwegian fattening pig herds. The study included 14 herds. In seven herds with reported outbreaks of acute respiratory disease, data on clinical signs was recorded and samples for laboratory examination were collected. Diagnostic protocols were compared by parallel analysis of clinically healthy pigs from seven non-outbreak herds. RESULTS The most commonly reported clinical signs were sudden deaths and dyspnea. An average compartment morbidity of 60%, mortality of 4% and case fatality of 9% was recorded in the outbreak herds. Post-mortem examinations revealed acute lesions resembling porcine pleuropneumonia in all 28 pigs investigated from the outbreak herds and in 2 of the 24 (8%) pigs from the non-outbreak herds. Chronic lesions were recorded in another 2 pigs (8%) from the non-outbreak herds. Actinobacillus pleuropneumoniae serovar 8 was isolated from lungs and/or pleura from all tested pigs (n = 28) in the outbreak herds, and from 2 out of 24 pigs (8%) in the non-outbreak herds, one pig with an acute and another pig with a chronic infection. No other significant bacterial findings were made. Seroconversion to A. pleuropneumoniae antibodies was detectable in all outbreak herds analyzed and in six out of seven non-outbreak herds, but the risk ratio for seroconversion of individual pigs was higher (risk ratio 2.3 [1.50- 3.43 95% CI; P < 0.001]) in the outbreak herds. All herds tested positive for porcine circovirus type 2 and negative for influenza A viruses on oral fluid RT-qPCR. CONCLUSION The main etiological pathogen found during acute outbreaks of respiratory disease was A. pleuropneumoniae serovar 8. All pigs from outbreak herds had typical lesions of acute porcine pleuropneumonia, and only A. pleuropneumoniae serovar 8 was identified. Co-infections were not found to impact disease development.
Collapse
|
15
|
Segura M, Aragon V, Brockmeier SL, Gebhart C, de Greeff A, Kerdsin A, O’Dea MA, Okura M, Saléry M, Schultsz C, Valentin-Weigand P, Weinert LA, Wells JM, Gottschalk M. Update on Streptococcus suis Research and Prevention in the Era of Antimicrobial Restriction: 4th International Workshop on S. suis. Pathogens 2020; 9:pathogens9050374. [PMID: 32422856 PMCID: PMC7281350 DOI: 10.3390/pathogens9050374] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/16/2022] Open
Abstract
Streptococcus suis is a swine pathogen and a zoonotic agent afflicting people in close contact with infected pigs or pork meat. Sporadic cases of human infections have been reported worldwide. In addition, S. suis outbreaks emerged in Asia, making this bacterium a primary health concern in this part of the globe. In pigs, S. suis disease results in decreased performance and increased mortality, which have a significant economic impact on swine production worldwide. Facing the new regulations in preventive use of antimicrobials in livestock and lack of effective vaccines, control of S. suis infections is worrisome. Increasing and sharing of knowledge on this pathogen is of utmost importance. As such, the pathogenesis and epidemiology of the infection, antimicrobial resistance, progress on diagnosis, prevention, and control were among the topics discussed during the 4th International Workshop on Streptococcus suis (held in Montreal, Canada, June 2019). This review gathers together recent findings on this important pathogen from lectures performed by lead researchers from several countries including Australia, Canada, France, Germany, Japan, Spain, Thailand, The Netherlands, UK, and USA. Finally, policies and recommendations for the manufacture, quality control, and use of inactivated autogenous vaccines are addressed to advance this important field in veterinary medicine.
Collapse
Affiliation(s)
- Mariela Segura
- Research Group on Infectious Diseases in Production Animals and Swine and Poultry Infectious Diseases Research Centre, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC J2S 2M2, Canada
- Correspondence: (M.S.); (M.G.); Tel.: +1-450-773-8521 (ext. 0080) (M.S.); +1-450-773-8521 (ext. 8374) (M.G.)
| | - Virginia Aragon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | | | - Connie Gebhart
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Astrid de Greeff
- Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands;
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand;
| | - Mark A O’Dea
- Antimicrobial Resistance and Infectious Disease Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia 6150, Australia;
| | - Masatoshi Okura
- Division of Bacterial and Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan;
| | - Mariette Saléry
- French Agency for Veterinary Medicinal Products-French Agency for food, Environmental and Occupational Health Safety (Anses-ANMV), 35302 Fougères, France;
| | - Constance Schultsz
- Department of Global Health-Amsterdam Institute for Global Health and Development and Department of Medical Microbiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 BP Amsterdam, The Netherlands;
| | | | - Lucy A. Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK;
| | - Jerry M. Wells
- Host-Microbe Interactomics Group, Department Animal Sciences, Wageningen University and Research, 6709 PG Wageningen, The Netherlands;
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Marcelo Gottschalk
- Research Group on Infectious Diseases in Production Animals and Swine and Poultry Infectious Diseases Research Centre, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC J2S 2M2, Canada
- Correspondence: (M.S.); (M.G.); Tel.: +1-450-773-8521 (ext. 0080) (M.S.); +1-450-773-8521 (ext. 8374) (M.G.)
| |
Collapse
|
16
|
Gebhardt JT, Tokach MD, Dritz SS, DeRouchey JM, Woodworth JC, Goodband RD, Henry SC. Postweaning mortality in commercial swine production II: review of infectious contributing factors. Transl Anim Sci 2020; 4:txaa052. [PMID: 32705048 PMCID: PMC7277696 DOI: 10.1093/tas/txaa052] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/27/2020] [Indexed: 11/14/2022] Open
Abstract
Postweaning mortality is extremely complex with a multitude of noninfectious and infectious contributing factors. In the current review, our objective is to describe the current state of knowledge regarding infectious causes of postweaning mortality, focusing on estimates of frequency and magnitude of effect where available. While infectious mortality is often categorized by physiologic body system affected, we believe the complex multifactorial nature is better understood by an alternative stratification dependent on intervention type. This category method subjectively combines disease pathogenesis knowledge, epidemiology, and economic consequences. These intervention categories included depopulation of affected cohorts of animals, elimination protocols using knowledge of immunity and epidemiology, or less aggressive interventions. The most aggressive approach to control infectious etiologies is through herd depopulation and repopulation. Historically, these protocols were successful for Actinobacillus pleuropneumoniae and swine dysentery among others. Additionally, this aggressive measure likely would be used to minimize disease spread if either a foreign animal disease was introduced or pseudorabies virus was reintroduced into domestic swine populations. Elimination practices have been successful for Mycoplasma hyopneumoniae, porcine reproductive and respiratory syndrome virus, coronaviruses, including transmissible gastroenteritis virus, porcine epidemic diarrhea virus, and porcine deltacoronavirus, swine influenza virus, nondysentery Brachyspira spp., and others. Porcine circovirus type 2 can have a significant impact on morbidity and mortality; however, it is often adequately controlled through immunization. Many other infectious etiologies present in swine production have not elicited these aggressive control measures. This may be because less aggressive control measures, such as vaccination, management, and therapeutics, are effective, their impact on mortality or productivity is not great enough to warrant, or there is inadequate understanding to employ control procedures efficaciously and efficiently. Since there are many infectious agents and noninfectious contributors, emphasis should continue to be placed on those infectious agents with the greatest impact to minimize postweaning mortality.
Collapse
Affiliation(s)
- Jordan T Gebhardt
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Steve S Dritz
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | | |
Collapse
|
17
|
Abstract
Bordetella bronchiseptica isolate KM22 has been used in experimental infections of swine as a model of clinical B. bronchiseptica infection and to study host-to-host transmission. The draft genome sequence of KM22 was reported in 2014. Here, we report the complete genome sequence of KM22. Bordetella bronchiseptica isolate KM22 has been used in experimental infections of swine as a model of clinical B. bronchiseptica infection and to study host-to-host transmission. The draft genome sequence of KM22 was reported in 2014. Here, we report the complete genome sequence of KM22.
Collapse
|
18
|
Proinflammatory Cytokine Changes in Bronchoalveolar Lavage Fluid Cells Isolated from Pigs Infected Solely with Porcine Reproductive and Respiratory Syndrome Virus or Co-infected with Swine Influenza Virus. J Vet Res 2019; 63:489-495. [PMID: 31934657 PMCID: PMC6950433 DOI: 10.2478/jvetres-2019-0063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 09/30/2019] [Indexed: 01/15/2023] Open
Abstract
Introduction The study evaluated the patterns of local innate immune response in bronchoalveolar lavage fluid (BALF) cells of pigs infected with porcine reproductive and respiratory syndrome virus (PRRSV) alone or co-infected with swine influenza virus (SIV). Material and Methods The study was performed on 26 seven-week-old pigs in three groups: PRRSV-infected (n = 11), PRRSV and SIV-infected (n = 11), and control (n = 4). BALF was collected post euthanasia at 2 and 4 dpi (three piglets per inoculated group) and at 21 dpi (all remaining pigs). Expression of IFN-α, IFN-γ, IL-1β, IL-6, IL-8, and IL-10 mRNA was quantified in BALF cells. PRRSV RNA was quantified in BALF samples using a commercial real-time RT-PCR kit. Results The three cytokines IFN-α, IFN-γ, and IL-1β presented significant expression changes in all experimental pigs. In PRRSV-infected animals IL-8 also did, but in co-infected subjects IL-6 and IL-10 were the additional upregulated cytokines. The highest number of differentially expressed genes was observed at 4 dpi, and significant differences in cytokine gene expression did not occur between the experimental groups at any other time point. The mean PRRSV load in the BALF of PRRSV-infected pigs was higher than that of co-infected pigs at each time point, having statistical significance only at 4 dpi. Conclusion The results of the study indicate that infection with PRRSV alone as well as with SIV interferes with innate and adaptive immune response in the infected host. They also showed that co-infection demonstrates additive effects on IL-6 and IL-10 mRNA expression levels.
Collapse
|
19
|
Hughes HR, Brockmeier SL, Loving CL. Bordetella bronchiseptica Colonization Limits Efficacy, but Not Immunogenicity, of Live-Attenuated Influenza Virus Vaccine and Enhances Pathogenesis After Influenza Challenge. Front Immunol 2018; 9:2255. [PMID: 30337924 PMCID: PMC6180198 DOI: 10.3389/fimmu.2018.02255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/11/2018] [Indexed: 11/13/2022] Open
Abstract
Intranasally administered live-attenuated influenza virus (LAIV) vaccines provide significant protection against heterologous influenza A virus (IAV) challenge. However, LAIV administration can modify the bacterial microbiota in the upper respiratory tract, including alterations in species that cause pneumonia. We sought to evaluate the effect of Bordetella bronchiseptica colonization on LAIV immunogenicity and efficacy in swine, and the impact of LAIV and IAV challenge on B. bronchiseptica colonization and disease. LAIV immunogenicity was not significantly impacted by B. bronchiseptica colonization, but protective efficacy against heterologous IAV challenge in the upper respiratory tract was impaired. Titers of IAV in the nose and trachea of pigs that received LAIV were significantly reduced when compared to non-vaccinated, challenged controls, regardless of B. bronchiseptica infection. Pneumonia scores were higher in pigs colonized with B. bronchiseptica and challenged with IAV, but this was regardless of LAIV vaccination status. While LAIV vaccination provided significant protection against heterologous IAV challenge, the protection was not sterilizing and IAV replicated in the respiratory tract of all LAIV vaccinated pig. The interaction between IAV, B. bronchiseptica, and host led to development of acute-type B. bronchiseptica lesions in the lung. Thus, the data presented do not negate the efficacy of LAIV vaccination, but instead indicate that controlling B. bronchiseptica colonization in swine could limit the negative interaction between IAV and Bordetella on swine health.
Collapse
Affiliation(s)
- Holly R Hughes
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Services, U.S. Department of Agriculture, Ames, IA, United States
| | - Susan L Brockmeier
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Services, U.S. Department of Agriculture, Ames, IA, United States
| | - Crystal L Loving
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Services, U.S. Department of Agriculture, Ames, IA, United States.,Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Services, U.S. Department of Agriculture, Ames, IA, United States
| |
Collapse
|
20
|
Jeron A, Boehme JD, Volckmar J, Gereke M, Yevsa T, Geffers R, Guzmán CA, Schreiber J, Stegemann-Koniszewski S, Bruder D. Respiratory Bordetella bronchiseptica Carriage is Associated with Broad Phenotypic Alterations of Peripheral CD4⁺CD25⁺ T Cells and Differentially Affects Immune Responses to Secondary Non-Infectious and Infectious Stimuli in Mice. Int J Mol Sci 2018; 19:E2602. [PMID: 30200513 PMCID: PMC6165163 DOI: 10.3390/ijms19092602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/03/2018] [Accepted: 08/28/2018] [Indexed: 01/05/2023] Open
Abstract
The respiratory tract is constantly exposed to the environment and displays a favorable niche for colonizing microorganisms. However, the effects of respiratory bacterial carriage on the immune system and its implications for secondary responses remain largely unclear. We have employed respiratory carriage with Bordetella bronchiseptica as the underlying model to comprehensively address effects on subsequent immune responses. Carriage was associated with the stimulation of Bordetella-specific CD4⁺, CD8⁺, and CD4⁺CD25⁺Foxp3⁺ T cell responses, and broad transcriptional activation was observed in CD4⁺CD25⁺ T cells. Importantly, transfer of leukocytes from carriers to acutely B. bronchiseptica infected mice, resulted in a significantly increased bacterial burden in the recipient's upper respiratory tract. In contrast, we found that respiratory B. bronchiseptica carriage resulted in a significant benefit for the host in systemic infection with Listeria monocytogenes. Adaptive responses to vaccination and influenza A virus infection, were unaffected by B. bronchiseptica carriage. These data showed that there were significant immune modulatory processes triggered by B. bronchiseptica carriage, that differentially affect subsequent immune responses. Therefore, our results demonstrated the complexity of immune regulation induced by respiratory bacterial carriage, which can be beneficial or detrimental to the host, depending on the pathogen and the considered compartment.
Collapse
Affiliation(s)
- Andreas Jeron
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
| | - Julia D Boehme
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
| | - Julia Volckmar
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
| | - Marcus Gereke
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
| | - Tetyana Yevsa
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
| | - Robert Geffers
- Genome Analytics Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
| | - Jens Schreiber
- Experimental Pneumology, University Hospital for Pneumology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
| | - Sabine Stegemann-Koniszewski
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
- Experimental Pneumology, University Hospital for Pneumology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
| |
Collapse
|
21
|
Klonoski JM, Watson T, Bickett TE, Svendsen JM, Gau TJ, Britt A, Nelson JT, Schlenker EH, Chaussee MS, Rynda-Apple A, Huber VC. Contributions of Influenza Virus Hemagglutinin and Host Immune Responses Toward the Severity of Influenza Virus: Streptococcus pyogenes Superinfections. Viral Immunol 2018; 31:457-469. [PMID: 29870311 PMCID: PMC6043403 DOI: 10.1089/vim.2017.0193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Influenza virus infections can be complicated by bacterial superinfections, which are medically relevant because of a complex interaction between the host, the virus, and the bacteria. Studies to date have implicated several influenza virus genes, varied host immune responses, and bacterial virulence factors, however, the host-pathogen interactions that predict survival versus lethal outcomes remain undefined. Previous work by our group showed that certain influenza viruses could yield a survival phenotype (A/swine/Texas/4199-2/98-H3N2, TX98), whereas others were associated with a lethal phenotype (A/Puerto Rico/8/34-H1N1, PR8). Based on this observation, we developed the hypothesis that individual influenza virus genes could contribute to a superinfection, and that the host response after influenza virus infection could influence superinfection severity. The present study analyzes individual influenza virus gene contributions to superinfection severity using reassortant viruses created using TX98 and PR8 viral genes. Host and pathogen interactions, relevant to survival and lethal phenotypes, were studied with a focus on pathogen clearance, host cellular infiltrates, and cytokine levels after infection. Specifically, we found that the hemagglutinin gene expressed by an influenza virus can contribute to the severity of a secondary bacterial infection, likely through modulation of host proinflammatory responses. Altogether, these results advance our understanding of molecular mechanisms underlying influenza virus-bacteria superinfections and identify viral and corresponding host factors that may contribute to morbidity and mortality.
Collapse
Affiliation(s)
- Joshua M. Klonoski
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Trevor Watson
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Thomas E. Bickett
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Joshua M. Svendsen
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Tonia J. Gau
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Alexandra Britt
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Jeff T. Nelson
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Evelyn H. Schlenker
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Michael S. Chaussee
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Agnieszka Rynda-Apple
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Victor C. Huber
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| |
Collapse
|
22
|
Pomorska-Mól M, Dors A, Kwit K, Czyżewska-Dors E, Pejsak Z. Coinfection modulates inflammatory responses, clinical outcome and pathogen load of H1N1 swine influenza virus and Haemophilus parasuis infections in pigs. BMC Vet Res 2017; 13:376. [PMID: 29202835 PMCID: PMC5716233 DOI: 10.1186/s12917-017-1298-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 11/23/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Respiratory co-infections are important factor affecting the profitability of pigs production. Swine influenza virus (SIV) may predispose to secondary infection. Haemophilus parasuis (Hps) can be a primary pathogen or be associated with other pathogens such as SIV. To date, little is known about the effect of coinfection with SIV and Hps on the disease severity and inflammatory response and the role of Hps in the induction of pneumonia in the absence of other respiratory pathogens. In the study we investigated the influence of SIV and Hps coinfection on clinical course, inflammatory response, pathogens shedding and load at various time points following intranasal inoculation. The correlation between local concentration of cytokines and severity of disease as well as serum acute phase proteins (APP) concentration has been also studied. RESULTS All co-infected pigs had fever, while in single inoculated pigs fever was observed only in part of animals. Necropsy revealed lesions in the lungs all SIV-inoculated and co-inoculated pigs, while in Hps-single inoculated animals only 1 out of 11 pigs revealed gross lung lesions. The SIV shedding was the highest in co-inoculated pigs. There were no differences between Hps-single inoculated and co-inoculated groups with regard to Hps shedding. The significant increase in Hps titre in the lung has been found only in co-inoculated group. All APP increased after co-infection. In single-inoculated animals various kinetics of APP response has been observed. The lung concentrations of cytokines were induced mostly in SIV + Hps pigs in the apical and middle lobe. These results correlated well with localization of gross lung lesions. CONCLUSIONS The results revealed that SIV increased the severity of lung lesions and facilitated Hps (PIWetHps192/2015) replication in the porcine lung. Furthermore, Hps influenced the SIV nasal shedding. Enhanced Hps and SIV replication, together with stronger systemic and local inflammatory response contributed to a more severe clinical signs and stronger, earlier immune response in co-inoculated animals. We confirmed the previous evidence that single-Hps infection does not produce significant pneumonic lesions but it should be in mind that other strains of Hps may produce lesions different from that reported in the present study.
Collapse
Affiliation(s)
- Małgorzata Pomorska-Mól
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów 57, 24-100, Pulawy, Poland.
| | - Arkadiusz Dors
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów 57, 24-100, Pulawy, Poland
| | - Krzysztof Kwit
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów 57, 24-100, Pulawy, Poland
| | - Ewelina Czyżewska-Dors
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów 57, 24-100, Pulawy, Poland
| | - Zygmunt Pejsak
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów 57, 24-100, Pulawy, Poland
| |
Collapse
|
23
|
Czyżewska-Dors E, Dors A, Kwit K, Stasiak E, Pomorska-Mól M. Pig Lung Immune Cytokine Response to the Swine Influenza Virus and the Actinobacillus Pleuropneumoniae Infection. J Vet Res 2017; 61:259-265. [PMID: 29978082 PMCID: PMC5894434 DOI: 10.1515/jvetres-2017-0036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/31/2017] [Indexed: 01/01/2023] Open
Abstract
Introduction The aim of this study was to evaluate and compare the local innate immune response to the swine influenza virus (SIV) and Actinobacillus pleuropneumoniae (App) infection in pigs. Material and Methods The study was performed on 37 seven-week-old pigs, divided into four groups: App-infected (n=11), App+SIV-infected (n=11), SIV-infected (n=11), and control (n=4). Lung samples were collected, following euthanasia, on the 2nd and 4th dpi (three piglets per inoculated group) and on the 10th dpi (remaining inoculated and control pigs). Lung concentrations of IL-1β, IL-6, IL-8, TNF-α, IL-10, IFN-α, and IFN-γ were analysed with the use of commercial porcine cytokine ELISA kits. Results Lung concentrations of IL-1β, IL-6, IL-8, TNF-α, IFN-α, and IFN-γ were induced in SIV-infected and App+SIV-infected pigs. In the lung tissue of App-infected pigs, only concentrations of IL-1β, IL-6, IL-8, and IFN-γ were elevated. Additionally, in App+SIV-infected pigs, significantly greater concentrations of IL-1β, IL-8, and IFN-α were found when compared with pigs infected with either SIV or App alone. In each tested group, the lung concentration of IL-10 remained unchanged during the entire study. Conclusion The results of the study indicate that the experimental infection of pigs with SIV or App alone and co-infection with both pathogens induced a local lung inflammatory response. However, the local cytokine response was considerably higher in co-infected pigs compared to single-infected pigs.
Collapse
Affiliation(s)
- Ewelina Czyżewska-Dors
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Arkadiusz Dors
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Krzysztof Kwit
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Ewelina Stasiak
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | | |
Collapse
|
24
|
The Bordetella Bps Polysaccharide Is Required for Biofilm Formation and Enhances Survival in the Lower Respiratory Tract of Swine. Infect Immun 2017; 85:IAI.00261-17. [PMID: 28559403 DOI: 10.1128/iai.00261-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/18/2017] [Indexed: 12/21/2022] Open
Abstract
Bordetella bronchiseptica is pervasive in swine populations and plays multiple roles in respiratory disease. Additionally, B. bronchiseptica is capable of establishing long-term or chronic infections in swine. Bacterial biofilms are increasingly recognized as important contributors to chronic bacterial infections. Recently the polysaccharide locus bpsABCD has been demonstrated to serve a critical role in the development of mature biofilms formed by the sequenced laboratory strain of B. bronchiseptica We hypothesized that swine isolates would also have the ability to form mature biofilms and the bpsABCD locus would serve a key role in this process. A mutant containing an in-frame deletion of the bpsABCD structural genes was constructed in a wild-type swine isolate and found to be negative for poly-N-acetylglucosamine (PNAG)-like material by immunoblot assay. Further, the bpsABCD locus was found to be required for the development and maintenance of the three-dimensional structures under continuous-flow conditions. To investigate the contribution of the bpsABCD locus to the pathogenesis of B. bronchiseptica in swine, the KM22Δbps mutant was compared to the wild-type swine isolate for the ability to colonize and cause disease in pigs. The bpsABCD locus was found to not be required for persistence in the upper respiratory tract of swine. Additionally, the bpsABCD locus did not affect the development of anti-Bordetella humoral immunity, did not contribute to disease severity, and did not mediate protection from complement-mediated killing. However, the bpsABCD locus was found to enhance survival in the lower respiratory tract of swine.
Collapse
|
25
|
Olson ZF, Sandbulte MR, Souza CK, Perez DR, Vincent AL, Loving CL. Factors affecting induction of peripheral IFN-γ recall response to influenza A virus vaccination in pigs. Vet Immunol Immunopathol 2017; 185:57-65. [DOI: 10.1016/j.vetimm.2017.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/13/2017] [Accepted: 01/31/2017] [Indexed: 01/12/2023]
|
26
|
Pomorska-Mól M, Dors A, Kwit K, Kowalczyk A, Stasiak E, Pejsak Z. Kinetics of single and dual infection of pigs with swine influenza virus and Actinobacillus pleuropneumoniae. Vet Microbiol 2017; 201:113-120. [PMID: 28284596 DOI: 10.1016/j.vetmic.2017.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
Abstract
Porcine respiratory disease complex (PRDC) is a common problem in modern pork production worldwide. Pathogens that are amongst other pathogens frequently involved in PRDC etiology are swine influenza virus (SIV) and A. pleuropneumoniae. The effect of dual infection with mentioned pathogens has not been investigated to date. The aim of the present study was to evaluate the kinetics of single and dual infection of pigs with SIV and A. pleuropneumoniae with regard to clinical course, pathogens shedding, lung lesions and early immune response. The most severe symptoms were observed in co-inoculated piglets. The AUC value for SIV shedding was lower in pigs single inoculated with SIV as compared to co-inoculated animals. In contrast, no significant differences were found between A. pleuropneumoniae shedding in single or dual inoculated pigs. Three out of 5 co-inoculated piglets euthanized at 10 dpi were positive against serotype 2 A. pleuropneumonie. All piglets inoculated with SIV developed specific HI antibodies at 10 dpi. In pigs dual inoculated the specific humoral response against SIV was observed earlier, at 7 dpi. The SIV-like lung lesions were more severe in co-inoculated pigs. In the groups inoculated with A. pleuropneumoniae (single or dual) the acute phase protein response was generally stronger than in SIV-single infected group. Co-infection with SIV and A. pleuropneumoniae potentiated the severity of lung lesions caused by SIV and enhanced virus replication in the lung and nasal SIV shedding. Enhanced SIV replication contributed to a more severe clinical course of the disease as well as earlier and higher magnitude immune response (acute phase proteins, HI antibodies) compared to single inoculated pigs.
Collapse
Affiliation(s)
| | - Arkadiusz Dors
- National Veterinary Research Institute, Department of Swine Diseases, Puławy, Poland
| | - Krzysztof Kwit
- National Veterinary Research Institute, Department of Swine Diseases, Puławy, Poland
| | - Andrzej Kowalczyk
- National Veterinary Research Institute, Department of Swine Diseases, Puławy, Poland
| | - Ewelina Stasiak
- National Veterinary Research Institute, Department of Swine Diseases, Puławy, Poland
| | - Zygmunt Pejsak
- National Veterinary Research Institute, Department of Swine Diseases, Puławy, Poland
| |
Collapse
|
27
|
|
28
|
Wallgren P, Nörregård E, Molander B, Persson M, Ehlorsson CJ. Serological patterns of Actinobacillus pleuropneumoniae, Mycoplasma hyopneumoniae, Pasteurella multocida and Streptococcus suis in pig herds affected by pleuritis. Acta Vet Scand 2016; 58:71. [PMID: 27716292 PMCID: PMC5050615 DOI: 10.1186/s13028-016-0252-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 09/19/2016] [Indexed: 01/14/2023] Open
Abstract
Background Respiratory illness is traditionally regarded as the disease of the growing pig, and has historically mainly been associated to bacterial infections with focus on Mycoplasma hyopneumoniae and Actinobacillus pleuropneumoniae. These bacteria still are of great importance, but continuously increasing herd sizes have complicated the scenario and the influence of secondary invaders may have been increased. The aim of this study was to evaluate the presence of A. pleuropneumoniae and M. hyopneumoniae, as well as that of the secondary invaders Pasteurella multocida and Streptococcus suis by serology in four pig herds (A–D) using age segregated rearing systems with high incidences of pleuritic lesions at slaughter. Results Pleuritic lesions registered at slaughter ranged from 20.5 to 33.1 % in the four herds. In herd A, the levels of serum antibodies to A. pleuropneumoniae exceeded A450 > 1.5, but not to any other microbe searched for. The seroconversion took place early during the fattening period. Similar levels of serum antibodies to A. pleuropneumoniae were also recorded in herd B, with a subsequent increase in levels of antibodies to P. multocida. Pigs seroconverted to both agents during the early phase of the fattening period. In herd C, pigs seroconverted to P. multocida during the early phase of the fattening period and thereafter to A. pleuropneumoniae. In herd D, the levels of antibodies to P. multocida exceeded A450 > 1.0 in absence (A450 < 0.5) of antibodies to A. pleuropneumoniae. The levels of serum antibodies to M. hyopneumoniae and to S. suis remained below A450 < 1.0 in all four herds. Pigs seroconverted to M. hyopneumoniae late during the rearing period (herd B–D), or not at all (herd A). Conclusion Different serological patterns were found in the four herds with high levels of serum antibodies to A. pleuropneumoniae and P. multocida, either alone or in combination with each other. Seroconversion to M. hyopneumoniae late during the rearing period or not at all, confirmed the positive effect of age segregated rearing in preventing or delaying infections with M. hyopneumoniae. The results obtained highlight the necessity of diagnostic investigations to define the true disease pattern in herds with a high incidence of pleuritic lesions.
Collapse
|
29
|
Co-infection of classic swine H1N1 influenza virus in pigs persistently infected with porcine rubulavirus. Vet Microbiol 2016; 184:31-9. [PMID: 26854342 PMCID: PMC7117528 DOI: 10.1016/j.vetmic.2016.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/22/2015] [Accepted: 01/05/2016] [Indexed: 11/23/2022]
Abstract
We analyse the co-infection of swine H1N1 influenza virus and porcine rubulavirus. Pigs of the co-infection group presented an increase of clinical signs. Interaction of two viruses infection is demonstrated in growing pigs.
Porcine rubulavirus (PorPV) and swine influenza virus infection causes respiratory disease in pigs. PorPV persistent infection could facilitate the establishment of secondary infections. The aim of this study was to analyse the pathogenicity of classic swine H1N1 influenza virus (swH1N1) in growing pigs persistently infected with porcine rubulavirus. Conventional six-week-old pigs were intranasally inoculated with PorPV, swH1N1, or PorPV/swH1N1. A mock-infected group was included. The co-infection with swH1N1 was at 44 days post-infection (DPI), right after clinical signs of PorPV infection had stopped. The pigs of the co-infection group presented an increase of clinical signs compared to the simple infection groups. In all infected groups, the most recurrent lung lesion was hyperplasia of the bronchiolar-associated lymphoid tissue and interstitial pneumonia. By means of immunohistochemical evaluation it was possible to demonstrate the presence of the two viral agents infecting simultaneously the bronchiolar epithelium. Viral excretion of PorPV in nasal and oral fluid was recorded at 28 and 52 DPI, respectively. PorPV persisted in several samples from respiratory tissues (RT), secondary lymphoid organs (SLO), and bronchoalveolar lavage fluid (BALF). For swH1N1, the viral excretion in nasal fluids was significantly higher in single-infected swH1N1 pigs than in the co-infected group. However, the co-infection group exhibited an increase in the presence of swH1N1 in RT, SLO, and BALF at two days after co-infection. In conclusion, the results obtained confirm an increase in the clinical signs of infection, and PorPV was observed to impact the spread of swH1N1 in analysed tissues in the early stage of co-infection, although viral shedding was not enhanced. In the present study, the interaction of swH1N1 infection is demonstrated in pigs persistently infected with PorPV.
Collapse
|
30
|
Ferreira Barbosa JA, Labrie J, Beaudry F, Gagnon CA, Jacques M. Actinobacillus pleuropneumoniae induces SJPL cell cycle arrest in G2/M-phase and inhibits porcine reproductive and respiratory syndrome virus replication. Virol J 2015; 12:188. [PMID: 26577697 PMCID: PMC4650394 DOI: 10.1186/s12985-015-0404-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/14/2015] [Indexed: 01/01/2023] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in the swine industry and causes important economic losses. No effective antiviral drugs against it are commercially available. We recently reported that the culture supernatant of Actinobacillus pleuropneumoniae, the porcine pleuropneumonia causative agent, has an antiviral activity in vitro against PRRSV in SJPL cells. Objectives of this study were (i) to identify the mechanism behind the antiviral activity displayed by A. pleuropneumoniae and (ii) to characterize the active molecules present in the bacterial culture supernatant. Methods Antibody microarray analysis was used in order to point out cellular pathways modulated by the A. pleuropneumoniae supernatant. Subsequent, flow cytometry analysis and cell cycle inhibitors were used to confirm antibody microarray data and to link them to the antiviral activity of the A. pleuropneumoniae supernatant. Finally, A. pleuropneumoniae supernatant characterization was partially achieved using mass spectrometry. Results Using antibody microarray, we observed modulations in G2/M-phase cell cycle regulation pathway when SJPL cells were treated with A. pleuropneumoniae culture supernatant. These modulations were confirmed by a cell cycle arrest at the G2/M-phase when cells were treated with the A. pleuropneumoniae culture supernatant. Furthermore, two G2/M-phase cell cycle inhibitors demonstrated the ability to inhibit PRRSV infection, indicating a potential key role for PRRSV infection. Finally, mass spectrometry lead to identify two molecules (m/z 515.2 and m/z 663.6) present only in the culture supernatant. Conclusions We demonstrated for the first time that A. pleuropneumoniae is able to disrupt SJPL cell cycle resulting in inhibitory activity against PRRSV. Furthermore, two putative molecules were identified from the culture supernatant. This study highlighted the cell cycle importance for PRRSV and will allow the development of new prophylactic or therapeutic approaches against PRRSV. Electronic supplementary material The online version of this article (doi:10.1186/s12985-015-0404-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jérémy A Ferreira Barbosa
- Centre de recherche en infectiologie porcine et avicole (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada. .,Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada.
| | - Josée Labrie
- Centre de recherche en infectiologie porcine et avicole (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada. .,Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada.
| | - Francis Beaudry
- Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada.
| | - Carl A Gagnon
- Centre de recherche en infectiologie porcine et avicole (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada. .,Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada.
| | - Mario Jacques
- Centre de recherche en infectiologie porcine et avicole (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada. .,Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada.
| |
Collapse
|
31
|
Oral Fluids as a Live-Animal Sample Source for Evaluating Cross-Reactivity and Cross-Protection following Intranasal Influenza A Virus Vaccination in Pigs. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1109-20. [PMID: 26291090 DOI: 10.1128/cvi.00358-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/13/2015] [Indexed: 12/13/2022]
Abstract
In North American swine, there are numerous antigenically distinct H1 influenza A virus (IAV) variants currently circulating, making vaccine development difficult due to the inability to formulate a vaccine that provides broad cross-protection. Experimentally, live-attenuated influenza virus (LAIV) vaccines demonstrate increased cross-protection compared to inactivated vaccines. However, there is no standardized assay to predict cross-protection following LAIV vaccination. Hemagglutination-inhibiting (HI) antibody in serum is the gold standard correlate of protection following IAV vaccination. LAIV vaccination does not induce a robust serum HI antibody titer; however, a local mucosal antibody response is elicited. Thus, a live-animal sample source that could be used to evaluate LAIV immunogenicity and cross-protection is needed. Here, we evaluated the use of oral fluids (OF) and nasal wash (NW) collected after IAV inoculation as a live-animal sample source in an enzyme-linked immunosorbent assay (ELISA) to predict cross-protection in comparison to traditional serology. Both live-virus exposure and LAIV vaccination provided heterologous protection, though protection was greatest against more closely phylogenetically related viruses. IAV-specific IgA was detected in NW and OF samples and was cross-reactive to representative IAV from each H1 cluster. Endpoint titers of cross-reactive IgA in OF from pigs exposed to live virus was associated with heterologous protection. While LAIV vaccination provided significant protection, LAIV immunogenicity was reduced compared to live-virus exposure. These data suggest that OF from pigs inoculated with wild-type IAV, with surface genes that match the LAIV seed strain, could be used in an ELISA to assess cross-protection and the antigenic relatedness of circulating and emerging IAV in swine.
Collapse
|
32
|
Pomorska-Mól M, Markowska-Daniel I, Kwit K, Stępniewska K, Pejsak Z. Profile of the porcine acute-phase proteins response following experimental co-infection with H3N2 swine influenza virus and Pasteurella multocida. Biomarkers 2015; 20:189-95. [PMID: 26161700 DOI: 10.3109/1354750x.2015.1061600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Acute phase proteins (APPs) are proposed as potential markers of the health status in pigs. OBJECTIVE Circulating APPs in pigs co-infected with swine influenza virus and Pasteurella multocida. METHODS Serum APPs were measured in co-infected and control pigs with the use of commercial ELISA tests. RESULTS All investigated APPs revealed significant changes in co-infected pigs during the study period. The concentration of C-reactive protein, haptoglobin and serum amyloid A (SAA) increased significantly at 2 dpi, before respiratory signs and fever were observed. Concentration of Pig-MAP increased significantly at 3 dpi. C-reactive protein and SAA reaction were rapid but short-lived. The concentration of Hp and Pig-MAP in serum also increased at very early stage of co-infection but remained elevated for a longer period of time. CONCLUSIONS Maximal concentration of serum amyloid A correlated with the disease severity in pigs.
Collapse
|
33
|
Hraiech S, Papazian L, Rolain JM, Bregeon F. Animal models of polymicrobial pneumonia. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3279-92. [PMID: 26170617 PMCID: PMC4492661 DOI: 10.2147/dddt.s70993] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pneumonia is one of the leading causes of severe and occasionally life-threatening infections. The physiopathology of pneumonia has been extensively studied, providing information for the development of new treatments for this condition. In addition to in vitro research, animal models have been largely used in the field of pneumonia. Several models have been described and have provided a better understanding of pneumonia under different settings and with various pathogens. However, the concept of one pathogen leading to one infection has been challenged, and recent flu epidemics suggest that some pathogens exhibit highly virulent potential. Although "two hits" animal models have been used to study infectious diseases, few of these models have been described in pneumonia. Therefore the aims of this review were to provide an overview of the available literature in this field, to describe well-studied and uncommon pathogen associations, and to summarize the major insights obtained from this information.
Collapse
Affiliation(s)
- Sami Hraiech
- IHU Méditerranée infection, URMITE CNRS IRD INSERM UMR 7278, Marseille, France ; Réanimation - Détresses Respiratoires et infections Sévères, APHM, CHU Nord, Marseille, France
| | - Laurent Papazian
- IHU Méditerranée infection, URMITE CNRS IRD INSERM UMR 7278, Marseille, France ; Réanimation - Détresses Respiratoires et infections Sévères, APHM, CHU Nord, Marseille, France
| | - Jean-Marc Rolain
- IHU Méditerranée infection, URMITE CNRS IRD INSERM UMR 7278, Marseille, France
| | - Fabienne Bregeon
- IHU Méditerranée infection, URMITE CNRS IRD INSERM UMR 7278, Marseille, France ; Service d'explorations Fonctionnelles Respiratoires, APHM, CHU Nord, Marseille, France
| |
Collapse
|
34
|
Lin X, Huang C, Shi J, Wang R, Sun X, Liu X, Zhao L, Jin M. Investigation of Pathogenesis of H1N1 Influenza Virus and Swine Streptococcus suis Serotype 2 Co-Infection in Pigs by Microarray Analysis. PLoS One 2015; 10:e0124086. [PMID: 25906258 PMCID: PMC4407888 DOI: 10.1371/journal.pone.0124086] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/27/2015] [Indexed: 12/11/2022] Open
Abstract
Swine influenza virus and Streptococcus suis are two important contributors to the porcine respiratory disease complex, and both have significant economic impacts. Clinically, influenza virus and Streptococcus suis co-infections in pigs are very common, which often contribute to severe pneumonia and can increase the mortality. However, the co-infection pathogenesis in pigs is unclear. In the present study, co-infection experiments were performed using swine H1N1 influenza virus and Streptococcus suis serotype 2 (SS2). The H1N1-SS2 co-infected pigs exhibited more severe clinical symptoms, serious pathological changes, and robust apoptosis of lungs at 6 days post-infection compared with separate H1N1 and SS2 infections. A comprehensive gene expression profiling using a microarray approach was performed to investigate the global host responses of swine lungs against the swine H1N1 infection, SS2 infection, co-infection, and phosphate-buffered saline control. Results showed 457, 411, and 844 differentially expressed genes in the H1N1, SS2, and H1N1-SS2 groups, respectively, compared with the control. Noticeably, genes associated with the immune, inflammatory, and apoptosis responses were highly overexpressed in the co-infected group. Pathway analysis indicated that the cytokine–cytokine receptor interactions, MAPK, toll-like receptor, complement and coagulation cascades, antigen processing and presentation, and apoptosis pathway were significantly regulated in the co-infected group. However, the genes related to these were less regulated in the separate H1N1 and SS2 infection groups. This observation suggested that a certain level of synergy was induced by H1N1 and SS2 co-infection with significantly stronger inflammatory and apoptosis responses, which may lead to more serious respiratory disease syndrome and pulmonary pathological lesion.
Collapse
Affiliation(s)
- Xian Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
| | - Canhui Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
| | - Jian Shi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
| | - Ruifang Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
| | - Xin Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
| | - Xiaokun Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
| | - Lianzhong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
- * E-mail:
| |
Collapse
|
35
|
Integrative analysis of differentially expressed microRNAs of pulmonary alveolar macrophages from piglets during H1N1 swine influenza A virus infection. Sci Rep 2015; 5:8167. [PMID: 25639204 PMCID: PMC5389138 DOI: 10.1038/srep08167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 01/08/2015] [Indexed: 12/15/2022] Open
Abstract
H1N1 swine influenza A virus (H1N1 SwIV) is one key subtype of influenza viruses with pandemic potential. MicroRNAs (miRNAs) are endogenous small RNA molecules that regulate gene expression. MiRNAs relevant with H1N1 SwIV have rarely been reported. To understand the biological functions of miRNAs during H1N1 SwIV infection, this study profiled differentially expressed (DE) miRNAs in pulmonary alveolar macrophages from piglets during the H1N1 SwIV infection using a deep sequencing approach, which was validated by quantitative real-time PCR. Compared to control group, 70 and 16 DE miRNAs were respectively identified on post-infection day (PID) 4 and PID 7. 56 DE miRNAs were identified between PID 4 and PID 7. Our results suggest that most host miRNAs are down-regulated to defend the H1N1 SwIV infection during the acute phase of swine influenza whereas their expression levels gradually return to normal during the recovery phase to avoid the occurrence of too severe porcine lung damage. In addition, targets of DE miRNAs were also obtained, for which bioinformatics analyses were performed. Our results would be useful for investigating the functions and regulatory mechanisms of miRNAs in human influenza because pig serves as an excellent animal model to study the pathogenesis of human influenza.
Collapse
|
36
|
Er C, Lium B, Tavornpanich S, Hofmo PO, Forberg H, Hauge AG, Grøntvedt CA, Framstad T, Brun E. Adverse effects of Influenza A(H1N1)pdm09 virus infection on growth performance of Norwegian pigs - a longitudinal study at a boar testing station. BMC Vet Res 2014; 10:284. [PMID: 25472551 PMCID: PMC4300606 DOI: 10.1186/s12917-014-0284-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 11/18/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Influenza A(H1N1)pdm09 virus infection in Norwegian pigs was largely subclinical. This study tested the hypothesis that the infection causes negligible impact on pigs' growth performance in terms of feed conversion efficiency, daily feed intake, daily growth, age on reaching 100 kg bodyweight and overall feed intake. A sample of 1955 pigs originating from 43 breeding herds was classified into five infection status groups; seronegative pigs (n = 887); seropositive pigs (n = 874); pigs positive for virus at bodyweight between 33 kg and 60 kg (n = 123); pigs positive for virus at bodyweight between 61 kg and 80 kg (n = 34) and pigs positive for virus at bodyweight between 81 kg and 100 kg (n = 37). Each pig had daily recordings of feed intake and bodyweight from 33 kg to 100 kg. Marginal effects of the virus infection on the outcomes were estimated by multi-level linear regression, which accounted for known fixed effects (breed, birthdate, average daily feed intake and growth phase) and random effects (cluster effects of pig and herd). RESULTS The seropositive and virus positive pigs had decreased (P value<0.05) growth performance compared to seronegative pigs even though feed intake was not decreased. Reduced feed conversion efficiency led to lower average daily growth, additional feed requirement and longer time needed to reach the 100 kg bodyweight. The effects were more marked (P value<0.03) in pigs infected at a younger age and lasted a longer period. Despite increased feed intake observed, their growth rates were lower and they took more time to reach 100 kg bodyweight compared to the seronegative pigs. CONCLUSION Our study rejected the null hypothesis that the virus infection had negligible adverse effects on growth performance of Norwegian pigs.
Collapse
Affiliation(s)
- Chiek Er
- Norwegian Veterinary Institute, P.O. Box 750, 0106, Oslo, Norway.
| | - Bjørn Lium
- Norwegian Veterinary Institute, P.O. Box 750, 0106, Oslo, Norway.
| | | | - Peer Ola Hofmo
- Norsvin (Norwegian Pig Breeders Association), P.O. Box 504, 2304, Hamar, Oslo, Norway.
| | - Hilde Forberg
- Norwegian Veterinary Institute, P.O. Box 750, 0106, Oslo, Norway.
| | | | - Carl Andreas Grøntvedt
- Norwegian Veterinary Institute, P.O. Box 750, 0106, Oslo, Norway. .,Norwegian University of Life Sciences, Campus Adamstuen, Ullevålsveien 72, 0454, Oslo, Norway.
| | - Tore Framstad
- Norwegian University of Life Sciences, Campus Adamstuen, Ullevålsveien 72, 0454, Oslo, Norway.
| | - Edgar Brun
- Norwegian Veterinary Institute, P.O. Box 750, 0106, Oslo, Norway.
| |
Collapse
|
37
|
Effects of polysaccharide on chicks co-infected with Bordetella avium and Avian leukosis virus. Carbohydr Polym 2014; 109:71-6. [DOI: 10.1016/j.carbpol.2014.03.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 03/04/2014] [Accepted: 03/19/2014] [Indexed: 12/24/2022]
|
38
|
Compans RW, Oldstone MBA. Secondary bacterial infections in influenza virus infection pathogenesis. Curr Top Microbiol Immunol 2014; 385:327-56. [PMID: 25027822 PMCID: PMC7122299 DOI: 10.1007/82_2014_394] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Influenza is often complicated by bacterial pathogens that colonize the nasopharynx and invade the middle ear and/or lung epithelium. Incidence and pathogenicity of influenza-bacterial coinfections are multifactorial processes that involve various pathogenic virulence factors and host responses with distinct site- and strain-specific differences. Animal models and kinetic models have improved our understanding of how influenza viruses interact with their bacterial co-pathogens and the accompanying immune responses. Data from these models indicate that considerable alterations in epithelial surfaces and aberrant immune responses lead to severe inflammation, a key driver of bacterial acquisition and infection severity following influenza. However, further experimental and analytical studies are essential to determining the full mechanistic spectrum of different viral and bacterial strains and species and to finding new ways to prevent and treat influenza-associated bacterial coinfections. Here, we review recent advances regarding transmission and disease potential of influenza-associated bacterial infections and discuss the current gaps in knowledge.
Collapse
Affiliation(s)
- Richard W. Compans
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia USA
| | - Michael B. A. Oldstone
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California USA
| |
Collapse
|
39
|
Draft Genome Sequence of the Bordetella bronchiseptica Swine Isolate KM22. GENOME ANNOUNCEMENTS 2014; 2:2/4/e00670-14. [PMID: 25013141 PMCID: PMC4110755 DOI: 10.1128/genomea.00670-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bordetella bronchiseptica swine isolate KM22 has been used in experimental infections of swine as a model of clinical B. bronchiseptica infections within swine herds and to study host-to-host transmission. Here we report the draft genome sequence of KM22.
Collapse
|
40
|
Joseph C, Togawa Y, Shindo N. Bacterial and viral infections associated with influenza. Influenza Other Respir Viruses 2014; 7 Suppl 2:105-113. [PMID: 24034494 PMCID: PMC5909385 DOI: 10.1111/irv.12089] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Influenza‐associated bacterial and viral infections are responsible for high levels of morbidity and death during pandemic and seasonal influenza episodes. A review was undertaken to assess and evaluate the incidence, epidemiology, aetiology, clinical importance and impact of bacterial and viral co‐infection and secondary infection associated with influenza. A review was carried out of published articles covering bacterial and viral infections associated with pandemic and seasonal influenza between 1918 and 2009 (and published through December 2011) to include both pulmonary and extra‐pulmonary infections. While pneumococcal infection remains the predominant cause of bacterial pneumonia, the review highlights the importance of other co‐ and secondary bacterial and viral infections associated with influenza, and the emergence of newly identified dual infections associated with the 2009 H1N1 pandemic strain. Severe influenza‐associated pneumonia is often bacterial and will necessitate antibiotic treatment. In addition to the well‐known bacterial causes, less common bacteria such as Legionella pneumophila may also be associated with influenza when new influenza strains emerge. This review should provide clinicians with an overview of the range of bacterial and viral co‐ or secondary infections that could present with influenza illness.
Collapse
Affiliation(s)
- Carol Joseph
- Global Influenza Programme, World Health Organization, Geneva, Switzerland
| | | | | |
Collapse
|
41
|
Dang Y, Lachance C, Wang Y, Gagnon CA, Savard C, Segura M, Grenier D, Gottschalk M. Transcriptional approach to study porcine tracheal epithelial cells individually or dually infected with swine influenza virus and Streptococcus suis. BMC Vet Res 2014; 10:86. [PMID: 24708855 PMCID: PMC4022123 DOI: 10.1186/1746-6148-10-86] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/31/2014] [Indexed: 11/16/2022] Open
Abstract
Background Swine influenza is a highly contagious viral infection in pigs affecting the respiratory tract that can have significant economic impacts. Streptococcus suis serotype 2 is one of the most important post-weaning bacterial pathogens in swine causing different infections, including pneumonia. Both pathogens are important contributors to the porcine respiratory disease complex. Outbreaks of swine influenza virus with a significant level of co-infections due to S. suis have lately been reported. In order to analyze, for the first time, the transcriptional host response of swine tracheal epithelial (NPTr) cells to H1N1 swine influenza virus (swH1N1) infection, S. suis serotype 2 infection and a dual infection, we carried out a comprehensive gene expression profiling using a microarray approach. Results Gene clustering showed that the swH1N1 and swH1N1/S. suis infections modified the expression of genes in a similar manner. Additionally, infection of NPTr cells by S. suis alone resulted in fewer differentially expressed genes compared to mock-infected cells. However, some important genes coding for inflammatory mediators such as chemokines, interleukins, cell adhesion molecules, and eicosanoids were significantly upregulated in the presence of both pathogens compared to infection with each pathogen individually. This synergy may be the consequence, at least in part, of an increased bacterial adhesion/invasion of epithelial cells previously infected by swH1N1, as recently reported. Conclusion Influenza virus would replicate in the respiratory epithelium and induce an inflammatory infiltrate comprised of mononuclear cells and neutrophils. In a co-infection situation, although these cells would be unable to phagocyte and kill S. suis, they are highly activated by this pathogen. S. suis is not considered a primary pulmonary pathogen, but an exacerbated production of proinflammatory mediators during a co-infection with influenza virus may be important in the pathogenesis and clinical outcome of S. suis-induced respiratory diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Marcelo Gottschalk
- Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, J2S 2M2 Québec, Canada.
| |
Collapse
|
42
|
Schnoeller C, Roux X, Sawant D, Raze D, Olszewska W, Locht C, Openshaw PJ. Attenuated Bordetella pertussis vaccine protects against respiratory syncytial virus disease via an IL-17-dependent mechanism. Am J Respir Crit Care Med 2014; 189:194-202. [PMID: 24261996 DOI: 10.1164/rccm.201307-1227oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RATIONALE We attenuated virulent Bordetella pertussis by genetically eliminating or detoxifying three major toxins. This strain, named BPZE1, is being developed as a possible live nasal vaccine for the prevention of whooping cough. It is immunogenic and safe when given intranasally in adult volunteers. OBJECTIVES Before testing in human infants, we wished to examine the potential effect of BPZE1 on a common pediatric infection (respiratory syncytial virus [RSV]) in a preclinical model. METHODS BPZE1 was administered before or after RSV administration in adult or neonatal mice. Pathogen replication, inflammation, immune cell recruitment, and cytokine responses were measured. MEASUREMENTS AND MAIN RESULTS BPZE1 alone did not cause overt disease, but induced efflux of neutrophils into the airway lumen and production of IL-10 and IL-17 by mucosal CD4(+) T cells. Given intranasally before RSV infection, BPZE1 markedly attenuated RSV, preventing weight loss, reducing viral load, and attenuating lung cell recruitment. Given neonatally, BPZE1 also protected against RSV-induced weight loss even through to adulthood. Furthermore, it markedly increased IL-17 production by CD4(+) T cells and natural killer cells and recruited regulatory cells and neutrophils after virus challenge. Administration of anti-IL-17 antibodies ablated the protective effect of BPZE1 on RSV disease. CONCLUSIONS Rather than enhancing RSV disease, BPZE1 protected against viral infection, modified viral responses, and enhanced natural mucosal resistance. Prevention of RSV infection by BPZE1 seems in part to be caused by induction of IL-17. Clinical trial registered with www.clinicaltrials.gov (NCT 01188512).
Collapse
Affiliation(s)
- Corinna Schnoeller
- 1 Centre for Respiratory Infection, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
43
|
Kowalczyk A, Pomorska-Mól M, Kwit K, Pejsak Z, Rachubik J, Markowska-Daniel I. Cytokine and chemokine mRNA expression profiles in BALF cells isolated from pigs single infected or co-infected with swine influenza virus and Bordetella bronchiseptica. Vet Microbiol 2014; 170:206-12. [PMID: 24629899 DOI: 10.1016/j.vetmic.2014.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 07/04/2013] [Accepted: 02/05/2014] [Indexed: 11/30/2022]
Abstract
Pigs serve as a valuable animal experimental model for several respiratory pathogens, including Swine Influenza Virus (SIV) and Bordetella bronchiseptica (Bbr). To investigate the effect of SIV and Bbr coinfection on cytokine and viral RNA expression, we performed a study in which pigs were inoculated with SIV, Bbr or both pathogens (SIV/Bbr). Our results indicate that Bbr infection alters SIV clearance. Pulmonary lesions in the SIV/Bbr group were more severe when compared to SIV or Bbr groups and Bbr did not cause significant lesions. Broncho-alveolar lavage fluid (BALF) was examined for inflammatory mediators by qPCR. Interferon (IFN)-α, interleukin IL-8, IL-1 peaked in BALF at 2 DPI, while the virus titres and severity of clinical signs were maximal at the same time. Despite its increased expression in co-infected pigs, interferon-α did not enhance SIV clearance, since the viral replication was detected at the same day as the highest IFN levels. The mRNA levels for IFN-α, IL-1β and IL-8 were significantly higher in BALF of co-infected pigs and correlated with enhanced viral RNA titers in lungs, trachea and nasal swabs. Transcription of mRNA for IL-1β was stable in SIV and SIV/Bbr groups throughout all the study. In Bbr group, the levels of mRNAs for IL-1β were significantly higher at 2, 4 and 9 DPI. The mean levels of mRNAs for TNF-α were lower than the levels of other chemokines and cytokines in all infected groups. Transcript levels of IL-10 and IL-4 did not increase at each time points. Overall, SIV replication was increased by Bbr presence and the enhanced production of pro-inflammatory mediators could contribute to the exacerbated pulmonary lesions.
Collapse
Affiliation(s)
- Andrzej Kowalczyk
- The National Veterinary Research Institute, 57 al Partyzantow, 24-100 Puławy, Poland.
| | | | - Krzysztof Kwit
- The National Veterinary Research Institute, 57 al Partyzantow, 24-100 Puławy, Poland
| | - Zygmunt Pejsak
- The National Veterinary Research Institute, 57 al Partyzantow, 24-100 Puławy, Poland
| | - Jarosław Rachubik
- The National Veterinary Research Institute, 57 al Partyzantow, 24-100 Puławy, Poland
| | | |
Collapse
|
44
|
Vergara-Alert J, Busquets N, Ballester M, Chaves AJ, Rivas R, Dolz R, Wang Z, Pleschka S, Majó N, Rodríguez F, Darji A. The NS segment of H5N1 avian influenza viruses (AIV) enhances the virulence of an H7N1 AIV in chickens. Vet Res 2014; 45:7. [PMID: 24460592 PMCID: PMC3922795 DOI: 10.1186/1297-9716-45-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/17/2014] [Indexed: 12/25/2022] Open
Abstract
Some outbreaks involving highly pathogenic avian influenza viruses (HPAIV) of subtypes H5 and H7 were caused by avian-to-human transmissions. In nature, different influenza A viruses can reassort leading to new viruses with new characteristics. We decided to investigate the impact that the NS-segment of H5 HPAIV would have on viral pathogenicity of a classical avian H7 HPAIV in poultry, a natural host. We focussed this study based on our previous work that demonstrated that single reassortment of the NS-segment from an H5 HPAIV into an H7 HPAIV changes the ability of the virus to replicate in mammalian hosts. Our present data show that two different H7-viruses containing an NS-segment from H5–types (FPV NS GD or FPV NS VN) show an overall highly pathogenic phenotype compared with the wild type H7–virus (FPV), as characterized by higher viral shedding and earlier manifestation of clinical signs. Correlating with the latter, higher amounts of IFN-β mRNA were detected in the blood of NS-reassortant infected birds, 48 h post-infection (pi). Although lymphopenia was detected in chickens from all AIV-infected groups, also 48 h pi those animals challenged with NS-reassortant viruses showed an increase of peripheral monocyte/macrophage-like cells expressing high levels of IL-1β, as determined by flow cytometry. Taken together, these findings highlight the importance of the NS-segment in viral pathogenicity which is directly involved in triggering antiviral and pro-inflammatory cytokines found during HPAIV pathogenesis in chickens.
Collapse
Affiliation(s)
- Júlia Vergara-Alert
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès 08193, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
The Bordetella bronchiseptica type III secretion system is required for persistence and disease severity but not transmission in swine. Infect Immun 2013; 82:1092-103. [PMID: 24366249 DOI: 10.1128/iai.01115-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bordetella bronchiseptica is pervasive in swine populations and plays multiple roles in respiratory disease. Most studies addressing virulence factors of B. bronchiseptica utilize isolates derived from hosts other than pigs in conjunction with rodent infection models. Based on previous in vivo mouse studies, we hypothesized that the B. bronchiseptica type III secretion system (T3SS) would be required for maximal disease severity and persistence in the swine lower respiratory tract. To examine the contribution of the T3SS to the pathogenesis of B. bronchiseptica in swine, we compared the abilities of a virulent swine isolate and an isogenic T3SS mutant to colonize, cause disease, and be transmitted from host to host. We found that the T3SS is required for maximal persistence throughout the lower swine respiratory tract and contributed significantly to the development of nasal lesions and pneumonia. However, the T3SS mutant and the wild-type parent are equally capable of transmission among swine by both direct and indirect routes, demonstrating that transmission can occur even with attenuated disease. Our data further suggest that the T3SS skews the adaptive immune response in swine by hindering the development of serum anti-Bordetella antibody levels and inducing an interleukin-10 (IL-10) cell-mediated response, likely contributing to the persistence of B. bronchiseptica in the respiratory tract. Overall, our results demonstrate that the Bordetella T3SS is required for maximal persistence and disease severity in pigs, but not for transmission.
Collapse
|
46
|
Capsular sialic acid of Streptococcus suis serotype 2 binds to swine influenza virus and enhances bacterial interactions with virus-infected tracheal epithelial cells. Infect Immun 2013; 81:4498-508. [PMID: 24082069 DOI: 10.1128/iai.00818-13] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis serotype 2 is an important swine bacterial pathogen, and it is also an emerging zoonotic agent. It is unknown how S. suis virulent strains, which are usually found in low quantities in pig tonsils, manage to cross the first host defense lines to initiate systemic disease. Influenza virus produces a contagious infection in pigs which is frequently complicated by bacterial coinfections, leading to significant economic impacts. In this study, the effect of a preceding swine influenza H1N1 virus (swH1N1) infection of swine tracheal epithelial cells (NTPr) on the ability of S. suis serotype 2 to adhere to, invade, and activate these cells was evaluated. Cells preinfected with swH1N1 showed bacterial adhesion and invasion levels that were increased more than 100-fold compared to those of normal cells. Inhibition studies confirmed that the capsular sialic acid moiety is responsible for the binding to virus-infected cell surfaces. Also, preincubation of S. suis with swH1N1 significantly increased bacterial adhesion to/invasion of epithelial cells, suggesting that S. suis also uses swH1N1 as a vehicle to invade epithelial cells when the two infections occur simultaneously. Influenza virus infection may facilitate the transient passage of S. suis at the respiratory tract to reach the bloodstream and cause bacteremia and septicemia. S. suis may also increase the local inflammation at the respiratory tract during influenza infection, as suggested by an exacerbated expression of proinflammatory mediators in coinfected cells. These results give new insight into the complex interactions between influenza virus and S. suis in a coinfection model.
Collapse
|
47
|
Interactions ofPlasmodium juxtanucleareand chicken anaemia virus: establishing a model. Parasitology 2013; 140:1777-88. [DOI: 10.1017/s0031182013001170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SUMMARYThe pathogensPlasmodium juxtanucleareand chicken anaemia virus (CAV) are easily transmitted and potentially harmful to chickens. In this study, we established an experimental model to investigate the effects of avian malaria caused byP. juxtanuclearein white leghorn specific-pathogen-free (SPF) chicks previously immunosuppressed with CAV. Parasitaemia, haematological variables and clinical and pathological parameters were determined in four different experimental groups: chicks coinfected by CAV andP. juxtanuclearestrain (Coinfected group), chicks exclusively infected by CAV (CAV group) orP. juxtanucleare(Malaria group) and uninfected chicks (Control group). Our data demonstrated thatP. juxtanucleareparasitaemia was significantly higher in the Coinfected group. Furthermore, haematological parameters, including the RBC, haematocrit and haemoglobin concentration were significantly reduced in coinfected chicks. In agreement with the changes observed in haematological features, the mortality among coinfected chicks was higher compared with animals with single infections. Clinical analysis indicated moderate changes related to different organs size (bursa of Fabricius, heart and liver) in coinfected birds. The experimental coinfection of SPF chickens withP. juxtanucleareand CAV may represent a research tool for the study of avian malaria after CAV immunosuppression, enabling measurement of the impacts caused by different pathogens during malarial infection.
Collapse
|
48
|
Pomorska-Mól M, Markowska-Daniel I, Kwit K, Stępniewska K, Pejsak Z. C-reactive protein, haptoglobin, serum amyloid A and pig major acute phase protein response in pigs simultaneously infected with H1N1 swine influenza virus and Pasteurella multocida. BMC Vet Res 2013; 9:14. [PMID: 23332090 PMCID: PMC3554491 DOI: 10.1186/1746-6148-9-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/16/2013] [Indexed: 11/29/2022] Open
Abstract
Background Swine influenza (SI) is an acute respiratory disease caused by swine influenza virus (SIV). Swine influenza is generally characterized by acute onset of fever and respiratory symptoms. The most frequent complications of influenza are secondary bacterial pneumonia. The objective of this work was to study the acute phase proteins (APP) responses after coinfection of piglets with H1N1 swine influenza virus (SwH1N1) and Pasteurella multocida (Pm) in order to identify whether the individual APP response correlate with disease severity and whether APP could be used as markers of the health status of coinfected pigs. Results In all coinfected pigs clinical sings, including fever, coughing and dyspnea, were seen. Viral shedding was observed from 2 to 7 dpi. The mean level of antibodies against Pm dermonecrotoxin in infected piglets increase significantly from 7 dpi. Anti-SwH1N1 antibodies in the serum were detected from 7 dpi. The concentration of C-reactive protein (CRP) increased significantly at 1 dpi as compared to control pigs, and remained significantly higher to 3 dpi. Level of serum amyloid A (SAA) was significantly higher from 2 to 3 dpi. Haptoglobin (Hp) was significantly elevated from 3 dpi to the end of study, while pig major acute phase protein (Pig-MAP) from 3 to 7 dpi. The concentrations of CRP, Hp and SAA significantly increased before specific antibodies were detected. Positive correlations were found between serum concentration of Hp and SAA and lung scores, and between clinical score and concentrations of Pig-MAP and SAA. Conclusions The results of current study confirmed that monitoring of APP may revealed ongoing infection, and in this way may be useful in selecting clinically healthy pigs (i.e. before integration into an uninfected herd). Present results corroborated our previous findings that SAA could be a potentially useful indicator in experimental infection studies (e.g. vaccine efficiency investigations) or as a marker for disease severity, because of correlation observed between its concentration in serum and disease severity (lung scores, clinical scores).
Collapse
Affiliation(s)
- Małgorzata Pomorska-Mól
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów 57, Pulawy 24-100, Poland.
| | | | | | | | | |
Collapse
|
49
|
Liang M, Zhao Q, Liu G, Yang S, Zuo X, Cui G, Zhong S, Sun J, Liu J, Zhu R. Pathogenicity of Bordetella avium under immunosuppression induced by Reticuloendotheliosis virus in specific-pathogen-free chickens. Microb Pathog 2013; 54:40-5. [DOI: 10.1016/j.micpath.2012.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 09/02/2012] [Accepted: 09/10/2012] [Indexed: 01/05/2023]
|
50
|
Khare D, Godbole NM, Pawar SD, Mohan V, Pandey G, Gupta S, Kumar D, Dhole TN, Godbole MM. Calcitriol [1, 25[OH]2 D3] pre- and post-treatment suppresses inflammatory response to influenza A (H1N1) infection in human lung A549 epithelial cells. Eur J Nutr 2012; 52:1405-15. [DOI: 10.1007/s00394-012-0449-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 09/14/2012] [Indexed: 02/04/2023]
|