1
|
Avdonin PP, Blinova MS, Generalova GA, Emirova KM, Avdonin PV. The Role of the Complement System in the Pathogenesis of Infectious Forms of Hemolytic Uremic Syndrome. Biomolecules 2023; 14:39. [PMID: 38254639 PMCID: PMC10813406 DOI: 10.3390/biom14010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/24/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Hemolytic uremic syndrome (HUS) is an acute disease and the most common cause of childhood acute renal failure. HUS is characterized by a triad of symptoms: microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. In most of the cases, HUS occurs as a result of infection caused by Shiga toxin-producing microbes: hemorrhagic Escherichia coli and Shigella dysenteriae type 1. They account for up to 90% of all cases of HUS. The remaining 10% of cases grouped under the general term atypical HUS represent a heterogeneous group of diseases with similar clinical signs. Emerging evidence suggests that in addition to E. coli and S. dysenteriae type 1, a variety of bacterial and viral infections can cause the development of HUS. In particular, infectious diseases act as the main cause of aHUS recurrence. The pathogenesis of most cases of atypical HUS is based on congenital or acquired defects of complement system. This review presents summarized data from recent studies, suggesting that complement dysregulation is a key pathogenetic factor in various types of infection-induced HUS. Separate links in the complement system are considered, the damage of which during bacterial and viral infections can lead to complement hyperactivation following by microvascular endothelial injury and development of acute renal failure.
Collapse
Affiliation(s)
- Piotr P. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| | - Maria S. Blinova
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| | - Galina A. Generalova
- Saint Vladimir Moscow City Children’s Clinical Hospital, 107014 Moscow, Russia; (G.A.G.); (K.M.E.)
- Department of Pediatrics, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Khadizha M. Emirova
- Saint Vladimir Moscow City Children’s Clinical Hospital, 107014 Moscow, Russia; (G.A.G.); (K.M.E.)
- Department of Pediatrics, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Pavel V. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| |
Collapse
|
2
|
Kho I, Demina EP, Pan X, Londono I, Cairo CW, Sturiale L, Palmigiano A, Messina A, Garozzo D, Ung RV, Mac-Way F, Bonneil É, Thibault P, Lemaire M, Morales CR, Pshezhetsky AV. Severe kidney dysfunction in sialidosis mice reveals an essential role for neuraminidase 1 in reabsorption. JCI Insight 2023; 8:e166470. [PMID: 37698928 PMCID: PMC10619504 DOI: 10.1172/jci.insight.166470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
Sialidosis is an ultra-rare multisystemic lysosomal disease caused by mutations in the neuraminidase 1 (NEU1) gene. The severe type II form of the disease manifests with a prenatal/infantile or juvenile onset, bone abnormalities, severe neuropathology, and visceromegaly. A subset of these patients present with nephrosialidosis, characterized by abrupt onset of fulminant glomerular nephropathy. We studied the pathophysiological mechanism of the disease in 2 NEU1-deficient mouse models, a constitutive Neu1-knockout, Neu1ΔEx3, and a conditional phagocyte-specific knockout, Neu1Cx3cr1ΔEx3. Mice of both strains exhibited terminal urinary retention and severe kidney damage with elevated urinary albumin levels, loss of nephrons, renal fibrosis, presence of storage vacuoles, and dysmorphic mitochondria in the intraglomerular and tubular cells. Glycoprotein sialylation in glomeruli, proximal distal tubules, and distal tubules was drastically increased, including that of an endocytic reabsorption receptor megalin. The pool of megalin bearing O-linked glycans with terminal galactose residues, essential for protein targeting and activity, was reduced to below detection levels. Megalin levels were severely reduced, and the protein was directed to lysosomes instead of the apical membrane. Together, our results demonstrated that desialylation by NEU1 plays a crucial role in processing and cellular trafficking of megalin and that NEU1 deficiency in sialidosis impairs megalin-mediated protein reabsorption.
Collapse
Affiliation(s)
- Ikhui Kho
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, Québec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Québec, Canada
| | - Ekaterina P. Demina
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, Québec, Canada
| | - Xuefang Pan
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, Québec, Canada
| | - Irene Londono
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, Québec, Canada
| | | | - Luisa Sturiale
- CNR, Institute for Polymers, Composites and Biomaterials, Catania, Italy
| | - Angelo Palmigiano
- CNR, Institute for Polymers, Composites and Biomaterials, Catania, Italy
| | - Angela Messina
- CNR, Institute for Polymers, Composites and Biomaterials, Catania, Italy
| | - Domenico Garozzo
- CNR, Institute for Polymers, Composites and Biomaterials, Catania, Italy
| | - Roth-Visal Ung
- CHU de Québec Research Center, L’Hôtel-Dieu de Québec Hospital, Faculty and Department of Medicine, University Laval, Québec City, Québec, Canada
| | - Fabrice Mac-Way
- CHU de Québec Research Center, L’Hôtel-Dieu de Québec Hospital, Faculty and Department of Medicine, University Laval, Québec City, Québec, Canada
| | - Éric Bonneil
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Québec, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Québec, Canada
| | - Mathieu Lemaire
- Division of Nephrology, The Hospital for Sick Kids, Faculty of Medicine, University of Toronto, Ontario, Canada
- Cell Biology Program, SickKids Research Institute, Toronto, Ontario, Canada
| | - Carlos R. Morales
- Department of Anatomy and Cell Biology, McGill University, Montreal, Québec, Canada
| | - Alexey V. Pshezhetsky
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, Québec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Québec, Canada
| |
Collapse
|
3
|
Hadar N, Schreiber R, Eskin-Schwartz M, Kristal E, Shubinsky G, Ling G, Cohen I, Geylis M, Nahum A, Yogev Y, Birk OS. X-linked C1GALT1C1 mutation causes atypical hemolytic uremic syndrome. Eur J Hum Genet 2023; 31:1101-1107. [PMID: 36599939 PMCID: PMC10545727 DOI: 10.1038/s41431-022-01278-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
Hemolytic-uremic syndrome (HUS), mostly secondary to infectious diseases, is a common cause of acute kidney injury in children. It is characterized by progressive acute kidney failure due to severe thrombotic microangiopathy, associated with nonimmune, Coombs-negative hemolytic anemia and thrombocytopenia. HUS is caused mostly by Shiga toxin-producing E. Coli, and to a lesser extent by Streptococcus pneumonia. In Streptococcus pneumonia HUS (pHUS), bacterial neuraminidase A exposes masked O-glycan sugar residues on erythrocytes, known as the T antigen, triggering a complement cascade causing thrombotic microangiopathy. Atypical HUS (aHUS) is a life-threatening genetic form of the disease, whose molecular mechanism is only partly understood. Through genetic studies, we demonstrate a novel X-linked form of aHUS that is caused by a de-novo missense mutation in C1GALT1C1:c.266 C > T,p.(T89I), encoding a T-synthase chaperone essential for the proper formation and incorporation of the T antigen on erythrocytes. We demonstrate the presence of exposed T antigen on the surface of mutant erythrocytes, causing aHUS in a mechanism similar to that suggested in pHUS. Our findings suggest that both aHUS caused by mutated C1GALT1C1 and pHUS are mediated by the lectin-complement-pathway, not comprehensively studied in aHUS. We thus delineate a shared molecular basis of aHUS and pHUS, highlighting possible therapeutic opportunities.
Collapse
Affiliation(s)
- Noam Hadar
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ruth Schreiber
- Pediatric Nephrology Clinic and Pediatric Department A, Soroka University Medical Center, Beer-Sheva, Israel
| | - Marina Eskin-Schwartz
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Genetics Institute, Soroka University Medical Center, Beer-Sheva, Israel
| | - Eyal Kristal
- Pediatric Ambulatory Unit, Soroka University Medical Center, Beer-Sheva, Israel
| | - George Shubinsky
- Flow Cytometry Unit, Soroka University Medical Center, Beer-Sheva, Israel
| | - Galina Ling
- Pediatric Ambulatory Unit, Soroka University Medical Center, Beer-Sheva, Israel
| | - Idan Cohen
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Michael Geylis
- Pediatric Nephrology Clinic and Pediatric Department A, Soroka University Medical Center, Beer-Sheva, Israel
| | - Amit Nahum
- Pediatric Nephrology Clinic and Pediatric Department A, Soroka University Medical Center, Beer-Sheva, Israel
- The Primary Immunodeficiency Research Laboratory and Pediatric Department A, Soroka University Medical Center, Beer Sheva, Israel
| | - Yuval Yogev
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
- Genetics Institute, Soroka University Medical Center, Beer-Sheva, Israel.
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
4
|
Battista M, Hoffmann B, Bachelot Y, Zimmermann L, Teuber L, Jost A, Linde S, Westermann M, Müller MM, Slevogt H, Hammerschmidt S, Figge MT, Vilhena C, Zipfel PF. The role of pneumococcal extracellular vesicles on the pathophysiology of the kidney disease hemolytic uremic syndrome. mSphere 2023; 8:e0014223. [PMID: 37358300 PMCID: PMC10449520 DOI: 10.1128/msphere.00142-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 06/27/2023] Open
Abstract
Streptococcus pneumoniae-induced hemolytic uremic syndrome (Sp-HUS) is a kidney disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. This disease is frequently underdiagnosed and its pathophysiology is poorly understood. In this work, we compared clinical strains, isolated from infant Sp-HUS patients, with a reference pathogenic strain D39, for host cytotoxicity and further explored the role of Sp-derived extracellular vesicles (EVs) in the pathogenesis of an HUS infection. In comparison with the wild-type strain, pneumococcal HUS strains caused significant lysis of human erythrocytes and increased the release of hydrogen peroxide. Isolated Sp-HUS EVs were characterized by performing dynamic light-scattering microscopy and proteomic analysis. Sp-HUS strain released EVs at a constant concentration during growth, yet the size of the EVs varied and several subpopulations emerged at later time points. The cargo of the Sp-HUS EVs included several virulence factors at high abundance, i.e., the ribosomal subunit assembly factor BipA, the pneumococcal surface protein A, the lytic enzyme LytC, several sugar utilization, and fatty acid synthesis proteins. Sp-HUS EVs strongly downregulated the expression of the endothelial surface marker platelet endothelial cell adhesion molecule-1 and were internalized by human endothelial cells. Sp-HUS EVs elicited the release of pro-inflammatory cytokines (interleukin [IL]-1β, IL-6) and chemokines (CCL2, CCL3, CXCL1) by human monocytes. These findings shed new light on the overall function of Sp-EVs, in the scope of infection-mediated HUS, and suggest new avenues of research for exploring the usefulness of Sp-EVs as therapeutic and diagnostic targets. IMPORTANCE Streptococcus pneumoniae-associated hemolytic uremic syndrome (Sp-HUS) is a serious and underdiagnosed deadly complication of invasive pneumococcal disease. Despite the introduction of the pneumococcal vaccine, cases of Sp-HUS continue to emerge, especially in children under the age of 2. While a lot has been studied regarding pneumococcal proteins and their role on Sp-HUS pathophysiology, little is known about the role of extracellular vesicles (EVs). In our work, we isolate and initially characterize EVs from a reference pathogenic strain (D39) and a strain isolated from a 2-year-old patient suffering from Sp-HUS. We demonstrate that despite lacking cytotoxicity toward human cells, Sp-HUS EVs are highly internalized by endothelial cells and can trigger cytokine and chemokine production in monocytes. In addition, this work specifically highlights the distinct morphological characteristics of Sp-HUS EVs and their unique cargo. Overall, this work sheds new light into potentially relevant players contained in EVs that might elucidate about pneumococcal EVs biogenesis or pose as interesting candidates for vaccine design.
Collapse
Affiliation(s)
- Miriana Battista
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Bianca Hoffmann
- Applied Systems Biology, HKI-Center for Systems Biology of Infection, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Yann Bachelot
- Applied Systems Biology, HKI-Center for Systems Biology of Infection, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Lioba Zimmermann
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Laura Teuber
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Aurélie Jost
- Microverse Imaging Center, Cluster of Excellence “Balance of the Microverse,” Friedrich Schiller University, Jena, Germany
| | - Susanne Linde
- Center for Electron Microscopy, Jena University Hospital, Jena, Germany
| | - Martin Westermann
- Center for Electron Microscopy, Jena University Hospital, Jena, Germany
| | - Mario M. Müller
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Hortense Slevogt
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, HKI-Center for Systems Biology of Infection, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
- Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Cláudia Vilhena
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Peter F. Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
- Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
5
|
Kruckow KL, Zhao K, Bowdish DME, Orihuela CJ. Acute organ injury and long-term sequelae of severe pneumococcal infections. Pneumonia (Nathan) 2023; 15:5. [PMID: 36870980 PMCID: PMC9985869 DOI: 10.1186/s41479-023-00110-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
Streptococcus pneumoniae (Spn) is a major public health problem, as it is a main cause of otitis media, community-acquired pneumonia, bacteremia, sepsis, and meningitis. Acute episodes of pneumococcal disease have been demonstrated to cause organ damage with lingering negative consequences. Cytotoxic products released by the bacterium, biomechanical and physiological stress resulting from infection, and the corresponding inflammatory response together contribute to organ damage accrued during infection. The collective result of this damage can be acutely life-threatening, but among survivors, it also contributes to the long-lasting sequelae of pneumococcal disease. These include the development of new morbidities or exacerbation of pre-existing conditions such as COPD, heart disease, and neurological impairments. Currently, pneumonia is ranked as the 9th leading cause of death, but this estimate only considers short-term mortality and likely underestimates the true long-term impact of disease. Herein, we review the data that indicates damage incurred during acute pneumococcal infection can result in long-term sequelae which reduces quality of life and life expectancy among pneumococcal disease survivors.
Collapse
Affiliation(s)
- Katherine L Kruckow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kevin Zhao
- McMaster Immunology Research Centre and the Firestone Institute for Respiratory Health, McMaster University, Hamilton, Canada
| | - Dawn M E Bowdish
- McMaster Immunology Research Centre and the Firestone Institute for Respiratory Health, McMaster University, Hamilton, Canada
| | - Carlos J Orihuela
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
6
|
Quinaux T, Tubail Z, Vrillon I, Sartelet H, Savenkoff B. Campylobacter Colitis as a Trigger for Atypical Hemolytic Uremic Syndrome: About One Case. Case Rep Nephrol Dial 2023; 13:113-119. [PMID: 37900922 PMCID: PMC10601843 DOI: 10.1159/000529941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 02/20/2023] [Indexed: 10/31/2023] Open
Abstract
We present the case of a 17-year-old Caucasian male whose condition featured acute renal failure, anemia, and deep thrombocytopenia after five consecutive days of diarrhea. Campylobacter coli was identified in stool cultures and, although the direct role of this germ in the pathogenesis of hemolytic uremic syndrome (HUS) remains uncertain to this day, initial presentation was considered broadly consistent with typical HUS. However, the patient showed no signs of spontaneous recovery over time. While secondary investigations showed no abnormalities in ADAMTS13 activity or in the alternate pathway of complement, patient's condition deteriorated. Worsening kidney failure required emergency renal replacement therapy and was followed by cardiac involvement in the form of acute heart failure. Given this unfavorable development, blood samples were drawn to look for mutations in the alternate complement pathway, and eculizumab therapy was initiated without further delay, allowing prompt improvement of cardiac function and recovery of diuresis. Upon discharge, the patient still had to undergo intermittent dialysis, which would later be withdrawn. Genetic analysis ultimately confirmed the presence of a complement factor H mutation associated with a high risk of disease recurrence, indicating long-term continuation of eculizumab therapy.
Collapse
Affiliation(s)
- Thomas Quinaux
- Nephrology, dialysis and therapeutic apheresis department, Centre Hospitalier Régional Metz-Thionville, Metz, France
| | - Zead Tubail
- Nephrology, dialysis and therapeutic apheresis department, Centre Hospitalier Régional Metz-Thionville, Metz, France
| | - Isabelle Vrillon
- Pediatric nephrology, dialysis and transplantation department, Centre Hospitalier Régional Universitaire de Nancy - Hôpital Brabois Enfants, Nancy, France
| | - Hervé Sartelet
- Pathology department, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
| | - Benjamin Savenkoff
- Nephrology, dialysis and therapeutic apheresis department, Centre Hospitalier Régional Metz-Thionville, Metz, France
| |
Collapse
|
7
|
Mei C, Peng F, Yin W, Xu W, Yao R, Li B, Zhou R, Fan X, Li N. Increased suicidal erythrocyte death in patients with hepatitis B-related acute-on-chronic liver failure. Am J Physiol Gastrointest Liver Physiol 2022; 323:G9-G20. [PMID: 35411804 DOI: 10.1152/ajpgi.00050.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Anemia is a common complication of hepatitis B-related acute-on-chronic liver failure (HB-ACLF). Eryptosis, a suicidal erythrocyte death characterized by phosphatidylserine (PS) externalization and red blood cell-derived microparticle (RMP) generation, decreases erythrocyte lifespan. Herein, we investigated whether enhanced eryptosis is involved in the anemia pathophysiology associated with HB-ACLF. PS exposure, cell volume, cytosolic Ca2+, and reactive oxygen species (ROS) production were determined using flow cytometry. RMPs were extracted using a polyethylene glycol (PEG)-based method. We found that hemoglobin (Hb) and hematocrit (Hct) were significantly lower in patients with HB-ACLF than in healthy controls (HC), patients with chronic hepatitis B (CHB), and patients with cirrhosis. The direct antiglobulin test positive rate was 75.9% in patients with HB-ACLF while its intensity was associated with anemia. The ratio of abnormal erythrocytes was higher in patients with HB-ACLF than in HC, CHB, and cirrhosis. The percentage of PS-exposed erythrocytes was higher in patients with HB-ACLF (2.07 ± 0.11%) compared with HC (0.37 ± 0.05%), CHB (0.38 ± 0.03%), and cirrhosis (0.38 ± 0.04%). The cytosolic Ca2+ and ROS abundance were also higher in patients with HB-ACLF compared with HC, patients with CHB, and patients with cirrhosis, and were inversely correlated with the anemia in patients with HB-ACLF. PS exposure of erythrocytes collected from HC was significantly pronounced following incubation in plasma from patients with HB-ACLF compared with incubation in plasma from HC. The protein concentration and RMPs size significantly increased in patients with HB-ACLF compared with HC. Thus, the anemia in patients with HB-ACLF is associated with increased eryptosis, which is partially triggered by increased cytosolic Ca2+ and oxidative stress.NEW & NOTEWORTHY Acute chronic liver failure (ACLF) is a critical syndrome characterized by multiple organ failures and high short-term mortality. A common complication of HB-ACLF is anemia, however, the mechanism of anemia in HB-ACLF remains to be elucidated. We confirm that the accelerated eryptosis is involved in the pathophysiology of anemia associated with HB-ACLF, which progressively aggravates the clinical outcome. Our study illustrates the mechanism regarding the anemia pathogenesis of HB-ACLF, which may be utilized further toward therapeutic ends.
Collapse
Affiliation(s)
- Cheng Mei
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, Hunan, China
| | - Fang Peng
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenyu Yin
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, Hunan, China
| | - Wei Xu
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, Hunan, China
| | - Run Yao
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, Hunan, China
| | - Bijuan Li
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, Hunan, China
| | - Rongrong Zhou
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuegong Fan
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ning Li
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Lee‐Sundlov MM, Rivadeneyra L, Falet H, Hoffmeister KM. Sialic acid and platelet count regulation: Implications in immune thrombocytopenia. Res Pract Thromb Haemost 2022; 6:e12691. [PMID: 35425875 PMCID: PMC8994053 DOI: 10.1002/rth2.12691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
Platelets are blood components that survive in circulation for 7 to 10 days in humans. Thus, platelet production by bone marrow (BM) megakaryocytes (MKs), and their removal from the blood circulation is precisely orchestrated to maintain an average platelet count. Abnormalities in both processes can result in thrombocytopenia (low platelet count) or thrombocytosis (high platelet count), often associated with the risk of bleeding or overt thrombus formation, respectively. Platelet glycans, particularly sialic acids, are indicators of platelet count. Loss of platelet sialic acids leads to platelet clearance. A State-of-the-Art lecture titled "Platelet and Megakaryocyte Glycobiology" was presented at the ISTH virtual congress 2021 to discuss (i) the loss of O-glycan sialic acid on BM MKs, revealing the Thomsen-Friedenreich (TF) antigen as a new concept of thrombocytopenia; herein, impaired thrombopoiesis is attributed to activation of immune cells with a plasmacytoid dendritic cell signature; and (ii) upregulation of antibodies against the TF antigen in pediatric patients with immune thrombocytopenia (ITP), positing that glycan alterations such as MK asialylation can lead to immune cell responses. Here, we discuss our findings alongside new data presented at the 2020 and 2021 ISTH congresses on the role of sialic acids and glycans in regulating platelet count. Desialylation is a prominent feature in thrombocytopenia, notably in ITP presentation. We compare similarities between ITP mediated with shear-stress and with storage-related asialylation. We also discuss genes involved in sialic acid synthesis leading to thrombocytopenia. Increased awareness in gene-regulating MK and platelet glycans is a giant leap to understanding the underpinning mechanisms of ITP and other forms of thrombocytopenia.
Collapse
Affiliation(s)
| | - Leonardo Rivadeneyra
- Translational Glycomics CenterVersiti Blood Research InstituteMilwaukeeWisconsinUSA
| | - Hervé Falet
- Translational Glycomics CenterVersiti Blood Research InstituteMilwaukeeWisconsinUSA
- Department of Cell Biology, Neurobiology, and AnatomyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Karin M. Hoffmeister
- Translational Glycomics CenterVersiti Blood Research InstituteMilwaukeeWisconsinUSA
- Departments of Biochemistry and MedicineMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
9
|
Jennings MP, Day CJ, Atack JM. How bacteria utilize sialic acid during interactions with the host: snip, snatch, dispatch, match and attach. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001157. [PMID: 35316172 PMCID: PMC9558349 DOI: 10.1099/mic.0.001157] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/08/2022] [Indexed: 12/16/2022]
Abstract
N -glycolylneuraminic acid (Neu5Gc), and its precursor N-acetylneuraminic acid (Neu5Ac), commonly referred to as sialic acids, are two of the most common glycans found in mammals. Humans carry a mutation in the enzyme that converts Neu5Ac into Neu5Gc, and as such, expression of Neu5Ac can be thought of as a 'human specific' trait. Bacteria can utilize sialic acids as a carbon and energy source and have evolved multiple ways to take up sialic acids. In order to generate free sialic acid, many bacteria produce sialidases that cleave sialic acid residues from complex glycan structures. In addition, sialidases allow escape from innate immune mechanisms, and can synergize with other virulence factors such as toxins. Human-adapted pathogens have evolved a preference for Neu5Ac, with many bacterial adhesins, and major classes of toxin, specifically recognizing Neu5Ac containing glycans as receptors. The preference of human-adapted pathogens for Neu5Ac also occurs during biosynthesis of surface structures such as lipo-oligosaccharide (LOS), lipo-polysaccharide (LPS) and polysaccharide capsules, subverting the human host immune system by mimicking the host. This review aims to provide an update on the advances made in understanding the role of sialic acid in bacteria-host interactions made in the last 5-10 years, and put these findings into context by highlighting key historical discoveries. We provide a particular focus on 'molecular mimicry' and incorporation of sialic acid onto the bacterial outer-surface, and the role of sialic acid as a receptor for bacterial adhesins and toxins.
Collapse
Affiliation(s)
- Michael P. Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Christopher J. Day
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - John M. Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
- School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
10
|
Lee-Sundlov MM, Burns RT, Kim TO, Grozovsky R, Giannini S, Rivadeneyra L, Zheng Y, Glabere SH, Kahr WHA, Abdi R, Despotovic JM, Wang D, Hoffmeister KM. Immune cells surveil aberrantly sialylated O-glycans on megakaryocytes to regulate platelet count. Blood 2021; 138:2408-2424. [PMID: 34324649 PMCID: PMC8662070 DOI: 10.1182/blood.2020008238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 06/09/2021] [Indexed: 11/20/2022] Open
Abstract
Immune thrombocytopenia (ITP) is a platelet disorder. Pediatric and adult ITP have been associated with sialic acid alterations, but the pathophysiology of ITP remains elusive, and ITP is often a diagnosis of exclusion. Our analysis of pediatric ITP plasma samples showed increased anti-Thomsen-Friedenreich antigen (TF antigen) antibody representation, suggesting increased exposure of the typically sialylated and cryptic TF antigen in these patients. The O-glycan sialyltransferase St3gal1 adds sialic acid specifically on the TF antigen. To understand if TF antigen exposure associates with thrombocytopenia, we generated a mouse model with targeted deletion of St3gal1 in megakaryocytes (MK) (St3gal1MK-/-). TF antigen exposure was restricted to MKs and resulted in thrombocytopenia. Deletion of Jak3 in St3gal1MK-/- mice normalized platelet counts implicating involvement of immune cells. Interferon-producing Siglec H-positive bone marrow (BM) immune cells engaged with O-glycan sialic acid moieties to regulate type I interferon secretion and platelet release (thrombopoiesis), as evidenced by partially normalized platelet count following inhibition of interferon and Siglec H receptors. Single-cell RNA-sequencing determined that TF antigen exposure by MKs primed St3gal1MK-/- BM immune cells to release type I interferon. Single-cell RNA-sequencing further revealed a new population of immune cells with a plasmacytoid dendritic cell-like signature and concomitant upregulation of the immunoglobulin rearrangement gene transcripts Igkc and Ighm, suggesting additional immune regulatory mechanisms. Thus, aberrant TF antigen moieties, often found in pathological conditions, regulate immune cells and thrombopoiesis in the BM, leading to reduced platelet count.
Collapse
Affiliation(s)
| | - Robert T Burns
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI
| | - Taylor O Kim
- Section of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children's Cancer and Hematology Centers, Houston, TX
| | - Renata Grozovsky
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Silvia Giannini
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | - Yongwei Zheng
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI
| | - Simon H Glabere
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI
| | - Walter H A Kahr
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, and
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and
| | - Jenny M Despotovic
- Section of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children's Cancer and Hematology Centers, Houston, TX
| | - Demin Wang
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI
| | - Karin M Hoffmeister
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI
- Department of Biochemistry and
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
11
|
Smorodin EP. Prospects and Challenges of the Study of Anti-Glycan Antibodies and Microbiota for the Monitoring of Gastrointestinal Cancer. Int J Mol Sci 2021; 22:ijms222111608. [PMID: 34769037 PMCID: PMC8584091 DOI: 10.3390/ijms222111608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022] Open
Abstract
Over the past decades, a large amount of data has been accumulated in various subfields of glycobiology. However, much clinically relevant data and many tools are still not widely used in medicine. Synthetic glycoconjugates with the known structure of glycans are an accurate tool for the study of glycan-binding proteins. We used polyacrylamide glycoconjugates (PGs) including PGs with tumour-associated glycans (TAGs) in immunoassays to assess the prognostic potential of the serum level of anti-glycan antibodies (AG Abs) in gastrointestinal cancer patients and found an association of AG Abs with survival. The specificity of affinity-isolated AG Abs was investigated using synthetic and natural glycoconjugates. AG Abs showed mainly a low specificity to tumour-associated and tumour-derived mucins; therefore, the protective role of the examined circulating AG Abs against cancer remains a challenge. In this review, our findings are analysed and discussed in the context of the contribution of bacteria to the AG Abs stimulus and cancer progression. Examples of the influence of pathogenic bacteria colonising tumours on cancer progression and patient survival through mechanisms of interaction with tumours and dysregulated immune response are considered. The possibilities and problems of the integrative study of AG Abs and the microbiome using high-performance technologies are discussed.
Collapse
Affiliation(s)
- Eugeniy P Smorodin
- Department of Virology and Immunology, National Institute for Health Development, 11619 Tallinn, Estonia
| |
Collapse
|
12
|
Burzyńska P, Sobala ŁF, Mikołajczyk K, Jodłowska M, Jaśkiewicz E. Sialic Acids as Receptors for Pathogens. Biomolecules 2021; 11:831. [PMID: 34199560 PMCID: PMC8227644 DOI: 10.3390/biom11060831] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022] Open
Abstract
Carbohydrates have long been known to mediate intracellular interactions, whether within one organism or between different organisms. Sialic acids (Sias) are carbohydrates that usually occupy the terminal positions in longer carbohydrate chains, which makes them common recognition targets mediating these interactions. In this review, we summarize the knowledge about animal disease-causing agents such as viruses, bacteria and protozoa (including the malaria parasite Plasmodium falciparum) in which Sias play a role in infection biology. While Sias may promote binding of, e.g., influenza viruses and SV40, they act as decoys for betacoronaviruses. The presence of two common forms of Sias, Neu5Ac and Neu5Gc, is species-specific, and in humans, the enzyme converting Neu5Ac to Neu5Gc (CMAH, CMP-Neu5Ac hydroxylase) is lost, most likely due to adaptation to pathogen regimes; we discuss the research about the influence of malaria on this trait. In addition, we present data suggesting the CMAH gene was probably present in the ancestor of animals, shedding light on its glycobiology. We predict that a better understanding of the role of Sias in disease vectors would lead to more effective clinical interventions.
Collapse
Affiliation(s)
| | | | | | | | - Ewa Jaśkiewicz
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland; (P.B.); (Ł.F.S.); (K.M.); (M.J.)
| |
Collapse
|
13
|
Gómez Delgado I, Corvillo F, Nozal P, Arjona E, Madrid Á, Melgosa M, Bravo J, Szilágyi Á, Csuka D, Veszeli N, Prohászka Z, Sánchez-Corral P. Complement Genetic Variants and FH Desialylation in S. pneumoniae-Haemolytic Uraemic Syndrome. Front Immunol 2021; 12:641656. [PMID: 33777036 PMCID: PMC7991904 DOI: 10.3389/fimmu.2021.641656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
Haemolytic Uraemic Syndrome associated with Streptococcus pneumoniae infections (SP-HUS) is a clinically well-known entity that generally affects infants, and could have a worse prognosis than HUS associated to E. coli infections. It has been assumed that complement genetic variants associated with primary atypical HUS cases (aHUS) do not contribute to SP-HUS, which is solely attributed to the action of the pneumococcal neuraminidase on the host cellular surfaces. We previously identified complement pathogenic variants and risk polymorphisms in a few Hungarian SP-HUS patients, and have now extended these studies to a cohort of 13 Spanish SP-HUS patients. Five patients presented rare complement variants of unknown significance, but the frequency of the risk haplotypes in the CFH-CFHR3-CFHR1 region was similar to the observed in aHUS. Moreover, we observed desialylation of Factor H (FH) and the FH-Related proteins in plasma samples from 2 Spanish and 4 Hungarian SP-HUS patients. To analyze the functional relevance of this finding, we compared the ability of native and "in vitro" desialylated FH in: (a) binding to C3b-coated microtiter plates; (b) proteolysis of fluid-phase and surface-bound C3b by Factor I; (c) dissociation of surface bound-C3bBb convertase; (d) haemolytic assays on sheep erythrocytes. We found that desialylated FH had reduced capacity to control complement activation on sheep erythrocytes, suggesting a role for FH sialic acids on binding to cellular surfaces. We conclude that aHUS-risk variants in the CFH-CFHR3-CFHR1 region could also contribute to disease-predisposition to SP-HUS, and that transient desialylation of complement FH by the pneumococcal neuraminidase may have a role in disease pathogenesis.
Collapse
Affiliation(s)
- Irene Gómez Delgado
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Fernando Corvillo
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Pilar Nozal
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
- Immunology Unit, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Emilia Arjona
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
- Department of Cellular and Molecular Medicine, Margarita Salas Center for Biological Research, Madrid, Spain
| | - Álvaro Madrid
- Pediatric Nephrology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Marta Melgosa
- Pediatric Nephrology Unit, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Juan Bravo
- Pediatric Nephrology Unit, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Ágnes Szilágyi
- Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Dorottya Csuka
- Research Group for Immunology and Haematology, Semmelweis University- Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Nóra Veszeli
- Research Group for Immunology and Haematology, Semmelweis University- Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Zoltán Prohászka
- Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Pilar Sánchez-Corral
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| |
Collapse
|
14
|
Piedrafita A, Ribes D, Cointault O, Chauveau D, Faguer S, Huart A. Plasma exchange and thrombotic microangiopathies: From pathophysiology to clinical practice. Transfus Apher Sci 2020; 59:102990. [PMID: 33272850 DOI: 10.1016/j.transci.2020.102990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thrombotic microangiopathy (TMA) brings together many diseases that have a commonality in the apparition of mechanical hemolysis with consuming thrombopenia. In all cases, these diseases can be life threatening, thereby justifying the implementation of treatment as an emergency. First-line treatment represents plasma exchange. This treatment has proven efficiency in improving the vital patient's and functional prognosis. However, the administration methods of plasma exchange can be redefined in light of the understanding of the pathophysiology of TMA. The aim of this review is to try to define, from pathophysiology, the place of plasma exchanges in the modern therapeutic arsenal of TMA.
Collapse
Affiliation(s)
- Alexis Piedrafita
- Département de Néphrologie et Transplantation d'Organes, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; Institut National de la Santé et de la Recherche Médicale, UMR1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France; Université Paul Sabatier - Toulouse 3, Toulouse, France
| | - David Ribes
- Département de Néphrologie et Transplantation d'Organes, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Olivier Cointault
- Département de Néphrologie et Transplantation d'Organes, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Dominique Chauveau
- Département de Néphrologie et Transplantation d'Organes, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; Institut National de la Santé et de la Recherche Médicale, UMR1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France; Université Paul Sabatier - Toulouse 3, Toulouse, France
| | - Stanislas Faguer
- Département de Néphrologie et Transplantation d'Organes, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; Institut National de la Santé et de la Recherche Médicale, UMR1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France; Université Paul Sabatier - Toulouse 3, Toulouse, France
| | - Antoine Huart
- Département de Néphrologie et Transplantation d'Organes, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.
| |
Collapse
|
15
|
Yan T, Tang X, Sun L, Tian R, Li Z, Liu G. Co infection of respiratory syncytial viruses (RSV) and streptococcus pneumonia modulates pathogenesis and dependent of serotype and phase variant. Microb Pathog 2020; 144:104126. [PMID: 32173494 DOI: 10.1016/j.micpath.2020.104126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 11/17/2022]
Abstract
Streptococcus pneumoniae (pneumococcus) is touted to be the generally found pathogen in patients with respiratory issues and there is an epidemiologic linkage present between Respiratory syncytial virus (RSV). This study aim at investigating the interaction between RSV and two serotypes of S. pneumoniae using a distinct animal model and a well-established colonizing pneumococcal strain. Phase variants phenotype of each strain was determined under oblique light. Co infection model was developed using BALB/c mice housed in a BSL-2 facility. Coinfection experiments were performed and number of bacterial colonies was quantified and phase determination was evaluated. RSV was detected in sample through real-time quantitative PCR. Adherence assays were performed to determine adherence of Spn strains and its knock out ΔNanA to nasopharyngeal carcinoma (NPC) epithelial CNE3 cell line. The biofilm viability was determined and phase composition was counted using plate count. Neuraminidase activity was measured in fluorometircassessed using 2'-(4-methylumbelliferyl)-α-D-N-acetylneuraminic acid (MUAN) as substrate as described in earlier literature. The GraphPad Software version 5.01 i.e., GraphPad Prism was used to conduct the statistical analysis. The extent of bacterial colonization was increased significantly (p < 0.05), when the mice were co infected. Nasal epithelium remained intact in mock sample with features of a thick mucociliary border. A small percentage of pneumococci exhibit phase variation between opaque phase and transparent phase. The percentage adherent of both phase were not found to be varying significantly within serotype but it was seen that nonpathogenic type 27 was more adherent. Biofilm formation was selectively more for transparent phase from a mixed-phase inoculum. Adherence of both phase variant of S. pneumoniae to nasopharyngeal epithelial cells 2 h post infection expressed as the percentage of adherent bacteria relative to the inoculum. In absence of viral infection, the nasal colonization of the opaque and the transparent variant was increased many folds, which was a significant differences. The extent of nasal colonization by the ΔNanA mutant strain were significantly reduced post-bacterial infection for both type of wild-type (P < 0.05). The findings explore insights into the interactions occurring between S. pneumoniae and RSV during respiratory infections and pneumococcal acquisition, indicate that pneumococcal serotypes have different ability to cause infection as well as co infections and potentially follow an unappreciated mechanism. Much more research work is needed to further understand the minutiae of this interaction within co-infection process.
Collapse
Affiliation(s)
- Tingfei Yan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Xiaoyan Tang
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Lei Sun
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Runhua Tian
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Zhiming Li
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Guangzhen Liu
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| |
Collapse
|
16
|
Abstract
The thrombotic microangiopathies (TMAs) are a group of diseases characterised by microangiopathic haemolysis, thrombocytopenia, and thrombus formation leading to tissue injury. Traditionally, TMAs have been classified as either thrombotic thrombocytopenic purpura (TTP) or haemolytic uremic syndrome (HUS) based on the clinical presentation, with neurological involvement predominating in the former and acute kidney injury in the latter. However, as our understanding of the pathogenesis of these conditions has increased, it has become clear that this is an over-simplification; there is significant overlap in the clinical presentation of TTP and HUS, there are different forms of HUS, and TMAs can occur in other, diverse clinical scenarios. This review will discuss recent developments in the diagnosis of HUS, focusing on the different forms of HUS and how to diagnose and manage these potentially life-threatening diseases.
Collapse
Affiliation(s)
- Neil S Sheerin
- National Renal Complement Therapeutics Centre, Institute of Cellular Medicine, Newcastle University and Biomedical Research Centre, Newcastle-upon-Tyne NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Emily Glover
- National Renal Complement Therapeutics Centre, Institute of Cellular Medicine, Newcastle University and Biomedical Research Centre, Newcastle-upon-Tyne NHS Foundation Trust, Newcastle-upon-Tyne, UK
| |
Collapse
|
17
|
Syed S, Hakala P, Singh AK, Lapatto HAK, King SJ, Meri S, Jokiranta TS, Haapasalo K. Role of Pneumococcal NanA Neuraminidase Activity in Peripheral Blood. Front Cell Infect Microbiol 2019; 9:218. [PMID: 31297339 PMCID: PMC6608562 DOI: 10.3389/fcimb.2019.00218] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/06/2019] [Indexed: 12/25/2022] Open
Abstract
The most frequent form of hemolytic-uremic syndrome (HUS) is associated with infections caused by Shiga-like toxin-producing Enterohaemorrhagic Escherichia coli (STEC). In rarer cases HUS can be triggered by Streptococcus pneumoniae. While production of Shiga-like toxins explains STEC-HUS, the mechanisms of pneumococcal HUS are less well-known. S. pneumoniae produces neuraminidases with activity against cell surface sialic acids that are critical for factor H-mediated complement regulation on cells and platelets. The aim of this study was to find out whether S. pneumoniae neuraminidase NanA could trigger complement activation and hemolysis in whole blood. We studied clinical S. pneumoniae isolates and two laboratory strains, a wild-type strain expressing NanA, and a NanA deletion mutant for their ability to remove sialic acids from various human cells and platelets. Red blood cell lysis and activation of complement was measured ex vivo by incubating whole blood with bacterial culture supernatants. We show here that NanA expressing S. pneumoniae strains and isolates are able to remove sialic acids from cells, and platelets. Removal of sialic acids by NanA increased complement activity in whole blood, while absence of NanA blocked complement triggering and hemolytic activity indicating that removal of sialic acids by NanA could potentially trigger pHUS.
Collapse
Affiliation(s)
- Shahan Syed
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Pipsa Hakala
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Anirudh K Singh
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Department of Microbiology, Medical College, All India Institute of Medical Sciences, Bhopal, India
| | - Helena A K Lapatto
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Samantha J King
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Seppo Meri
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - T Sakari Jokiranta
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland.,SYNLAB Finland, Helsinki, Finland
| | - Karita Haapasalo
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Key L, Hijano DR, Arnold SR. A Toddler With Fever, Melena, and Renal Failure. Clin Pediatr (Phila) 2019; 58:367-370. [PMID: 30501507 DOI: 10.1177/0009922818816505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Logan Key
- University of Tennessee Health Science Center, Memphis, TN, USA.,Le Bonheur Children's Hospital, Memphis, TN, USA
| | | | - Sandra R Arnold
- University of Tennessee Health Science Center, Memphis, TN, USA.,Le Bonheur Children's Hospital, Memphis, TN, USA
| |
Collapse
|
19
|
Wei M, Wang PG. Desialylation in physiological and pathological processes: New target for diagnostic and therapeutic development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:25-57. [PMID: 30905454 DOI: 10.1016/bs.pmbts.2018.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Desialylation is a pivotal part of sialic acid metabolism, which initiates the catabolism of glycans by removing the terminal sialic acid residues on glycans, thereby modulating the structure and functions of glycans, glycoproteins, or glycolipids. The functions of sialic acids have been well recognized, whereas the function of desialylation process is underappreciated or largely ignored. However, accumulating evidence demonstrates that desialylation plays an important role in a variety of physiological and pathological processes. This chapter summarizes the current knowledge pertaining to desialylation in a variety of physiological and pathological processes, with a focus on the underlying molecular mechanisms. The potential of targeting desialylation process for diagnostic and therapeutic development is also discussed.
Collapse
Affiliation(s)
- Mohui Wei
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| | - Peng George Wang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
20
|
Kim BR, Park JY, Jeong HJ, Kwon HJ, Park SJ, Lee IC, Ryu YB, Lee WS. Design, synthesis, and evaluation of curcumin analogues as potential inhibitors of bacterial sialidase. J Enzyme Inhib Med Chem 2018; 33:1256-1265. [PMID: 30126306 PMCID: PMC6104608 DOI: 10.1080/14756366.2018.1488695] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 06/05/2018] [Accepted: 06/12/2018] [Indexed: 11/06/2022] Open
Abstract
Sialidases are key virulence factors that remove sialic acid from the host cell surface glycan, unmasking receptors that facilitate bacterial adherence and colonisation. In this study, we developed potential agents for treating bacterial infections caused by Streptococcus pneumoniae Nan A that inhibit bacterial sialidase using Turmeric and curcumin analogues. Design, synthesis, and structure analysis relationship (SAR) studies have been also described. Evaluation of the synthesised derivatives demonstrated that compound 5e was the most potent inhibitor of S. pneumoniae sialidase (IC50 = 0.2 ± 0.1 µM). This compound exhibited a 3.0-fold improvement in inhibitory activity over that of curcumin and displayed competitive inhibition. These results warrant further studies confirming the antipneumococcal activity 5e and indicated that curcumin derivatives could be potentially used to treat sepsis by bacterial infections.
Collapse
Affiliation(s)
- Bo Ram Kim
- Bio-processing Technology Development and Support Team, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Ji-Young Park
- Natural Product Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Hyung Jae Jeong
- Bio-processing Technology Development and Support Team, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Hyung-Jun Kwon
- Natural Product Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Su-Jin Park
- Natural Product Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - In-Chul Lee
- Natural Product Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Young Bae Ryu
- Natural Product Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Woo Song Lee
- Natural Product Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| |
Collapse
|
21
|
Smith JL, Gunther NW. Commentary: Campylobacter and Hemolytic Uremic Syndrome. Foodborne Pathog Dis 2018; 16:90-93. [PMID: 30307748 DOI: 10.1089/fpd.2018.2513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There are reports in the literature stating that Campylobacter infections can cause hemolytic uremic syndrome (HUS); however, a mechanism for how Campylobacter induces HUS has not been proposed by investigators. The most common bacterial inducer of HUS is the Shiga toxin-producing Escherichia coli (STEC), and a few cases of HUS are induced by an invasive Shigella dysenteriae or Streptococcus pneumoniae infection. Campylobacter spp. have not been shown to produce Shiga toxin (Stx) nor do they possess genetic elements capable of producing a Stx-like toxin. The neuraminidase associated with pneumococcal HUS has not been observed in Campylobacter. Therefore, in the absence of a well-defined toxic mechanism, it not clear that Campylobacter actually causes HUS.
Collapse
Affiliation(s)
- James L Smith
- Eastern Regional Research Center , Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, Pennsylvania
| | - Nereus W Gunther
- Eastern Regional Research Center , Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, Pennsylvania
| |
Collapse
|
22
|
Complement depletion and Coombs positivity in pneumococcal hemolytic uremic syndrome (pnHUS). Case series and plea to revisit an old pathogenetic concept. Int J Med Microbiol 2018; 308:1096-1104. [PMID: 30177469 DOI: 10.1016/j.ijmm.2018.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/21/2018] [Accepted: 08/27/2018] [Indexed: 12/27/2022] Open
Abstract
Hemolytic uremic syndrome is a rare complication of invasive pneumococcal infection (pnHUS). Its pathogenesis is poorly understood, and treatment remains controversial. The emerging role of complement in various forms of HUS warrants a new look at this "old" disease. We performed a retrospective analysis of clinical and laboratory features of three sequential cases of pnHUS since 2008 associated with pneumonia/pleural empyema, two due to Streptococcus pneumoniae serotype 19 A. Profound depletion of complement C3 (and less of C4) was observed in two patients. One patient was Coombs test positive. Her red blood cells (RBCs) strongly agglutinated with blood group compatible donor serum at 0 °C, but not at 37 °C. All three patients were treated with hemodialysis, concentrated RBCs, and platelets. Patient 2 received frozen plasma for hepatic failure with coagulation factor depletion. Intravenous immunoglobulin infusion, intended to neutralize pneumococcal neuraminidase in patient 3, was associated with rapid normalization of platelets and cessation of hemolysis. Two patients recovered without sequelae or disease recurrence. Patient 2 died within 2½ days of admission due to complicating Pseudomonas aeruginosa sepsis and multiorgan failure. Our observations suggest that pnHUS can be associated with dramatic, transient complement consumption early in the course of the disease, probably via the alternative pathway. A critical review of the literature and the reported cases argue against the postulated pathological role of preformed antibodies against the neuraminidase-exposed Thomsen-Friedenreich neoantigen (T antigen) in pnHUS. The improved understanding of complement regulation and bacterial strategies of complement evasion allows to propose a testable, new pathogenetic model of pnHUS. This model shifts emphasis from the action of natural anti-T antibodies toward impaired Complement Factor H (CFH) binding and function on desialylated membranes. Removal of neuraminic acid residues converts (protected) self to non-self surfaces that supports membrane attack complex (MAC) assembly. Complement activation is potentially exacerbated by decreased CFH availability following tight CFH binding to pneumococcal evasion proteins and/or by the presence of genetic variants of complement regulator proteins. Detailed clinical and experimental investigations are warranted to better understand the role of unregulated complement activation in pnHUS. Instead of avoidance of plasma, a new, integrated model is evolving, which may include short-term therapeutic complement blockade, particularly where genetic or functional APC dysregulation is suspected, in addition to bacterial elimination and, potentially, neuraminidase neutralization.
Collapse
|
23
|
Janapatla RP, Chen CL, Hsu MH, Liao WT, Chiu CH. Immunization with pneumococcal neuraminidases NanA, NanB and NanC to generate neutralizing antibodies and to increase survival in mice. J Med Microbiol 2018; 67:709-723. [PMID: 29557769 DOI: 10.1099/jmm.0.000724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Purpose. Pneumococcal virulence protein-based vaccines can provide serotype-independent protection against pneumococcal infections. Many studies, including clinical observational studies on Thomsen-Friedenrich antigen exposure and haemolytic uremic syndrome, defined the role of neuraminidases NanA, NanB and NanC in host-pneumococcus interaction. Since neuraminidases are major virulence proteins, they are potential targets for both vaccines and small molecule inhibitors. Here we explored the utility of three neuraminidases as protein vaccine antigens to generate neutralizing antibodies and to increase survival following pneumococcal infections.Methodology. Rabbits and mice were immunized subcutaneously with enzymatically active recombinant NanA, NanB and NanC as individual or a combination of the three neuraminidases. Antisera titres were determined by ELISA. Neuraminidase activity inhibition by antiserum was tested by peanut lectin and flow cytometry. Clinical isolates with serotype 3, 6B, 14, 15B, 19A and 23F were used to infect immunized mice by tail vein injection.Results/Key findings. Presence of high levels of IgG antibodies in antisera against NanA, NanB and NanC indicates that all of the three neuraminidases are immunogenic vaccine antigens. To generate potent NanA neutralizing antibodies, both lectin and catalytic domains are essential, whereas for NanB and NanC a single lectin domain is sufficient. Immunization with triple neuraminidases increased the survival of mice when intravenously challenged with clinical isolates of serotype 3 (40 %), 6B (60 %), 15B (60 %), 19A (40 %) and 23F (30 %).Conclusion. We recommend the inclusion of three pneumococcal neuraminidases in future protein vaccine formulations to prevent invasive pneumococcal infection caused by various serotypes.
Collapse
Affiliation(s)
| | - Chyi-Liang Chen
- Molecular Infectious Diseases Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| | - Mei-Hua Hsu
- Molecular Infectious Diseases Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| | - Wan-Ting Liao
- Molecular Infectious Diseases Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| | - Cheng-Hsun Chiu
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan, ROC.,Molecular Infectious Diseases Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| |
Collapse
|
24
|
Abrams CM, Hijano DR, Bagga B. Abdominal Pain in the Setting of Atypical Hemolytic Uremic Syndrome Caused by Streptococcus pneumoniae Pneumonia. Glob Pediatr Health 2018; 5:2333794X18762866. [PMID: 29552602 PMCID: PMC5846901 DOI: 10.1177/2333794x18762866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/31/2018] [Indexed: 11/16/2022] Open
Affiliation(s)
- Christina M Abrams
- University of Tennessee Health Sciences Center, Memphis, TN, USA.,Le Bonheur Children's Hospital, Memphis, TN, USA
| | | | - Bindiya Bagga
- University of Tennessee Health Sciences Center, Memphis, TN, USA.,Le Bonheur Children's Hospital, Memphis, TN, USA
| |
Collapse
|
25
|
Jeantet G, Pernin V, Brunot V, Roccabianca A, Macombe A, Szwarc I, Klouche K, Loirat C, Mourad G, Frémeaux-Bacchi V, Le Quintrec M. Successful treatment of a Streptococcus pneumoniae-associated haemolytic uraemic syndrome by eculizumab. Clin Kidney J 2018; 12:106-109. [PMID: 30746136 PMCID: PMC6366139 DOI: 10.1093/ckj/sfy019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/02/2018] [Indexed: 12/27/2022] Open
Abstract
Haemolytic uraemic syndrome (HUS) is a rare complication of invasive infection by Streptococcus pneumoniae (SP-HUS), especially in adults. Here we report an unusual case of a 53-year-old man presenting SP-HUS with severe multivisceral involvement. After failure of supportive care and plasma exchanges, eculizumab (anti-C5 antibody) resulted in a favourable outcome.
Collapse
Affiliation(s)
- Guillaume Jeantet
- Department of Nephrology and Kidney Transplantation, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Vincent Pernin
- Department of Nephrology and Kidney Transplantation, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Vincent Brunot
- Critical Care Department, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Arnaud Roccabianca
- Department of Nephrology and Kidney Transplantation, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Anouk Macombe
- Department of Nephrology and Kidney Transplantation, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Ilan Szwarc
- Department of Nephrology and Kidney Transplantation, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Kada Klouche
- Critical Care Department, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Chantal Loirat
- Department of Pediatric Nephrology, Hôpital Universitaire Robert Debré, Paris, France
| | - Georges Mourad
- Department of Nephrology and Kidney Transplantation, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | | | - Moglie Le Quintrec
- Department of Nephrology and Kidney Transplantation, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| |
Collapse
|
26
|
Pneumococcal Neuraminidase A (NanA) Promotes Biofilm Formation and Synergizes with Influenza A Virus in Nasal Colonization and Middle Ear Infection. Infect Immun 2017; 85:IAI.01044-16. [PMID: 28096183 DOI: 10.1128/iai.01044-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/10/2017] [Indexed: 01/08/2023] Open
Abstract
Even in the vaccine era, Streptococcus pneumoniae (the pneumococcus) remains a leading cause of otitis media, a significant public health burden, in large part because of the high prevalence of nasal colonization with the pneumococcus in children. The primary pneumococcal neuraminidase, NanA, which is a sialidase that catalyzes the cleavage of terminal sialic acids from host glycoconjugates, is involved in both of these processes. Coinfection with influenza A virus, which also expresses a neuraminidase, exacerbates nasal colonization and disease by S. pneumoniae, in part via the synergistic contributions of the viral neuraminidase. The specific role of its pneumococcal counterpart, NanA, in this interaction, however, is less well understood. We demonstrate in a mouse model that NanA-deficient pneumococci are impaired in their ability to cause both nasal colonization and middle ear infection. Coinfection with neuraminidase-expressing influenza virus and S. pneumoniae potentiates both colonization and infection but not to wild-type levels, suggesting an intrinsic role of NanA. Using in vitro models, we show that while NanA contributes to both epithelial adherence and biofilm viability, its effect on the latter is actually independent of its sialidase activity. These data indicate that NanA contributes both enzymatically and nonenzymatically to pneumococcal pathogenesis and, as such, suggest that it is not a redundant bystander during coinfection with influenza A virus. Rather, its expression is required for the full synergism between these two pathogens.
Collapse
|
27
|
Abstract
Haemolytic uraemic syndrome (HUS) is defined by the simultaneous occurrence of nonimmune haemolytic anaemia, thrombocytopenia and acute renal failure. This leads to the pathological lesion termed thrombotic microangiopathy, which mainly affects the kidney, as well as other organs. HUS is associated with endothelial cell injury and platelet activation, although the underlying cause may differ. Most cases of HUS are associated with gastrointestinal infection with Shiga toxin-producing enterohaemorrhagic Escherichia coli (EHEC) strains. Atypical HUS (aHUS) is associated with complement dysregulation due to mutations or autoantibodies. In this review, we will describe the causes of HUS. In addition, we will review the clinical, pathological, haematological and biochemical features, epidemiology and pathogenetic mechanisms as well as the biochemical, microbiological, immunological and genetic investigations leading to diagnosis. Understanding the underlying mechanisms of the different subtypes of HUS enables tailoring of appropriate treatment and management. To date, there is no specific treatment for EHEC-associated HUS but patients benefit from supportive care, whereas patients with aHUS are effectively treated with anti-C5 antibody to prevent recurrences, both before and after renal transplantation.
Collapse
Affiliation(s)
- Diana Karpman
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Sebastian Loos
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Ramesh Tati
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Ida Arvidsson
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
28
|
Free Sialic Acid Acts as a Signal That Promotes Streptococcus pneumoniae Invasion of Nasal Tissue and Nonhematogenous Invasion of the Central Nervous System. Infect Immun 2016; 84:2607-15. [PMID: 27354445 DOI: 10.1128/iai.01514-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 06/18/2016] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is a leading cause of bacterial meningitis and neurological sequelae in children worldwide. Acute bacterial meningitis is widely considered to result from bacteremia that leads to blood-brain barrier breakdown and bacterial dissemination throughout the central nervous system (CNS). Previously, we showed that pneumococci can gain access to the CNS through a nonhematogenous route without peripheral blood infection. This access is thought to occur when the pneumococci in the upper sinus follow the olfactory nerves and enter the CNS through the olfactory bulbs. In this study, we determined whether the addition of exogenous sialic acid postcolonization promotes nonhematogenous invasion of the CNS. Previously, others showed that treatment with exogenous sialic acid post-pneumococcal infection increased the numbers of CFU recovered from an intranasal mouse model of infection. Using a pneumococcal colonization model, an in vivo imaging system, and a multiplex assay for cytokine expression, we demonstrated that sialic acid can increase the number of pneumococci recovered from the olfactory bulbs and brains of infected animals. We also show that pneumococci primarily localize to the olfactory bulb, leading to increased expression levels of proinflammatory cytokines and chemokines. These findings provide evidence that sialic acid can enhance the ability of pneumococci to disseminate into the CNS and provide details about the environment needed to establish nonhematogenous pneumococcal meningitis.
Collapse
|
29
|
Singh AK, Osman AS, Woodiga SA, White P, Mahan JD, King SJ. Defining the role of pneumococcal neuraminidases and O-glycosidase in pneumococcal haemolytic uraemic syndrome. J Med Microbiol 2016; 65:975-984. [PMID: 27469261 DOI: 10.1099/jmm.0.000322] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The host and bacterial factors that lead to development of pneumococcal haemolytic uraemic syndrome (pHUS) remain poorly defined; however, it is widely believed that pneumococcal exposure of the Thomsen-Friedenreich antigen (T-antigen) on host surfaces is a key step in pathogenesis. Two enzymatic activities encoded by pneumococci determine the level of T-antigen exposed. Neuraminidases cleave terminal sialic acid to expose the T-antigen which is subsequently cleaved by O-glycosidase Eng. While a handful of studies have examined the role of neuraminidases in T-antigen exposure, no studies have addressed the potential role of O-glycosidase. This study used 29 pHUS isolates from the USA and 31 serotype-matched controls. All isolates contained eng, and no significant correlation between enzymatic activity and disease state (pHUS and blood non-pHUS isolates) was observed. A prior study from Taiwan suggested that neuraminidase NanC contributes to the development of pHUS. However, we observed no difference in nanC distribution. Similar to previously published data, we found no significant correlation between neuraminidase activity and disease state. Accurate quantification of these enzymatic activities from bacteria grown in whole blood is currently impossible, but we confirmed that there were no significant correlations between disease state and neuraminidase and O-glycosidase transcript levels after incubation in blood. Genomic sequencing of six pHUS isolates did not identify any genetic elements possibly contributing to haemolytic uraemic syndrome. These findings support the hypothesis that while exposure of T-antigen may be an important step in disease pathogenesis, host factors likely play a substantial role in determining which individuals develop haemolytic uraemic syndrome after pneumococcal invasive disease.
Collapse
Affiliation(s)
- Anirudh K Singh
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Amin S Osman
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Shireen A Woodiga
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Peter White
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, USA
| | - John D Mahan
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, USA.,Department of Nephrology, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Samantha J King
- Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
30
|
Abstract
Post-infectious hemolytic uremic syndrome (HUS) is caused by specific pathogens in patients with no identifiable HUS-associated genetic mutation or autoantibody. The majority of episodes is due to infections by Shiga toxin (Stx) producing Escherichia coli (STEC). This chapter reviews the epidemiology and pathogenesis of STEC-HUS, including bacterial-derived factors and host responses. STEC disease is characterized by hematological (microangiopathic hemolytic anemia), renal (acute kidney injury) and extrarenal organ involvement. Clinicians should always strive for an etiological diagnosis through the microbiological or molecular identification of Stx-producing bacteria and Stx or, if negative, serological assays. Treatment of STEC-HUS is supportive; more investigations are needed to evaluate the efficacy of putative preventive and therapeutic measures, such as non-phage-inducing antibiotics, volume expansion and anti-complement agents. The outcome of STEC-HUS is generally favorable, but chronic kidney disease, permanent extrarenal, mainly cerebral complication and death (in less than 5 %) occur and long-term follow-up is recommended. The remainder of this chapter highlights rarer forms of (post-infectious) HUS due to S. dysenteriae, S. pneumoniae, influenza A and HIV and discusses potential interactions between these pathogens and the complement system.
Collapse
Affiliation(s)
- Denis F. Geary
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario Canada
| | - Franz Schaefer
- Division of Pediatric Nephrology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
31
|
Huang CY, Chang L, Liu CC, Huang YC, Chang LY, Huang YC, Chiu NC, Lin HC, Ho YH, Chi H, Huang LM. Risk factors of progressive community-acquired pneumonia in hospitalized children: A prospective study. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2015; 48:36-42. [DOI: 10.1016/j.jmii.2013.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 04/22/2013] [Accepted: 06/24/2013] [Indexed: 12/25/2022]
|
32
|
Burin des Roziers N, Chadebech P, Bodivit G, Guinchard E, Bruneel A, Dupré T, Chevret L, Jugie M, Gallon P, Bierling P, Noizat-Pirenne F. Red blood cell Thomsen-Friedenreich antigen expression and galectin-3 plasma concentrations in Streptococcus pneumoniae-associated hemolytic uremic syndrome and hemolytic anemia. Transfusion 2014; 55:1563-71. [PMID: 25556575 DOI: 10.1111/trf.12981] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/30/2014] [Accepted: 11/07/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Pneumococcal hemolytic uremic syndrome (P-HUS) is a rare but severe complication of invasive pneumococcal disease (IPD) in young children. Consensual biologic diagnosis criteria are currently lacking. STUDY DESIGN AND METHODS A prospective study was conducted on 10 children with culture-confirmed IPD. Five presented with full-blown P-HUS, three had an incomplete form with hemolytic anemia and mild or no uremia (P-HA), and two had neither HUS nor HA. Thomsen-Friedenreich (T), Th, and Tk cryptantigens and sialic acid expression were determined on red blood cells (RBCs) with peanut (PNA), Glycine soja (SBA), Bandeiraea simplicifolia II, and Maackia amurensis lectins. Plasma concentrations of the major endogenous T-antigen-binding protein, galectin-3 (Gal-3), were analyzed. RESULTS We found that RBCs strongly reacted with PNA and SBA lectins in all P-HUS and P-HA patients. Three P-HUS and three P-HA patients showed also concomitant Tk activation. Direct antiglobulin test (DAT) was positive in three P-HUS (one with anti-C3d and two with anti-IgG) and two P-HA patients (one with anti-C3d and one with anti-IgG). RBCs derived from the two uncomplicated IPD patients reacted with PNA but not with SBA lectin. Gal-3 plasma concentrations were increased in all P-HUS patients. CONCLUSIONS The results indicate high levels of neuraminidase activity and desialylation in both P-HUS and P-HA patients. T-antigen activation is more sensitive than DAT for P-HUS diagnosis. Combining PNA and SBA lectins is needed to improve the specificity of T-antigen activation. High concentrations of Gal-3 in P-HUS patients suggest that Gal-3 may contribute to the pathogenesis of P-HUS.
Collapse
Affiliation(s)
| | - Philippe Chadebech
- Etablissement Français du Sang Ile de France, Villejuif, France.,Inserm UMR955, Créteil, France
| | - Gwellaouen Bodivit
- Etablissement Français du Sang Ile de France, Villejuif, France.,Inserm UMR955, Créteil, France
| | | | - Arnaud Bruneel
- Laboratoire de Biochimie Métabolique et Cellulaire, Hôpital Bichat, Paris, France
| | - Thierry Dupré
- Laboratoire de Biochimie Métabolique et Cellulaire, Hôpital Bichat, Paris, France
| | - Laurent Chevret
- Réanimation Pédiatrique, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Myriam Jugie
- Réanimation Chirurgicale Pédiatrique, Hôpital Necker-Enfants Malades, Paris, France
| | - Philippe Gallon
- Etablissement Français du Sang Ile de France, Villejuif, France
| | - Philippe Bierling
- Etablissement Français du Sang Ile de France, Villejuif, France.,Inserm UMR955, Créteil, France
| | - France Noizat-Pirenne
- Etablissement Français du Sang Ile de France, Villejuif, France.,Inserm UMR955, Créteil, France
| |
Collapse
|
33
|
Bibbs RK, Harris RD, Peoples VA, Barnett C, Singh SR, Dennis VA, Coats MT. Silver polyvinyl pyrrolidone nanoparticles exhibit a capsular polysaccharide influenced bactericidal effect against Streptococcus pneumoniae. Front Microbiol 2014; 5:665. [PMID: 25520713 PMCID: PMC4253953 DOI: 10.3389/fmicb.2014.00665] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/16/2014] [Indexed: 11/17/2022] Open
Abstract
Streptococcus pneumoniae remains a leading cause of morbidity and mortality worldwide. The highly adaptive nature of S. pneumoniae exemplifies the need for next generation antimicrobials designed to avoid high level resistance. Metal based nanomaterials fit this criterion. Our study examined the antimicrobial activity of gold nanospheres, silver coated polyvinyl pyrrolidone (AgPVP), and titanium dioxide (TiO2) against various serotypes of S. pneumoniae. Twenty nanometer spherical AgPVP demonstrated the highest level of killing among the tested materials. AgPVP (0.6 mg/mL) was able to kill pneumococcal serotypes 2, 3, 4, and 19F within 4 h of exposure. Detailed analysis of cultures during exposure to AgPVP showed that both the metal ions and the solid nanoparticles participate in the killing of the pneumococcus. The bactericidal effect of AgPVP was lessened in the absence of the pneumococcal capsular polysaccharide. Capsule negative strains, JD908 and RX1, were only susceptible to AgPVP at concentrations at least 33% higher than their respective capsule expressing counterparts. These findings suggest that mechanisms of killing used by nanomaterials are not serotype dependent and that the capsular polysaccharide participates in the inhibition. In the near future these mechanisms will be examined as targets for novel antimicrobials.
Collapse
Affiliation(s)
- Ronda K Bibbs
- Center for NanoBiotechnology Research, Alabama State University Montgomery, AL, USA
| | - Rhonda D Harris
- Center for NanoBiotechnology Research, Alabama State University Montgomery, AL, USA
| | - Veolanda A Peoples
- Center for NanoBiotechnology Research, Alabama State University Montgomery, AL, USA
| | - Cleon Barnett
- Department of Physical Sciences, Alabama State University Montgomery, AL, USA
| | - Shree R Singh
- Center for NanoBiotechnology Research, Alabama State University Montgomery, AL, USA
| | - Vida A Dennis
- Center for NanoBiotechnology Research, Alabama State University Montgomery, AL, USA
| | - Mamie T Coats
- Center for NanoBiotechnology Research, Alabama State University Montgomery, AL, USA ; Department of Biological Sciences, Alabama State University Montgomery, AL, USA
| |
Collapse
|
34
|
Johnson S, Stojanovic J, Ariceta G, Bitzan M, Besbas N, Frieling M, Karpman D, Landau D, Langman C, Licht C, Pecoraro C, Riedl M, Siomou E, van de Kar N, Walle JV, Loirat C, Taylor CM. An audit analysis of a guideline for the investigation and initial therapy of diarrhea negative (atypical) hemolytic uremic syndrome. PEDIATRIC NEPHROLOGY (BERLIN, GERMANY) 2014. [PMID: 24817340 DOI: 10.1007/s00467-014-2817-4)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND In 2009, the European Paediatric Study Group for Haemolytic Uraemic Syndrome (HUS) published a clinical practice guideline for the investigation and initial therapy of diarrhea-negative HUS (now more widely referred to as atypical HUS, aHUS). The therapeutic component of the guideline (comprising early, high-volume plasmapheresis) was derived from anecdotal evidence and expert consensus, and the authors committed to auditing outcome. METHODS Questionnaires were distributed to pediatric nephrologists across Europe, North America, and the Middle East, who were asked to complete one questionnaire per patient episode of aHUS between July 1, 2009 and December 31, 2010. Comprehensive, anonymous demographic and clinical data were collected. RESULTS Seventy-one children were reported with an episode of aHUS during the audit period. Six cases occurred on a background of influenza A H1N1 infection. Of 71 patients, 59 (83 %) received plasma therapy within the first 33 days, of whom ten received plasma infusion only. Complications of central venous catheters occurred in 16 out of 51 patients with a catheter in-situ (31 %). Median time to enter hematological remission was 11.5 days, and eight of 71 (11 %) patients did not enter hematological remission by day 33. Twelve patients (17 %) remained dialysis dependent at day 33. CONCLUSIONS This audit provides a snapshot of the early outcome of a group of children with aHUS in the months prior to more widespread use of eculizumab.
Collapse
Affiliation(s)
- Sally Johnson
- Great North Children's Hospital, Newcastle Upon Tyne, UK,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Johnson S, Stojanovic J, Ariceta G, Bitzan M, Besbas N, Frieling M, Karpman D, Landau D, Langman C, Licht C, Pecoraro C, Riedl M, Siomou E, van de Kar N, Walle JV, Loirat C, Taylor CM. An audit analysis of a guideline for the investigation and initial therapy of diarrhea negative (atypical) hemolytic uremic syndrome. Pediatr Nephrol 2014; 29:1967-78. [PMID: 24817340 DOI: 10.1007/s00467-014-2817-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 03/03/2014] [Accepted: 03/27/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND In 2009, the European Paediatric Study Group for Haemolytic Uraemic Syndrome (HUS) published a clinical practice guideline for the investigation and initial therapy of diarrhea-negative HUS (now more widely referred to as atypical HUS, aHUS). The therapeutic component of the guideline (comprising early, high-volume plasmapheresis) was derived from anecdotal evidence and expert consensus, and the authors committed to auditing outcome. METHODS Questionnaires were distributed to pediatric nephrologists across Europe, North America, and the Middle East, who were asked to complete one questionnaire per patient episode of aHUS between July 1, 2009 and December 31, 2010. Comprehensive, anonymous demographic and clinical data were collected. RESULTS Seventy-one children were reported with an episode of aHUS during the audit period. Six cases occurred on a background of influenza A H1N1 infection. Of 71 patients, 59 (83 %) received plasma therapy within the first 33 days, of whom ten received plasma infusion only. Complications of central venous catheters occurred in 16 out of 51 patients with a catheter in-situ (31 %). Median time to enter hematological remission was 11.5 days, and eight of 71 (11 %) patients did not enter hematological remission by day 33. Twelve patients (17 %) remained dialysis dependent at day 33. CONCLUSIONS This audit provides a snapshot of the early outcome of a group of children with aHUS in the months prior to more widespread use of eculizumab.
Collapse
Affiliation(s)
- Sally Johnson
- Great North Children's Hospital, Newcastle Upon Tyne, UK,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rapid diagnosis of Streptococcus pneumoniae-induced haemolytic-uraemic syndrome. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2014; 12:425-7. [PMID: 24887232 PMCID: PMC4111827 DOI: 10.2450/2014.0213-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 02/06/2014] [Indexed: 01/22/2023]
|
37
|
Zhang BC, Zhang J, Sun L. Streptococcus iniae SF1: complete genome sequence, proteomic profile, and immunoprotective antigens. PLoS One 2014; 9:e91324. [PMID: 24621602 PMCID: PMC3951389 DOI: 10.1371/journal.pone.0091324] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/10/2014] [Indexed: 01/06/2023] Open
Abstract
Streptococcus iniae is a Gram-positive bacterium that is reckoned one of the most severe aquaculture pathogens. It has a broad host range among farmed marine and freshwater fish and can also cause zoonotic infection in humans. Here we report for the first time the complete genome sequence as well as the host factor-induced proteomic profile of a pathogenic S. iniae strain, SF1, a serotype I isolate from diseased fish. SF1 possesses a single chromosome of 2,149,844 base pairs, which contains 2,125 predicted protein coding sequences (CDS), 12 rRNA genes, and 45 tRNA genes. Among the protein-encoding CDS are genes involved in resource acquisition and utilization, signal sensing and transduction, carbohydrate metabolism, and defense against host immune response. Potential virulence genes include those encoding adhesins, autolysins, toxins, exoenzymes, and proteases. In addition, two putative prophages and a CRISPR-Cas system were found in the genome, the latter containing a CRISPR locus and four cas genes. Proteomic analysis detected 21 secreted proteins whose expressions were induced by host serum. Five of the serum-responsive proteins were subjected to immunoprotective analysis, which revealed that two of the proteins were highly protective against lethal S. iniae challenge when used as purified recombinant subunit vaccines. Taken together, these results provide an important molecular basis for future study of S. iniae in various aspects, in particular those related to pathogenesis and disease control.
Collapse
Affiliation(s)
- Bao-cun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Jian Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Collaborative Innovation Center of Deep Sea Biology, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
38
|
Abstract
BACKGROUND Hemolytic uremic syndrome related to pneumococcal infection (P+HUS) can be difficult to diagnose due to the lack of a specific test and the absence of a consensus for definite diagnostic criteria. METHODS A retrospective study was conducted on the cases that have been considered as P+HUS in the participating centers during the past 10 years. Diagnostic strategy and criteria used for the diagnosis of P+HUS were evaluated and compared with a review of literature data. RESULTS A total of 17 children were studied. Tests ruling out other causes of HUS were performed in 94% of cases. Direct confirmatory tests for P+HUS were done in a minority of cases as Thomsen-Friedenreich antigen testing using lectin assay were done in only 2 patients (11%). Retrospectively, the diagnosis of P+HUS was confirmed in 28% to 89% of cases depending on the already published criteria used. A literature review focused on the last 15 years confirmed these diagnostic difficulties due to variable definition criteria and bring a new light on the potential usefulness of tests used to reveal T activation in this setting. CONCLUSION To date, in a context of suspicion of P+HUS, no precise, practical and consensual strategy exists for T-antigen exposure diagnosis. The T-antigen activation test using peanut lectin might be the most appropriate test for a direct diagnosis of P+HUS. A large prospective study is required to confirm this hypothesis. However, before such data are available, its use could be of help when a suspicion of P+HUS is present given the therapeutic impact of such a diagnosis.
Collapse
|
39
|
Smith A, Johnston C, Inverarity D, Slack M, K Paterson G, Diggle M, Mitchell T. Investigating the role of pneumococcal neuraminidase A activity in isolates from pneumococcal haemolytic uraemic syndrome. J Med Microbiol 2013; 62:1735-1742. [PMID: 23924664 DOI: 10.1099/jmm.0.063479-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Streptococcus pneumoniae diseases are a rare but increasingly recognized trigger of atypical haemolytic uraemic syndrome (HUS) in young children and associated with a higher mortality rate than diarrhoea-associated HUS. This study aimed to determine the importance of neuraminidase A (NanA) and genomic diversity in the pathogenesis of pneumococcal HUS (pHUS). We investigated the nanA gene sequence, gene expression, neuraminidase activity and comparative genomic hybridization of invasive pneumococcal disease (IPD) isolates from patients with pHUS and control strains matched by serotype and sequence type (ST), isolated from patients with IPD but not pHUS. The nanA sequence of 33 isolates was determined and mutations at 142 aa positions were identified. High levels of diversity were observed within the NanA protein, with mosaic blocks, insertions and repeat regions present. When comparing nanA allelic diversity with ST and disease profile in the isolates tested, nanA alleles clustered mostly by ST. No particular nanA allele was associated with pHUS. There was no significant difference in overall neuraminidase activity between pHUS isolates and controls when induced/uninduced with N-acetylneuraminic acid. Comparative genomic hybridization showed little difference in genetic content between the pHUS isolates and the controls. Results of gene expression studies identified 12 genes differentially regulated in all pHUS isolates compared with the control. Although neuraminidase enzyme activity may be important in pHUS progression and contribute to pathogenesis, the lack of a distinction between pHUS isolates and controls suggests that host factors, such as acquired abnormalities of the alternative complement cascade in young children, may play a more significant role in the outcome of pHUS.
Collapse
Affiliation(s)
- Andrew Smith
- College of Medical, Veterinary & Life Sciences, Glasgow Dental Hospital & School, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK
| | - Calum Johnston
- National Centre for Scientific Research, Laboratory of Microbiology and Molecular Genetics, Toulouse University, Toulouse, France
| | - Donald Inverarity
- Microbiology Department, Monklands Hospital, Monkscourt Avenue, Airdrie ML6 0JS, UK
| | - Mary Slack
- Respiratory & Vaccine Preventable Bacteria Reference Unit, Public Health England, 61 Colindale Avenue, Colindale, London NW9 5HT, UK
| | - Gavin K Paterson
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Mathew Diggle
- East Midlands Pathology, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| | - Timothy Mitchell
- Institute of Microbiology and Infection, School of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
40
|
Szilágyi A, Kiss N, Bereczki C, Tálosi G, Rácz K, Túri S, Györke Z, Simon E, Horváth E, Kelen K, Reusz GS, Szabó AJ, Tulassay T, Prohászka Z. The role of complement in Streptococcus pneumoniae-associated haemolytic uraemic syndrome. Nephrol Dial Transplant 2013; 28:2237-45. [PMID: 23787556 DOI: 10.1093/ndt/gft198] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Atypical forms of haemolytic uraemic syndrome (aHUS) include HUS caused by defects in the regulation of alternative complement pathway and HUS linked to neuraminidase-producing pathogens, such as Streptococcus pneumoniae. Increasing data support a pathogenic role of neuraminidase in the development of S. pneumoniae-associated haemolytic uraemic syndrome (SP-HUS), but the role of complement has never been clarified in detail. Therefore, we aimed to investigate whether the pathologic complement profile and genetic risk factors of aHUS are present in patients with SP-HUS. METHODS Enrolling five patients with SP-HUS classical and alternative pathway activity, besides C3, C4, factors H, B, I and anti-factor H autoantibody levels were determined. The coding regions of CFH, CFI, CD46 (MCP), THBD, C3 and CFB genes were sequenced and the copy number of CFI, CD46, CFH and related genes were also analyzed. RESULTS We found that in the acute phase samples of SP-HUS patients, complement components C4, C3 and activity of the classical and alternative pathways were decreased, indicating severe activation and complement consumption, but most of these alterations normalized later in remission. Three of the patients carried mutations and risk haplotypes in complement-mediated aHUS associated genes. The identified mutations include a previously published CFI variant (P50A) and two novel ones in CFH (R1149X) and THBD (T44I) genes. CONCLUSIONS Our results suggest that severe complement dysregulation and consumption accompany the progress of invasive pneumococcal disease (IPD)-associated SP-HUS and genetic variations of complement genes may contribute to the development of this complication in a proportion of the affected patients.
Collapse
Affiliation(s)
- Agnes Szilágyi
- 3rd Department of Medicine, Research Laboratory, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Janapatla RP, Hsu MH, Hsieh YC, Lee HY, Lin TY, Chiu CH. Necrotizing pneumonia caused by nanC-carrying serotypes is associated with pneumococcal haemolytic uraemic syndrome in children. Clin Microbiol Infect 2012; 19:480-6. [PMID: 22591179 DOI: 10.1111/j.1469-0691.2012.03894.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Streptococcus pneumoniae infection is a leading cause of morbidity and mortality worldwide. One of the most severe complications of invasive pneumococcal disease (IPD) is haemolytic uraemic syndrome (HUS). This study was undertaken to determine the risk factors and role of pneumococcal neuraminidases in HUS in children with IPD. Eighteen cases of HUS and 54 patients with IPD without HUS were identified. The controls were patients with culture-confirmed IPD without HUS. Clinical and laboratory characteristics of the two groups of patients were compared. Bacterial isolates from both groups were serotyped, sequence typed and examined for their carriage of three neuraminidase genes. Necrotizing pneumonia and serotype 3 infection were significantly associated with HUS in children with IPD, suggesting that a severe pulmonary suppurating disease increase the risk of HUS. Serotype 14 was associated with necrotizing pneumonia but not HUS. Children with HUS were more likely to require surgery and had a longer duration of hospitalization. The study identified a significantly higher carriage of a neuraminidase gene, nanC, in the causative pneumococcal isolates from patients with HUS (89% versus 41%, p 0.001). The sensitivity and specificity of nanC to predict HUS were 89% and 59%, respectively. In conclusion, necrotizing pneumonia, serotype 3 infection and neuraminidase gene nanC were associated with HUS in children with IPD. The result suggests that NanC could provide an additive effect to NanA and NanB in the overall activity of pneumococcal neuraminidases to expose Thomsen-Friedenreich antigen on various cells in patients with HUS.
Collapse
Affiliation(s)
- R-P Janapatla
- Molecular Infectious Diseases Research Centre, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | | | | | | | | | | |
Collapse
|