1
|
Bientz V, Lanois A, Ginibre N, Pagès S, Ogier JC, George S, Rialle S, Brillard J. OxyR is required for oxidative stress resistance of the entomopathogenic bacterium Xenorhabdus nematophila and has a minor role during the bacterial interaction with its hosts. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001481. [PMID: 39058385 PMCID: PMC11281485 DOI: 10.1099/mic.0.001481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Xenorhabdus nematophila is a Gram-negative bacterium, mutualistically associated with the soil nematode Steinernema carpocapsae, and this nemato-bacterial complex is parasitic for a broad spectrum of insects. The transcriptional regulator OxyR is widely conserved in bacteria and activates the transcription of a set of genes that influence cellular defence against oxidative stress. It is also involved in the virulence of several bacterial pathogens. The aim of this study was to identify the X. nematophila OxyR regulon and investigate its role in the bacterial life cycle. An oxyR mutant was constructed in X. nematophila and phenotypically characterized in vitro and in vivo after reassociation with its nematode partner. OxyR plays a major role during the X. nematophila resistance to oxidative stress in vitro. Transcriptome analysis allowed the identification of 59 genes differentially regulated in the oxyR mutant compared to the parental strain. In vivo, the oxyR mutant was able to reassociate with the nematode as efficiently as the control strain. These nemato-bacterial complexes harbouring the oxyR mutant symbiont were able to rapidly kill the insect larvae in less than 48 h after infestation, suggesting that factors other than OxyR could also allow X. nematophila to cope with oxidative stress encountered during this phase of infection in insect. The significantly increased number of offspring of the nemato-bacterial complex when reassociated with the X. nematophila oxyR mutant compared to the control strain revealed a potential role of OxyR during this symbiotic stage of the bacterial life cycle.
Collapse
Affiliation(s)
| | - Anne Lanois
- DGIMI, INRAE, Univ. Montpellier, Montpellier, France
| | | | - Sylvie Pagès
- DGIMI, INRAE, Univ. Montpellier, Montpellier, France
| | | | - Simon George
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Stéphanie Rialle
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | | |
Collapse
|
2
|
Ahlawat S, Sharma KK. Lepidopteran insects: emerging model organisms to study infection by enteropathogens. Folia Microbiol (Praha) 2022; 68:181-196. [PMID: 36417090 DOI: 10.1007/s12223-022-01014-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022]
Abstract
The in vivo analysis of a pathogen is a critical step in gaining greater knowledge of pathogen biology and host-pathogen interactions. In the last two decades, there has been a notable rise in the number of studies on developing insects as a model for studying pathogens, which provides various benefits, such as ethical acceptability, relatively short life cycle, and cost-effective care and maintenance relative to routinely used rodent infection models. Furthermore, lepidopteran insects provide many advantages, such as easy handling and tissue extraction due to their large size relative to other invertebrate models, like Caenorhabditis elegans. Additionally, insects have an innate immune system that is highly analogous to vertebrates. In the present review, we discuss the components of the insect's larval immune system, which strengthens its usage as an alternative host, and present an updated overview of the research findings involving lepidopteran insects (Galleria mellonella, Manduca sexta, Bombyx mori, and Helicoverpa armigera) as infection models to study the virulence by enteropathogens due to the homology between insect and vertebrate gut.
Collapse
Affiliation(s)
- Shruti Ahlawat
- Department of Microbiology, Faculty of Allied Health Sciences, SGT University, Gurgaon-Badli Road Chandu, Budhera, Gurugram, 122505, Haryana, India.
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| |
Collapse
|
3
|
Krachler AM, Sirisaengtaksin N, Monteith P, Paine CET, Coates CJ, Lim J. Defective phagocyte association during infection of Galleria mellonella with Yersinia pseudotuberculosis is detrimental to both insect host and microbe. Virulence 2021; 12:638-653. [PMID: 33550901 PMCID: PMC7889024 DOI: 10.1080/21505594.2021.1878672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 11/03/2022] Open
Abstract
Adhesins facilitate bacterial colonization and invasion of host tissues and are considered virulence factors, but their impact on immune-mediated damage as a driver of pathogenesis remains unclear. Yersinia pseudotuberculosis encodes for a multivalent adhesion molecule (MAM), a mammalian cell entry (MCE) family protein and adhesin. MAMs are widespread in Gram-negative bacteria and enable enteric bacteria to colonize epithelial tissues. Their role in bacterial interactions with the host innate immune system and contribution to pathogenicity remains unclear. Here, we investigated howY. pseudotuberculosis MAM contributes to pathogenesis during infection of the Galleria mellonella insect model. We show that Y. pseudotuberculosis MAM is required for efficient bacterial binding and uptake by hemocytes, the host phagocytes. Y. pseudotuberculosis interactions with insect and mammalian phagocytes are determined by bacterial and host factors. Loss of MAM, and deficient microbe-phagocyte interaction, increased pathogenesis in G. mellonella. Diminished phagocyte association also led to increased bacterial clearance. Furthermore, Y. pseudotuberculosis that failed to engage phagocytes hyperactivated humoral immune responses, most notably melanin production. Despite clearing the pathogen, excessive melanization also increased phagocyte death and host mortality. Our findings provide a basis for further studies investigating how microbe- and host-factors integrate to drive pathogenesis in a tractable experimental system.
Collapse
Affiliation(s)
- Anne Marie Krachler
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Natalie Sirisaengtaksin
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Pauline Monteith
- Biological and Environmental Sciences, University of Stirling, Stirling, UK
| | - C. E. Timothy Paine
- School of Environmental and Rural Sciences, University of New England, Armidale, Australia
| | - Christopher J. Coates
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales UK
| | - Jenson Lim
- Biological and Environmental Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
4
|
Ochoa S, Fernández F, Devotto L, France Iglesias A, Collado L. Virulence assessment of enterohepatic Helicobacter species carried by dogs using the wax moth larvae Galleria mellonella as infection model. Helicobacter 2021; 26:e12808. [PMID: 33884706 DOI: 10.1111/hel.12808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/11/2021] [Accepted: 04/05/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Enterohepatic species of the genus Helicobacter (EHH) are emerging pathogens that have been associated with gastrointestinal and hepatobiliary diseases in humans. However, studies on their pathogenicity are scarce. Galleria mellonella is a recently proposed model for the study of virulence in different pathogens, such as Campylobacter spp. and Helicobacter pylori. Despite this, its usefulness in EHH has not yet been evaluated. Therefore, we determined the pathogenic potential of different EHH species isolated from dogs in this infection model. MATERIALS AND METHODS Four species of EHH (H. bilis, H. canicola, H. canis, and 'H. winghamensis') isolated from fecal samples from domestic dogs were evaluated. Three strains of each species were inoculated in cohorts of G. mellonella at a concentration of 1 × 107 CFU/mL. Survival curves were determined by the Kaplan-Meier method. In addition, the quantification of melanin, bacterial load in hemolymph, and histopathology were evaluated daily post-infection (pi). RESULTS G. mellonella larvae are susceptible to EHH infection, exhibiting intra- and inter-species variability. Melanin production became evident from 4 h pi and increased throughout the assay. All species were recovered from the hemolymph after 20 min pi; however, only H. canis could be recovered up to 48 h pi. Histopathology revealed cellular and humoral immune response, evidencing accumulation of hemocytes, nodulation, and melanin deposition in different tissues. CONCLUSION EHH species carried by dogs have considerable pathogenic potential, being H. canicola the species with the highest degree of virulence. Thus, G. mellonella is a useful model to assess virulence in these emerging pathogens.
Collapse
Affiliation(s)
- Sofía Ochoa
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile.,ANID-Millennium Science Initiative Program-Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Fabiola Fernández
- Institute of Clinical Microbiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Luis Devotto
- Institute of Agricultural Research, Ministry of Agriculture, Chillán, Chile
| | | | - Luis Collado
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile.,ANID-Millennium Science Initiative Program-Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| |
Collapse
|
5
|
Hinnebusch BJ, Jarrett CO, Bland DM. Molecular and Genetic Mechanisms That Mediate Transmission of Yersinia pestis by Fleas. Biomolecules 2021; 11:210. [PMID: 33546271 PMCID: PMC7913351 DOI: 10.3390/biom11020210] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
The ability to cause plague in mammals represents only half of the life history of Yersinia pestis. It is also able to colonize and produce a transmissible infection in the digestive tract of the flea, its insect host. Parallel to studies of the molecular mechanisms by which Y. pestis is able to overcome the immune response of its mammalian hosts, disseminate, and produce septicemia, studies of Y. pestis-flea interactions have led to the identification and characterization of important factors that lead to transmission by flea bite. Y. pestis adapts to the unique conditions in the flea gut by altering its metabolic physiology in ways that promote biofilm development, a common strategy by which bacteria cope with a nutrient-limited environment. Biofilm localization to the flea foregut disrupts normal fluid dynamics of blood feeding, resulting in regurgitative transmission. Many of the important genes, regulatory pathways, and molecules required for this process have been identified and are reviewed here.
Collapse
Affiliation(s)
- B. Joseph Hinnebusch
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (C.O.J.); (D.M.B.)
| | | | | |
Collapse
|
6
|
Transcriptomic profiling of the digestive tract of the rat flea, Xenopsylla cheopis, following blood feeding and infection with Yersinia pestis. PLoS Negl Trop Dis 2020; 14:e0008688. [PMID: 32946437 PMCID: PMC7526888 DOI: 10.1371/journal.pntd.0008688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 09/30/2020] [Accepted: 08/10/2020] [Indexed: 01/29/2023] Open
Abstract
Yersinia pestis, the causative agent of plague, is a highly lethal pathogen transmitted by the bite of infected fleas. Once ingested by a flea, Y. pestis establish a replicative niche in the gut and produce a biofilm that promotes foregut colonization and transmission. The rat flea Xenopsylla cheopis is an important vector to several zoonotic bacterial pathogens including Y. pestis. Some fleas naturally clear themselves of infection; however, the physiological and immunological mechanisms by which this occurs are largely uncharacterized. To address this, RNA was extracted, sequenced, and distinct transcript profiles were assembled de novo from X. cheopis digestive tracts isolated from fleas that were either: 1) not fed for 5 days; 2) fed sterile blood; or 3) fed blood containing ~5x108 CFU/ml Y. pestis KIM6+. Analysis and comparison of the transcript profiles resulted in identification of 23 annotated (and 11 unknown or uncharacterized) digestive tract transcripts that comprise the early transcriptional response of the rat flea gut to infection with Y. pestis. The data indicate that production of antimicrobial peptides regulated by the immune-deficiency pathway (IMD) is the primary flea immune response to infection with Y. pestis. The remaining infection-responsive transcripts, not obviously associated with the immune response, were involved in at least one of 3 physiological themes: 1) alterations to chemosensation and gut peristalsis; 2) modification of digestion and metabolism; and 3) production of chitin-binding proteins (peritrophins). Despite producing several peritrophin transcripts shortly after feeding, including a subset that were infection-responsive, no thick peritrophic membrane was detectable by histochemistry or electron microscopy of rat flea guts for the first 24 hours following blood-feeding. Here we discuss the physiological implications of rat flea infection-responsive transcripts, the function of X. cheopis peritrophins, and the mechanisms by which Y. pestis may be cleared from the flea gut. The goal of this study was to characterize the transcriptional response of the digestive tract of the rat flea, Xenopsylla cheopis, to infection with Yersinia pestis, the causative agent of plague. This flea is generally considered the most prevalent and efficient vector of Y. pestis. Because most pathogens transmitted by fleas, including Y. pestis, reside in the insect digestive tract prior to transmission, the transcriptional program induced in the gut epithelium likely influences bacterial colonization of the flea. To determine the specific response to infection, RNA profiles were generated from fleas that were either unfed, fed sterile blood, or fed blood containing Y. pestis. Comparative analyses of the transcriptomes resulted in identification of 34 infection-responsive transcripts. The functions of these differentially regulated genes indicate that infection of fleas with Y. pestis induces a limited immune response and potentially alters the insect’s behavior, metabolism, and other aspects of its physiology. Based on these data, we describe potential mechanisms fleas use to eliminate bacteria and the corresponding strategies Y. pestis uses to resist elimination. These findings may be helpful for developing targeted strategies to make fleas resistant to microbial infection and thereby reduce the incidence of diseases they spread.
Collapse
|
7
|
Kaito C, Murakami K, Imai L, Furuta K. Animal infection models using non-mammals. Microbiol Immunol 2020; 64:585-592. [PMID: 32757288 PMCID: PMC7590188 DOI: 10.1111/1348-0421.12834] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/17/2020] [Accepted: 07/27/2020] [Indexed: 12/31/2022]
Abstract
The use of non-human animal models for infection experiments is important for investigating the infectious processes of human pathogenic bacteria at the molecular level. Mammals, such as mice and rabbits, are also utilized as animal infection models, but large numbers of animals are needed for these experiments, which is costly, and fraught with ethical issues. Various non-mammalian animal infection models have been used to investigate the molecular mechanisms of various human pathogenic bacteria, including Staphylococcus aureus, Streptococcus pyogenes, and Pseudomonas aeruginosa. This review discusses the desirable characteristics of non-mammalian infection models and describes recent non-mammalian infection models that utilize Caenorhabditis elegans, silkworm, fruit fly, zebrafish, two-spotted cricket, hornworm, and waxworm.
Collapse
Affiliation(s)
- Chikara Kaito
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kanade Murakami
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Lina Imai
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazuyuki Furuta
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
8
|
Brown LD. Immunity of fleas (Order Siphonaptera). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 98:76-79. [PMID: 31002845 DOI: 10.1016/j.dci.2019.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
The immune response of arthropod vectors plays a key role in the spread and transmission of vector-borne diseases. Although fleas transmit several human pathogens (e.g., Bartonella henselae, Rickettsia felis, R. typhi, and Yersinia pestis), few studies have examined how these vectors respond to infection. In hematophagous arthropods, imbibed pathogens must survive the hostile environment of blood meal digestion, which includes proteolytic digestive enzymes, protease inhibitors and expression of genes associated with protection of epithelial linings. Additionally, insect epithelial cells exhibit local immune defense against ingested pathogens by producing antimicrobial peptides and reactive oxygen species. This review details these and other aspects of insect immunity as it relates to fleas, with an emphasis on the gut immune response to two blood-borne pathogens, R. typhi and Y. pestis.
Collapse
Affiliation(s)
- Lisa D Brown
- Department of Biology, Georgia Southern University, P.O. Box 8042-1, Statesboro, GA, 30460, USA.
| |
Collapse
|
9
|
Hinnebusch BJ, Jarrett CO, Bland DM. "Fleaing" the Plague: Adaptations of Yersinia pestis to Its Insect Vector That Lead to Transmission. Annu Rev Microbiol 2018; 71:215-232. [PMID: 28886687 DOI: 10.1146/annurev-micro-090816-093521] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interest in arthropod-borne pathogens focuses primarily on how they cause disease in humans. How they produce a transmissible infection in their arthropod host is just as critical to their life cycle, however. Yersinia pestis adopts a unique life stage in the digestive tract of its flea vector, characterized by rapid formation of a bacterial biofilm that is enveloped in a complex extracellular polymeric substance. Localization and adherence of the biofilm to the flea foregut is essential for transmission. Here, we review the molecular and genetic mechanisms of these processes and present a comparative evaluation and updated model of two related transmission mechanisms.
Collapse
Affiliation(s)
- B Joseph Hinnebusch
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840;
| | - Clayton O Jarrett
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840;
| | - David M Bland
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840;
| |
Collapse
|
10
|
Genome-Wide Identification of Fitness Factors in Mastitis-Associated Escherichia coli. Appl Environ Microbiol 2018; 84:AEM.02190-17. [PMID: 29101196 DOI: 10.1128/aem.02190-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/27/2017] [Indexed: 12/31/2022] Open
Abstract
Virulence factors of mammary pathogenic Escherichia coli (MPEC) have not been identified, and it is not known how bacterial gene content influences the severity of mastitis. Here, we report a genome-wide identification of genes that contribute to fitness of MPEC under conditions relevant to the natural history of the disease. A highly virulent clinical isolate (M12) was identified that killed Galleria mellonella at low infectious doses and that replicated to high numbers in mouse mammary glands and spread to spleens. Genome sequencing was combined with transposon insertion site sequencing to identify MPEC genes that contribute to growth in unpasteurized whole milk, as well as during G. mellonella and mouse mastitis infections. These analyses show that strain M12 possesses a unique genomic island encoding a group III polysaccharide capsule that greatly enhances virulence in G. mellonella Several genes appear critical for MPEC survival in both G. mellonella and in mice, including those for nutrient-scavenging systems and resistance to cellular stress. Insertions in the ferric dicitrate receptor gene fecA caused significant fitness defects under all conditions (in milk, G. mellonella, and mice). This gene was highly expressed during growth in milk. Targeted deletion of fecA from strain M12 caused attenuation in G. mellonella larvae and reduced growth in unpasteurized cow's milk and lactating mouse mammary glands. Our results confirm that iron scavenging by the ferric dicitrate receptor, which is strongly associated with MPEC strains, is required for MPEC growth and may influence disease severity in mastitis infections.IMPORTANCE Mastitis caused by E. coli inflicts substantial burdens on the health and productivity of dairy animals. Strains causing mastitis may express genes that distinguish them from other E. coli strains and promote infection of mammary glands, but these have not been identified. Using a highly virulent strain, we employed genome-wide mutagenesis and sequencing to discover genes that contribute to mastitis. This extensive data set represents a screen for mastitis-associated E. coli fitness factors and provides the following contributions to the field: (i) global comparison of genes required for different aspects of mastitis infection, (ii) discovery of a unique capsule that contributes to virulence, and (iii) conclusive evidence for the crucial role of iron-scavenging systems in mastitis, particularly the ferric dicitrate transport system. Similar approaches applied to other mastitis-associated strains will uncover conserved targets for prevention or treatment and provide a better understanding of their relationship to other E. coli pathogens.
Collapse
|
11
|
Induction of Type I Interferon through a Noncanonical Toll-Like Receptor 7 Pathway during Yersinia pestis Infection. Infect Immun 2017; 85:IAI.00570-17. [PMID: 28847850 PMCID: PMC5649010 DOI: 10.1128/iai.00570-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 12/12/2022] Open
Abstract
Yersinia pestis causes bubonic, pneumonic, and septicemic plague, diseases that are rapidly lethal to most mammals, including humans. Plague develops as a consequence of bacterial neutralization of the host's innate immune response, which permits uncontrolled growth and causes the systemic hyperactivation of the inflammatory response. We previously found that host type I interferon (IFN) signaling is induced during Y. pestis infection and contributes to neutrophil depletion and disease. In this work, we show that type I IFN expression is derived from the recognition of intracellular Y. pestis by host Toll-like receptor 7 (TLR7). Type I IFN expression proceeded independent of myeloid differentiation factor 88 (MyD88), which is the only known signaling adaptor for TLR7, suggesting that a noncanonical mechanism occurs in Y. pestis-infected macrophages. In the murine plague model, TLR7 was a significant contributor to the expression of serum IFN-β, whereas MyD88 was not. Furthermore, like the type I IFN response, TLR7 contributed to the lethality of septicemic plague and was associated with the suppression of neutrophilic inflammation. In contrast, TLR7 was important for defense against disease in the lungs. Together, these data demonstrate that an atypical TLR7 signaling pathway contributes to type I IFN expression during Y. pestis infection and suggest that the TLR7-driven type I IFN response plays an important role in determining the outcome of plague.
Collapse
|
12
|
Dudte SC, Hinnebusch BJ, Shannon JG. Characterization of Yersinia pestis Interactions with Human Neutrophils In vitro. Front Cell Infect Microbiol 2017; 7:358. [PMID: 28848716 PMCID: PMC5552669 DOI: 10.3389/fcimb.2017.00358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/25/2017] [Indexed: 12/16/2022] Open
Abstract
Yersinia pestis is a gram-negative, zoonotic, bacterial pathogen, and the causative agent of plague. The bubonic form of plague occurs subsequent to deposition of bacteria in the skin by the bite of an infected flea. Neutrophils are recruited to the site of infection within the first few hours and interactions between neutrophils and Y. pestis have been demonstrated in vivo. In contrast to macrophages, neutrophils have been considered non-permissive to Y. pestis intracellular survival. Several studies have shown killing of the vast majority of Y. pestis ingested by human neutrophils. However, survival of 10–15% of Y. pestis after phagocytosis by neutrophils is consistently observed. Furthermore, these surviving bacteria eventually replicate within and escape from the neutrophils. We set out to further characterize the interactions between Y. pestis and human neutrophils by (1) determining the effects of known Y. pestis virulence factors on bacterial survival after uptake by neutrophils, (2) examining the mechanisms employed by the neutrophil to kill the majority of intracellular Y. pestis, (3) determining the activation phenotype of Y. pestis-infected neutrophils, and (4) characterizing the Y. pestis-containing phagosome in neutrophils. We infected human neutrophils in vitro with Y. pestis and assayed bacterial survival and uptake. Deletion of the caf1 gene responsible for F1 capsule production resulted in significantly increased uptake of Y. pestis. Surprisingly, while the two-component regulator PhoPQ system is important for survival of Y. pestis within neutrophils, pre-induction of this system prior to infection did not increase bacterial survival. We used an IPTG-inducible mCherry construct to distinguish viable from non-viable intracellular bacteria and determined the association of the Y. pestis-containing phagosome with neutrophil NADPH-oxidase and markers of primary, secondary and tertiary granules. Additionally, we show that inhibition of reactive oxygen species (ROS) production or Src family kinases increased survival of intracellular bacteria indicating that both ROS and granule-phagosome fusion contribute to neutrophil killing of Y. pestis. The data presented here further our understanding of the Y. pestis neutrophil interactions and suggest the existence of still unknown virulence factors involved in Y. pestis survival within neutrophils.
Collapse
Affiliation(s)
- Sophia C Dudte
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamilton, MT, United States
| | - B Joseph Hinnebusch
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamilton, MT, United States
| | - Jeffrey G Shannon
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamilton, MT, United States
| |
Collapse
|
13
|
Barnoy S, Gancz H, Zhu Y, Honnold CL, Zurawski DV, Venkatesan MM. The Galleria mellonella larvae as an in vivo model for evaluation of Shigella virulence. Gut Microbes 2017; 8:335-350. [PMID: 28277944 PMCID: PMC5570432 DOI: 10.1080/19490976.2017.1293225] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Shigella spp. causing bacterial diarrhea and dysentery are human enteroinvasive bacterial pathogens that are orally transmitted through contaminated food and water and cause bacillary dysentery. Although natural Shigella infections are restricted to humans and primates, several smaller animal models are used to analyze individual steps in pathogenesis. No animal model fully duplicates the human response and sustaining the models requires expensive animals, costly maintenance of animal facilities, veterinary services and approved animal protocols. This study proposes the development of the caterpillar larvae of Galleria mellonella as a simple, inexpensive, informative, and rapid in-vivo model for evaluating virulence and the interaction of Shigella with cells of the insect innate immunity. Virulent Shigella injected through the forelegs causes larvae death. The mortality rates were dependent on the Shigella strain, the infectious dose, and the presence of the virulence plasmid. Wild-type S. flexneri 2a, persisted and replicated within the larvae, resulting in haemocyte cell death, whereas plasmid-cured mutants were rapidly cleared. Histology of the infected larvae in conjunction with fluorescence, immunofluorescence, and transmission electron microscopy indicate that S. flexneri reside within a vacuole of the insect haemocytes that ultrastructurally resembles vacuoles described in studies with mouse and human macrophage cell lines. Some of these bacteria-laden vacuoles had double-membranes characteristic of autophagosomes. These results suggest that G. mellonella larvae can be used as an easy-to-use animal model to understand Shigella pathogenesis that requires none of the time and labor-consuming procedures typical of other systems.
Collapse
Affiliation(s)
- Shoshana Barnoy
- Department of Enteric Infections, Bacterial Diseases Branch (BDB), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Hanan Gancz
- Wound Infections Department, BDB, Walter Reed Army Institute of Research, Silver Spring Maryland, USA
| | - Yuewei Zhu
- Department of Enteric Infections, Bacterial Diseases Branch (BDB), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Cary L. Honnold
- Department of Pathology, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Daniel V. Zurawski
- Wound Infections Department, BDB, Walter Reed Army Institute of Research, Silver Spring Maryland, USA
| | - Malabi M. Venkatesan
- Department of Enteric Infections, Bacterial Diseases Branch (BDB), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA,CONTACT Malabi M. Venkatesan Chief, Dept. of Enteric Infections, Bacterial Diseases Branch, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD. 20910
| |
Collapse
|
14
|
Earl SC, Rogers MT, Keen J, Bland DM, Houppert AS, Miller C, Temple I, Anderson DM, Marketon MM. Resistance to Innate Immunity Contributes to Colonization of the Insect Gut by Yersinia pestis. PLoS One 2015; 10:e0133318. [PMID: 26177454 PMCID: PMC4503695 DOI: 10.1371/journal.pone.0133318] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/25/2015] [Indexed: 01/29/2023] Open
Abstract
Yersinia pestis, the causative agent of bubonic and pneumonic plague, is typically a zoonotic vector-borne disease of wild rodents. Bacterial biofilm formation in the proventriculus of the flea contributes to chronic infection of fleas and facilitates efficient disease transmission. However prior to biofilm formation, ingested bacteria must survive within the flea midgut, and yet little is known about vector-pathogen interactions that are required for flea gut colonization. Here we establish a Drosophila melanogaster model system to gain insight into Y. pestis colonization of the insect vector. We show that Y. pestis establishes a stable infection in the anterior midgut of fly larvae, and we used this model system to study the roles of genes involved in biofilm production and/or resistance to gut immunity stressors. We find that PhoP and GmhA both contribute to colonization and resistance to antimicrobial peptides in flies, and furthermore, the data suggest biofilm formation may afford protection against antimicrobial peptides. Production of reactive oxygen species in the fly gut, as in fleas, also serves to limit bacterial infection, and OxyR mediates Y. pestis survival in both insect models. Overall, our data establish the fruit fly as an informative model to elucidate the relationship between Y. pestis and its flea vector.
Collapse
Affiliation(s)
- Shaun C. Earl
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| | - Miles T. Rogers
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| | - Jennifer Keen
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| | - David M. Bland
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Andrew S. Houppert
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| | - Caitlynn Miller
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| | - Ian Temple
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| | - Deborah M. Anderson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Melanie M. Marketon
- Department of Biology, Indiana University, Bloomington, IN, United States of America
- * E-mail:
| |
Collapse
|
15
|
Temperature-Dependent Galleria mellonella Mortality as a Result of Yersinia entomophaga Infection. Appl Environ Microbiol 2015; 81:6404-14. [PMID: 26162867 DOI: 10.1128/aem.00790-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/29/2015] [Indexed: 12/28/2022] Open
Abstract
The bacterium Yersinia entomophaga is pathogenic to a range of insect species, with death typically occurring within 2 to 5 days of ingestion. Per os challenge of larvae of the greater wax moth (Galleria mellonella) confirmed that Y. entomophaga was virulent when fed to larvae held at 25°C but was avirulent when fed to larvae maintained at 37°C. At 25°C, a dose of ~4 × 10(7) CFU per larva of a Y. entomophaga toxin complex (Yen-TC) deletion derivative, the Y. entomophaga ΔTC variant, resulted in 27% mortality. This low level of activity was restored to near-wild-type levels by augmentation of the diet with a sublethal dose of purified Yen-TC. Intrahemocoelic injection of ~3 Y. entomophaga or Y. entomophaga ΔTC cells per larva gave a 4-day median lethal dose, with similar levels of mortality observed at both 25 and 37°C. Following intrahemocoelic injection of a Yen-TC YenA1 green fluorescent protein fusion strain into larvae maintained at 25°C, the bacteria did not fluoresce until the population density reached 2 × 10(7) CFU ml(-1) of hemolymph. The observed cells also took an irregular form. When the larvae were maintained at 37°C, the cells were small and the observed fluorescence was sporadic and weak, being more consistent at a population density of ~3 × 10(9) CFU ml(-1) of hemolymph. These findings provide further understanding of the pathobiology of Y. entomophaga in insects, showing that the bacterium gains direct access to the hemocoelic cavity, from where it rapidly multiplies to cause disease.
Collapse
|
16
|
Green J, Rolfe MD, Smith LJ. Transcriptional regulation of bacterial virulence gene expression by molecular oxygen and nitric oxide. Virulence 2014; 5:794-809. [PMID: 25603427 PMCID: PMC4601167 DOI: 10.4161/viru.27794] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Molecular oxygen (O2) and nitric oxide (NO) are diatomic gases that play major roles in infection. The host innate immune system generates reactive oxygen species and NO as bacteriocidal agents and both require O2 for their production. Furthermore, the ability to adapt to changes in O2 availability is crucial for many bacterial pathogens, as many niches within a host are hypoxic. Pathogenic bacteria have evolved transcriptional regulatory systems that perceive these gases and respond by reprogramming gene expression. Direct sensors possess iron-containing co-factors (iron–sulfur clusters, mononuclear iron, heme) or reactive cysteine thiols that react with O2 and/or NO. Indirect sensors perceive the physiological effects of O2 starvation. Thus, O2 and NO act as environmental cues that trigger the coordinated expression of virulence genes and metabolic adaptations necessary for survival within a host. Here, the mechanisms of signal perception by key O2- and NO-responsive bacterial transcription factors and the effects on virulence gene expression are reviewed, followed by consideration of these aspects of gene regulation in two major pathogens, Staphylococcus aureus and Mycobacterium tuberculosis.
Collapse
Key Words
- AIP, autoinducer peptide
- Arc, Aerobic respiratory control
- FNR
- FNR, fumarate nitrate reduction regulator
- GAF, cGMP-specific phosphodiesterase-adenylyl cyclase-FhlA domain
- Isc, iron–sulfur cluster biosynthesis machinery
- Mycobacterium tuberculosis
- NOX, NADPH oxidase
- PAS, Per-Amt-Sim domain
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- Staphylococcus aureus
- TB, tuberculosis
- WhiB-like proteins
- iNOS, inducible nitric oxide synthase
- iron–sulfur cluster
- nitric oxide sensors
- oxygen sensors
Collapse
Affiliation(s)
- Jeffrey Green
- a Krebs Institute; Molecular Biology & Biotechnology; University of Sheffield ; Western Bank , Sheffield , UK
| | | | | |
Collapse
|
17
|
Ford DC, Joshua GWP, Wren BW, Oyston PCF. The importance of the magnesium transporter MgtB for virulence of Yersinia pseudotuberculosis and Yersinia pestis. MICROBIOLOGY-SGM 2014; 160:2710-2717. [PMID: 25234474 DOI: 10.1099/mic.0.080556-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mg(2+) has been shown to be an important signal controlling gene regulation via the PhoPQ two-component regulatory system for a range of Gram-negative bacteria, including Yersinia pestis and Yersinia pseudotuberculosis. The magnesium ion transporter MgtB is part of the complex PhoPQ regulon, being upregulated in response to low Mg(2+). Despite the presence of other Mg(2+) transport systems in Yersinia, inactivation of mgtB had a significant effect on the ability of the bacteria to scavenge this crucial ion. Whereas inactivation of PhoPQ is reported to adversely affect intracellular survival, we show that Y. pestis and Y. pseudotuberculosis ΔmgtB mutants survived equally as well as the respective parent strain within macrophages, although they were more sensitive to killing in the Galleria model of infection. Surprisingly, despite MgtB being only one member of the Mg(2+) stimulon and PhoPQ controlling the expression levels of a range of genes including mgtB, the Yersinia ΔmgtB mutants were more highly attenuated than the equivalent Yersinia ΔphoP mutants in mouse models of infection. MgtB may be a suitable target for development of novel antimicrobials, and investigation of its role may help elucidate the contribution of this component of the PhoPQ regulon to pathogenesis.
Collapse
Affiliation(s)
- Donna C Ford
- Biomedical Sciences, Dstl Porton Down, Salisbury SP4 0JQ, UK
| | - George W P Joshua
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Brendan W Wren
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | |
Collapse
|
18
|
Loh JMS, Adenwalla N, Wiles S, Proft T. Galleria mellonella larvae as an infection model for group A streptococcus. Virulence 2013; 4:419-28. [PMID: 23652836 PMCID: PMC3714134 DOI: 10.4161/viru.24930] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Group A streptococcus is a strict human pathogen that can cause a wide range of diseases, such as tonsillitis, impetigo, necrotizing fasciitis, toxic shock, and acute rheumatic fever. Modeling human diseases in animals is complicated, and rapid, simple, and cost-effective in vivo models of GAS infection are clearly lacking. Recently, the use of non-mammalian models to model human disease is starting to re-attract attention. Galleria mellonella larvae, also known as wax worms, have been investigated for modeling a number of bacterial pathogens, and have been shown to be a useful model to study pathogenesis of the M3 serotype of GAS. In this study we provide further evidence of the validity of the wax worm model by testing different GAS M-types, as well as investigating the effect of bacterial growth phase and incubation temperature on GAS virulence in this model. In contrast to previous studies, we show that the M-protein, among others, is an important virulence factor that can be effectively modeled in the wax worm. We also highlight the need for a more in-depth investigation of the effects of experimental design and wax worm supply before we can properly vindicate the wax worm model for studying GAS pathogenesis.
Collapse
Affiliation(s)
- Jacelyn M S Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, University of Auckland, Auckland, NZ
| | | | | | | |
Collapse
|
19
|
Induction of the Yersinia pestis PhoP-PhoQ regulatory system in the flea and its role in producing a transmissible infection. J Bacteriol 2013; 195:1920-30. [PMID: 23435973 DOI: 10.1128/jb.02000-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transmission of Yersinia pestis is greatly enhanced after it forms a bacterial biofilm in the foregut of the flea vector that interferes with normal blood feeding. Here we report that the ability to produce a normal foregut-blocking infection depends on induction of the Y. pestis PhoP-PhoQ two-component regulatory system in the flea. Y. pestis phoP-negative mutants achieved normal infection rates and bacterial loads in the flea midgut but produced a less cohesive biofilm both in vitro and in the flea and had a greatly reduced ability to localize to and block the flea foregut. Thus, not only is the PhoP-PhoQ system induced in the flea gut environment, but also this induction is required to produce a normal transmissible infection. The altered biofilm phenotype in the flea was not due to lack of PhoPQ-dependent or PmrAB-dependent addition of aminoarabinose to the Y. pestis lipid A, because an aminoarabinose-deficient mutant that is highly sensitive to cationic antimicrobial peptides had a normal phenotype in the flea digestive tract. In addition to enhancing transmissibility, induction of the PhoP-PhoQ system in the arthropod vector prior to transmission may preadapt Y. pestis to resist the initial encounter with the mammalian innate immune response.
Collapse
|
20
|
Utility of insects for studying human pathogens and evaluating new antimicrobial agents. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 135:1-25. [PMID: 23604210 DOI: 10.1007/10_2013_194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Insect models, such as Galleria mellonella and Drosophila melanogaster have significant ethical, logistical, and economic advantages over mammalian models for the studies of infectious diseases. Using these models, various pathogenic microbes have been studied and many novel virulence genes have been identified. Notably, because insects are susceptible to a wide variety of human pathogens and have immune responses similar to those of mammals, they offer the opportunity to understand innate immune responses against human pathogens better. It is important to note that insect pathosystems have also offered a simple strategy to evaluate the efficacy and toxicity of many antimicrobial agents. Overall, insect models provide a rapid, inexpensive, and reliable way as complementary hosts to conventional vertebrate animal models to study pathogenesis and antimicrobial agents.
Collapse
|
21
|
Zhou W, Russell CW, Johnson KL, Mortensen RD, Erickson DL. Gene expression analysis of Xenopsylla cheopis (Siphonaptera: Pulicidae) suggests a role for reactive oxygen species in response to Yersinia pestis infection. JOURNAL OF MEDICAL ENTOMOLOGY 2012; 49:364-370. [PMID: 22493856 DOI: 10.1603/me11172] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Fleas are vectors for a number of pathogens including Yersinia pestis, yet factors that govern interactions between fleas and Y. pestis are not well understood. Examining gene expression changes in infected fleas could reveal pathways that affect Y. pestis survival in fleas and subsequent transmission. We used suppression subtractive hybridization to identify genes that are induced in Xenopsylla cheopis (Rothschild) (Siphonaptera: Pulicidae) in response to oral or hemocoel infection with Y. pestis. Overall, the transcriptional changes we detected were very limited. We identified several genes that are likely involved in the production or removal of reactive oxygen species (ROS). Midgut ROS levels were higher in infected fleas and antioxidant treatment before infection reduced ROS levels and resulted in higher bacterial loads. An ROS-sensitive mutant strain of Y. pestis lacking the OxyR transcriptional regulator showed reduced growth early after infection. Our results indicate that ROS may limit Y. pestis early colonization of fleas and that bacterial strategies to overcome ROS may enhance transmission.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Microbiology and Molecular Biology, Brigham Young University, WIDB 893, Provo, UT 84602, USA
| | | | | | | | | |
Collapse
|