1
|
Joo H, Gu C, Wiest M, Duluc D, Fernandez E, Nyarige V, Yi J, Oh S. Differential expression of nuclear hormone receptors by dendritic cell subsets in human vaginal mucosa and skin. Front Immunol 2023; 13:1063343. [PMID: 36713394 PMCID: PMC9880315 DOI: 10.3389/fimmu.2022.1063343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023] Open
Abstract
Nuclear hormone receptors (NHRs) expressed by dendritic cells (DCs), the major immune inducers and regulators, could play important roles in host immunity. Assessment of NHRs expressed by DCs in the vaginal mucosa (VM), in comparison with those expressed by DCs in other tissues, will thus help us understand the immunology of human vagina. This study identified 16 NHR transcripts that are differentially expressed among 8 different antigen-presenting cell (APC) subsets isolated from human VM, skin, and blood. The expression profiles of NHRs were largely tissue specific. VM APCs expressed increased levels of LXRA, RXRA, ESRRA, ESRRAP2, and PPARG, whereas skin and blood APCs expressed increased levels of NURR1, NOR1 and RARA. Of interest, female sex hormone receptors, ESR1 and PGR, were found to be mainly expressed by non-APC cell types in the VM; ESR1 by HLA-DR+CD34+ and PGR by HLA-DR- cells. ERα and PR were expressed by vimentin+ cells in the VM, but not in human skin. ERα, but not PR, was also expressed in CD10+ cells in the lamina propria of VM. In conclusion, NHR expression by APC subsets is tissue- and cell type-specific. Future studies on the roles of individual NHRs expressed by different cell types, including DC subsets, in the human VM are warranted.
Collapse
Affiliation(s)
- HyeMee Joo
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States
| | - Chao Gu
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States
| | - Matthew Wiest
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States
| | - Dorothee Duluc
- Immunoconcept, Centre National de la Recherche Scientifique (CNRS) UMR 5164, Bordeaux University, Bordeaux, France
| | - Emyly Fernandez
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States
| | - Verah Nyarige
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ, United States
| | - Johnny Yi
- Department of Medical and Surgery Gynecology, Mayo Clinic, Phoenix, AZ, United States
| | - SangKon Oh
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States,*Correspondence: SangKon Oh,
| |
Collapse
|
2
|
Neuwirth T, Knapp K, Stary G. (Not) Home alone: Antigen presenting cell - T Cell communication in barrier tissues. Front Immunol 2022; 13:984356. [PMID: 36248804 PMCID: PMC9556809 DOI: 10.3389/fimmu.2022.984356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Priming of T cells by antigen presenting cells (APCs) is essential for T cell fate decisions, enabling T cells to migrate to specific tissues to exert their effector functions. Previously, these interactions were mainly explored using blood-derived cells or animal models. With great advances in single cell RNA-sequencing techniques enabling analysis of tissue-derived cells, it has become clear that subsets of APCs are responsible for priming and modulating heterogeneous T cell effector responses in different tissues. This composition of APCs and T cells in tissues is essential for maintaining homeostasis and is known to be skewed in infection and inflammation, leading to pathological T cell responses. This review highlights the commonalities and differences of T cell priming and subsequent effector function in multiple barrier tissues such as the skin, intestine and female reproductive tract. Further, we provide an overview of how this process is altered during tissue-specific infections which are known to cause chronic inflammation and how this knowledge could be harnessed to modify T cell responses in barrier tissue.
Collapse
Affiliation(s)
- Teresa Neuwirth
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Katja Knapp
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| |
Collapse
|
3
|
Gu C, Duluc D, Wiest M, Xue Y, Yi J, Gorvel JP, Joo H, Oh S. Cell type-specific expression of estrogen and progesterone receptors in the human vaginal mucosa. Clin Immunol 2021; 232:108874. [PMID: 34740841 DOI: 10.1016/j.clim.2021.108874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/30/2022]
Abstract
Female sex hormones affect the immune response in the lower female genital tract. To understand their mechanisms of action, it is essential to define cell types expressing estrogen receptor (ER) and/or progesterone receptor (PR) in the human vaginal mucosa (VM). Here, we report that none of the dendritic cell (DC) subsets in the human VM expressed ERα or PR in situ. However, they were capable of expressing ERα, but not PR, after in vitro culture of the whole VM tissues. Similarly, ERα and/or PR expression by T cells in the VM tissues was also inducible rather than constitutive. In contrast, ERα and/or PR were constitutively expressed in HLA-DR- non-immune cell types (vimentin+, desmin+, or CD10+). These new findings will help us understand the mechanisms of action of female sex hormones in the modulation of immune response in the human VM and lower female genital tract.
Collapse
Affiliation(s)
- Chao Gu
- Department of Immunology, Mayo Clinic, 13400 E Shea Blvd, Scottsdale, AZ, USA
| | - Dorothee Duluc
- Immunoconcept, CNRS UMR 5164, Bordeaux University, Bordeaux, France
| | - Matthew Wiest
- Department of Immunology, Mayo Clinic, 13400 E Shea Blvd, Scottsdale, AZ, USA
| | - Yaming Xue
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Johnny Yi
- Department of Medical and Surgery Gynecology, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, USA
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy, CIML, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - HyeMee Joo
- Department of Immunology, Mayo Clinic, 13400 E Shea Blvd, Scottsdale, AZ, USA.
| | - SangKon Oh
- Department of Immunology, Mayo Clinic, 13400 E Shea Blvd, Scottsdale, AZ, USA.
| |
Collapse
|
4
|
Targeting human langerin promotes HIV-1 specific humoral immune responses. PLoS Pathog 2021; 17:e1009749. [PMID: 34324611 PMCID: PMC8354475 DOI: 10.1371/journal.ppat.1009749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 08/10/2021] [Accepted: 06/24/2021] [Indexed: 12/01/2022] Open
Abstract
The main avenue for the development of an HIV-1 vaccine remains the induction of protective antibodies. A rationale approach is to target antigen to specific receptors on dendritic cells (DC) via fused monoclonal antibodies (mAb). In mouse and non-human primate models, targeting of skin Langerhans cells (LC) with anti-Langerin mAbs fused with HIV-1 Gag antigen drives antigen-specific humoral responses. The development of these immunization strategies in humans requires a better understanding of early immune events driven by human LC. We therefore produced anti-Langerin mAbs fused with the HIV-1 gp140z Envelope (αLC.Env). First, we show that primary skin human LC and in vitro differentiated LC induce differentiation and expansion of naïve CD4+ T cells into T follicular helper (Tfh) cells. Second, when human LC are pre-treated with αLC.Env, differentiated Tfh cells significantly promote the production of specific IgG by B cells. Strikingly, HIV-Env-specific Ig are secreted by HIV-specific memory B cells. Consistently, we found that receptors and cytokines involved in Tfh differentiation and B cell functions are upregulated by LC during their maturation and after targeting Langerin. Finally, we show that subcutaneous immunization of mice by αLC.Env induces germinal center (GC) reaction in draining lymph nodes with higher numbers of Tfh cells, Env-specific B cells, as well as specific IgG serum levels compared to mice immunized with the non-targeting Env antigen. Altogether, we provide evidence that human LC properly targeted may be licensed to efficiently induce Tfh cell and B cell responses in GC. In recent years, the place of innovative vaccines based on the induction/regulation and modulation of the immune response with the aim to elicit an integrated T- and B cell immune responses against complex antigens has emerged besides “classical” vaccine vectors. Targeting antigens to dendritic cells is a vaccine technology concept supported by more than a decade of animal models and human pre-clinical experimentation. Recent investigations in animals underscored that Langerhans cells (LC) are an important target to consider for the induction of antibody responses by DC targeting vaccine approaches. Nonetheless, the development of these immunization strategies in humans remains elusive. We therefore developed and produced an HIV vaccine candidate targeting specifically LC through the Langerin receptor. We tested the ability of our vaccine candidate of targeting LC from skin explant and of inducing in vitro the differentiation of T follicular helper (Tfh) cells. Using complementary in vitro models, we demonstrated that Tfh cells induced by human LC are functional and the targeting of LC by our vaccine candidate promotes the secretion of anti-HIV IgG by memory B cells from HIV-infected individuals. In this study human LC exhibit key cellular functions able to drive potent anti-HIV-1 humoral responses providing mechanistic evidence of the Tfh- and B cell stimulating functions of primary skin targeted LC. Finally, we demonstrated in Xcr1DTA mice the significant advantage of LC targeting for inducing Tfh and germinal center (GC)-B cells and anti-HIV-1 antibodies. Therefore, the targeting of the human Langerin receptor appears to be a promising strategy for developing efficient HIV-1 vaccine.
Collapse
|
5
|
Garnica O, Das K, Devasundaram S, Dhandayuthapani S. Enhanced delivery of Mycobacterium tuberculosis antigens to antigen presenting cells using RVG peptide. Tuberculosis (Edinb) 2019; 116S:S34-S41. [PMID: 31064713 DOI: 10.1016/j.tube.2019.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 10/26/2022]
Abstract
Among the various strategies to improve vaccines against infectious diseases, targeting of antigens to dendritic cells (DCs), which are professional antigen presenting cells (APCs), has received increased attention in recent years. Here, we investigated whether a synthetic peptide region named RVG, originated from Rabies Virus Glycoprotein that binds to the α-7 subunit of the nicotinic acetylcholine receptors (AchR-α7) of APCs, could be used for the delivery of Mycobacterium tuberculosis (Mtb) peptide antigens to DCs and macrophages. Mouse bone marrow derived DCs (BMDCs) and human THP-1 macrophages stimulated with RVG fused peptide epitopes 85B241 and 85B96 (represent Ag85B241-256 and Ag85B96-111, respectively) from antigen 85B (Ag85B) of Mtb showed enhanced antigen presentation as compared to unfused peptide epitopes and BCG. Further, BMDCs stimulated with RVG fused 85B241 showed higher levels of IL-12 positive cells. Consistent with in vitro data, splenocytes of mice immunized with RVG-85B241 showed increased number of antigen specific IFN-γ, IL-2, and TNF-α producing cells in relation to splenocytes from mice immunized with 85B241 alone. These results suggest that RVG may be a promising tool to develop effective alternate vaccines against tuberculosis (TB).
Collapse
Affiliation(s)
- Omar Garnica
- Center of Emphasis in Infectious Diseases and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Kishore Das
- Center of Emphasis in Infectious Diseases and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Santhi Devasundaram
- Center of Emphasis in Infectious Diseases and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA; Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA.
| |
Collapse
|
6
|
Liu Y, Yang HL, Zhong FF, Fan JY. Anti-apoptotic function of herpes simplex virus -2 latency-associated transcript RL1 sequence and screening of its encoded microRNAs. Clin Exp Dermatol 2018; 41:782-91. [PMID: 27663158 DOI: 10.1111/ced.12671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND The latency-associated transcript (LAT) gene of herpes simplex virus (HSV)-2 is the only detectable viral gene expressed during latent infection in neurons. LAT inhibits apoptosis and maintains latency by promoting the survival of infected neurons. However, whether LAT functions during HSV-2 infection via its encoded RNAs or via its encoded proteins remain unknown. Increasing evidence has indicated that LAT is likely to functionally promote the establishment of latent infection via LAT-encoded microRNAs (miRNAs). AIM To explore whether the RL1 fragment of the five adjacent miRNAs has an effect on cell apoptosis, then provide supporting evidence to elucidate the potential role of these miRNAs and to aid screening of their cellular targets. METHODS A number of techniques, including MTT assay, flow cytometry and DNA ladder analysis, were used to verify the role of the RL1 fragment and the contribution of the individual miRNAs to the anti-apoptotic effect. RESULTS Five miRNAs (miR-H3, miR-H4-3p, miR-H4-5p, miR-H24 and miR-H19) were detected by quantitative PCR in PC12 cells stably expressing RL1 after pEGFP-RL1 plasmid transfection in vitro. The data indicated that expression of HSV-2 LAT RL1 seems to provide protection against apoptosis of PC12 cells induced by ActD. Antisense miRNAs specifically inhibiting these five miRNAs could efficiently reduce their expression. Transfection of antisense-miR-H3, antisense-miR-H4-5p and antisense-miR-H19 into PC12 cells stably expressing RL1 were able to partly reverse the anti-apoptotic effect of these miRNAs. CONCLUSIONS These findings indicate that the apoptotic role of the RL1 fragment is likely to be related to overexpression of miR-H3, miR-H4-5p and miR-H19 in PC12 cells.
Collapse
Affiliation(s)
- Y Liu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong, China
| | - H L Yang
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong, China.
| | - F F Zhong
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong, China.,Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong, China
| | - J Y Fan
- Department of Dermatology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Retamal-Díaz AR, Kalergis AM, Bueno SM, González PA. A Herpes Simplex Virus Type 2 Deleted for Glycoprotein D Enables Dendritic Cells to Activate CD4 + and CD8 + T Cells. Front Immunol 2017; 8:904. [PMID: 28848543 PMCID: PMC5553038 DOI: 10.3389/fimmu.2017.00904] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/14/2017] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus type 2 (HSV-2) is highly prevalent in the human population producing significant morbidity, mainly because of the generation of genital ulcers and neonatal encephalitis. Additionally, HSV-2 infection significantly increases the susceptibility of the host to acquire HIV and promotes the shedding of the latter in the coinfected. Despite numerous efforts to create a vaccine against HSV-2, no licensed vaccines are currently available. A long-standing strategy, based on few viral glycoproteins combined with adjuvants, recently displayed poor results in a Phase III clinical study fueling exploration on the development of mutant HSV viruses that are attenuated in vivo and elicit protective adaptive immune components, such as antiviral antibodies and T cells. Importantly, such specialized antiviral immune components are likely induced and modulated by dendritic cells, professional antigen presenting cells that process viral antigens and present them to T cells. However, HSV interferes with several functions of DCs and ultimately induces their death. Here, we propose that for an attenuated mutant virus to confer protective immunity against HSV in vivo based on adaptive immune components, such virus should also be attenuated in dendritic cells to promote a robust and effective antiviral response. We provide a background framework for this idea, considerations, as well as the means to assess this hypothesis. Addressing this hypothesis may provide valuable insights for the development of novel, safe, and effective vaccines against herpes simplex viruses.
Collapse
Affiliation(s)
- Angello R Retamal-Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,INSERM U1064, Nantes, France
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,INSERM U1064, Nantes, France
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Rodriguez-Garcia M, Shen Z, Barr FD, Boesch AW, Ackerman ME, Kappes JC, Ochsenbauer C, Wira CR. Dendritic cells from the human female reproductive tract rapidly capture and respond to HIV. Mucosal Immunol 2017; 10:531-544. [PMID: 27579858 PMCID: PMC5332537 DOI: 10.1038/mi.2016.72] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 07/07/2016] [Indexed: 02/04/2023]
Abstract
Dendritic cells (DCs) throughout the female reproductive tract (FRT) were examined for phenotype, HIV capture ability and innate anti-HIV responses. Two main CD11c+ DC subsets were identified: CD11b+ and CD11blow DCs. CD11b+CD14+ DCs were the most abundant throughout the tract. A majority of CD11c+CD14+ cells corresponded to CD1c+ myeloid DCs, whereas the rest lacked CD1c and CD163 expression (macrophage marker) and may represent monocyte-derived cells. In addition, we identified CD103+ DCs, located exclusively in the endometrium, whereas DC-SIGN+ DCs were broadly distributed throughout the FRT. Following exposure to GFP-labeled HIV particles, CD14+ DC-SIGN+ as well as CD14+ DC-SIGN- cells captured virus, with ∼30% of these cells representing CD1c+ myeloid DCs. CD103+ DCs lacked HIV capture ability. Exposure of FRT DCs to HIV induced secretion of CCL2, CCR5 ligands, interleukin (IL)-8, elafin, and secretory leukocyte peptidase inhibitor (SLPI) within 3 h of exposure, whereas classical pro-inflammatory molecules did not change and interferon-α2 and IL-10 were undetectable. Furthermore, elafin and SLPI upregulation, but not CCL5, were suppressed by estradiol pre-treatment. Our results suggest that specific DC subsets in the FRT have the potential for capture and dissemination of HIV, exert antiviral responses and likely contribute to the recruitment of HIV-target cells through the secretion of innate immune molecules.
Collapse
Affiliation(s)
- M Rodriguez-Garcia
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA,Corresponding author. Address correspondence to Dr. Marta Rodriguez-Garcia, Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756. Fax number: 603-6507717. Telephone number: 603-6502583.
| | - Zheng Shen
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Fiona D. Barr
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | | | | - John C. Kappes
- Department of Medicine and UAB Center for AIDS Research, University of Alabama at Birmingham, AL,Birmingham Veterans Affairs Medical Center, Research Service Birmingham, AL
| | - Christina Ochsenbauer
- Department of Medicine and UAB Center for AIDS Research, University of Alabama at Birmingham, AL
| | - Charles R. Wira
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
9
|
The HPV16 E7 Oncoprotein Disrupts Dendritic Cell Function and Induces the Systemic Expansion of CD11b(+)Gr1(+) Cells in a Transgenic Mouse Model. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8091353. [PMID: 27478837 PMCID: PMC4958469 DOI: 10.1155/2016/8091353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/05/2016] [Accepted: 06/13/2016] [Indexed: 11/17/2022]
Abstract
Objective. The aim of this study was to analyze the effects of the HPV16 E7 oncoprotein on dendritic cells (DCs) and CD11b(+)Gr1(+) cells using the K14E7 transgenic mouse model. Materials and Methods. The morphology of DCs was analyzed in male mouse skin on epidermal sheets using immunofluorescence and confocal microscopy. Flow cytometry was used to determine the percentages of DCs and CD11b(+)Gr1(+) cells in different tissues and to evaluate the migration of DCs. Results. In the K14E7 mouse model, the morphology of Langerhans cells and the migratory activity of dendritic cells were abnormal. An increase in CD11b(+)Gr1(+) cells was observed in the blood and skin of K14E7 mice, and molecules related to CD11b(+)Gr1(+) chemoattraction (MCP1 and S100A9) were upregulated. Conclusions. These data suggest that the HPV16 E7 oncoprotein impairs the function and morphology of DCs and induces the systemic accumulation of CD11b(+)Gr1(+) cells.
Collapse
|
10
|
Duluc D, Banchereau R, Gannevat J, Thompson-Snipes L, Blanck JP, Zurawski S, Zurawski G, Hong S, Rossello-Urgell J, Pascual V, Baldwin N, Stecher J, Carley M, Boreham M, Oh S. Transcriptional fingerprints of antigen-presenting cell subsets in the human vaginal mucosa and skin reflect tissue-specific immune microenvironments. Genome Med 2014; 6:98. [PMID: 25520755 PMCID: PMC4268898 DOI: 10.1186/s13073-014-0098-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/28/2014] [Indexed: 12/30/2022] Open
Abstract
Background Dendritic cells localize throughout the body, where they can sense
and capture invading pathogens to induce protective immunity. Hence, harnessing
the biology of tissue-resident dendritic cells is fundamental for the rational
design of vaccines against pathogens. Methods Herein, we characterized the transcriptomes of four
antigen-presenting cell subsets from the human vagina (Langerhans cells,
CD14- and CD14+ dendritic
cells, macrophages) by microarray, at both the transcript and network level, and
compared them to those of three skin dendritic cell subsets and blood myeloid
dendritic cells. Results We found that genomic fingerprints of antigen-presenting cells are
significantly influenced by the tissue of origin as well as by individual subsets.
Nonetheless, CD14+ populations from both vagina and
skin are geared towards innate immunity and pro-inflammatory responses, whereas
CD14- populations, particularly skin and vaginal
Langerhans cells, and vaginal CD14- dendritic cells,
display both Th2-inducing and regulatory phenotypes. We also identified new
phenotypic and functional biomarkers of vaginal antigen-presenting cell
subsets. Conclusions We provide a transcriptional database of 87 microarray samples
spanning eight antigen-presenting cell populations in the human vagina, skin and
blood. Altogether, these data provide molecular information that will further help
characterize human tissue antigen-presenting cell lineages and their functions.
Data from this study can guide the design of mucosal vaccines against sexually
transmitted pathogens. Electronic supplementary material The online version of this article (doi:10.1186/s13073-014-0098-y) contains supplementary material, which is available to authorized
users.
Collapse
Affiliation(s)
- Dorothée Duluc
- Baylor Institute for Immunology Research, 3434 Live Oak St, Dallas, TX 75204 USA
| | - Romain Banchereau
- Baylor Institute for Immunology Research, 3434 Live Oak St, Dallas, TX 75204 USA
| | - Julien Gannevat
- Baylor Institute for Immunology Research, 3434 Live Oak St, Dallas, TX 75204 USA
| | | | - Jean-Philippe Blanck
- Baylor Institute for Immunology Research, 3434 Live Oak St, Dallas, TX 75204 USA
| | - Sandra Zurawski
- Baylor Institute for Immunology Research, 3434 Live Oak St, Dallas, TX 75204 USA
| | - Gerard Zurawski
- Baylor Institute for Immunology Research, 3434 Live Oak St, Dallas, TX 75204 USA
| | - Seunghee Hong
- Baylor Institute for Immunology Research, 3434 Live Oak St, Dallas, TX 75204 USA
| | - Jose Rossello-Urgell
- Baylor Institute for Immunology Research, 3434 Live Oak St, Dallas, TX 75204 USA
| | - Virginia Pascual
- Baylor Institute for Immunology Research, 3434 Live Oak St, Dallas, TX 75204 USA
| | - Nicole Baldwin
- Baylor Institute for Immunology Research, 3434 Live Oak St, Dallas, TX 75204 USA
| | - Jack Stecher
- Department of Obstetrics and Gynecology, Baylor University Medical Center, 3600 Gaston Ave, Dallas, TX 75246 USA
| | - Michael Carley
- Department of Obstetrics and Gynecology, Baylor University Medical Center, 3600 Gaston Ave, Dallas, TX 75246 USA
| | - Muriel Boreham
- Department of Obstetrics and Gynecology, Baylor University Medical Center, 3600 Gaston Ave, Dallas, TX 75246 USA
| | - SangKon Oh
- Baylor Institute for Immunology Research, 3434 Live Oak St, Dallas, TX 75204 USA
| |
Collapse
|