1
|
Menezes Dantas DD, Macêdo NS, Sousa Silveira ZD, Santos Barbosa CRD, Muniz DF, Bezerra AH, Sousa JTD, Alencar GG, Morais Oliveira-Tintino CDD, Tintino SR, da Rocha MN, Marinho ES, Marinho MM, Dos Santos HS, Melo Coutinho HD, Cunha FABD. Naringenin as potentiator of norfloxacin efficacy through inhibition of the NorA efflux pump in Staphylococcus aureus. Microb Pathog 2025; 203:107504. [PMID: 40154849 DOI: 10.1016/j.micpath.2025.107504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/07/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Bacterial resistance is a major challenge in the treatment of Staphylococcus aureus infections, with efflux mechanisms highlighted as reducing the efficacy of antibiotics. In this study, we investigated the potential of naringenin, a natural flavonoid, as an antibacterial agent and efflux pump inhibitor in S. aureus strains 1199 and 1199B. The studies used minimum inhibitory concentration (MIC) assays, ethidium bromide (EtBr) fluorescence emission enhancement assays, cell membrane permeability assays, and in silico molecular docking and ADME prediction assays. Naringenin showed no relevant antibacterial activity (MIC ≥1024 μg/mL). However, it potentiated the effect of norfloxacin and EtBr, reducing their MICs and increasing the fluorescence emission of EtBr, suggesting a possible inhibition of the NorA efflux pump. Bacterial membrane permeability was not significantly affected. Molecular docking assays indicated that naringenin interacts with the chlorpromazine binding site and has more favorable affinity energy than the chlorpromazine-NorA complex. ADME prediction showed favorable physicochemical properties, good oral absorption, metabolic stability and central nervous system safety. Therefore, naringenin demonstrates the potential to reverse the efficacy of norfloxacin in S. aureus by associating with efflux inhibition through effective interactions with the NorA protein, suggesting its therapeutic potential against bacterial resistance.
Collapse
Affiliation(s)
- Debora de Menezes Dantas
- Postgraduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri - URCA, Crato, CE, Brazil; Semi-arid Bioprospecting Laboratory and Alternative Methods, Pimenta Campus, Regional University of Cariri - URCA, Crato, CE, Brazil.
| | - Nair Silva Macêdo
- Postgraduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri - URCA, Crato, CE, Brazil; Semi-arid Bioprospecting Laboratory and Alternative Methods, Pimenta Campus, Regional University of Cariri - URCA, Crato, CE, Brazil
| | - Zildene de Sousa Silveira
- Graduate Program in Biological Sciences- PPGCB, Federal University of Pernambuco - UFPE, Recife, Pernambuco, Brazil; Semi-arid Bioprospecting Laboratory and Alternative Methods, Pimenta Campus, Regional University of Cariri - URCA, Crato, CE, Brazil
| | - Cristina Rodrigues Dos Santos Barbosa
- Postdoctoral Intern at the Semiarid Bioprospecting Laboratory (LABSEMA), Regional University of Cariri - URCA, Crato, CE, Brazil; Semi-arid Bioprospecting Laboratory and Alternative Methods, Pimenta Campus, Regional University of Cariri - URCA, Crato, CE, Brazil
| | - Débora Feitosa Muniz
- Postgraduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri - URCA, Crato, CE, Brazil; Semi-arid Bioprospecting Laboratory and Alternative Methods, Pimenta Campus, Regional University of Cariri - URCA, Crato, CE, Brazil
| | - Antônio Henrique Bezerra
- Postgraduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri - URCA, Crato, CE, Brazil; Semi-arid Bioprospecting Laboratory and Alternative Methods, Pimenta Campus, Regional University of Cariri - URCA, Crato, CE, Brazil
| | - Josivânia Teixeira de Sousa
- Semi-arid Bioprospecting Laboratory and Alternative Methods, Pimenta Campus, Regional University of Cariri - URCA, Crato, CE, Brazil
| | - Gabriel Gonçalves Alencar
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri - URCA, Crato, 63105-000, CE, Brazil
| | - Cícera Datiane de Morais Oliveira-Tintino
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri - URCA, Crato, 63105-000, CE, Brazil; Postdoctoral Intern at the Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri - URCA, Crato, CE, Brazil
| | - Saulo Relison Tintino
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri - URCA, Crato, 63105-000, CE, Brazil; Biological Chemistry Department, Pimenta Campus, Regional University of Cariri - URCA, Crato, CE, Brazil
| | - Matheus Nunes da Rocha
- Ceará State University, Postgraduate Program in Natural Sciences, Laboratory of Chemistry of Natural Products, Fortaleza, CE, Brazil
| | - Emmanuel Silva Marinho
- Ceará State University, Postgraduate Program in Natural Sciences, Laboratory of Chemistry of Natural Products, Fortaleza, CE, Brazil
| | | | - Hélcio Silva Dos Santos
- Biological Chemistry Department, Pimenta Campus, Regional University of Cariri - URCA, Crato, CE, Brazil
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri - URCA, Crato, 63105-000, CE, Brazil; Biological Chemistry Department, Pimenta Campus, Regional University of Cariri - URCA, Crato, CE, Brazil
| | - Francisco Assis Bezerra da Cunha
- Semi-arid Bioprospecting Laboratory and Alternative Methods, Pimenta Campus, Regional University of Cariri - URCA, Crato, CE, Brazil; Biological Chemistry Department, Pimenta Campus, Regional University of Cariri - URCA, Crato, CE, Brazil
| |
Collapse
|
2
|
Fekri Kohan S, Nouhi Kararoudi A, Bazgosha M, Adelifar S, Hafezolghorani Esfahani A, Ghaderi Barmi F, Kouchakinejad R, Barzegari E, Shahriarinour M, Ranji N. Determining the potential targets of silybin by molecular docking and its antibacterial functions on efflux pumps and porins in uropathogenic E. coli. Int Microbiol 2025; 28:63-74. [PMID: 38363383 DOI: 10.1007/s10123-024-00488-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND One of the causes of antibiotic resistance is the reduced accumulation of antibiotics in bacterial cells through pumping out the drugs. Silybin, a key component of the Silybum marianum plant, exhibits various beneficial properties, including anti-bacterial, anti-inflammatory, antioxidant, and hepatoprotective effects. METHODS AND RESULTS Clinical isolates of E. coli were procured from 17 Shahrivar Children's Hospital in Rasht, Guilan, located in northern Iran. Their susceptibility to six antibiotics was assessed using disc diffusion and broth dilution (MIC) methods. The antibacterial effects of silybin-loaded polymersome nanoparticles (SPNs) were investigated with broth dilution (MIC) and biofilm assays. Molecular docking was utilized to evaluate silybin's (the antibacterial component) binding affinity to efflux pumps, porins, and their regulatory elements. Additionally, qRT-PCR analysis explored the expression patterns of acrA, acrB, tolC, ompC, and ompF genes in both SPNs (sub-MIC) and ciprofloxacin (sub-MIC)-treated and untreated E. coli isolates. The combined use of SPNs and ciprofloxacin exhibited a notable reduction in bacterial growth and biofilm formation, in ciprofloxacin-resistant isolates. The study identified eight overlapping binding sites of the AcrABZ-TolC efflux pump in association with silybin, demonstrating a binding affinity ranging from -7.688 to -10.33 Kcal/mol. Furthermore, the qRT-PCR analysis showed that silybin upregulated AcrAB-TolC efflux pump genes and downregulated ompC and ompF porin genes in combination with ciprofloxacin in transcriptional level in uropathogenic E. coli. CONCLUSIONS Silybin, a safe herbal compound, exhibits potential in inhibiting antibiotic resistance within bacterial isolates, potentially through the regulation of gene expression and plausible binding to target proteins.
Collapse
Affiliation(s)
- Shirin Fekri Kohan
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, P.O. Box: 41335-3516, Rasht, Iran
| | - Alireza Nouhi Kararoudi
- Department of Biology, Faculty of Sciences, Lahijan Branch, Islamic Azad University, Rasht, Iran
| | - Maryam Bazgosha
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, P.O. Box: 41335-3516, Rasht, Iran
| | - Somayeh Adelifar
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, P.O. Box: 41335-3516, Rasht, Iran
| | - Arman Hafezolghorani Esfahani
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, P.O. Box: 41335-3516, Rasht, Iran
| | - Fatemeh Ghaderi Barmi
- Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| | - Reyhaneh Kouchakinejad
- Department of Chemistry, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Ebrahim Barzegari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahdi Shahriarinour
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, P.O. Box: 41335-3516, Rasht, Iran.
| | - Najmeh Ranji
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, P.O. Box: 41335-3516, Rasht, Iran.
| |
Collapse
|
3
|
Eskandari A, Safavi SN, Sahrayi H, Alizadegan D, Eskandarisani M, Javanmard A, Tajik M, Sadeghi Z, Toutounch A, Yeganeh FE, Noorbazargan H. Antimicrobial and antibiofilm activity of prepared thymol@UIO-66 and thymol/ZnONPs@UIO-66 nanoparticles against Methicillin-resistant Staphylococcus aureus: A synergistic approach. Colloids Surf B Biointerfaces 2025; 249:114529. [PMID: 39879671 DOI: 10.1016/j.colsurfb.2025.114529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/31/2025]
Abstract
This study introduces a novel approach to enhance the antibacterial properties of UIO-66 by incorporating both Thymol and ZnO nanoparticles within its framework which represents a significant advancement like exhibiting a synergistic antibacterial effect, providing a prolonged and controlled release, and mitigating cytotoxicity associated with the release of free ZnO nanoparticles by combining these two antimicrobial agents within a single, well-defined metal-organic framework. UIO-66 frameworks are investigated as carriers for the natural antimicrobial agent, Thymol, and ZnONPs offering a novel drug delivery system for antibacterial applications. Results demonstrated 132, 90, 184, and 223 nm sizes for UIO-66, ZnONPs, UIO-66 encapsulated Thymol, and UIO-66 encapsulated both Thymol and ZnONPs, respectively. Successful encapsulation of the antibacterial drug with a high entrapment efficiency of 64 % for Thymol was approved, and 49 % in-vitro release of Thymol was achieved for 72 hours. In-vitro antibacterial assays revealed promising results, with the drug-loaded nanoparticles exhibiting significantly lower MIC values and enhanced bactericidal activity against S. Aureus bacterial strains compared to the free drug, as demonstrated by agar disk diffusion and time-kill assays. MIC values reduced from a range of 31.25-250 µg/ml for free Thymol and 12.5-100 µg/ml for free ZnONPs to 3.9-62.5 µg/ml for Thymol@UIO-66 and 1.95-15.63 µg/ml for Thymol/ZnONPs@UIO-66. According to the results, the mixture of both Thymol and ZnONPs had 41 % and 16 % more antibiofilm activities in comparison with free Thymol and free ZnONPs, respectively. Furthermore, Thymol@UIO-66 had 25 % higher antibiofilm activities relative to not-encapsulated Thymol and ZnONPs, and this improvement was even 46 % more in Thymol/ZnONPs@UIO-66 in comparison with Thymol@UIO-66. Overall, this study demonstrates the potential of Thymol/ZnONPs@UIO-66 frameworks as a promising drug delivery platform for effective antibacterial therapy. This approach to overcome antibiotic resistance and improve treatment efficacy potentially.
Collapse
Affiliation(s)
- Alireza Eskandari
- CTERC, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Nooshin Safavi
- Department of Polymer Engineering, Faculty of Engineering, Qom University of Technology, Qom, Iran
| | - Hamidreza Sahrayi
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Dorsa Alizadegan
- Faculty of Pharmacy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | | | - Alireza Javanmard
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802-1503, United States
| | - Mohammadreza Tajik
- Biomedical Engineering Department, Carnegie Mellon University, Pittsburgh, PA 15219, United States
| | - Zohre Sadeghi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Disease, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Arvin Toutounch
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Hassan Noorbazargan
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Zhi Z, Zhou P, He T, Chen S, Qian X, Ye Y, Wong WL, Li S, Sun N, Yuan W. Study of the antimicrobial activity of carvacrol and its mechanism of action against drug-resistant bacteria. Biochem Biophys Res Commun 2025; 757:151643. [PMID: 40107113 DOI: 10.1016/j.bbrc.2025.151643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/18/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Drug-resistant bacterial infections have been one of the critical health issues encountered worldwide currently because most conventional antibiotics are losing their effectiveness in clinical treatments. It is thus urgently to identify new antibiotics or alternatives against drug-resistant bacteria. For this purpose, we attempted to seek active compounds from commercially available natural products, which may be one of the fast-tracks to address the drug-resistant bacterial infections. In the present study, we investigated the antibacterial activity, antibacterial mechanism and synergistic effects of carvacrol against a panel of drug-resistant bacteria, including some clinical isolates. The results show that carvacrol (cymophenol), a monoterpenoid phenol, has excellent antibacterial activity. The MIC values against the bacteria examined are found to be 4-16 μg/mL. Our results also suggested that carvacrol might not likely to induce drug-resistance. More importantly, when carvacrol combined with first-line antibiotics, it exhibited good synergistic effects against drug-resistant bacteria. Moreover, in morphological studies, carvacrol could cause B. subtilis 168 elongation and S. aureus BAA-41 enlargement, which may suggest an antibacterial mechanism possibly correlated with the inhibition of bacterial cell division. We further demonstrated that carvacrol facilitated the polymerization of FtsZ that is a critically important protein for regulating bacterial cell division. Furthermore, molecular modeling predicted that carvacrol could interact with T7-loop of FtsZ. The findings of this study suggest that carvacrol may be a potential inhibitor of FtsZ and it could be utilized to combat drug-resistant bacteria in combination with existing antibiotics.
Collapse
Affiliation(s)
- Ziling Zhi
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, PR China; Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, PR China
| | - Peng Zhou
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, PR China
| | - Tenghui He
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, PR China
| | - Sisi Chen
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, PR China
| | - Xiping Qian
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, PR China
| | - Yanyan Ye
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, PR China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Song Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Clinical Laboratory/State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China.
| | - Ning Sun
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, PR China.
| | - Wenchang Yuan
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, PR China.
| |
Collapse
|
5
|
Hussain A, Bhando T, Casius A, Gupta R, Pathania R. Deciphering meropenem persistence in Acinetobacter baumannii facilitates discovery of anti-persister activity of thymol. Antimicrob Agents Chemother 2025; 69:e0138124. [PMID: 39976427 PMCID: PMC11963602 DOI: 10.1128/aac.01381-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025] Open
Abstract
Decades of antibiotic misuse have accelerated the emergence of multi- and extensively drug-resistant bacteria. Bacterial pathogens employ several strategies such as antibiotic resistance, tolerance, and biofilm formation in response to extreme environments and antibiotic stress. Another crucial survival mechanism involves the stochastic generation of bacterial subpopulations known as persisters, which can endure high concentrations of antibiotics. Upon removal of antibiotic stress, these subpopulations revert back to their original phenotype which links them to the relapse and recalcitrance of chronic infections, a significant problem in clinical settings. Persistent infections are particularly notable in Acinetobacter baumannii, a top-priority ESKAPE pathogen, where carbapenems serve as last-resort antibiotics. Several reports indicate the rising therapeutic failure of carbapenems due to persistence, underscoring the importance of developing anti-persister therapeutics. In this study, we explored the mechanisms of transient persister formation in A. baumannii against meropenem. Our investigation revealed significant changes in membrane properties and energetics in meropenem persisters of A. baumannii, including a noteworthy increase in tolerance to other antibiotics. This understanding guided the evaluation of an in-house collection of GRAS status compounds for their potential anti-persister activity. The compound thymol demonstrated remarkable inhibitory activity against meropenem persisters of A. baumannii and other ESKAPE pathogens. Further investigation revealed its impact on persister cell physiology, including efflux pump inhibition and disruption of cellular respiration. Given our results, we propose a compelling strategy where thymol could be employed either as a monotherapy or in combination with meropenem in anti-persister therapeutics.
Collapse
Affiliation(s)
- Arsalan Hussain
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Timsy Bhando
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ananth Casius
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Rinki Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
6
|
Phan TV, Tuong LT, Nguyen VTV, Vo CVT, Tran TD, Le MT, Nguyen BGD, Tran VT, Vu TT, Thai KM. Computational assessment and in vitro test of phytochemicals of Usnea aciculifera as potential inhibitors of Escherichia coli efflux pump AcrB. J Biomol Struct Dyn 2025; 43:1316-1328. [PMID: 38088368 DOI: 10.1080/07391102.2023.2291547] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/16/2023] [Indexed: 01/16/2025]
Abstract
Lichens produce secondary metabolites that have many pharmaceutical activities such as antimicrobial, antioxidant, antiviral, anticancer, antigenotoxic, anti-inflammatory, analgesic and antipyretic activities. However, there is limited research on their efflux pump inhibitory activities. Twelve phytochemicals were isolated from Usnea aciculifera, and their activity of AcrAB-TolC efflux pump inhibition was evaluated. Four potential compounds, which are diffractaic acid (2), 8' -O- methylstictic acid (5), 3-hydroxy-4-(methoxycarbonyl)-2,5-dimethylphenyl 2,4-dimethoxy-3,6-dimethylbenzoate (8) and 3-hydroxy-4-(methoxycarbonyl)-2,5-dimethylphenyl 2-hydroxy-4-methoxy-3,6-dimethylbenzoate (9), were found by virtual screening using pharmacophore and 2D-QSAR model. Compound 8 exhibited AcrB inhibition activity in vitro with an accumulation H33342 percentage compared with untreated control of 202% at a concentration of 50 µM and increased the antibacterial activity of levofloxacin by four-fold at a concentration of 200 µM. By molecular docking and molecular dynamics (MD) simulation, the binding affinity of depside and depsidone derivatives to AcrB was also clarified. Despite the poor docking score to the AcrB binding site, compound 8 was the most stable among the four complexes at 20 ns of MD simulation. The analysis of long MD at 100 ns indicated that compound 8 interacts strongly with the residues in the distal pocket, creating a stable complex with ΔGbind of -31.51 kcal.mol-1. According to the ADMETlab 2.0 web server's predictions of pharmacokinetics and toxicities, compound 8 has the potential for drug development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Thien-Vy Phan
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Lam-Truong Tuong
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, Ho Chi Minh City, Vietnam
| | - Vu-Thuy-Vy Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Cam-Van T Vo
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, Ho Chi Minh City, Vietnam
| | - Thanh-Dao Tran
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, Ho Chi Minh City, Vietnam
| | - Minh-Tri Le
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, Ho Chi Minh City, Vietnam
- School of Medicine, Vietnam National University Ho Chi Minh City, Linh Trung Ward., Thu Duc Dist, Ho Chi Minh City, Vietnam
| | | | - Van-Thanh Tran
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, Ho Chi Minh City, Vietnam
| | - Thanh-Thao Vu
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, Ho Chi Minh City, Vietnam
| | - Khac-Minh Thai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, Ho Chi Minh City, Vietnam
| |
Collapse
|
7
|
Kirkova D, Stremski Y, Bachvarova M, Todorova M, Goranov B, Statkova-Abeghe S, Docheva M. New Benzothiazole-Monoterpenoid Hybrids as Multifunctional Molecules with Potential Applications in Cosmetics. Molecules 2025; 30:636. [PMID: 39942740 PMCID: PMC11820011 DOI: 10.3390/molecules30030636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/03/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
The Thymus vulgaris and Origanum vulgare essential oils (contained thymol and carvacrol in a range of 35-80%) are used in various products in the fields of medicine, cosmetics, and foods. Molecular hybridization between benzothiazole (BT) and phenolic monoterpenoids is a promising method for the development of biologically active compounds. New benzothiazole-monoterpenoid hybrids were synthesized through a regioselective α-amidoalkylation reaction of thymol and carvacrol with high yields (70-96%). This approach is both simple and cost-effective, employing easily accessible and inexpensive reagents to produce target molecules. The structure of the synthesized compounds was characterized spectrally using 1H-, 13C-NMR, FT-IR, and HRMS data. The newly obtained compounds are structural analogues of the UVB filter PBSA, which is used in cosmetics. The spectral properties of the aromatic products thymol hybrid (2-(4-hydroxy-5-isopropyl-2-methylphenyl)benzo[d]thiazole) and carvacrol hybrid (2-(4-hydroxy-2-isopropyl-5-methylphenyl)benzo[d]thiazole) were successfully examined, using a validated spectrophotometric method. SPF values varied from 31 to 36, compared to the PBSA (30), and were observed at concentrations of 1-0.25 mM. 2-Hydroxyphenylbenzothiazoles are known antimicrobial and antioxidant agents that have potential applications in the food industry and cosmetics as preservatives and antioxidants. In this context, antimicrobial activity of the hybrid compounds was evaluated using the agar diffusion method against E. coli, S. aureus, P. aeruginosa, and C. albicans. Compounds of methyl-2-(4-hydroxy-2-isopropyl-5-methylphenyl)benzo[d]thiazole-3(2H)-carboxylate containing carvacrol fragments showed high activity against Staphylococcus aureus ATCC 25923 (with 0.044 μmol content). The radical scavenging activity was determined using ABTS and DPPH assays, the highest activity was exhibited by the thymol hybrids ethyl-2-(4-hydroxy-5-isopropyl-2-methylphenyl)benzo[d]thiazole-3(2H)-carboxylate (IC50-133.70 ± 10 µM) and methyl-2-(4-hydroxy-5-isopropyl-2-methylphenyl)benzo[d]thiazole-3(2H)-carboxylate (IC50-157.50 ± 10 µM), defined by ABTS. The aromatic benzothiazole-monoterpenoid hybrids are classified using in silico analyses as non-mutagenic, with low toxicity, and they are non-irritating to the skin. These compounds were identified as new hit scaffolds for multifunctional molecules in cosmetics.
Collapse
Affiliation(s)
- Desislava Kirkova
- Agricultural Academy, Tobacco and Tobacco Products Institute, 4108 Markovo, Bulgaria; (D.K.); (M.D.)
| | - Yordan Stremski
- Department of Organic Chemistry, University of Plovdiv “Paisii Hilendarski”, 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria; (M.B.); (M.T.); (S.S.-A.)
| | - Maria Bachvarova
- Department of Organic Chemistry, University of Plovdiv “Paisii Hilendarski”, 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria; (M.B.); (M.T.); (S.S.-A.)
| | - Mina Todorova
- Department of Organic Chemistry, University of Plovdiv “Paisii Hilendarski”, 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria; (M.B.); (M.T.); (S.S.-A.)
| | - Bogdan Goranov
- Department of Microbiology and Biotechnology, University of Food Technologies, 26 Maritza Boulevard, 4002 Plovdiv, Bulgaria;
| | - Stela Statkova-Abeghe
- Department of Organic Chemistry, University of Plovdiv “Paisii Hilendarski”, 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria; (M.B.); (M.T.); (S.S.-A.)
| | - Margarita Docheva
- Agricultural Academy, Tobacco and Tobacco Products Institute, 4108 Markovo, Bulgaria; (D.K.); (M.D.)
| |
Collapse
|
8
|
Khwaza V, Aderibigbe BA. Antibacterial Activity of Selected Essential Oil Components and Their Derivatives: A Review. Antibiotics (Basel) 2025; 14:68. [PMID: 39858354 PMCID: PMC11761885 DOI: 10.3390/antibiotics14010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Essential oils (EOs) are gaining ground and have been intensively studied due to their widespread use in the pharmaceutical, food, and cosmetics industries. The essential components of EOs have been recognized for diverse therapeutic activities and have gained significant attention for their potential antibacterial activities. Despite the popularity of EOs and potent biological properties, their bioactive components and their derivatives are still not comprehensively characterized. This review explores the antibacterial efficacy of selected EO components and their derivatives, focusing on monoterpenes chosen (i.e., carvacrol, menthol, and thymol) and phenylpropanoids (i.e., cinnamaldehyde and eugenol). Furthermore, this review highlights recent advancements in developing derivatives of these EO components, which have shown improved antibacterial activity with reduced toxicity. By summarizing recent studies, this review reveals the potential of these natural compounds and their derivatives as promising candidates for pharmaceuticals, food preservation, and as alternatives to synthetic antibiotics in combating bacterial resistance.
Collapse
Affiliation(s)
- Vuyolwethu Khwaza
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice Campus, Alice 5700, South Africa
| | - Blessing A. Aderibigbe
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice Campus, Alice 5700, South Africa
| |
Collapse
|
9
|
Endo TH, Santos MHDM, Scandorieiro S, Gonçalves BC, Vespero EC, Perugini MRE, Pavanelli WR, Nakazato G, Kobayashi RKT. Selective Serotonin Reuptake Inhibitors: Antimicrobial Activity Against ESKAPEE Bacteria and Mechanisms of Action. Antibiotics (Basel) 2025; 14:51. [PMID: 39858337 PMCID: PMC11760871 DOI: 10.3390/antibiotics14010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Multidrug-resistant bacteria cause over 700,000 deaths annually, a figure projected to reach 10 million by 2050. Among these bacteria, the ESKAPEE group is notable for its multiple resistance mechanisms. Given the high costs of developing new antimicrobials and the rapid emergence of resistance, drug repositioning offers a promising alternative. Results: This study evaluates the antibacterial activity of sertraline and paroxetine. When tested against clinical and reference strains from the ESKAPEE group, sertraline exhibited minimum inhibitory concentration (MIC) values between 15 and 126 μg/mL, while the MIC values for paroxetine ranged from 60 to 250 μg/mL. Both drugs effectively eradicated bacterial populations within 2 to 24 h and caused morphological changes, such as protrusions and cellular fragmentation, as shown by electron scanning microscopy. Regarding their mechanisms of action as antibacterials, for the first time, increased membrane permeability was detected, as evidenced by heightened dye absorption, along with the increased presence of total proteins and dsDNA in the extracellular medium of Escherichia coli ATCC2 25922 and Staphylococcus aureus ATCC 25923, and oxidative stress was also detected in bacteria treated with sertraline and paroxetine, with reduced efficiency observed in the presence of antioxidants and higher levels of oxygen-reactive species evidenced by their reaction with 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate. The drugs also inhibited bacterial efflux pumps, increasing ethidium bromide accumulation and enhancing tetracycline activity in resistant strains. Conclusions: These findings indicate that sertraline and paroxetine could serve as alternative treatments against multidrug-resistant bacteria, as well as efflux pump inhibitors (EPIs), and they support further development of antimicrobial agents based on these compounds.
Collapse
Affiliation(s)
- Thiago Hideo Endo
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (T.H.E.); (M.H.d.M.S.); (B.C.G.); (G.N.)
| | - Mariana Homem de Mello Santos
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (T.H.E.); (M.H.d.M.S.); (B.C.G.); (G.N.)
| | - Sara Scandorieiro
- Laboratory of Innovation and Cosmeceutical Technology, Department of Pharmaceutical Sciences, Center of Health Sciences, Hospital Universitário de Londrina, Londrina 86038-350, Brazil;
| | - Bruna Carolina Gonçalves
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (T.H.E.); (M.H.d.M.S.); (B.C.G.); (G.N.)
| | - Eliana Carolina Vespero
- Laboratory of Clinical Analysis Microbiology Sector, Department of Pathology, Clinical and Toxicological Analysis, Center of Health Sciences, Hospital Universitário de Londrina, Londrina 86038-350, Brazil; (E.C.V.); (M.R.E.P.)
| | - Márcia Regina Eches Perugini
- Laboratory of Clinical Analysis Microbiology Sector, Department of Pathology, Clinical and Toxicological Analysis, Center of Health Sciences, Hospital Universitário de Londrina, Londrina 86038-350, Brazil; (E.C.V.); (M.R.E.P.)
| | - Wander Rogério Pavanelli
- Laboratory of Experimental Protozoology, Department of Pathological Sciences, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
| | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (T.H.E.); (M.H.d.M.S.); (B.C.G.); (G.N.)
| | - Renata Katsuko Takayama Kobayashi
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (T.H.E.); (M.H.d.M.S.); (B.C.G.); (G.N.)
| |
Collapse
|
10
|
Kashi M, Noei M, Chegini Z, Shariati A. Natural compounds in the fight against Staphylococcus aureus biofilms: a review of antibiofilm strategies. Front Pharmacol 2024; 15:1491363. [PMID: 39635434 PMCID: PMC11615405 DOI: 10.3389/fphar.2024.1491363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Staphylococcus aureus is an important pathogen due to its ability to form strong biofilms and antibiotic resistance. Biofilms play an important role in bacterial survival against the host immune system and antibiotics. Natural compounds (NCs) have diverse bioactive properties with a low probability of resistance, making them promising candidates for biofilm control. NC such as curcumin, cinnamaldehyde, carvacrol, eugenol, thymol, citral, linalool, 1,8-cineole, pinene, cymene, terpineol, quercetin, and limonene have been widely utilized for the inhibition and destruction of S. aureus biofilms. NCs influence biofilm formation through several procedures. Some of the antibiofilm mechanisms of NCs are direct bactericidal effect, disrupting the quorum sensing system, preventing bacteria from aggregation and attachment to surfaces, reducing the microbial surface components recognizing adhesive matrix molecules (MSCRAMMs), interfering with sortase A enzyme, and altering the expression of biofilm-associated genes such as icaADBC, agr, and sarA. Furthermore, these compounds affect extracellular polymeric substances (EPS) and their components, such as polysaccharide intercellular adhesin (PIA) and eDNA. However, some disadvantages, such as low water solubility and bioavailability, limit their clinical usage. Therefore, scientists have considered using nanotechnology and drug platforms to improve NC's efficacy. Some NC, such as thymol and curcumin, can also enhance photodynamic therapy against S. aurous biofilm community. This article evaluates the anti-biofilm potential of NC, their mechanisms of action against S. aureus biofilms, and various aspects of their application.
Collapse
Affiliation(s)
- Milad Kashi
- Student Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Milad Noei
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Aref Shariati
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
11
|
Nikolic I, Aleksic Sabo V, Gavric D, Knezevic P. Anti- Staphylococcus aureus Activity of Volatile Phytochemicals and Their Combinations with Conventional Antibiotics Against Methicillin-Susceptible S. aureus (MSSA) and Methicillin-Resistant S. aureus (MRSA) Strains. Antibiotics (Basel) 2024; 13:1030. [PMID: 39596725 PMCID: PMC11591321 DOI: 10.3390/antibiotics13111030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND MSSA and MRSA strains are challenging human pathogens that can develop resistance to antibiotics, highlighting the need for alternative antimicrobial agents. Plant metabolites, particularly volatile phytochemicals, may offer promising antimicrobial properties. The aim was to evaluate the antimicrobial and antibiofilm efficacy of various commercial volatile phytochemicals from the terpene and terpenoid groups against reference MSSA and MRSA strains, focusing on synergistic effects in both binary combinations and combinations with antibiotics. METHODS The microdilution method was used to determine the minimum inhibitory concentrations (MICs) for antibiotics and phytochemicals. The checkerboard method assessed synergistic interactions between phytochemicals and between phytochemicals and antibiotics, while the time-kill method was used to confirm these results. Biofilm quantification was performed using the microtiter plate method to evaluate the effects of phytochemicals, antibiotics, and their binary combinations on the eradication of 48-h-old biofilms. RESULTS Carvacrol and thymol demonstrated the strongest anti-staphylococcal activity, while other terpene compounds showed weaker effects. In binary combinations, carvacrol and thymol exhibited synergy against one MSSA strain (FICI = 0.50) and with tetracycline and chloramphenicol (FICI = 0.28-0.50). Synergy was also noted with streptomycin sulfate against one MRSA strain (FICI = 0.31-0.50) and with other antibiotics, including gentamicin (FICI = 0.25-0.50) and oxacillin (FICI = 0.44). Additionally, effective combinations achieved over 50% biofilm removal at both minimum inhibitory and sub-inhibitory concentrations. CONCLUSIONS Results showed that synergy varies based on strain sensitivity to chemical agents, highlighting their potential for personalized therapy. Despite the difficulty in removing preformed biofilms, the findings highlight the importance of combined treatments to enhance antibiotic effectiveness.
Collapse
Affiliation(s)
| | | | | | - Petar Knezevic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia; (I.N.); (V.A.S.); (D.G.)
| |
Collapse
|
12
|
Septama AW, Tasfiyati AN, Rahmi EP, Jantan I, Dewi RT, Jaisi A. Antibacterial, bacteriolytic, and antibiofilm activities of the essential oil of temu giring ( Curcuma heyneana Val.) against foodborne pathogens. FOOD SCI TECHNOL INT 2024; 30:660-670. [PMID: 37218156 DOI: 10.1177/10820132231178060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Foodborne pathogens may cause foodborne illness, which is among the major health problems worldwide. Since the therapeutic options for the treatment of the disease are becoming limited as a result of antibacterial resistance, there is an increasing interest to search for new alternatives of antibacterial. Bioactive essential oils from Curcuma sp become potential sources of novel antibacterial substances. The antibacterial activity of Curcuma heyneana essential oil (CHEO) was evaluated against Escherichia coli, Salmonella typhi, Shigella sonnei, and Bacillus cereus. The principal constituents of CHEO are ar-turmerone, β-turmerone, α-zingiberene, α-terpinolene, 1,8-cineole, and camphor. CHEO exhibited the strongest antibacterial activity against E. coli with a MIC of 3.9 µg/mL, which is comparable to that of tetracycline. The combination of CHEO (0.97 µg/mL) and tetracycline (0.48 µg/mL) produced a synergistic effect with a FICI of 0.37. Time-kill assay confirmed that CHEO enhanced the activity of tetracycline. The mixture disrupted membrane permeability of E. coli and induced cell death. CHEO at MIC of 3.9 and 6.8 µg/mL significantly reduced the formation of biofilm in E. coli. The findings suggest that CHEO has the potential to be an alternative source of antibacterial agents against foodborne pathogens, particularly E. coli.
Collapse
Affiliation(s)
- Abdi Wira Septama
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency (BRIN), Banten, Indonesia
| | - Aprilia Nur Tasfiyati
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), Banten, Indonesia
| | - Eldiza Puji Rahmi
- Pharmacy Program, Faculty of Medicine, Universitas Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Ibrahim Jantan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Rizna Triana Dewi
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency (BRIN), Banten, Indonesia
| | - Amit Jaisi
- School of Pharmacy, Walailak University, Thasala, Thailand
| |
Collapse
|
13
|
Amakran A, Hamoudane M, Pagniez F, Lamarti A, Picot C, Figueredo G, Nhiri M, Le Pape P. Chemical Composition, Antifungal, Antioxidant, and Hemolytic Activities of Moroccan Thymus capitatus Essential Oil. Chem Biodivers 2024; 21:e202300563. [PMID: 38880770 DOI: 10.1002/cbdv.202300563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/01/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
This study aimed to define the chemical composition of Moroccan Thymus capitatus essential oil, and to investigate its in vitro antioxidant and antifungal activities against human pathogenic fungi. Chemical analysis using GC-FID and GC-MS system revealed 28 constituents, representing 99 % of total compounds. Oxygenated monoterpenes represented the highest proportion (79.79 %), among which carvacrol (75.73 %) was the predominant compound, followed by linalol (2.26 %). Monoterpene hydrocarbons represented the second major fraction (16.29 %): within them, the predominant constituents were γ-terpinene (5,55 %), ρ-cymene (5,50 %), and β-caryophyllene (2.73 %). Antioxidant activity was performed by DPPH scavenging, β-carotene bleaching inhibition, and ferric reducing power. T. capitatus revealed pronounced DPPH radical scavenging activity (IC50=110.53 μg mL-1), strong ferric reducing ability (EC50=644.4 μg mL-1), and a remarkable degree of protection against lipid peroxidation during β-carotene bleaching inhibition (IC50=251.76 μg mL-1). Antifungal activity was carried out against Candida, Aspergillus, and Rhizopus species by microdilution method. T. capitatus exhibited potent anticandidal activity (MIC=125-500 μg mL-1) and strong inhibition against filamentous fungi (MIC=250-500 μg mL-1). Its hemolytic activity against human erythrocytes had a low toxic effect at concentrations lower than 1250 μg mL-1. The useful antioxidant properties and broad antifungal effect of T. capitatus EO confirm its considerable potential for the food industry and for phytopharmaceutical production.
Collapse
Affiliation(s)
- Amina Amakran
- Laboratoire de Biochimie et Génétique Moléculaire, Faculté des Sciences et Techniques, Université Abdelmalek Essaadi, Tanger, Maroc
| | - Meriem Hamoudane
- Laboratoire de Biochimie et Génétique Moléculaire, Faculté des Sciences et Techniques, Université Abdelmalek Essaadi, Tanger, Maroc
| | - Fabrice Pagniez
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l'Immunité, IICiMed, UR 1155, F-44000, Nantes, France
| | - Ahmed Lamarti
- Laboratoire de Biotechnologie et d'Amélioration des Plantes, Département de Biologie, Faculté des Sciences, Université Abdelmalek Essaadi, Tétouan, Maroc
| | - Carine Picot
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l'Immunité, IICiMed, UR 1155, F-44000, Nantes, France
| | - Gilles Figueredo
- Laboratoire d'Analyse des Extraits Végétaux et des Aromes (LEXVA-Analytique), Biopôle Clermont-Limagne, Rue Henri Mondor, 63360, Sain-Beauzire, France
| | - Mohamed Nhiri
- Laboratoire de Biochimie et Génétique Moléculaire, Faculté des Sciences et Techniques, Université Abdelmalek Essaadi, Tanger, Maroc
| | - Patrice Le Pape
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l'Immunité, IICiMed, UR 1155, F-44000, Nantes, France
| |
Collapse
|
14
|
Zhang JY, Meng X, Zhu XL, Peng SR, Li HB, Mo HZ, Hu LB. Thymol Induces Fenton-Reaction-Dependent Ferroptosis in Vibrio parahemolyticus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14337-14348. [PMID: 38867141 DOI: 10.1021/acs.jafc.4c01584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Thymol has efficient bactericidal activity against a variety of pathogenic bacteria, but the bactericidal mechanism against Vibrio parahemolyticus (V. parahemolyticus) has rarely been reported. In the current study, we investigated the bactericidal mechanism of thymol against V. parahemolyticus. The Results revealed that 150 μg/mL of thymol had 99.9% bactericidal activity on V. parahemolyticus. Intracellular bursts of reactive oxygen species (ROS), Fe2+accumulation, lipid peroxidation, and DNA breakage were checked by cell staining. The exogenous addition of H2O2 and catalase promoted and alleviated thymol-induced cell death to a certain extent, respectively, and the addition of the ferroptosis inhibitor Liproxstatin-1 also alleviated thymol-induced cell death, confirming that thymol induced Fenton-reaction-dependent ferroptosis in V. parahemolyticus. Proteomic analysis revealed that relevant proteins involved in ROS production, lipid peroxidation accumulation, and DNA repair were significantly upregulated after thymol treatment. Molecular docking revealed two potential binding sites (amino acids 46H and 42F) between thymol and ferritin, and thymol could promote the release of Fe2+ from ferritin proteins through in vitro interactions analyzed. Therefore, we hypothesized that ferritin as a potential target may mediate thymol-induced ferroptosis in V. parahemolyticus. This study provides new ideas for the development of natural inhibitors for controlling V. parahemolyticus in aquatic products.
Collapse
Affiliation(s)
- Jia-Yi Zhang
- School of Food Science and Technology, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Xuan Meng
- School of Food Science and Technology, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Xiao-Lin Zhu
- School of Food Science and Technology, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Shu-Rui Peng
- School of Food Science and Technology, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Hong-Bo Li
- School of Food Science and Technology, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Hai-Zhen Mo
- School of Food Science and Technology, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Liang-Bin Hu
- School of Food Science and Technology, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| |
Collapse
|
15
|
Abass S, Parveen R, Irfan M, Malik Z, Husain SA, Ahmad S. Mechanism of antibacterial phytoconstituents: an updated review. Arch Microbiol 2024; 206:325. [PMID: 38913205 DOI: 10.1007/s00203-024-04035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/05/2024] [Indexed: 06/25/2024]
Abstract
The increase of multiple drug resistance bacteria significantly diminishes the effectiveness of antibiotic armory and subsequently exaggerates the level of therapeutic failure. Phytoconstituents are exceptional substitutes for resistance-modifying vehicles. The plants appear to be a deep well for the discovery of novel antibacterial compounds. This is owing to the numerous enticing characteristics of plants, they are easily accessible and inexpensive, extracts or chemicals derived from plants typically have significant levels of action against infections, and they rarely cause serious adverse effects. The enormous selection of phytochemicals offers very distinct chemical structures that may provide both novel mechanisms of antimicrobial activity and deliver us with different targets in the interior of the bacterial cell. They can directly affect bacteria or act together with the crucial events of pathogenicity, in this manner decreasing the aptitude of bacteria to create resistance. Abundant phytoconstituents demonstrate various mechanisms of action toward multi drug resistance bacteria. Overall, this comprehensive review will provide insights into the potential of phytoconstituents as alternative treatments for bacterial infections, particularly those caused by multi drug resistance strains. By examining the current state of research in this area, the review will shed light on potential future directions for the development of new antimicrobial therapies.
Collapse
Affiliation(s)
- Sageer Abass
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Rabea Parveen
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Irfan
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Zoya Malik
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Syed Akhtar Husain
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sayeed Ahmad
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
16
|
Pedreira A, Fernandes S, Simões M, García MR, Vázquez JA. Synergistic Bactericidal Effects of Quaternary Ammonium Compounds with Essential Oil Constituents. Foods 2024; 13:1831. [PMID: 38928773 PMCID: PMC11202425 DOI: 10.3390/foods13121831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Antimicrobial tolerance is a significant concern in the food industry, as it poses risks to food safety and public health. To overcome this challenge, synergistic combinations of antimicrobials have emerged as a potential solution. In this study, the combinations of two essential oil constituents (EOCs), namely carvacrol (CAR) and eugenol (EUG), with the quaternary ammonium compounds (QACs) benzalkonium chloride (BAC) and didecyldimethylammonium chloride (DDAC) were evaluated for their antimicrobial effects against Escherichia coli and Bacillus cereus, two common foodborne bacteria. The checkerboard assay was employed to determine the fractional inhibitory concentration index (FICI) and the fractional bactericidal concentration index (FBCI), indicating the presence of bactericidal, but not bacteriostatic, synergy in all QAC-EOC combinations. Bactericidal synergism was clearly supported by Bliss independence analysis. The bactericidal activity of the promising synergistic combinations was further validated by time-kill curves, achieving a >4-log10 reduction of initial bacterial load, which is significant compared to typical industry standards. The combinations containing DDAC showed the highest efficiency, resulting in the eradication of bacterial population in less than 2-4 h. These findings emphasize the importance of considering both bacteriostatic and bactericidal effects when evaluating antimicrobial combinations and the potential of EOC-QAC combinations for sanitization and disinfection in the food industry.
Collapse
Affiliation(s)
- Adrián Pedreira
- Group of Recycling and Valorization of Waste Materials (REVAL), Spanish National Research Council (IIM-CSIC), Rúa Eduardo Cabello 6, 36208 Vigo, Spain;
- Biosystems and Bioprocess Engineering Group (Bio2Eng), Spanish National Research Council (IIM-CSIC), Rúa Eduardo Cabello 6, 36208 Vigo, Spain;
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.F.); (M.S.)
| | - Susana Fernandes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.F.); (M.S.)
| | - Manuel Simões
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.F.); (M.S.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Míriam R. García
- Biosystems and Bioprocess Engineering Group (Bio2Eng), Spanish National Research Council (IIM-CSIC), Rúa Eduardo Cabello 6, 36208 Vigo, Spain;
| | - José Antonio Vázquez
- Group of Recycling and Valorization of Waste Materials (REVAL), Spanish National Research Council (IIM-CSIC), Rúa Eduardo Cabello 6, 36208 Vigo, Spain;
| |
Collapse
|
17
|
Lopes APR, Andrade AL, Pinheiro ADA, de Sousa LS, Malveira EA, Oliveira FFM, de Albuquerque CC, Teixeira EH, de Vasconcelos MA. Lippia grata Essential Oil Acts Synergistically with Ampicillin Against Staphylococcus aureus and its Biofilm. Curr Microbiol 2024; 81:176. [PMID: 38755426 DOI: 10.1007/s00284-024-03690-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024]
Abstract
Antimicrobial resistance (AMR) presents a global challenge as microorganisms evolve to withstand the effects of antibiotics. In addition, the improper use of antibiotics significantly contributes to the AMR acceleration. Essential oils have garnered attention for their antimicrobial potential. Indeed, essential oils extracted from plants contain compounds that exhibit antibacterial activity, including against resistant microorganisms. Hence, this study aimed to evaluate the antimicrobial and antibiofilm activity of the essential oil (EO) extracted from Lippia grata and its combination with ampicillin against Staphylococcus aureus strains (ATCC 25923, ATCC 700698, and JKD6008). The plant material (leaves) was gathered in Mossoro, RN, and the EO was obtained using the hydrodistillation method with the Clevenger apparatus. The antimicrobial activity of the EO was assessed through minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. Antibiofilm activity was evaluated by measuring biomass using crystal violet (CV) staining, viable cell counting, and analysis of preformed biofilms. In addition, the synergistic effects of the EO in combination with ampicillin were examined by scanning electron and confocal microscopy. The EO displayed a MIC value of 2.5 mg/mL against all tested S. aureus strains and an MBC only against S. aureus JKD6008 at 2.5 mg/mL. L. grata EO caused complete biofilm inhibition at concentrations ranging from 10 to 0.312 mg/mL against S. aureus ATCC 25923 and 10 to 1.25 mg/mL against S. aureus ATCC 700698 and S. aureus JKD6008. In the viable cell quantification assay, there was a reduction in CFU ranging from 1.0 to 8.0 logs. The combination of EO with ampicillin exhibited a synergistic effect against all strains. Moreover, the combination showed a significantly inhibiting biofilm formation and eradicating preformed biofilms. Furthermore, the EO and ampicillin (individually and in combination) altered the cellular morphology of S. aureus cells. Regarding the mechanism, the results revealed that L. grata EO increased membrane permeability and caused significant membrane damage. Concerning the synergy mechanism, the results revealed that the combination of EO and ampicillin increases membrane permeability and causes considerable membrane damage, further inhibiting bacteria synergistically. The findings obtained here suggest that L. grata EO in combination with ampicillin could be a viable treatment option against S. aureus infections, including MRSA strain.
Collapse
Affiliation(s)
| | - Alexandre Lopes Andrade
- Laboratório Integrado de Biomoléculas, Departamento de Patologia E Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Aryane de Azevedo Pinheiro
- Laboratório Integrado de Biomoléculas, Departamento de Patologia E Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
- Centro Universitário Inta - UNINTA, Itapipoca, CE, Brazil
| | - Leonardo Silva de Sousa
- Laboratório Integrado de Biomoléculas, Departamento de Patologia E Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Ellen Araújo Malveira
- Laboratório Integrado de Biomoléculas, Departamento de Patologia E Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | | | | | - Edson Holanda Teixeira
- Laboratório Integrado de Biomoléculas, Departamento de Patologia E Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Mayron Alves de Vasconcelos
- Faculdade de Ciências Exatas E Naturais, Universidade do Estado do Rio Grande do Norte, Mossoró, RN, Brazil.
- Laboratório Integrado de Biomoléculas, Departamento de Patologia E Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
- Faculdade de Educação de Itapipoca, Universidade Estadual do Ceará, Itapipoca, CE, Brazil.
| |
Collapse
|
18
|
Uc-Cachón AH, Calvo-Irabien LM, Dzul-Beh ADJ, Dzib-Baak HE, Grijalva-Arango R, Molina-Salinas GM. Potential Anti-Infectious Activity of Essential Oil Chemotypes of Lippia origanoides Kunth on Antibiotic-Resistant Staphylococcus aureus Strains. PLANTS (BASEL, SWITZERLAND) 2024; 13:1172. [PMID: 38732387 PMCID: PMC11085919 DOI: 10.3390/plants13091172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024]
Abstract
Staphylococcus aureus infections are prevalent in healthcare and community environments. Methicillin-resistant S. aureus is catalogued as a superbug of high priority among the pathogens. This Gram-positive coccus can form biofilms and produce toxins, leading to persistent infection and antibiotic resistance. Limited effective antibiotics have encouraged the development of innovative strategies, with a particular emphasis on resistance mechanisms and/or virulence factors. Medicinal aromatic plants have emerged as promising alternative sources. This study investigated the antimicrobial, antibiofilm, and antihemolysis properties of three different chemotypes of Lippia origanoides essential oil (EO) against susceptible and drug-resistant S. aureus strains. The chemical composition of the EO was analyzed using GC-MS, revealing high monoterpene concentrations, with carvacrol and thymol as the major components in two of the chemotypes. The third chemotype consisted mainly of the sesquiterpene β-caryophyllene. The MIC values for the two monoterpene chemotypes ranged from 62.5 to 500 µg/mL for all strains, whereas the sesquiterpene chemotype showed activity against seven strains at concentrations of 125-500 µg/mL, which is the first report of its anti-S. aureus activity. The phenolic chemotypes inhibited biofilm formation in seven S. aureus strains, whereas the sesquiterpene chemotype only inhibited biofilm formation in four strains. In addition, phenolic chemotypes displayed antihemolysis activity, with IC50 values ranging from 58.9 ± 3.8 to 128.3 ± 9.2 µg/mL. Our study highlights the importance of L. origanoides EO from the Yucatan Peninsula, which has the potential for the development of anti-S. aureus agents.
Collapse
Affiliation(s)
- Andrés Humberto Uc-Cachón
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida 97150, Yucatán, Mexico; (A.H.U.-C.); (A.d.J.D.-B.); (H.E.D.-B.)
| | - Luz María Calvo-Irabien
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, Mérida 97204, Yucatán, Mexico;
| | - Angel de Jesús Dzul-Beh
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida 97150, Yucatán, Mexico; (A.H.U.-C.); (A.d.J.D.-B.); (H.E.D.-B.)
| | - Haziel Eleazar Dzib-Baak
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida 97150, Yucatán, Mexico; (A.H.U.-C.); (A.d.J.D.-B.); (H.E.D.-B.)
| | - Rosa Grijalva-Arango
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, Mérida 97204, Yucatán, Mexico;
| | - Gloria María Molina-Salinas
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida 97150, Yucatán, Mexico; (A.H.U.-C.); (A.d.J.D.-B.); (H.E.D.-B.)
| |
Collapse
|
19
|
Kusmiati K, Fanani A, Nurkanto A, Purnaningsih I, Mamangkey J, Ramadhani I, Nurcahyanto DA, Simanjuntak P, Afiati F, Irawan H, Puteri AL, Ewaldo MF, Juanssilfero AB. Profile and in silico analysis of metabolite compounds of the endophytic fungus Alternaria alternata K-10 from Drymoglossum piloselloides as antioxidants and antibacterials. Heliyon 2024; 10:e27978. [PMID: 38524563 PMCID: PMC10958433 DOI: 10.1016/j.heliyon.2024.e27978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024] Open
Abstract
Endophytic fungi are known for producing secondary metabolites with valuable biological activities, including antiviral, anticancer, antibacterial, and antioxidant properties. This study aims to evaluate an endophytic fungus from Dragon Scales leaves (Drymoglossum piloselloides) and analyze its metabolites as antioxidants and antibacterials. In this study, an endophytic fungus was isolated from the leaves of Dragon Scales (D. piloselloides) and identified using molecular analysis of the Internal Transcribed Spacer (ITS) ribosomal RNA locus. The fungus was authenticated as Alternaria alternata strain K-10. Crude extracts were obtained using n-hexane and ethyl acetate and analyzed via GC-MS Shimadzu-QP 2010 Ultra with NIST spectral library. Antibacterial activity was observed against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa using the paper disc method, showing inhibition zones of 8.7-9.3 mm and 8.8-9.4 mm for ethyl acetate and n-hexane extracts, respectively. Ethyl acetate and n-hexane extracts exhibited strong antioxidant potential against 2,2-diphenyl-1-picrylhydrazil (DPPH) radical (IC50 values of 50.99 μg mL-1 and 74.44 μg mL-1, respectively). GC-MS analysis revealed 40 compounds in both extracts, some of which, including 2-ethylhexyl ester benzoic acid, benzo-b-dihydropyran-6-hydroxy-4-4-5-7-8-pentamethyl, diethyl phthalate, and octadecanoic acid, were identified through in silico analysis and found to possess antioxidant properties. These findings hold implications for potential applications of the plant and its biological constituent to be developed as lead compounds in the medical sector.
Collapse
Affiliation(s)
- Kusmiati Kusmiati
- Research Center for Biosystematics and Evolution- Research Organization for Life Sciences and Environment, The National Research and Innovation Agency (BRIN), Indonesia
| | - Asrul Fanani
- Research and Education Center for Bioinformatics, Indonesia Institute of Bioinformatics, Malang, 65162, Indonesia
| | - Arif Nurkanto
- Research Center for Biosystematics and Evolution- Research Organization for Life Sciences and Environment, The National Research and Innovation Agency (BRIN), Indonesia
| | - Ismu Purnaningsih
- Directorate of Scientific Collection Management, The National Research and Innovation Agency (BRIN)- KST Soekarno, Jl Raya Bogor Km 46, Cibinong Bogor, 16911, Indonesia
| | - Jendri Mamangkey
- Department of Biology Education, Faculty of Education and Teacher Training, Universitas Kristen Indonesia, Jakarta, Indonesia
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST Soekarno, Cibinong, Bogor, Indonesia
| | - Indriati Ramadhani
- Research Center for Biosystematics and Evolution- Research Organization for Life Sciences and Environment, The National Research and Innovation Agency (BRIN), Indonesia
| | - Dian Alfian Nurcahyanto
- Research Center for Biosystematics and Evolution- Research Organization for Life Sciences and Environment, The National Research and Innovation Agency (BRIN), Indonesia
| | - Partomuan Simanjuntak
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency (BRIN), Indonesia
| | - Fifi Afiati
- Research Center for Applied Microbiology-Research Organization for Life Sciences and Environment, The National Research and Innovation Agency (BRIN), Indonesia
| | - Herman Irawan
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST Soekarno, Cibinong, Bogor, Indonesia
| | - Ade Lia Puteri
- Research Center for Biosystematics and Evolution- Research Organization for Life Sciences and Environment, The National Research and Innovation Agency (BRIN), Indonesia
| | - Muhammad Farrel Ewaldo
- Master's Programme in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia Jl. Salemba Raya – Jakarta Pusat, Indonesia
| | - Ario Betha Juanssilfero
- Research Center for Applied Microbiology-Research Organization for Life Sciences and Environment, The National Research and Innovation Agency (BRIN), Indonesia
| |
Collapse
|
20
|
Nanjan P, Bose V. Efflux-mediated Multidrug Resistance in Critical Gram-negative Bacteria and Natural Efflux Pump Inhibitors. Curr Drug Res Rev 2024; 16:349-368. [PMID: 38288795 DOI: 10.2174/0125899775271214240112071830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 09/04/2024]
Abstract
Multidrug Resistance mechanisms in microorganisms confer the slackness of the existing drugs, leading to added difficulty in treating infections. As a consequence, efficient novel drugs and innovative therapies to treat MDR infections are necessarily required. One of the primary contributors to the emergence of multidrug resistance in gram-negative bacteria has been identified as the efflux pumps. These transporter efflux pumps reduce the intracellular concentration of antibiotics and aid bacterial survival in suboptimal low antibiotic concentration environments that may cause treatment failure. The reversal of this resistance via inhibition of the efflux mechanism is a promising method for increasing the effectiveness of antibiotics against multidrug-resistant pathogens. Such EPI, in combination with antibiotics, can make it easier to reintroduce traditional antibiotics into clinical practice. This review mostly examines efflux-mediated multidrug resistance in critical gram-negative bacterial pathogens and EPI of plant origin that have been reported over previous decades.
Collapse
Affiliation(s)
- Praveena Nanjan
- Department of Biochemistry, School of Life Science, Jss Academy of Higher Education and Research, Longwood Campus, Mysuru Road, Ooty, India
| | - Vanitha Bose
- Department of Biochemistry, School of Life Science, Jss Academy of Higher Education and Research, Longwood Campus, Mysuru Road, Ooty, India
| |
Collapse
|
21
|
Sweet R, Booth C, Gotts K, Grove SF, Kroon PA, Webber M. Comparison of Antibacterial Activity of Phytochemicals against Common Foodborne Pathogens and Potential for Selection of Resistance. Microorganisms 2023; 11:2495. [PMID: 37894153 PMCID: PMC10609411 DOI: 10.3390/microorganisms11102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Antimicrobial resistance is now commonly observed in bacterial isolates from multiple settings, compromising the efficacy of current antimicrobial agents. Therefore, there is an urgent requirement for efficacious novel antimicrobials to be used as therapeutics, prophylactically or as preservatives. One promising source of novel antimicrobial chemicals is phytochemicals, which are secondary metabolites produced by plants for numerous purposes, including antimicrobial defence. In this report, we compare the bioactivity of a range of phytochemical compounds, testing their ability to directly inhibit growth or to potentiate other antimicrobials against Salmonella enterica Typhimurium, Pseudomonas aeruginosa, Listeria monocytogenes, and Staphylococcus aureus. We found that nine compounds displayed consistent bioactivity either as direct antimicrobials or as potentiators. Thymol at 0.5 mg/mL showed the greatest antimicrobial effect and significantly reduced the growth of all species, reducing viable cell populations by 66.8%, 43.2%, 29.5%, and 70.2% against S. enterica Typhimurium, S. aureus, P. aeruginosa, and L. monocytogenes, respectively. Selection of mutants with decreased susceptibility to thymol was possible for three of the pathogens, at a calculated rate of 3.77 × 10-8, and characterisation of S. enterica Typhimurium mutants showed a low-level MDR phenotype due to over-expression of the major efflux system AcrAB-TolC. These data show that phytochemicals can have strong antimicrobial activity, but emergence of resistance should be evaluated in any further development.
Collapse
Affiliation(s)
- Ryan Sweet
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (R.S.); (C.B.); (P.A.K.)
| | - Catherine Booth
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (R.S.); (C.B.); (P.A.K.)
| | - Kathryn Gotts
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (R.S.); (C.B.); (P.A.K.)
| | | | - Paul A. Kroon
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (R.S.); (C.B.); (P.A.K.)
| | - Mark Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (R.S.); (C.B.); (P.A.K.)
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
22
|
Zhang S, Wang J, Ahn J. Advances in the Discovery of Efflux Pump Inhibitors as Novel Potentiators to Control Antimicrobial-Resistant Pathogens. Antibiotics (Basel) 2023; 12:1417. [PMID: 37760714 PMCID: PMC10525980 DOI: 10.3390/antibiotics12091417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The excessive use of antibiotics has led to the emergence of multidrug-resistant (MDR) pathogens in clinical settings and food-producing animals, posing significant challenges to clinical management and food control. Over the past few decades, the discovery of antimicrobials has slowed down, leading to a lack of treatment options for clinical infectious diseases and foodborne illnesses. Given the increasing prevalence of antibiotic resistance and the limited availability of effective antibiotics, the discovery of novel antibiotic potentiators may prove useful for the treatment of bacterial infections. The application of antibiotics combined with antibiotic potentiators has demonstrated successful outcomes in bench-scale experiments and clinical settings. For instance, the use of efflux pump inhibitors (EPIs) in combination with antibiotics showed effective inhibition of MDR pathogens. Thus, this review aims to enable the possibility of using novel EPIs as potential adjuvants to effectively control MDR pathogens. Specifically, it provides a comprehensive summary of the advances in novel EPI discovery and the underlying mechanisms that restore antimicrobial activity. In addition, we also characterize plant-derived EPIs as novel potentiators. This review provides insights into current challenges and potential strategies for future advancements in fighting antibiotic resistance.
Collapse
Affiliation(s)
- Song Zhang
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
23
|
Shafique B, Murtaza MA, Hafiz I, Ameer K, Basharat S, Mohamed Ahmed IA. Proteolysis and therapeutic potential of bioactive peptides derived from Cheddar cheese. Food Sci Nutr 2023; 11:4948-4963. [PMID: 37701240 PMCID: PMC10494659 DOI: 10.1002/fsn3.3501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/26/2023] [Accepted: 06/02/2023] [Indexed: 09/14/2023] Open
Abstract
Cheddar cheese-derived bioactive peptides are considered a potential component of functional foods. A positive impact of bioactive peptides on diet-related chronic, non-communicable diseases, like obesity, cardiovascular diseases, and diabetes, has been observed. Bioactive peptides possess multifunctional therapeutic potentials, including antimicrobial, immunomodulatory, antioxidant, enzyme inhibitory effects, anti-thrombotic, and phyto-pathological activities against various toxic compounds. Peptides can regulate human immune, gastrointestinal, hormonal, and neurological responses, which play an integral role in the deterrence and treatment of certain diseases like cancer, osteoporosis, hypertension, and other health disorders, as described in the present review. This review summarizes the categories of the Cheddar cheese-derived bioactive peptides, their general characteristics, physiological functions, and possible applications in healthcare.
Collapse
Affiliation(s)
- Bakhtawar Shafique
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Mian Anjum Murtaza
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Iram Hafiz
- Institute of ChemistryUniversity of SargodhaSargodhaPakistan
| | - Kashif Ameer
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Shahnai Basharat
- The University Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Isam A. Mohamed Ahmed
- Department of Food Science and Nutrition, College of Food and Agricultural SciencesKing Saud UniversityRiyadhSaudi Arabia
- Department of Food Science and Technology, Faculty of AgricultureUniversity of KhartoumShambatSudan
| |
Collapse
|
24
|
Pizzo JS, Pelvine RA, da Silva ALBR, Mikcha JMG, Visentainer JV, Rodrigues C. Use of Essential Oil Emulsions to Control Escherichia coli O157:H7 in the Postharvest Washing of Lettuce. Foods 2023; 12:2571. [PMID: 37444307 DOI: 10.3390/foods12132571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Essential oils (EOs) have strong antibacterial properties and can be potential sanitizers to reduce pathogen load and prevent cross-contamination during postharvest washing. The objective of this study was to investigate the efficacy of emulsions containing oregano (OR; Origanum vulgare) and winter savory (WS; Satureja montana) EOs at different concentrations (0.94 and 1.88 µL/mL) and storage times (0 h, 24 h, and 7 days), in reducing Escherichia coli O157:H7 on the surface of three types of lettuce (romaine, crisphead, and butterhead). The EO emulsions were compared with one no-rinse treatment and three rinse treatments using water, 200 ppm chlorine, and 80 ppm peroxyacetic acid (PAA), respectively, in a simulated washing system. The results showed that while the EO emulsions significantly reduced E. coli O157:H7 on crisphead lettuce over time, not all treatments were effective for romaine and butterhead lettuce. The mixture of OR and WS at concentrations of 0.94 and 1.88 µL/mL was found to be the most effective in reducing E. coli O157:H7 on inoculated lettuce, resulting in reductions of 3.52 and 3.41 log CFU/g, respectively. Furthermore, the PAA and the mixture of OR and WS at 1.88 µL/mL effectively limited bacterial cross-contamination close to the detection limit for all lettuce types during all storage times. These results suggest that OR and WS EOs could serve as potential alternatives to chemical sanitizers for postharvest lettuce washing.
Collapse
Affiliation(s)
| | | | | | - Jane Martha Graton Mikcha
- Center for Agricultural Sciences, Postgraduate Program of Food Science, State University of Maringa, Maringa 87020-900, PR, Brazil
| | | | - Camila Rodrigues
- Department of Horticulture, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
25
|
Cardoso LT, Alexandre B, Cacciatore FA, Magedans YVDS, Fett-Neto AG, Contri RV, Malheiros PDS. Carvacrol-loaded nanoemulsions produced with a natural emulsifier for lettuce sanitization. Food Res Int 2023; 168:112748. [PMID: 37120202 DOI: 10.1016/j.foodres.2023.112748] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/01/2023]
Abstract
Carvacrol is an antimicrobial agent that shows potential for eliminating microorganisms in vegetables, increasing food safety. However, intense odor and low water solubility of carvacrol are limiting factors for its application for fresh vegetables sanitization, which can be overcome by nanotechnology. Two different nanoemulsions containing carvacrol (11 mg/mL) were developed by probe sonication: carvacrol-saponin nanoemulsion (CNS) and carvacrol-polysorbate 80 nanoemulsion (CNP). Formulations presented appropriate droplet sizes (from 74.7 nm to 168.2 nm) and high carvacrol encapsulation efficiency (EE) (from 89.5 % to 91.5 %). CNS showed adequate droplet size distribution (PDI < 0.22) and high zeta potential values (around -30 mV) compared to CNP, with saponin chosen for the following experiments. Carvacrol nanoemulsions presented Bacterial Inactivation Concentration (BIC) against the Salmonella cocktail from 5.51 to 0.69 mg/mL and for the E. coli cocktail from 1.84 to 0.69 mg/mL. Among all tested nanoemulsions, CNS1 presented the lowest BIC (0.69 mg/mL) against both bacterial cocktails. Damage to bacterial cells in lettuce treated with nanoemulsion was confirmed by scanning electron microscopy. For lettuce sanitization, CNS1 showed a similar effect to unencapsulated carvacrol, with a high bacterial reduction (>3 log CFU/g) after lettuce immersion for 15 min at 2 × BIC. Using the same immersion time, the CNS1 (2 × BIC) demonstrated equal or better efficacy in reducing both tested bacterial cocktails (>3 log CFU/g) when compared to acetic acid (6.25 mg/mL), citric acid (25 mg/mL), and sodium hypochlorite solution (150 ppm). Lettuce immersed in CNS1 at both concentrations (BIC and 2 × BIC) did not change the color and texture of leaves, while the unencapsulated carvacrol at 2 × BIC darkened them and reduced their firmness. Consequently, carvacrol-saponin nanoemulsion (CNS1) proved to be a potential sanitizer for lettuce.
Collapse
Affiliation(s)
- Louise Thomé Cardoso
- Laboratório de Microbiologia e Higiene dos Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Bibiana Alexandre
- Laboratório de Microbiologia e Higiene dos Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Fabiola Ayres Cacciatore
- Laboratório de Microbiologia e Higiene dos Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Yve Verônica da Silva Magedans
- Laboratório de Fisiologia Vegetal, Centro de Biotecnologia e Instituto de Biociências (Departamento de Botânica), Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Arthur Germano Fett-Neto
- Laboratório de Fisiologia Vegetal, Centro de Biotecnologia e Instituto de Biociências (Departamento de Botânica), Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Renata Vidor Contri
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Patrícia da Silva Malheiros
- Laboratório de Microbiologia e Higiene dos Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil.
| |
Collapse
|
26
|
Khatri P, Rani A, Hameed S, Chandra S, Chang CM, Pandey RP. Current Understanding of the Molecular Basis of Spices for the Development of Potential Antimicrobial Medicine. Antibiotics (Basel) 2023; 12:270. [PMID: 36830181 PMCID: PMC9952367 DOI: 10.3390/antibiotics12020270] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Antimicrobial resistance increases day by day around the world. To overcome this situation new antimicrobial agents are needed. Spices such as clove, ginger, coriander, garlic, and turmeric have the potential to fight resistant microbes. Due to their therapeutic properties, medicinal herbs and spices have been utilized as herbal medicines since antiquity. They are important sources of organic antibacterial substances that are employed in treating infectious disorders caused by pathogens such as bacteria. The main focus of the study is the bioactivity of the active ingredients present in different kinds of naturally available spices. We conducted a thorough search of PubMed, Google Scholar, and Research Gate for this review. We have read many kinds of available literature, and in this paper, we conclude that many different kinds of naturally available spices perform some form of bioactivity. After reading several papers, we found that some spices have good antimicrobial and antifungal properties, which may help in controlling the emerging antimicrobial resistance and improving human health. Spices have many phytochemicals, which show good antimicrobial and antifungal effects. This review of the literature concludes that the natural bioactivate compounds present in spices can be used as a drug to overcome antimicrobial resistance in human beings.
Collapse
Affiliation(s)
- Purnima Khatri
- Centre for Drug Design Discovery and Development (C4D), SRM University, Sonepat 131029, India
- Department of Microbiology, SRM University, Sonepat 131029, India
| | - Asha Rani
- Centre for Drug Design Discovery and Development (C4D), SRM University, Sonepat 131029, India
- Department of Microbiology, SRM University, Sonepat 131029, India
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Subhash Chandra
- Computational Biology & Biotechnology Laboratory, Department of Botany, SSJ Campus, Soban Singh Jeena University, Almora 263601, India
| | - Chung-Ming Chang
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan
| | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University, Sonepat 131029, India
- Department of Microbiology, SRM University, Sonepat 131029, India
| |
Collapse
|
27
|
Stingelin GM, Scherer RS, Machado AC, Piva A, Grilli E, Penha Filho RC. The use of thymol, carvacrol and sorbic acid in microencapsules to control Salmonella Heidelberg, S. Minnesota and S. Typhimurium in broilers. Front Vet Sci 2023; 9:1046395. [PMID: 36686174 PMCID: PMC9846790 DOI: 10.3389/fvets.2022.1046395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction The control of Salmonella spp. in poultry involves different biosecurity actions and lately has been complicated by the emergence of multidrug resistant serovars. The application of organic acids and essential oils has been used with different approaches due to the antibacterial properties as food preservatives. The use of these molecules in animal feed to control enteric pathogens is a major interest within the poultry industry. Methods The use of a blend containing nature-identical compounds of sorbic acid (25%), thymol (9.5%) and carvacrol (2.5%) microencapsulated in a lipid matrix, was investigated in the present work, for the control of three Salmonella serovars (S. ser. Typhimurium, S. ser. Heidelberg and S. ser. Minnesota). Commercial broilers were challenged at 3 or at 33 days of age. Groups SH-1, SM-1 and ST-1, received treatment in the feed, at 2 kg/ton from 1-21 days of age and at 1 kg/ton from 35-42 days of age (last week), while groups SH-2, SM-2 and ST-2, were treated only during the last week receiving 2 kg/ton. Each treated group had an untreated control group, that was challenged at the same moment with the respective serovar (groups PCH, PCM and PCT). The challenge strains were enumerated in liver and cecal contents, weekly after challenge, at 7, 14, 21, 28, 35 and 42 days-of-age. Results and discussion Significant reduction was noticed at 7 and 14 days of age in all groups that received treatment during the initial phase (p < 0.05). Moreover, the body weight was significantly higher at the last experimental day (p < 0.05) in chickens that received treatment at the initial and at the final growth stages.
Collapse
Affiliation(s)
| | | | | | - Andrea Piva
- Vetagro S.p.A., Reggio Emilia, Italy,DIMEVET, University of Bologna, Bologna, Italy
| | - Ester Grilli
- Vetagro S.p.A., Reggio Emilia, Italy,DIMEVET, University of Bologna, Bologna, Italy
| | - Rafael Casarin Penha Filho
- Department of Veterinary Pathology, School of Veterinary and Agricultural Sciences, São Paulo State University, Jaboticabal, Brazil,*Correspondence: Rafael Casarin Penha Filho
| |
Collapse
|
28
|
Sakai T, Sakamoto JJ, Asada R, Furuta M, Tsuchido T. Different patterns of germination inhibition by carvacrol and thymol in Bacillus subtilis spores. JOURNAL OF MICROORGANISM CONTROL 2023; 28:3-13. [PMID: 37277956 DOI: 10.4265/jmc.28.1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study aimed to clarify how the phenolic monoterpene carvacrol and its structural isomer thymol both as essential oil components (EOCs) inhibit the germination of Bacillus subtilis spore. Germination was evaluated by the OD600 reduction rate in a growth medium and phosphate buffer containing either l-alanine (l-Ala) system or l-asparagine, d-glucose, d-fructose plus KCl (AGFK) system. The germination of the wild-type spores in the Trypticase Soy broth (TSB) was found to be greatly inhibited by thymol than by carvacrol. Such a difference in the germination inhibition was confirmed by the dipicolinic acid (DPA) release from germinating spores in the AGFK buffer system, but not in the l-Ala system. Similar to the wild-type spores, no difference in the inhibitory activity between the EOCs was also indicated with the gerB, gerK-deletion mutant spores in the l-Ala buffer system and the above substantial difference was also done with the gerA-deleted mutant spores in the AGFK. Fructose was found to release spores from the EOC inhibition and inversely even stimulated. Increased concentrations of glucose and fructose partially suppressed the germination inhibition by carvacrol. The results obtained should contribute to the elucidation of the control effects of these EOCs on bacterial spores in foods.
Collapse
Affiliation(s)
- Toshio Sakai
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Prefecture University
| | - Jin J Sakamoto
- Research Center of Microorganism Control, Organization for Research Promotion, Osaka Prefecture University
- Faculty of Chemistry, Materials, and Bioengineering, Kansai University
| | - Ryoko Asada
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Prefecture University
- Research Center of Microorganism Control, Organization for Research Promotion, Osaka Prefecture University
- Radiation Research Center, Organization for Research Promotion, Osaka Prefecture University
| | - Masakazu Furuta
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Prefecture University
- Research Center of Microorganism Control, Organization for Research Promotion, Osaka Prefecture University
- Radiation Research Center, Organization for Research Promotion, Osaka Prefecture University
| | - Tetsuaki Tsuchido
- Research Center of Microorganism Control, Organization for Research Promotion, Osaka Prefecture University
| |
Collapse
|
29
|
Elghobashy SA, Abeer Mohammed AB, Tayel AA, Alshubaily FA, Abdella A. Thyme/garlic essential oils loaded chitosan–alginate nanocomposite: Characterization and antibacterial activities. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
For controlling pathogenic bacteria using nanopolymer composites with essential oils, the formulation of chitosan/alginate nanocomposites (CS/ALG NCs) loaded with thyme oil, garlic oil, and thyme/garlic oil was investigated. Oils were encapsulated in CS/ALG NCs through oil-in-water emulsification and ionic gelation. The CS/ALG NCs loaded with oils of garlic, thyme, and garlic–thyme complex had mean diameters of 143.8, 173.9, and 203.4 nm, respectively. They had spherical, smooth surfaces, and zeta potential of +28.4 mV for thyme–garlic-loaded CS/ALG NCs. The bactericidal efficacy of loaded NCs with mixed oils outperformed individual loaded oils and ampicillin, against foodborne pathogens. Staphylococcus aureus was the most susceptible (with 28.7 mm inhibition zone and 12.5 µg·mL−1 bactericidal concentration), whereas Escherichia coli was the most resistant (17.5 µg·mL−1 bactericidal concentration). Scanning electron microscopy images of bacteria treated with NCs revealed strong disruptive effects on S. aureus and Aeromonas hydrophila cells; treated cells were totally exploded or lysed within 8 h. These environmentally friendly nanosystems might be a viable alternative to synthetic preservatives and be of interest in terms of health and food safety.
Collapse
Affiliation(s)
- Shrifa A. Elghobashy
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University , Kafrelsheikh 33516 , Egypt
| | - A. B. Abeer Mohammed
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City (USC) , El-Sadat City 32897 , Egypt
| | - Ahmed A. Tayel
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University , Kafrelsheikh 33516 , Egypt
| | - Fawzia A. Alshubaily
- Biochemistry Department, Faculty of Science, King Abdulaziz University , Jeddah , Saudi Arabia
| | - Asmaa Abdella
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City (USC) , El-Sadat City 32897 , Egypt
| |
Collapse
|
30
|
Controlled Release of Thymol by Cyclodextrin Metal-Organic Frameworks for Preservation of Cherry Tomatoes. Foods 2022; 11:foods11233818. [PMID: 36496626 PMCID: PMC9737142 DOI: 10.3390/foods11233818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Thymol is a phenol monoterpene with potential antifungal, antioxidant and antibacterial activities. Due to the low water solubility and high volatility of thymol, encapsulation serves as an effective tool during application. In the present study, cyclodextrin (CD)-based metal-organic-frameworks (MOFs) were synthesized using α-CD, β-CD, and γ-CD as organic building blocks, and further complexed with thymol to produce three CD-MOF-THY inclusion complexes (ICs). The encapsulation content, release kinetics and fruit preservation effect of ICs were analyzed. Results showed that thymol was well embedded in γ-CD-MOFs, with the highest encapsulation content of 286.7 ± 8.4 mg/g. Release kinetics revealed that CD-MOFs exhibited a controlled release effect toward thymol for 35 days. The release kinetics of three ICs fit the Rigter-Peppas model well, with γ-CD-MOF-THY showing the lowest release rate constant of 2.85 at 50 °C, RH 75%. Moreover, γ-CD-MOF-THY exhibited a remarkable preservation performance on cherry tomatoes with the lowest decay index (18.75%) and weight loss (5.17%) after 15 days of storage, suggesting this material as a potential fresh-keeping material for fruit and vegetable preservation.
Collapse
|
31
|
Imran M, Aslam M, Alsagaby SA, Saeed F, Ahmad I, Afzaal M, Arshad MU, Abdelgawad MA, El‐Ghorab AH, Khames A, Shariati MA, Ahmad A, Hussain M, Imran A, Islam S. Therapeutic application of carvacrol: A comprehensive review. Food Sci Nutr 2022; 10:3544-3561. [PMID: 36348778 PMCID: PMC9632228 DOI: 10.1002/fsn3.2994] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Carvacrol is a major natural constituent and is significantly present as an essential oil in aromatic plants and is well known for its numerous biological activities. Therapeutic properties of carvacrol have been demonstrated as anti-oxidant, anticancer, diabetes prevention, cardioprotective, anti-obesity, hepatoprotective and reproductive role, antiaging, antimicrobial, and immunomodulatory properties. The carvacrol biosynthesis has been mediated through mevalonate pathway. Carvacrol has the anticancer ability against malignant cells via decreasing the expressions of matrix metalloprotease 2 and 9, inducing apoptosis, enhancing the expression of pro-apoptotic proteins, disrupting mitochondrial membrane, suppressing extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase signal transduction, and also decreasing the phosphoinositide 3-kinase/protein kinase B. It also decreased the concentrations of alanine aminotransferase, alkaline phosphatase and aspartate aminotransferase, and gamma-glutamyl transpeptidase as well as also restored liver function, insulin level, and plasma glucose level. Carvacrol also has been found to exert antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Coagulase-negative staphylococcus, Salmonella spp., Enterococcus sp. Shigella, and Escherichia coli. The current review article summarizes the health-promoting perspectives of carvacrol through various pathways.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Food Science and TechnologyUniversity of NarowalNarowalPakistan
| | - Mahwish Aslam
- Faculty of Allied Health Sciences, University Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesMajmaah UniversityMajmaahSaudi Arabia
| | - Farhan Saeed
- Department of Food Science and TechnologyGovernment College UniversityFaisalabadPakistan
| | - Ishtiaque Ahmad
- Department of Dairy Technology, FAPTUniversity of Veterinary & Animal SciencesLahorePakistan
| | - Muhamamd Afzaal
- Department of Food Science and TechnologyGovernment College UniversityFaisalabadPakistan
| | - Muhammad Umair Arshad
- Department of Food Science and TechnologyGovernment College UniversityFaisalabadPakistan
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of PharmacyJouf UniversitySakakaSaudi Arabia
| | - Ahmed H. El‐Ghorab
- Department of Chemistry, College of ScienceJouf UniversitySakakaSaudi Arabia
| | - Ahmed Khames
- Department of Pharmaceutics and Industrial Pharmacy, College of PharmacyTaif UniversityTaifSaudi Arabia
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University)MoscowRussian Federation
| | - Arslan Ahmad
- Department of Food Science and TechnologyGovernment College UniversityFaisalabadPakistan
| | - Muzamal Hussain
- Department of Food Science and TechnologyGovernment College UniversityFaisalabadPakistan
| | - Ali Imran
- Department of Food Science and TechnologyGovernment College UniversityFaisalabadPakistan
| | - Saiful Islam
- Institute of Nutrition and Food ScienceUniversity of DhakaDhakaBangladesh
| |
Collapse
|
32
|
Chemical profile and in vitro Antibacterial potential of Essential Oils and Hydrolat Extracts from Aerial Parts of Three Wild species of Moroccan Thymus. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
33
|
Hakalová E, Čechová J, Tekielska DA, Eichmeier A, Pothier JF. Combined effect of thyme and clove phenolic compounds on Xanthomonas campestris pv. campestris and biocontrol of black rot disease on cabbage seeds. Front Microbiol 2022; 13:1007988. [PMID: 36386705 PMCID: PMC9650141 DOI: 10.3389/fmicb.2022.1007988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/13/2022] [Indexed: 11/27/2022] Open
Abstract
The seed-borne bacterium Xanthomonas campestris pv. campestris (Xcc) as a causal organism of black rot disease remains the most serious bacterial problem of agricultural production of cruciferous plants worldwide. The eradication of a primary inoculum originating in seeds is available, but no treatment is totally effective. With the threat of developing chemical resistance and increasing pressure for sustainable disease management, biocontrol methods represent one of the main strategies currently applied in agriculture. Natural antimicrobials, including essential oils, are promising tools in disease management with low risks of environmental pollution and impact on human health. Thyme and clove essential oils were demonstrated to be highly effective in Xanthomonas studies in vitro; therefore, their application in black rot control was evaluated in this study. From five phenolic substances originating from thyme and clove essential oils (carvacrol, eugenol, linalool, p-cymene and thymol), the most promising in vitro results were observed with carvacrol, for which 0.0195% led to the death of all Xcc cells in 30 min. Moreover, a synergistic antibacterial effect of carvacrol and thymol solutions decreased the minimal inhibition concentration to 0.0049% and 0.0195% for carvacrol and thymol, respectively. Using the quadruple bactericidal values, the complete elimination of Xcc from the surface of infested cabbage seeds was obtained for both carvacrol and thymol solutions and their combined mixture at 2 MIC value. The elimination of bacterial infection from germinated cabbage plants was observed for both plate counting and quantitative real-time PCR methods. We also evaluated the effect of the application of phenolic treatment on the seed germination and germinated plants. Our results suggest a high potential of the application of carvacrol and thymol in vegetable seed production, specifically for cabbage, thus representing a suitable alternative to cupric derivatives.
Collapse
Affiliation(s)
- Eliška Hakalová
- Mendeleum – Institute of Genetics, Mendel University in Brno, Brno, Czechia
- *Correspondence: Eliška Hakalová,
| | - Jana Čechová
- Mendeleum – Institute of Genetics, Mendel University in Brno, Brno, Czechia
| | | | - Ales Eichmeier
- Mendeleum – Institute of Genetics, Mendel University in Brno, Brno, Czechia
| | - Joël F. Pothier
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| |
Collapse
|
34
|
Berdejo D, Gayán E, Pagán E, Merino N, Campillo R, Pagán R, García-Gonzalo D. Carvacrol Selective Pressure Allows the Occurrence of Genetic Resistant Variants of Listeria monocytogenes EGD-e. Foods 2022; 11:3282. [PMID: 37431028 PMCID: PMC9602272 DOI: 10.3390/foods11203282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 09/07/2024] Open
Abstract
Essential oils and their constituents, such as carvacrol, are potential food preservatives because of their great antimicrobial properties. However, the long-term effects of these compounds are unknown and raise the question of whether resistance to these antimicrobials could emerge. This work aims to evaluate the occurrence of genetic resistant variants (RVs) in Listeria monocytogenes EGD-e by exposure to carvacrol. Two protocols were performed for the RVs selection: (a) by continuous exposure to sublethal doses, where LmSCar was isolated, and (b) by reiterative exposure to short lethal treatments of carvacrol, where LmLCar was isolated. Both RVs showed an increase in carvacrol resistance. Moreover, LmLCar revealed an increased cross-resistance to heat treatments at acid conditions and to ampicillin. Whole-genome sequencing identified two single nucleotide variations in LmSCar and three non-silent mutations in LmLCar. Among them, those located in the genes encoding the transcriptional regulators RsbT (in LmSCar) and ManR (in LmLCar) could contribute to their increased carvacrol resistance. These results provide information regarding the mode of action of this antimicrobial and support the importance of knowing how RVs appear. Further studies are required to determine the emergence of RVs in food matrices and their impact on food safety.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Diego García-Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| |
Collapse
|
35
|
Liang J, Huang X, Ma G. Antimicrobial activities and mechanisms of extract and components of herbs in East Asia. RSC Adv 2022; 12:29197-29213. [PMID: 36320733 PMCID: PMC9554739 DOI: 10.1039/d2ra02389j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
Antibacterial drugs face increasing challenges due to drug resistance and adverse reactions, which has created a pressing need for the discovery and development of novel antibacterial drugs. Herbs have played an important role in the treatment of infectious diseases. This review aims to summarize, analyze and evaluate the antibacterial activities and mechanisms of components from popular herbs in East Asia. In this review, we have searched and summarized the scientific papers published during the past twenty-year period from electronic databases such as PubMed, ScienceDirect, and Web of Science. These herbs and their components, including alkaloids, flavonoids, essential oils, terpenes, organic acids, coumarins and lignans, display potential antimicrobial effects. Herbal medicine formulas (HMFs) usually show stronger antibacterial activity than single herbs. Herbs and HMFs bring forth antibacterial activities by damaging cell membranes and walls, inhibiting nucleic acid and protein synthesis, and increasing intracellular osmotic pressure. These herbs and their components can be developed as potential and promising novel antibacterial herbal products.
Collapse
Affiliation(s)
- Jingru Liang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 China +86-21-5198-0025
| | - Xuan Huang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 China +86-21-5198-0025
| | - Guo Ma
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 China +86-21-5198-0025
| |
Collapse
|
36
|
Caballero Gómez N, Manetsberger J, Benomar N, Castillo Gutiérrez S, Abriouel H. Antibacterial and antibiofilm effects of essential oil components, EDTA and HLE disinfectant solution on Enterococcus, Pseudomonas and Staphylococcus sp. multiresistant strains isolated along the meat production chain. Front Microbiol 2022; 13:1014169. [PMID: 36299714 PMCID: PMC9589356 DOI: 10.3389/fmicb.2022.1014169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/21/2022] [Indexed: 11/27/2022] Open
Abstract
The spread of multidrug resistant (MDR) bacteria and resistance genes along the food chain and the environment has become a global, but silent pandemic. To face this challenge, it is of outmost importance to develop efficient strategies to reduce potential contamination by these agents. In the present study, 30 strains of Enterococcus sp., Staphylococcus sp. and Pseudomonas sp. isolated from various surfaces throughout the meat production chain in a goat and lamb slaughterhouse were characterized as MDR bacteria harboring several antibiotic resistance genes (ARGs). The antimicrobial efficacy of natural essential oil components “EOCs” (carvacrol “CA,” cinnamaldehyde “CIN,” eugenol “EU,” geraniol “GE,” limonene “LI” and thymol “TH”), HLE disinfectant solution (3–6% H2O2; 2.2–4.4% lactic acid and 12.5–25 mM EDTA in water) and EDTA was tested against these MDR bacteria. Results showed that Minimum Inhibitory Concentrations (MIC) were compound and strain dependent. In addition, the synergistic effect of these antimicrobials was evaluated at 1/2 MIC. Here our study showed particularly promising results regarding the inhibitory effect at sub-inhibitory concentrations, which were confirmed by the analysis of bacterial growth dynamics over 72 h. Furthermore, the inhibitory effect of EOCs, HLE disinfectant solution and EDTA or their combinations was studied in developing and established biofilms of MDR bacteria obtaining variable results depending on the morphological structure of the tested strain and the phenolic character of the EOCs. Importantly, the combination of EOCs with HLE or EDTA showed particularly positive results given the effective inhibition of biofilm formation. Moreover, the synergistic combinations of EU and HLE/EDTA, TH, CA, GE, LI or CIN + EDTA/HLE caused log reductions in established biofilms of several strains (1–6 log10 CFU) depending on the species and the combination used, with Pseudomonas sp. strains being the most susceptible. Given these results, we propose novel antimicrobial formulations based on the combination of sub-inhibitory concentrations of EOCs and HLE or EDTA as a highly promising alternative to currently used approaches. This novel strategy notably shows great potential to efficiently decrease the emergence and spread of MDR bacteria and ARGs in the food chain and the environment, thus supporting the decrease of resistomes and pathogenesis in clinical and industrial areas while preserving the antibiotic therapeutic action.
Collapse
Affiliation(s)
- Natacha Caballero Gómez
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Julia Manetsberger
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Nabil Benomar
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Sonia Castillo Gutiérrez
- Área de Estadística e Investigación Operativa, Departamento de Estadística e Investigación Operativa, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Hikmate Abriouel
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
- *Correspondence: Hikmate Abriouel,
| |
Collapse
|
37
|
Kim Y, Shin M, Kang J, Kang D. Effect of sub‐lethal treatment of carvacrol and thymol on virulence potential and resistance to several bactericidal treatments of
Staphylococcus aureus
. J Food Saf 2022. [DOI: 10.1111/jfs.13004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu‐Min Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agricultural and Life Sciences Seoul National University Seoul Republic of Korea
| | - Minjung Shin
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agricultural and Life Sciences Seoul National University Seoul Republic of Korea
| | - Jun‐Won Kang
- Department of Food Science and Biotechnology Dongguk University‐Seoul Goyang‐si Gyeonggi‐do Republic of Korea
| | - Dong‐Hyun Kang
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agricultural and Life Sciences Seoul National University Seoul Republic of Korea
- Institutes of Green Bio Science & Technology Seoul National University Pyeongchang‐gun Gangwon‐do Republic of Korea
| |
Collapse
|
38
|
Thymol as an Adjuvant to Restore Antibiotic Efficacy and Reduce Antimicrobial Resistance and Virulence Gene Expression in Enterotoxigenic Escherichia coli Strains. Antibiotics (Basel) 2022; 11:antibiotics11081073. [PMID: 36009942 PMCID: PMC9404878 DOI: 10.3390/antibiotics11081073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022] Open
Abstract
The continuous spread of antimicrobial resistance is endangering the efficient control of enterotoxigenic Escherichia coli (ETEC), which is mainly responsible for post-weaning diarrhea onset in piglets. Thymol, the key constituent of thyme essential oil, is already used in animal nutrition for its antimicrobial action. The aim of this study was to investigate the potential adjuvant effect of thymol to re-establish antibiotic efficacy against highly resistant ETEC field strains. Secondly, we evaluated the modulation of virulence and antibiotic resistance genes. Thymol showed the capacity to control ETEC growth and, when combined with ineffective antibiotics, it increased their antimicrobial power. In particular, it showed significant effects when blended with colistin and tetracycline, suggesting that the adjuvant effects rely on the presence of complementary mechanisms of action between molecules, or the absence of resistance mechanisms that inactivate antibiotics and target sites. Furthermore, our findings demonstrate that, when added to antibiotics, thymol can help to further downregulate several virulence and antibiotic resistance genes, offering new insights on the potential mechanisms of action. Therefore, in a one-health approach, our study supports the beneficial effects of combining thymol with antibiotics to restore their efficacy, together with the possibility of targeting gene expression as a pioneering approach to manage ETEC pathogenicity.
Collapse
|
39
|
Jadimurthy R, Mayegowda SB, Nayak S, Mohan CD, Rangappa KS. Escaping mechanisms of ESKAPE pathogens from antibiotics and their targeting by natural compounds. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 34:e00728. [PMID: 35686013 PMCID: PMC9171455 DOI: 10.1016/j.btre.2022.e00728] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/10/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
The microorganisms that have developed resistance to available therapeutic agents are threatening the globe and multidrug resistance among the bacterial pathogens is becoming a major concern of public health worldwide. Bacteria develop protective mechanisms to counteract the deleterious effects of antibiotics, which may eventually result in loss of growth-inhibitory potential of antibiotics. ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens display multidrug resistance and virulence through various mechanisms and it is the need of the hour to discover or design new antibiotics against ESKAPE pathogens. In this article, we have discussed the mechanisms acquired by ESKAPE pathogens to counteract the effect of antibiotics and elaborated on recently discovered secondary metabolites derived from bacteria and plant sources that are endowed with good antibacterial activity towards pathogenic bacteria in general, ESKAPE organisms in particular. Abyssomicin C, allicin, anthracimycin, berberine, biochanin A, caffeic acid, daptomycin, kibdelomycin, piperine, platensimycin, plazomicin, taxifolin, teixobactin, and thymol are the major metabolites whose antibacterial potential have been discussed in this article.
Collapse
Affiliation(s)
- Ragi Jadimurthy
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Shilpa Borehalli Mayegowda
- Dayananda Sagar University, School of Basic and Applied Sciences, Shavige Malleswara Hills, Kumaraswamy layout, Bengaluru 560111, India
| | - S.Chandra Nayak
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, India
| | | | | |
Collapse
|
40
|
Atas B, Aksoy CS, Avci FG, Sayar NA, Ulgen K, Ozkirimli E, Akbulut BS. Carvacrol Enhances the Antimicrobial Potency of Berberine in Bacillus subtilis. Curr Microbiol 2022; 79:135. [PMID: 35303184 DOI: 10.1007/s00284-022-02823-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/21/2022] [Indexed: 11/26/2022]
Abstract
The essential oil carvacrol from oregano displays a wide range of biological activities among which is found the inhibition of efflux pumps. Thus, using carvacrol, the current work undertook the effort to potentiate the antimicrobial activity of berberine, a natural product with limited antimicrobial efficacy due to its efflux. Following the selection of concentrations for the combinatorial treatments, guided by checkerboard microtiter plate assay and growth experiments, ethidium bromide accumulation assay was used to find that 25 μg mL-1 carvacrol displayed a weak efflux pump inhibitor character in Bacillus subtilis. Scanning electron microscopy images and cellular material leakage assays showed that carvacrol at this concentration neither altered the morphology nor the permeability of the membrane alone but when combined with 75 μg mL-1 berberine. Among the efflux pumps of different families found in B. subtilis, except for BmrA and Mdr, the increase in the expressional changes was striking, with Blt displaying ~ 4500-fold increase in expression under the combination treatment. Overall, the findings demonstrated that carvacrol potentiated the effect of berberine; however, not only multiple pumps but also different targets may be responsible for the observed activity.
Collapse
Affiliation(s)
- Basak Atas
- Bioengineering Department, Marmara University, Kadikoy, 34722, Istanbul, Turkey
| | - Cemile Selin Aksoy
- Bioengineering Department, Marmara University, Kadikoy, 34722, Istanbul, Turkey
| | - Fatma Gizem Avci
- Bioengineering Department, Uskudar University, Uskudar, 34662, Istanbul, Turkey
| | - Nihat Alpagu Sayar
- Bioengineering Department, Marmara University, Kadikoy, 34722, Istanbul, Turkey
| | - Kutlu Ulgen
- Chemical Engineering Department, Bogazici University, Bebek, 34342, Istanbul, Turkey
| | - Elif Ozkirimli
- Chemical Engineering Department, Bogazici University, Bebek, 34342, Istanbul, Turkey
| | | |
Collapse
|
41
|
Wang LQ, Wu KT, Yang P, Hou F, Rajput SA, Qi DS, Wang S. Transcriptomics Reveals the Effect of Thymol on the Growth and Toxin Production of Fusarium graminearum. Toxins (Basel) 2022; 14:142. [PMID: 35202169 PMCID: PMC8877954 DOI: 10.3390/toxins14020142] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 12/20/2022] Open
Abstract
Fusarium graminearum is a harmful pathogen causing head blight in cereals such as wheat and barley, and thymol has been proven to inhibit the growth of many pathogens. This study aims to explore the fungistatic effect of thymol on F. graminearum and its mechanism. Different concentrations of thymol were used to treat F. graminearum. The results showed that the EC50 concentration of thymol against F. graminearum was 40 μg/mL. Compared with the control group, 40 μg/mL of thymol reduced the production of Deoxynivalenol (DON) and 3-Ac-DON by 70.1% and 78.2%, respectively. Our results indicate that thymol can effectively inhibit the growth and toxin production of F. graminearum and cause an extensive transcriptome response. Transcriptome identified 16,727 non-redundant unigenes and 1653 unigenes that COG did not annotate. The correlation coefficients between samples were all >0.941. When FC was 2.0 times, a total of 3230 differential unigenes were identified, of which 1223 were up-regulated, and 2007 were down-regulated. Through the transcriptome, we confirmed that the expression of many genes involved in F. graminearum growth and synthesis of DON and other secondary metabolites were also changed. The gluconeogenesis/glycolysis pathway may be a potential and important way for thymol to affect the growth of F. graminearum hyphae and the production of DON simultaneously.
Collapse
Affiliation(s)
- Lian-Qun Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.-Q.W.); (K.-T.W.); (P.Y.)
- Department of Animal Science, College of Animal Science and Technology, Tarim University, Aral 843300, China;
| | - Kun-Tan Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.-Q.W.); (K.-T.W.); (P.Y.)
| | - Ping Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.-Q.W.); (K.-T.W.); (P.Y.)
| | - Fang Hou
- Department of Animal Science, College of Animal Science and Technology, Tarim University, Aral 843300, China;
| | - Shahid Ali Rajput
- Faculty of Veterinary and Animal Science, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Punjab, Pakistan;
| | - De-Sheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.-Q.W.); (K.-T.W.); (P.Y.)
| | - Shuai Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.-Q.W.); (K.-T.W.); (P.Y.)
| |
Collapse
|
42
|
Mehta J, Rolta R, Dev K. Role of medicinal plants from North Western Himalayas as an efflux pump inhibitor against MDR AcrAB-TolC Salmonella enterica serovar typhimurium: In vitro and In silico studies. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114589. [PMID: 34492321 DOI: 10.1016/j.jep.2021.114589] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/20/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zingiber officinale Roscoe has been utilized traditionally to cure various diseases like cold, cough, diarrhoea, nausea, asthma, vomiting, toothache, stomach upset, respiratory disorders, joint pain, and throat infection. It is also consumed as spices and ginger tea. AIM OF THE STUDY The current study was aimed to identify the phytocompounds of traditional medicinal plants of North-Western Himalaya that could inhibit the AcrAB-TolC efflux pump activity of Salmonella typhimurium and become sensitive to antibiotic killing at reduced dosage. MATERIAL AND METHODS Medicinal plant extracts were prepared using methanol, aqueous, and ethyl acetate and tested for efflux pump inhibitory activity of Salmonella typhimurium NKS70, NKS174, and NKS773 strains using Ethidium Bromide (EtBr)-agar cartwheel assay. Synergism was assessed by the agar well diffusion method and EPI activity by berberine uptake and EtBr efflux inhibition assays. Microdilution method and checkerboard assays were done to determine the minimum inhibitory concentration (MIC) and fractional inhibitory concentration index (FICI) respectively for a bioactive compound. To validate the phytocompound and efflux pump interaction, molecular docking with 6IE8 (RamA) and 6IE9 (RamR) targets was done using autoDock vina software. Toxicity prediction and drug-likeness were predicted by using ProTox-II and Molinspiration respectively. RESULTS Methanolic and ethyl acetate extracts of P. integerrima, O. sanctum, C. asiatica, M. charantia, Z. officinale, and W. somnifera in combination with ciprofloxacin and tetracycline showed synergistic antimicrobial activity with GIIs of 0.61-1.32 and GIIs 0.56-1.35 respectively. Methanolic extract of Z. officinal enhanced the antimicrobial potency of berberine (2 to 4-folds) and increased the EtBr accumulation. Furthermore, bioassay-guided fractionation leads to the identification of lariciresinol in ethyl acetate fraction, which decreased the MIC by 2-to 4-folds. The ΣFIC values varied from 0.30 to 0.55 with tetracycline, that indicated synergistic/additive effects. Lariciresinol also showed a good binding affinity with 6IE8 (-7.4 kcal mol-1) and 6IE9 (-8.2 kcal mol-1), which is comparable to tetracycline and chenodeoxycholic acid. Lariciresinol followed Lipinski's rule of five. CONCLUSION The data suggest that lariciresinol from Z. officinale could be a potential efflux pump inhibitor that could lead to effective killing of drug resistant Salmonella typhimurium at lower MIC. Molecular docking confirmed the antibacterial EPI mechanism of lariciresinol in Salmonella typhimurium and confirmed to be safe for future use.
Collapse
Affiliation(s)
- Jyoti Mehta
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, District Solan, 173229, Himachal Pradesh, India.
| | - Rajan Rolta
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, District Solan, 173229, Himachal Pradesh, India
| | - Kamal Dev
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, District Solan, 173229, Himachal Pradesh, India.
| |
Collapse
|
43
|
Mbese Z, Nell M, Fonkui YT, Ndinteh DT, Steenkamp V, Aderibigbe BA. Hybrid Compounds Containing Carvacrol Scaffold: In Vitro Antibacterial and Cytotoxicity Evaluation. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2022; 17:54-68. [PMID: 35078393 DOI: 10.2174/1574891x16666220124122445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/10/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The design of hybrid compounds is a distinct approach for developing potent bioactive agents. Carvacrol, an essential oil, exhibits antimicrobial, antifungal, antioxidant, and anticancer activity, making it a good precursor for the development of compounds with potent biological activities. Some patents have reported carvacrol derivatives with promising biological activities. OBJECTIVE This study aimed to prepare hybrid compounds containing a carvacrol scaffold with significant antibacterial and anticancer activity. METHODS Esterification reactions between carvacrol and known pharmacophores were performed at room temperature and characterized using 1H-NMR, 13CNMR, and UHPLC-HRMS. In vitro antibacterial study was determined using the microdilution assay and cytotoxicity evaluation using sulforhodamine B staining assay. RESULTS The FTIR spectra of the carvacrol hybrids revealed prominent bands in the range of 1612-1764 cm-1 and 1014-1280 cm-1 due to (C=O) and (C-O) stretching vibrations, respectively. The structures of the carvacrol hybrids were confirmed by 1H-NMR, 13C-NMR, and UHPLC-HRMS analysis, and compound 5 exhibited superior activity when compared to the hybrid compounds against the strains of bacteria used in the study. The in vitro cytotoxicity evaluation showed that compound 3 induced cytotoxicity in all the cancer cell lines; MDA (16.57 ± 1.14 μM), MCF-7 (0.47 ± 1.14 μM), and DU145 (16.25 ± 1.08 μM), as well as the normal breast cells, MCF-12A (0.75± 1.30 μM). Compound 7 did not induce cytotoxicity in the cell lines tested (IC50 > 200 μM). CONCLUSION The modification of carvacrol through hybridization is a promising approach to develop compounds with significant antibacterial and anticancer activity.
Collapse
Affiliation(s)
- Zintle Mbese
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice, South Africa
| | - Margo Nell
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Youmbi T Fonkui
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Derek T Ndinteh
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Vanessa Steenkamp
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Blessing A Aderibigbe
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice, South Africa
| |
Collapse
|
44
|
Effect of Essential Oils on Growth Inhibition, Biofilm Formation and Membrane Integrity of Escherichia coli and Staphylococcus aureus. Antibiotics (Basel) 2021; 10:antibiotics10121474. [PMID: 34943686 PMCID: PMC8698458 DOI: 10.3390/antibiotics10121474] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/12/2023] Open
Abstract
Biofilm as a cellular conformation confers survival properties to microbial populations and favors microbial resistance. Here, we investigated the antimicrobial, antibiofilm, antimotility, antihemolytic activity, and the interaction with synthetic membranes of 15 essential oils (EOs) on E. coli ATCC 25922 and S. aureus ATCC 29213. Antimicrobial activity of EOs was determined through microdilution method; development of the biofilm was assessed using the crystal violet assay and SEM microscopy. Results indicate that Lippia origanoides thymol–carvacrol II chemotype (LTC II) and Thymus vulgaris (TV) exhibited a significant antibacterial activity, with MIC values of 0.45 and 0.75 mg/mL, respectively. The percentage of biofilm formation inhibition was greater than 70% at subinhibitory concentrations (MIC50) for LTC II EO. The results demonstrate that these two oils had significantly reduced the hemolytic effect of S. aureus by 54% and 32%, respectively, and the mobility capacity by swimming in E. coli with percentages of decrease of 55% and 47%, respectively. The results show that LTC II and TV EOs can interact with the hydrophobic core of lipid bilayers and alter the physicochemical properties of membranes. The findings suggest that LTC II and TV oils may potentially be used to aid in the treatment of S. aureus and E. coli infections.
Collapse
|
45
|
Hao Y, Li J, Shi L. A Carvacrol-Rich Essential Oil Extracted From Oregano ( Origanum vulgare "Hot & Spicy") Exerts Potent Antibacterial Effects Against Staphylococcus aureus. Front Microbiol 2021; 12:741861. [PMID: 34803958 PMCID: PMC8602913 DOI: 10.3389/fmicb.2021.741861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/12/2021] [Indexed: 01/16/2023] Open
Abstract
Oregano essential oil (OEO), as a natural antimicrobial, has gained increased interest from food researchers and manufacturers. However, a few studies have investigated its possible antibacterial effects against Staphylococcus aureus using the proteomic tool. The present study aimed to explore the antibacterial effect and mechanism of a carvacrol-rich OEO extracted from Origanum vulgare “Hot & Spicy” on the inactivation of S. aureus. The gas chromatography–mass spectrometry analysis of the OEO allowed the detection of 27 compounds; the major constituent was carvacrol (84.38% of total compounds). The average diameter of the inhibitory zone (DIZ) value was 29.10 mm, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of OEO against S. aureus were 0.125 and 0.25 mg/mL, respectively. The growth curve assay indicated that the OEO prolonged the lag phase of S. aureus. The decrease in cell viability, changes in the integrity of cell membrane, and abnormal cell morphology further reflected the cell damage of S. aureus caused by the OEO. In addition, a label-free proteomic analysis was applied to analyze the regulatory networks of S. aureus in response to 1/2 MIC OEO-treatment stress. Of the 56 differentially expressed proteins (DEPs) identified, 26 were significantly upregulated and 30 downregulated. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that the DEPs were mainly involved in pathways of ribosomes; valine, leucine, and isoleucine biosynthesis; and phenylalanine, tyrosine, and tryptophan biosynthesis, which suggested that the growth inhibition of S. aureus might be due to the disordered effect of the OEO on protein synthesis and amino acid metabolism. These findings deepened our understanding regarding S. aureus survival and metabolism responses to the OEO treatment and suggested that the carvacrol-rich OEO could be used in food production environments to effectively control S. aureus.
Collapse
Affiliation(s)
- Yuanpeng Hao
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jingyi Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Lei Shi
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
46
|
da Costa Lima M, Magnani M, Dos Santos Lima M, de Sousa CP, Dubreuil JD, de Souza EL. Phenolic-rich extracts from acerola, cashew apple and mango by-products cause diverse inhibitory effects and cell damages on enterotoxigenic Escherichia coli. Lett Appl Microbiol 2021; 75:565-577. [PMID: 34687563 PMCID: PMC9539876 DOI: 10.1111/lam.13586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/12/2021] [Accepted: 10/19/2021] [Indexed: 11/27/2022]
Abstract
This study aimed to evaluate the inhibitory effects of phenolic-rich extracts from acerola (Malpighia emarginata D.C., PEA), cashew apple (Anacardium occidentale L., PEC) and mango (Mangifera indica L., PEM) by-products on distinct enterotoxigenic Escherichia coli (ETEC) strains. The capability of PEA and PEC of impairing various physiological functions of ETEC strains was investigated with multiparametric flow cytometry. Procyanidin B2 , myricetin and p-coumaric acid were the major phenolic compounds in PEA, PEC and PEM, respectively. PEA and PEC had lower minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) (MIC: 31·25 mg ml-1 ; MBC: 62·5 mg ml-1 ) on ETEC strains than PEM (MIC and MIC: >1000 mg ml-1 ). PEA and PEC (15·6, 31·2, 62·5 mg ml-1 ) caused viable count reductions (P < 0·05) on ETEC strains after 24 h of exposure, notably the ≥3 log reductions caused by 62·5 mg ml-1 . The 24 h exposure of ETEC strains to PEA and PEC (31·2, 62·5 mg ml-1 ) led to high sizes of cell subpopulations with concomitant impairments in cell membrane polarization and permeability, as well as in enzymatic, respiratory and efflux activities. PEA and PEC are effective in inhibiting ETEC through a multi-target action mode with disturbance in different physiological functions.
Collapse
Affiliation(s)
- M da Costa Lima
- Laboratory of Food Microbiology, Department of Nutrition, Health Science Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - M Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - M Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão de Pernambuco, Petrolina, Pernambuco, Brazil
| | - C P de Sousa
- Department of Morphology and Pathology, Center of Biological Sciences and Health, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - J D Dubreuil
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - E L de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Health Science Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
47
|
Rathod NB, Kulawik P, Ozogul F, Regenstein JM, Ozogul Y. Biological activity of plant-based carvacrol and thymol and their impact on human health and food quality. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Amirkhanova Z, Akhmetova S, Kozhakhmetov S, Kushugulova A, Bodeeva R, Issina Z, Tusbayev M. Screening of Antimicrobial and Adhesive Activity of Lactobacilli Isolated from the National Food Products from Different Districts of the Karaganda Region (Kazakhstan). Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: It is a national priority to look for new probiotic bacteria with highly active biological properties to create a new generation of probiotics, ferments, therapeutic, and prophylactic fermented milk products, taking into account ethnocultural and regional characteristics.
AIM: The aim of the study is to assess probiotic properties of strains of lactobacilli (antimicrobial and adhesive), which are isolated from national lactic acid products from different districts of the Karaganda region (Kazakhstan).
MATERIALS AND METHODS: There were modern microbiological methods applied during the experiment. To determine the morpho-cultural properties, the following methods were used: Gram staining, a catalase test, serial dilutions. The Matrix Supported Laser Desorption/Ionization Flight Time Mass Spectrometry was used for identification, and the deferred-antagonism method was used to determine the antimicrobial activity. The buccal epithelial cells were used for the cell object as a test system to determine the adhesive activity.
RESULTS: In this experiment, 26 lactobacillus isolates were isolated from 68 samples of national lactic acid products produced in a traditional homemade way in different districts of the Karaganda region (Kazakhstan). As a result of the studies carried out on the cultural and morphological characteristics and identification by the mass spectrometer, the following lactobacilli were obtained: Lactobacillus acidophilus (two strains), Lactobacillus delbrueckii subsp. bulgaricum (two strains), Lactobacillus rhamnosus (seven strains), Lactobacillus plantarum (two strains), Lactobacillus paracasei (11 strains), and Lactobacillus fermentum (two strains). Twenty-six isolates of lactobacilli were tested for antimicrobial activity, 13 isolates of which showed an inhibitory effect, but the degree of antagonism varied among lactobacillus isolates. In general, the inhibitory activity of lactobacillus isolates was shown against the Gram-negative indicator microorganisms Salmonella typhimurium NCTC 12023, Escherichia coli NCTC 12923. The antibacterial activity was shown against the Staphylococcus aureus NCTC 12973 indicator microorganism in nine isolates of lactobacilli. Only six isolates of lactobacilli showed antifungal activity against the test strain of Candida albicans NCPF 3179. Out of 13 isolates of lactobacilli, nine isolates of medium and high activity competed for binding to buccal epithelial cells.
CONCLUSION: The obtained isolates from traditional dairy products are considered to be promising candidates and competitive isolates with some probiotic potential. This study calls for further researches to be made in this area.
Collapse
|
49
|
Zhu M, Yang Y, Wang M, Li X, Han R, Chen Q, Shen D, Shentu J. A deep insight into the suppression mechanism of Sedum alfredii root exudates on Pseudomonas aeruginosa based on quorum sensing. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112240. [PMID: 33901783 DOI: 10.1016/j.ecoenv.2021.112240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/28/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Quorum sensing (QS) plays an important role in the intensive communication between plants and microbes in the rhizosphere during the phytoremediation. This study explored the influence of the root exudates of hyperaccumulator Sedum alfredii on Pseudomonas aeruginosa based on QS. The effects of the components of root exudates, genes expression and transcription regulation of QS system (especially the las system) in Pseudomonas aeruginosa wild-type strain (WT) and rhl system mutant strain (ΔrhlI) were systematically analyzed and discussed. The WT and ΔrhlI exposed to gradient root exudates (0×, 1×, 2×, 5× and 10×) showed a concentration-corrective inhibition on protease production, with the inhibition rates of 51.4-74.5% and 31.2-50.0%, respectively. Among the components of the root exudates of Sedum alfredii, only thymol had an inhibition effects to the root exudates on the activity of protease and elastase. The inhibition rates of 50 μmol/L thymol on protease and elastase in WT were 44.7% and 24.3%, respectively, which was consistent with the variation in ΔrhlI. The gene expression of lasB declined 36.0% under the 1× root exudate treatment and 73.0% under the 50 μmol/L thymol treatment. Meanwhile, there was no significant impact on N-3-oxo-dodecanoyl-L-homoserine lactone signal production and the gene expression of lasI and lasR. Therefore, thymol from Sedum alfredii root exudates could inhibit the formation of protease and elastase in Pseudomonas aeruginosa by suppressing the expression of lasB, without any significant influence on the main las system as a potential natural QS inhibitor.
Collapse
Affiliation(s)
- Min Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Yusheng Yang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Xiaoxiao Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China
| | - Ruifang Han
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China
| | - Qianqian Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Jiali Shentu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310012, PR China.
| |
Collapse
|
50
|
Dos Santos Barbosa CR, Scherf JR, de Freitas TS, de Menezes IRA, Pereira RLS, Dos Santos JFS, de Jesus SSP, Lopes TP, de Sousa Silveira Z, de Morais Oliveira-Tintino CD, Júnior JPS, Coutinho HDM, Tintino SR, da Cunha FAB. Effect of Carvacrol and Thymol on NorA efflux pump inhibition in multidrug-resistant (MDR) Staphylococcus aureus strains. J Bioenerg Biomembr 2021; 53:489-498. [PMID: 34159523 DOI: 10.1007/s10863-021-09906-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/14/2021] [Indexed: 02/08/2023]
Abstract
Undue exposure to antimicrobials has led to the acquisition and development of sophisticated bacterial resistance mechanisms, such as efflux pumps, which are able to expel or reduce the intracellular concentration of various antibiotics, making them ineffective. Therefore, inhibiting this mechanism is a promising way to minimize the phenomenon of resistance in bacteria. In this sense, the present study sought to evaluate the activity of the Carvacrol (CAR) and Thymol (THY) terpenes as possible Efflux Pump Inhibitors (EPIs), by determining the Minimum Inhibitory Concentration (MIC) and the association of these compounds in subinhibitory concentrations with the antibiotic Norfloxacin and with Ethidium Bromide (EtBr) against strains SA-1199 (wild-type) and SA-1199B (overexpresses NorA) of Staphylococcus aureus. In order to verify the interaction of the terpenes with the NorA efflux protein, an in silico molecular modeling study was carried out. The assays used to obtain the MIC of CAR and THY were performed by broth microdilution, while the Efflux Pump inhibitory test was performed by the MIC modification method of the antibiotic Norfloxacin and EtBr. docking was performed using the Molegro Virtual Docker (MVD) program. The results of the study revealed that CAR and THY have moderate bacterial activity and are capable of reducing the MIC of Norfloxacin antibiotic and EtBr in strains of S. aureus carrying the NorA efflux pump. The docking results showed that these terpenes act as possible competitive NorA inhibitors and can be investigated as adjuvants in combined therapies aimed at reducing antibiotic resistance.
Collapse
Affiliation(s)
| | - Jackelyne Roberta Scherf
- Laboratory of Semi-Arid Bioprospecting (LABSEMA), Regional University of Cariri-URCA, Crato, Brazil
| | - Thiago Sampaio de Freitas
- Laboratory of Simulations and Molecular Spectroscopy (Lasemol), Regional University of Cariri-URCA, Crato, Brazil
| | - Irwin Rose Alencar de Menezes
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri-URCA, Crato, Brazil
| | - Raimundo Luiz Silva Pereira
- Laboratory of Simulations and Molecular Spectroscopy (Lasemol), Regional University of Cariri-URCA, Crato, Brazil
| | | | | | - Thais Pereira Lopes
- Laboratory of Semi-Arid Bioprospecting (LABSEMA), Regional University of Cariri-URCA, Crato, Brazil
| | | | | | | | | | - Saulo Relison Tintino
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri-URCA, Crato, Brazil
| | | |
Collapse
|