1
|
Mastrodonato AC, Escudero ME, Lucero-Estrada CSM, Favier GI. Assessment of the pathogenicity of Y. enterocolitica B1A isolates from San Luis, Argentina. Gene 2025; 941:149248. [PMID: 39805396 DOI: 10.1016/j.gene.2025.149248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Yersinia enterocolitica, a bacterial enteropathogen that produces a variety of clinical manifestations in humans, includes six biotypes (B), called 1A, 1B, 2, 3, 4 and 5 and about 70 serotypes. The biotypes exhibit diverse pathogenic potential; while 1B and 2-5 may show ability to produce clinical symptoms due to the presence of chromosomal and plasmid (pYV) virulence genes, B1A is supposed a non-pathogenic biotype since it lacks pYV plasmid. Therefore, although B1A strains cause diarrhea in humans, their pathogenic potential has not yet been extensively studied. The objective of this study was to assess virulence genetic markers of local Y. enterocolitica B1A strains and determine clonal relationships between isolates. To this, Y. enterocolitica chromosomal virulence markers were evaluated by PCR, Yst enterotoxin activity of culture filtrates in the intestine of suckling mice was tested and PFGE was applied in 24 Y. enterocolitica B1A strains obtained from human feces, foods, animals and environmental samples of our region (isolated among 2000-2014). The detection frequency of virulence chromosomal markers was as follows: fepA [95.8% (23/24)], ystB [91.7% (22/24)], hreP [87.5 % (21/24)], tccC [12.5% (3/24)] and myfA [4.2% (1/24)]. Presence of ystB gene was strongly associated to the Yst activity in suckling mice. By PFGE, B1A strains were divided into 10 genomic patterns (GP). Interestingly, human strains showed 88% similarity when compared to strains of the same serotype from other sources. Our results support the pathogenicity of Y. enterocolitica B1A strains and highlight the valuable impact of the Y. enterocolitica monitoring to prevent and control the spreading of this pathogen in our region.
Collapse
Affiliation(s)
- Anna C Mastrodonato
- Área Microbiología e Inmunología, Facultad de Química, BioquímicaArgentina y Farmacia, Universidad Nacional de San Luis, Ejercito de los Andes 950, P. O. 5700 San Luis, Argentina
| | - María E Escudero
- Área Microbiología e Inmunología, Facultad de Química, BioquímicaArgentina y Farmacia, Universidad Nacional de San Luis, Ejercito de los Andes 950, P. O. 5700 San Luis, Argentina
| | - Cecilia S M Lucero-Estrada
- Área Microbiología e Inmunología, Facultad de Química, BioquímicaArgentina y Farmacia, Universidad Nacional de San Luis, Ejercito de los Andes 950, P. O. 5700 San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas de San Luis-Consejo Nacional de Investigaciones Científicas y Técnicas (IMIBIO-SL-CONICET), Ejército de los Andes 950, P. O. 5700, San Luis, Argentina
| | - Gabriela I Favier
- Área Microbiología e Inmunología, Facultad de Química, BioquímicaArgentina y Farmacia, Universidad Nacional de San Luis, Ejercito de los Andes 950, P. O. 5700 San Luis, Argentina.
| |
Collapse
|
2
|
Lü Z, Su L, Han M, Wang X, Li M, Wang S, Cui S, Chen J, Yang B. Genomic characteristics and virulence of common but overlooked Yersinia intermedia, Y. frederiksenii, and Y. kristensenii in food. Int J Food Microbiol 2025; 430:111052. [PMID: 39798383 DOI: 10.1016/j.ijfoodmicro.2024.111052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/20/2024] [Accepted: 12/28/2024] [Indexed: 01/15/2025]
Abstract
Yersinia intermedia, Y. frederiksenii, and Y. kristensenii are a group of pathogens that are commonly found in food and are often overlooked in terms of their pathogenic potential. This study conducted a systematic and comprehensive genomic analysis of 114 Y. intermedia genomes, 20 Y. frederiksenii genomes, and 65 Y. kristensenii genomes from public database and our previous study. The results showed that these species were most frequently detected in Europe (56.28 %, 112/199), followed by in Asia (20.6 %, 41/199). Additionally, 33.17 % (66/199) genomes were isolated from food. Y. intermedia were grouped into Bayesian analysis of population structure (Baps) groups 3 and 4, demonstrating significant genomic diversity. This species has a high proportion of accessory genes (79.43 %), approximately 50 % of which have unknown functions, indicating a high degree of genomic plasticity. The three species carried a large number of mobile genetic elements (MGEs), including plasmids such as ColRNAI_1, ColE10_1, Col440II_1, Col440I_1, and Col (Ye4449) _1; insertion sequences (ISs) like MITEYpe1, MITEEc1, and IS1635; genomic islands (GIs); and prophages. In Y. intermedia, the following antibiotics resistance genes (ARGs) were detected: qnrD1 in 3.51 % (4/114), aph(3')-Ia in 2.63 % (3/114), blaA in 1.75 % (2/114), and catA1, vat(F), and tet(C) each in 0.88 % (1/114). In Y. kristensenii, vat(F) was present in 98.46 % (64/65), blaTEM-116 in 7.69 % (5/65), and aph(3')-Ia in 1.54 % (1/65). However, only one Y. frederiksenii genome carried vat(F). There were differences in the virulence gene composition of the three species, with Y. kristensenii having the highest number of virulence genes, particularly its complete cytotoxic genes (yaxA and yaxB) and flagellar motor proteins genes (motA and motB). The pathogenic mechanisms of Y. intermedia and Y. frederiksenii were more similar, especially in the carriage of O-antigen related genes. Y. frederiksenii's unique mechanisms also include the yapC gene, which encodes the autotransporter protein YapC from Y. pestis. After co-cultured with human colonic epithelial cell lines Caco-2 and HT-29, Y. intermedia and Y. kristensenii demonstrated different adhesive and invasive capabilities, particularly the Y. intermedia strain y7, which exhibited stronger adhesion and invasion in both cell lines. In strains y118 and y119 of Y. intermedia, an Arg378del mutation in the UreC protein was identified, resulting in the loss of urease activity. Therefore, this study revealed the pathogenic potential of Y. intermedia, Y. frederiksenii, and Y. kristensenii. Future research should focus on identifying their unknown virulence genes and strengthening public food safety measures to mitigate potential risks.
Collapse
Affiliation(s)
- Zexun Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengting Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoqi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Siyue Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing 100050, China.
| | - Jia Chen
- Shijiazhuang University, Shijiazhuang 050035, China.
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Li S, Chen T, Gao K, Yang YB, Qi B, Wang C, An T, Cai X, Wang S. Streptococcus suis Induces Macrophage M1 Polarization and Pyroptosis. Microorganisms 2024; 12:1879. [PMID: 39338553 PMCID: PMC11433784 DOI: 10.3390/microorganisms12091879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Streptococcus suis is an important bacterial pathogen that affects the global pig industry. The immunosuppressive nature of S. suis infection is recognized, and our previous research has confirmed thymus atrophy with a large number of necrotic cells. In this current work, we aimed to uncover the role of pyroptosis in cellular necrosis in thymic cells of S. suis-infected mice. Confocal microscopy revealed that S. suis activated the M1 phenotype and primed pyroptosis in the macrophages of atrophied thymus. Live cell imaging further confirmed that S. suis could induce porcine alveolar macrophage (PAM) pyroptosis in vitro, displaying cell swelling and forming large bubbles on the plasma membrane. Meanwhile, the levels of p-p38, p-extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) were increased, which indicated the mitogen-activated protein kinase (MAPK) and AKT pathways were also involved in the inflammation of S. suis-infected PAMs. Furthermore, RT-PCR revealed significant mRNA expression of pro-inflammatory mediators, including interleukin (IL)-1β, IL-6, IL-18, tumor necrosis factor (TNF)-α and chemokine CXCL8. The data indicated that the inflammation induced by S. suis was in parallel with pro-inflammatory activities of M1 macrophages, pyroptosis and MAPK and AKT pathways. Pyroptosis contributes to necrotic cells and thymocyte reduction in the atrophied thymus of mice.
Collapse
Affiliation(s)
- Siqi Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
| | - Tianfeng Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
| | - Kexin Gao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
| | - Yong-Bo Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
| | - Baojie Qi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Chunsheng Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
- Heilongjiang Research Center for Veterinary Biopharmaceutical Technology, Harbin 150069, China
| | - Shujie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
| |
Collapse
|
4
|
Vilela FP, Imori PFM, Allard MW, Falcão JP. Insights into the genomic traits of Yersinia frederiksenii, Yersinia intermedia and Yersinia kristensenii isolated from diverse sources in Brazil. Antonie Van Leeuwenhoek 2024; 117:86. [PMID: 38829455 DOI: 10.1007/s10482-024-01984-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
Yersinia is an important genus comprising foodborne, zoonotic and pathogenic bacteria. On the other hand, species of the so-called group Yersinia enterocolitica-like are understudied and mostly characterized as non-pathogenic, despite of some reports of human infections. The present study aimed to provide genomic insights of Yersinia frederiksenii (YF), Yersinia intermedia (YI) and Yersinia kristensenii (YK) isolated worldwide. A total of 22 YF, 20 YI and 14 YK genomes were searched for antimicrobial resistance genes, plasmids, prophages, and virulence factors. Their phylogenomic relatedness was analyzed by Gegenees and core-genome multi-locus sequence typing. Beta-lactam resistance gene blaTEM-116 and five plasmids replicons (pYE854, ColRNAI, ColE10, Col(pHAD28) and IncN3) were detected in less than five genomes. A total of 59 prophages, 106 virulence markers of the Yersinia genus, associated to adherence, antiphagocytosis, exoenzymes, invasion, iron uptake, proteases, secretion systems and the O-antigen, and virulence factors associated to other 20 bacterial genera were detected. Phylogenomic analysis revealed high inter-species distinction and four highly diverse YF clusters. In conclusion, the results obtained through the analyses of YF, YI and YK genomes suggest the virulence potential of these strains due to the broad diversity and high frequency of prophages and virulence factors found. Phylogenetic analyses were able to correctly distinguish these closely related species and show the presence of different genetic subgroups. These data contributed for a better understanding of YF, YI and YK virulence-associated features and global genetic diversity, and reinforced the need for better characterization of these Y. enterocolitica-like species considered non-pathogenic.
Collapse
Affiliation(s)
- Felipe Pinheiro Vilela
- Brazilian Reference Center on Yersinia spp. other than Y. pestis, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Av. do Café, s/n. Bloco S - Sala 41, Ribeirão Preto, SP, 14040-903, Brazil
| | - Priscilla Fernanda Martins Imori
- Brazilian Reference Center on Yersinia spp. other than Y. pestis, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Av. do Café, s/n. Bloco S - Sala 41, Ribeirão Preto, SP, 14040-903, Brazil
| | - Marc William Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Juliana Pfrimer Falcão
- Brazilian Reference Center on Yersinia spp. other than Y. pestis, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Av. do Café, s/n. Bloco S - Sala 41, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
5
|
Li S, Wang C, Tang YD, Qin L, Chen T, Wang S, Bai Y, Cai X, Wang S. Interaction between Porcine Alveolar Macrophage-Tang Cells and Streptococcus suis Strains of Different Virulence: Phagocytosis and Apoptosis. Microorganisms 2023; 11:microorganisms11010160. [PMID: 36677452 PMCID: PMC9863715 DOI: 10.3390/microorganisms11010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Streptococcus suis is an important swine bacterial pathogen that activates macrophages to secrete inflammatory cytokines. Primary porcine alveolar macrophages (PAMs) are inconvenient to obtain, but it is unknown whether immortalized PAM-Tang cells can replace them as a better cell model for the study of the interaction between S. suis and macrophages. In this study, the phagocytic integrity, polarization, and pro-inflammatory cytokine secretion of PAM-Tang cells were confirmed by live-cell imaging, electron microscopy, confocal microscopy, and ELISA. Interestingly, the S. suis serotype 9 avirulent strain W7119 induced higher levels of adhesion and pro-inflammatory cytokines in PAM-Tang cells than the S. suis serotype 2 virulent strain 700794. Prolonged incubation with S. suis caused more cytotoxic cell damage, and the virulent strain induced higher levels of cytotoxicity to PAM-Tang cells. The virulent strain also induced higher levels of apoptosis in PAM-Tang cells, as shown by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) assay. In addition, it is the first report of virulent and avirulent S. suis inducing PAM-Tang polarization towards pro-inflammatory M1 macrophages and p53- and caspase-dependent apoptosis in PAMs. Taken together, this study contributes to a better understand of interactions between macrophages and S. suis isolates of different virulence, and confirms that PAM-Tang cells provide a long-term, renewable resource for investigating macrophage infections with bacteria.
Collapse
Affiliation(s)
- Siqi Li
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Chunsheng Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yan-Dong Tang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Lei Qin
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Tianfeng Chen
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Shanghui Wang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yuanzhe Bai
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xuehui Cai
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
- Correspondence: (X.C.); (S.W.)
| | - Shujie Wang
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
- Correspondence: (X.C.); (S.W.)
| |
Collapse
|
6
|
Prevalence, bio-serotype, antibiotic susceptibility and genotype of Yersinia enterocolitica and other Yersinia species isolated from retail and processed meats in Shaanxi Province, China. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Terentjeva M, Ķibilds J, Meistere I, Gradovska S, Alksne L, Streikiša M, Ošmjana J, Valciņa O. Virulence Determinants and Genetic Diversity of Yersinia Species Isolated from Retail Meat. Pathogens 2021; 11:37. [PMID: 35055985 PMCID: PMC8778217 DOI: 10.3390/pathogens11010037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
Yersinia enterocolitica is an important foodborne pathogen, and the determination of its virulence factors and genetic diversity within the food chain could help understand the epidemiology of yersiniosis. The aim of the present study was to detect the prevalence, and characterize the virulence determinants and genetic diversity, of Yersinia species isolated from meat. A total of 330 samples of retailed beef (n = 150) and pork (n = 180) in Latvia were investigated with culture and molecular methods. Whole genome sequencing (WGS) was applied for the detection of virulence and genetic diversity. The antimicrobial resistance of pathogenic Y. enterocolitica isolates was detected in accordance with EUCAST. Yersinia species were isolated from 24% (79/330) of meats, and the prevalence of Y. enterocolitica in pork (24%, 44/180) was significantly higher (p < 0.05) than in beef (13%, 19/150). Y. enterocolitica pathogenic bioserovars 2/O:9 and 4/O:3 were isolated from pork samples (3%, 6/180). Only resistance to ampicillin was confirmed in Y. enterocolitica 4/O:3 and 2/O:9 isolates, but not in other antimicrobials. Major virulence determinants, including ail, inv, virF, ystA and myfA, were confirmed with WGS in Y. enterocolitica 2/O:9 and 4/O:3. MLST typing revealed 15 STs (sequence types) of Y. enterocolitica with ST12 and ST18, which were associated with pathogenic bioserovars. For Y. enterocolitica 1A, Y. kristensenii, Y. intermedia and Y. frederiksenii, novel STs were registered (ST680-688). The presence of virulence genes and genetic characteristics of certain Y. enterocolitica STs confirm the common knowledge that pork could be an important source of pathogenic Yersinia.
Collapse
Affiliation(s)
- Margarita Terentjeva
- Institute of Food and Environmental Hygiene, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
- Institute of Food Safety, Animal Health and Environment BIOR, LV-1076 Riga, Latvia; (J.Ķ.); (I.M.); (S.G.); (L.A.); (M.S.); (J.O.); (O.V.)
| | - Juris Ķibilds
- Institute of Food Safety, Animal Health and Environment BIOR, LV-1076 Riga, Latvia; (J.Ķ.); (I.M.); (S.G.); (L.A.); (M.S.); (J.O.); (O.V.)
| | - Irēna Meistere
- Institute of Food Safety, Animal Health and Environment BIOR, LV-1076 Riga, Latvia; (J.Ķ.); (I.M.); (S.G.); (L.A.); (M.S.); (J.O.); (O.V.)
| | - Silva Gradovska
- Institute of Food Safety, Animal Health and Environment BIOR, LV-1076 Riga, Latvia; (J.Ķ.); (I.M.); (S.G.); (L.A.); (M.S.); (J.O.); (O.V.)
| | - Laura Alksne
- Institute of Food Safety, Animal Health and Environment BIOR, LV-1076 Riga, Latvia; (J.Ķ.); (I.M.); (S.G.); (L.A.); (M.S.); (J.O.); (O.V.)
| | - Madara Streikiša
- Institute of Food Safety, Animal Health and Environment BIOR, LV-1076 Riga, Latvia; (J.Ķ.); (I.M.); (S.G.); (L.A.); (M.S.); (J.O.); (O.V.)
| | - Jevgēnija Ošmjana
- Institute of Food Safety, Animal Health and Environment BIOR, LV-1076 Riga, Latvia; (J.Ķ.); (I.M.); (S.G.); (L.A.); (M.S.); (J.O.); (O.V.)
| | - Olga Valciņa
- Institute of Food Safety, Animal Health and Environment BIOR, LV-1076 Riga, Latvia; (J.Ķ.); (I.M.); (S.G.); (L.A.); (M.S.); (J.O.); (O.V.)
| |
Collapse
|
8
|
Paulson AR, O’Callaghan M, Zhang XX, Rainey PB, Hurst MRH. In vivo transcriptome analysis provides insights into host-dependent expression of virulence factors by Yersinia entomophaga MH96, during infection of Galleria mellonella. G3 (BETHESDA, MD.) 2021; 11:jkaa024. [PMID: 33561230 PMCID: PMC7849909 DOI: 10.1093/g3journal/jkaa024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/19/2020] [Indexed: 12/31/2022]
Abstract
The function of microbes can be inferred from knowledge of genes specifically expressed in natural environments. Here, we report the in vivo transcriptome of the entomopathogenic bacterium Yersinia entomophaga MH96, captured during initial, septicemic, and pre-cadaveric stages of intrahemocoelic infection in Galleria mellonella. A total of 1285 genes were significantly upregulated by MH96 during infection; 829 genes responded to in vivo conditions during at least one stage of infection, 289 responded during two stages of infection, and 167 transcripts responded throughout all three stages of infection compared to in vitro conditions at equivalent cell densities. Genes upregulated during the earliest infection stage included components of the insecticidal toxin complex Yen-TC (chi1, chi2, and yenC1), genes for rearrangement hotspot element containing protein yenC3, cytolethal distending toxin cdtAB, and vegetative insecticidal toxin vip2. Genes more highly expressed throughout the infection cycle included the putative heat-stable enterotoxin yenT and three adhesins (usher-chaperone fimbria, filamentous hemagglutinin, and an AidA-like secreted adhesin). Clustering and functional enrichment of gene expression data also revealed expression of genes encoding type III and VI secretion system-associated effectors. Together these data provide insight into the pathobiology of MH96 and serve as an important resource supporting efforts to identify novel insecticidal agents.
Collapse
Affiliation(s)
- Amber R Paulson
- Forage Science, AgResearch Ltd., Lincoln 8140, New Zealand
- New Zealand Institute for Advanced Study, Massey University, Auckland 0745, New Zealand
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | | | - Xue-Xian Zhang
- School of Natural and Computational Sciences, Massey University, Auckland 0745, New Zealand
| | - Paul B Rainey
- New Zealand Institute for Advanced Study, Massey University, Auckland 0745, New Zealand
- Laboratoire de Génétique de l’Evolution CBI, ESPCI Paris, Université PSL, CNRS, Paris 75005, France
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Mark R H Hurst
- Forage Science, AgResearch Ltd., Lincoln 8140, New Zealand
| |
Collapse
|
9
|
Nguyen SV, Muthappa DM, Eshwar AK, Buckley JF, Murphy BP, Stephan R, Lehner A, Fanning S. Comparative genomic insights into Yersinia hibernica - a commonly misidentified Yersinia enterocolitica-like organism. Microb Genom 2020; 6:mgen000411. [PMID: 32701425 PMCID: PMC7643974 DOI: 10.1099/mgen.0.000411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/07/2020] [Indexed: 11/18/2022] Open
Abstract
Food-associated outbreaks linked to enteropathogenic Yersinia enterocolitica are of concern to public health. Pigs and their meat are recognized risk factors for transmission of Y. enterocolitica. This study aimed to describe the comparative genomics of Y. enterocolitica along with a number of misclassified Yersinia isolates, now constituting the recently described Yersinia hibernica. The latter was originally cultured from an environmental sample taken at a pig slaughterhouse. Unique features were identified in the genome of Y. hibernica, including a novel integrative conjugative element (ICE), denoted as ICEYh-1 contained within a 255 kbp region of plasticity. In addition, a zebrafish embryo infection model was adapted and applied to assess the virulence potential among Yersinia isolates including Y. hibernica.
Collapse
Affiliation(s)
- Scott Van Nguyen
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Dechamma Mundanda Muthappa
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Athmanya K. Eshwar
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - James F. Buckley
- Veterinary Food Safety Laboratory, Cork County Council, Inniscarra, Co. Cork and Department of Microbiology, National University of Ireland, Cork, College Road, Cork, Ireland
| | - Brenda P. Murphy
- Veterinary Food Safety Laboratory, Cork County Council, Inniscarra, Co. Cork and Department of Microbiology, National University of Ireland, Cork, College Road, Cork, Ireland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Angelika Lehner
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
- Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5AG, UK
| |
Collapse
|
10
|
Peruzy MF, Aponte M, Proroga YTR, Capuano F, Cristiano D, Delibato E, Houf K, Murru N. Yersinia enterocolitica detection in pork products: Evaluation of isolation protocols. Food Microbiol 2020; 92:103593. [PMID: 32950135 DOI: 10.1016/j.fm.2020.103593] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/26/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Conventional methods for Yersinia enterocolitica detection in food samples are generally considered inadequate. Problems arise from the presence of the so-called "background flora", coupled to the low contamination level of the pathogen. Since, data on the microbial ecology occurring in competitive microflora are still lacking, MALDI TOF MS was used for strains 'identification after enrichment in PSB or ITC broths, and after plating on selective CIN medium at different incubation times. SYBR Green Real time PCR was used for the Y. enterocolitica strains' detection (4/O:3, 1A/O:5) in experimentally contaminated foods, as well as in naturally contaminated samples. A higher number of different bacterial genera (10 on CIN and 18 on PCA) was recorded after enrichment in PSB, whilst enrichment in ITC led to recovery of 6 and 10 genera on CIN and PCA, respectively. Yersiniaceae was the dominant family on the first day of incubation, but on the second day the percentage of isolation considerably decreased. By testing experimentally contaminated samples, substantial difficulties were encountered. The biotype 1A was always detected, whereas strain 4/O:3 proved to be poorly competitive. Based on the data, the enrichment media PSB and ITC, currently proposed for Y. enterocolitica detection, need to be improved to promote a successful pathogen's recovery.
Collapse
Affiliation(s)
- M F Peruzy
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium; Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Via Delpino 1, 80137, Naples, Italy; Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Karel Lodewijk Ledeganckstraat 35, Ghent, Belgium
| | - M Aponte
- Department of Agricultural Sciences, University of Naples 'Federico II', Via Università 100, Portici, 80055, Naples, Italy
| | - Y T R Proroga
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, Naples, Italy.
| | - F Capuano
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, Naples, Italy
| | - D Cristiano
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, Naples, Italy
| | - E Delibato
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy
| | - K Houf
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium; Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Karel Lodewijk Ledeganckstraat 35, Ghent, Belgium
| | - N Murru
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Via Delpino 1, 80137, Naples, Italy
| |
Collapse
|
11
|
Clarke M, Dabke G, Strakova L, Jenkins C, Saavedra-Campos M, McManus O, Paranthaman K. Introduction of PCR testing reveals a previously unrecognized burden of yersiniosis in Hampshire, UK. J Med Microbiol 2020; 69:419-426. [PMID: 31999240 DOI: 10.1099/jmm.0.001125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Current testing practices for yersiniosis mean that its true incidence and epidemiology are not well understood. In mid-2016, the introduction of testing via a multiplex gastrointestinal PCR panel at Portsmouth hospital laboratory in Hampshire, UK, resulted in a marked increase in the number of Yersinia cases identified locally.Aim. Here we describe the epidemiology and microbiology of Yersinia cases identified at Portsmouth laboratory following the introduction of PCR testing.Methodology. A case was defined as a person with a stool specimen in which Yersinia was detected by PCR and/or culture at Portsmouth NHS Trust laboratory between 1 January 2014 and 31 December 2018. A case list was created from laboratory data submitted by Portsmouth laboratory to Public Health England (PHE), updated with speciation and serotyping data from the PHE reference laboratory. Descriptive analysis was performed.Results. Over 30 months following introduction of PCR testing, 199 cases were confirmed with Yersinia, compared to two cases in the preceding 30 months. This corresponds to a rate of 13.8 and 0.1 per 100 000 population per year respectively (P<0.0001). In total, 85% of tested isolates were Y. enterocolitica, belonging to multiple serotypes, and the rest belonged to a range of Y. enterocolitica-like species.Conclusions. Introduction of PCR testing led to the identification of a previously unrecognized burden of yersiniosis in Hampshire. The diversity of species and serotypes suggests heterogeneity in sources and transmission routes. Further research on exposures, risk factors and clinical sequalae is needed to improve our understanding of the clinical and public health impact.
Collapse
Affiliation(s)
- Mattea Clarke
- Field Service, National Infection Service (NIS), Public Health England (PHE), London, UK
| | - Girija Dabke
- Public Health England South East, PHE, Fareham, UK
| | | | - Claire Jenkins
- E. coli, Shigella, Yersinia and Vibrio Reference Service, NIS, PHE, London, UK
| | - Maria Saavedra-Campos
- Field Service, National Infection Service (NIS), Public Health England (PHE), London, UK
| | - Oliver McManus
- Field Service, National Infection Service (NIS), Public Health England (PHE), London, UK
| | - Karthik Paranthaman
- Field Service, National Infection Service (NIS), Public Health England (PHE), London, UK
| |
Collapse
|
12
|
Lucero-Estrada C, Favier GI, Escudero ME. An overview of Yersinia enterocolitica and related species in samples of different origin from San Luis, Argentina. Food Microbiol 2019; 86:103345. [PMID: 31703854 DOI: 10.1016/j.fm.2019.103345] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/05/2019] [Accepted: 10/03/2019] [Indexed: 11/18/2022]
Abstract
This study is aimed at offering an overview of the prevalence of Yersinia enterocolitica and related species in San Luis, Argentina, from samples of diverse origin received in our laboratory between 1984 and 2014, and providing an analysis of the distribution of Yersinia isolates according to their isolation sources, highlighting bioserotypes and potential reservoirs and vehicles of transmission to humans. From a total of 4572 samples of human, animal, food and environmental origins analyzed by traditional culture methods and molecular techniques, 229 (5%) samples were Yersinia positive. The highest frequency of Yersinia isolates was observed in environmental specimens (14.3%), followed by animal (9.2%), food (5%) and human (0.6%) samples. A total of 255 Yersinia isolates were characterized, including 183 Y. enterocolitica and 72 isolates of other Yersinia species. Biotype 1A associated to several serotypes was identified in Y. enterocolitica isolates from environment (100%), animals (95.5%), foods (71.7%) and human samples (40%); bioserotype 2/O:9 was identified in isolates from foods (25.5%), and biotype 3 was associated with strains from humans (60%), animals (4.5%) and foods (2.8%). This biotype included three strains O:3 and six strains O:5. The data highlight animals and foods as the main Y. enterocolitica sources in our region.
Collapse
Affiliation(s)
- Cecilia Lucero-Estrada
- Microbiología General, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes 950, Bloque 1 Piso 1, 5700, San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas, San Luis- Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMIBIO-CONICET), Ejército de Los Andes 950, Bloque 1 Piso 1, 5700, San Luis, Argentina.
| | - Gabriela Isabel Favier
- Microbiología General, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes 950, Bloque 1 Piso 1, 5700, San Luis, Argentina
| | - María Esther Escudero
- Microbiología General, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes 950, Bloque 1 Piso 1, 5700, San Luis, Argentina
| |
Collapse
|
13
|
Nishiura H, Yamazaki A, Wakakuri K, Sasaki J, Terajima J, Ochiai K. Yersinia infection in two captive guereza colobus monkeys (Colobus guereza). J Vet Med Sci 2019; 81:1201-1204. [PMID: 31308292 PMCID: PMC6715909 DOI: 10.1292/jvms.19-0039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Two guereza colobus monkeys (Colobus guereza) reared in a zoological
garden in Japan suddenly died of multifocal fibrinonecrotic gastroenteritis and septicemia
associated with infection by Yersinia spp. It was necessary to
microbiologically differentiate Yersinia frederiksenii and Y.
enterocolitica. We described the pathological findings and discuss the causal
agent to emphasize the need to revert to using a combination of multiple examinations for
diagnosis.
Collapse
Affiliation(s)
- Hayate Nishiura
- Laboratory of Veterinary Pathology, Co-department of Veterinary Medicine, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Akiko Yamazaki
- Veterinary Public Health, Co-department of Veterinary Medicine, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Koichi Wakakuri
- Laboratory of Veterinary Pathology, Co-department of Veterinary Medicine, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Jun Sasaki
- Laboratory of Veterinary Pathology, Co-department of Veterinary Medicine, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Jun Terajima
- Veterinary Public Health, Co-department of Veterinary Medicine, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Kenji Ochiai
- Laboratory of Veterinary Pathology, Co-department of Veterinary Medicine, Iwate University, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
14
|
Yersinia hibernica sp. nov., isolated from pig-production environments. Int J Syst Evol Microbiol 2019; 69:2023-2027. [DOI: 10.1099/ijsem.0.003422] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
15
|
Chlebicz A, Śliżewska K. Campylobacteriosis, Salmonellosis, Yersiniosis, and Listeriosis as Zoonotic Foodborne Diseases: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E863. [PMID: 29701663 PMCID: PMC5981902 DOI: 10.3390/ijerph15050863] [Citation(s) in RCA: 280] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/16/2022]
Abstract
Zoonoses are diseases transmitted from animals to humans, posing a great threat to the health and life of people all over the world. According to WHO estimations, 600 million cases of diseases caused by contaminated food were noted in 2010, including almost 350 million caused by pathogenic bacteria. Campylobacter, Salmonella, as well as Yersinia enterocolitica and Listeria monocytogenes may dwell in livestock (poultry, cattle, and swine) but are also found in wild animals, pets, fish, and rodents. Animals, often being asymptomatic carriers of pathogens, excrete them with faeces, thus delivering them to the environment. Therefore, pathogens may invade new individuals, as well as reside on vegetables and fruits. Pathogenic bacteria also penetrate food production areas and may remain there in the form of a biofilm covering the surfaces of machines and equipment. A common occurrence of microbes in food products, as well as their improper or careless processing, leads to common poisonings. Symptoms of foodborne infections may be mild, sometimes flu-like, but they also may be accompanied by severe complications, some even fatal. The aim of the paper is to summarize and provide information on campylobacteriosis, salmonellosis, yersiniosis, and listeriosis and the aetiological factors of those diseases, along with the general characteristics of pathogens, virulence factors, and reservoirs.
Collapse
Affiliation(s)
- Agnieszka Chlebicz
- Institute of Fermentation Technology and Microbiology, Department of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland.
| | - Katarzyna Śliżewska
- Institute of Fermentation Technology and Microbiology, Department of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland.
| |
Collapse
|