1
|
Nie L, Ma J, Yu Y, Tao Y, Song Z, Li J. Exosomes as carriers to stimulate an anti-cancer immune response in immunotherapy and as predictive markers. Biochem Pharmacol 2025; 232:116699. [PMID: 39647605 DOI: 10.1016/j.bcp.2024.116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
During this era of rapid advancements in cancer immunotherapy, the application of cell-released small vesicles that activate the immune system is of considerable interest. Exosomes are cell-derived nanovesicles that show great promise for the immunological treatment of cancer because of their immunogenicity and molecular transfer capacity. Recent technological advancements have enabled the identification of functional functions that exosome cargoes perform in controlling immune responses. Exosomes are originated specifically from immune cells and tumor cells and they show unique composition patterns directly related to the immunotherapy against cancer. Exosomes can also deliver their cargo to particular cells, which can affect the phenotypic and immune-regulatory functions of those cells. Exosomes can influence the course of cancer and have therapeutic benefits by taking part in several cellular processes; as a result, they have the dual properties of activating and restraining cancer. Exosomes have tremendous potential for cancer immunotherapy; they may develop into the most powerful cancer vaccines and carriers of targeted antigens and drugs. Comprehending the potential applications of exosomes in immune therapy is significant for regulating cancer progression. This review offers an analysis of the function of exosomes in immunotherapy, specifically as carriers that function as diagnostic indicators for immunological activation and trigger an anti-cancer immune response. Moreover, it summarizes the fundamental mechanism and possible therapeutic applications of exosome-based immunotherapy for human cancer.
Collapse
Affiliation(s)
- Lili Nie
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, China
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, China
| | - Yang Yu
- Department of Emergency and Critical Care, the Second Hospital of Jilin University, Changchun, China
| | - Ying Tao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhidu Song
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, China
| | - Jian Li
- Department of Emergency and Critical Care, the Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Yi K, Sun C, Yuan Y, Luo Z, Luo H, Xie Y. A new weapon: the application of tumor vaccines based on extracellular exosomal heat shock proteins in immunotherapy. Front Immunol 2025; 16:1510650. [PMID: 39911383 PMCID: PMC11794256 DOI: 10.3389/fimmu.2025.1510650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025] Open
Abstract
Despite the significant advancements in cancer research, innovative approaches are still needed to reduce tumor incidence, progression, and dissemination, as well as for prolonging patient survival. Currently, the development of cancer vaccines is gaining attention as a novel preventative and therapeutic strategy. Although the concept of cancer vaccination is not new, a limited number of vaccines have received approval for tumor therapy. Heat shock protein (HSP)-based vaccination represents a promising strategy that harnesses specific tumor antigens to activate immune responses. Exosomes (Exs) are highly heterogeneous bilayer vesicles capable of transporting various types of molecules through extracellular space. Compared with conventional anticancer drugs, exosomes exhibit low toxicity and good biocompatibility, and they can stimulate the immune system either directly or indirectly. Ex-based vaccines may elicit an antitumor immune response that generates memory cells capable of recognizing cancer antigens, thereby inhibiting disease progression. This paper reviews the potential applications of HSPs and exosomes in the prevention and treatment of solid tumors. Finally, we discuss the advantages of the extracellular exosomal heat shock protein (HSP-Ex) vaccine and future research directions aimed at optimizing heat shock protein-based cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Kexin Yi
- The Second Clinical Medical College, Nanchang University, Nanchang, China
- Huankui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Chengpeng Sun
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yalin Yuan
- Huankui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhaowei Luo
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hongliang Luo
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, China
| | - Yunhe Xie
- The Second Clinical Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Dai Z, Cai R, Zeng H, Zhu H, Dou Y, Sun S. Exosome may be the next generation of promising cell-free vaccines. Hum Vaccin Immunother 2024; 20:2345940. [PMID: 38714324 PMCID: PMC11086043 DOI: 10.1080/21645515.2024.2345940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/18/2024] [Indexed: 05/09/2024] Open
Abstract
Traditional vaccines have limits against some persistent infections and pathogens. The development of novel vaccine technologies is particularly critical for the future. Exosomes play an important role in physiological and pathological processes. Exosomes present many advantages, such as inherent capacity being biocompatible, non-toxic, which make them a more desirable candidate for vaccines. However, research on exosomes are in their infancy and the barriers of low yield, low purity, and weak targeting of exosomes limit their applications in vaccines. Accordingly, further exploration is necessary to improve these problems and subsequently facilitate the functional studies of exosomes. In this study, we reviewed the origin, classification, functions, modifications, separation and purification, and characterization methods of exosomes. Meanwhile, we focused on the role and mechanism of exosomes for cancer and COVID-19 vaccines.
Collapse
Affiliation(s)
- Zelan Dai
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People’s Republic of China
- Department VII of Biological Products, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Ruiru Cai
- Department VII of Biological Products, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Hong Zeng
- Department VII of Biological Products, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Hailian Zhu
- Department VII of Biological Products, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Youwei Dou
- Department VII of Biological Products, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People’s Republic of China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People’s Republic of China
| |
Collapse
|
4
|
Ibrahim UH, Gafar MA, Khan R, Tageldin A, Govender T, Mackraj I. Engineered extracellular vesicles coated with an antimicrobial peptide for advanced control of bacterial sepsis. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70000. [PMID: 39185334 PMCID: PMC11342353 DOI: 10.1002/jex2.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
Alarming sepsis-related mortality rates present significant challenges to healthcare services globally. Despite advances made in the field, there is still an urgent need to develop innovative approaches that could improve survival rates and reduce the overall cost of treatment for sepsis patients. Therefore, this study aimed to develop a novel multifunctional therapeutic agent for advanced control of bacterial sepsis. Extracellular vesicles (EVs) isolated from lipopolysaccharide (LPS) induced HepG2 (hepatocellular carcinoma cells) (iEV) displayed an average particle size of 171.63 ± 2.77 nm, a poly dispersion index (PDI) of 0.32 ± 0.0, and a zeta potential (ZP) of -11.87 ± 0.18 mV. Compared to HepG2 EV, LPS induction significantly increases the EV protein concentration, PDI and ZP, reduces the average size and promotes cell proliferation and cytoprotective effects of the isolated EVs (iEVs) against LPS-induced cytotoxicity. Coating of iEV with a cationic antimicrobial peptide (AMP) to form PC-iEV slightly changed their physical properties and shifted their surface charge toward neutral values. This modification improved the antibacterial activity (2-fold lower minimum bactericidal concentration [MBC] values) and biocompatibility of the conjugated peptide while maintaining iEV cytoprotective and anti-inflammatory activities. Our findings indicate the superior anti-inflammatory and antibacterial dual activity of PC-iEV against pathogens associated with sepsis.
Collapse
Affiliation(s)
- Usri H. Ibrahim
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Mohammed A. Gafar
- Discipline of Pharmaceutical Sciences, College of Health SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Rene Khan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical ScienceUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Abdelrahman Tageldin
- Discipline of Pharmaceutical Sciences, College of Health SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Irene Mackraj
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| |
Collapse
|
5
|
Fatima S, Qaiser A, Andleeb S, Hashmi AH, Manzoor S. Navigating the brain: the role of exosomal shuttles in precision therapeutics. Front Neurol 2024; 14:1324216. [PMID: 38304326 PMCID: PMC10831691 DOI: 10.3389/fneur.2023.1324216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/28/2023] [Indexed: 02/03/2024] Open
Abstract
Brain diseases have become one of the leading roots of mortality and disability worldwide, contributing a significant part of the disease burden on healthcare systems. The blood-brain barrier (BBB) is a primary physical and biological obstacle that allows only small molecules to pass through it. Its selective permeability is a significant challenge in delivering therapeutics into the brain for treating brain dysfunction. It is estimated that only 2% of the new central nervous system (CNS) therapeutic compounds can cross the BBB and achieve their therapeutic targets. Scientists are exploring various approaches to develop effective cargo delivery vehicles to promote better therapeutics targeting the brain with minimal off-target side effects. Despite different synthetic carriers, one of the natural brain cargo delivery systems, "exosomes," are now employed to transport drugs through the BBB. Exosomes are naturally occurring small extracellular vesicles (EVs) with unique advantages as a therapeutic delivery system for treating brain disorders. They have beneficial innate aspects of biocompatibility, higher stability, ability to cross BBB, low cytotoxicity, low immunogenicity, homing potential, targeted delivery, and reducing off-site target effects. In this review, we will discuss the limitations of synthetic carriers and the utilization of naturally occurring exosomes as brain-targeted cargo delivery vehicles and highlight the methods for modifying exosome surfaces and drug loading into exosomes. We will also enlist neurodegenerative disorders targeted with genetically modified exosomes for their treatment.
Collapse
Affiliation(s)
- Shaheera Fatima
- Atta-ur-Rehman School of Applied Biosciences, Healthcare Biotechnology, National University of Science and Technology, Islamabad, Pakistan
| | - Ariba Qaiser
- Atta-ur-Rehman School of Applied Biosciences, Healthcare Biotechnology, National University of Science and Technology, Islamabad, Pakistan
| | - Saadia Andleeb
- Atta-ur-Rehman School of Applied Biosciences, Industrial Biotechnology, National University of Science and Technology, Islamabad, Pakistan
| | | | - Sobia Manzoor
- Atta-ur-Rehman School of Applied Biosciences, Healthcare Biotechnology, National University of Science and Technology, Islamabad, Pakistan
| |
Collapse
|
6
|
Liu C, Xia C, Xia C. Biology and function of exosomes in tumor immunotherapy. Biomed Pharmacother 2023; 169:115853. [PMID: 37951023 DOI: 10.1016/j.biopha.2023.115853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/25/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023] Open
Abstract
Exosomes are nano-scale extracellular vesicles that are found widely in various biological fluids. As messengers, exosomes deliver characteristic biological information from donor cells, facilitating their accumulation and subsequent transfer of information to tumor immune cells. Immunotherapy is a cutting-edge strategy for cancer therapy, but it has not yet reached its full potential owing to severe side effects and limited efficacy. Exosomes possess antigens and immunostimulatory molecules and can serve as cell-free vaccines to induce antitumor immunity. In addition, given their stability, low immunogenicity, and targeting ability, exosomes represent ideal drug delivery systems in tumor immunotherapy by delivering cargoes, including non-coding ribonucleic acids (RNAs), membrane proteins, chemotherapeutic agents, and immune cell death inducers. Exosomes can also be engineered to precisely target tumor cells. However, as a rising star in tumor immunotherapy, exosomes are also impeded by some challenges, including the lack of uniform technical standards for their isolation and purification, the need to improve exosomal cargo loading for efficient exosome delivery, and the expansion of clinical trials, which are currently in their infancy. Long-term, multi-center, and large-scale clinical trials are needed to evaluate the performance of exosomes in the future. Nonetheless, exosomes have demonstrated encouraging performance in tumor immunotherapy. In this review, we summarize the potential and challenges of exosomes in tumor immunotherapy, with the aim to shed light on exosomes as new-era tumor immunotherapy tools.
Collapse
Affiliation(s)
- Can Liu
- Foshan Maternity and Chlid Healthcare Hospital, Foshan 528000, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 515150, China
| | - Cong Xia
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Chenglai Xia
- Foshan Maternity and Chlid Healthcare Hospital, Foshan 528000, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 515150, China.
| |
Collapse
|
7
|
Zhang C, Zhou X, Wang D, Hao L, Zeng Z, Su L. Hydrogel-Loaded Exosomes: A Promising Therapeutic Strategy for Musculoskeletal Disorders. J Clin Pharm Ther 2023; 2023:1-36. [DOI: 10.1155/2023/1105664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
Clinical treatment strategies for musculoskeletal disorders have been a hot research topic. Accumulating evidence suggests that hydrogels loaded with MSC-derived EVs show great potential in improving musculoskeletal injuries. The ideal hydrogels should be capable of promoting the development of new tissues and simulating the characteristics of target tissues, with the properties matching the cell-matrix constituents of autologous tissues. Although there have been numerous reports of hydrogels loaded with MSC-derived EVs for the repair of musculoskeletal injuries, such as intervertebral disc injury, tendinopathy, bone fractures, and cartilage injuries, there are still many hurdles to overcome before the clinical application of modified hydrogels. In this review, we focus on the advantages of the isolation technique of EVs in combination with different types of hydrogels. In this context, the efficacy of hydrogels loaded with MSC-derived EVs in different musculoskeletal injuries is discussed in detail to provide a reference for the future application of hydrogels loaded with MSC-derived EVs in the clinical treatment of musculoskeletal injuries.
Collapse
Affiliation(s)
- Chunyu Zhang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Dongxue Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Li Hao
- Shougang Technician College, Nursing School, Beijing 100043, China
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| | - Zhipeng Zeng
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Shougang Technician College, Nursing School, Beijing 100043, China
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| | - Lei Su
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| |
Collapse
|
8
|
Moosazadeh Moghaddam M, Fazel P, Fallah A, Sedighian H, Kachuei R, Behzadi E, Imani Fooladi AA. Host and Pathogen-Directed Therapies against Microbial Infections Using Exosome- and Antimicrobial Peptide-derived Stem Cells with a Special look at Pulmonary Infections and Sepsis. Stem Cell Rev Rep 2023; 19:2166-2191. [PMID: 37495772 DOI: 10.1007/s12015-023-10594-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Microbial diseases are a great threat to global health and cause considerable mortality and extensive economic losses each year. The medications for treating this group of diseases (antibiotics, antiviral, antifungal drugs, etc.) directly attack the pathogenic agents by recognizing the target molecules. However, it is necessary to note that excessive use of any of these drugs can lead to an increase in microbial resistance and infectious diseases. New therapeutic methods have been studied recently using emerging drugs such as mesenchymal stem cell-derived exosomes (MSC-Exos) and antimicrobial peptides (AMPs), which act based on two completely different strategies against pathogens including Host-Directed Therapy (HDT) and Pathogen-Directed Therapy (PDT), respectively. In the PDT approach, AMPs interact directly with pathogens to interrupt their intrusion, survival, and proliferation. These drugs interact directly with the cell membrane or intracellular components of pathogens and cause the death of pathogens or inhibit their replication. The mechanism of action of MSC-Exos in HDT is based on immunomodulation and regulation, promotion of tissue regeneration, and reduced host toxicity. This review studies the potential of mesenchymal stem cell-derived exosomes/ATPs therapeutic properties against microbial infectious diseases especially pulmonary infections and sepsis.
Collapse
Affiliation(s)
- Mehrdad Moosazadeh Moghaddam
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Parvindokht Fazel
- Department of Microbiology, Fars Science and Research Branch, Islamic Azad University, Shiraz, Iran
| | - Arezoo Fallah
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Kachuei
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- Academy of Medical Sciences of the I.R. of Iran, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Ye H, Tan L, Tu C, Min L. Exosomes in sarcoma: Prospects for clinical applications. Crit Rev Oncol Hematol 2023; 181:103895. [PMID: 36481305 DOI: 10.1016/j.critrevonc.2022.103895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Sarcoma is a group of rare and heterogeneous mesenchymal tumors, prone to late diagnosis and poor prognosis. Exosomes are cell-derived small extracellular vesicles found in most body fluids and contain nucleic acids, proteins, lipids, and other molecules. Qualitative and quantitative changes of exosomes and the contents are associated with sarcoma progression, exhibiting their potential as biomarkers. Exosomes possess the capacity of evading immune responses, bioactivity for trafficking, tumor tropism, and lesion residence. Thus, exosomes could be engineered as tumor-specific vehicles in drugs and RNA delivery systems. Exosomes might also serve as therapeutic targets in targeted therapy and immunotherapy and be involved in chemotherapy resistance. Here, we provide a comprehensive summary of exosome applications in liquid biopsy-based diagnosis and explore their implications in the delivery system, targeted therapy, and chemotherapy resistance of sarcoma. Moreover, challenges in exosome clinical applications are raised and some future research directions are proposed.
Collapse
Affiliation(s)
- Huali Ye
- West China Hospital, West China School of Medicine, Sichuan University, Guoxue Xiang No. 37, Chengdu 610041, Sichuan, People's Republic of China
| | - Linyun Tan
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu 610041, Sichuan, People's Republic of China
| | - Chongqi Tu
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu 610041, Sichuan, People's Republic of China
| | - Li Min
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu 610041, Sichuan, People's Republic of China.
| |
Collapse
|
10
|
Xiao H, Ye X, Vishwakarma V, Preet R, Dixon DA. CRC-derived exosomes containing the RNA binding protein HuR promote lung cell proliferation by stabilizing c-Myc mRNA. Cancer Biol Ther 2022; 23:139-149. [PMID: 35130122 PMCID: PMC8824215 DOI: 10.1080/15384047.2022.2034455] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
HuR overexpression is related to poor survival in patients with colon cancer. HuR overexpression leads to stabilization of tumor-promoting mRNAs by binding to 3′UTR-resident AREs. Exosomes, nanosized lipid bilayer vesicles, mediate many steps in cancer progression. The potential role of exosomal HuR in colon cancer lung metastasis is unclear. HuR expression was assessed immunohistochemically in tumor tissue samples from 20 patients with metastatic or nonmetastatic colon cancer and colon cancer lung metastasis and benign lung disease samples from ten patients. Exosomes were isolated from HCT116 WT and HuR KO colon cancer cells, and uptake of PKH67- and PKH26-labeled exosomes by BEAS-2B cells was evaluated using fluorescence and confocal microscopy. C-Myc and p21protein and mRNA levels were measured by western blotting and RT-qPCR, respectively. In clinical patients, HuR overexpression was significantly enhanced in colon tissues of patients with lung metastasis. HuR expression was higher in lung tissue with metastasis of colonic origin than with benign lung disease. The effect of HuR-containing CRC exosomes compared to HuR-deficient exosomes on wound closure was observed as enhanced proliferation. BEAS-2B cell migration and invasion were enhanced after HuR-containing exosomes treatment. BEAS-2B cells showed similar uptake of PKH67 (HCT116 WT)- and PKH26 (HCT116 HuR KO)-labeled exosomes. Exosomal HuR stabilized c-Myc mRNA and downregulated p21 expression, leading to G1/S transition, in human bronchial epithelial cells. HuR overexpression is associated with lung metastasis in colon cancer patients. Exosomal HuR derived from colon cancer cells alter the biological effect on normal lung epithelial cells.
Collapse
Affiliation(s)
- Hui Xiao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China.,Department of Molecular Biosciences, University of Kansas Cancer Center, University of Kansas, Lawrence, Kansas, USA
| | - Xiong Ye
- College of Clinical Medicine, Shanghai University of Medicine & Health Science, Shanghai, China
| | - Vikalp Vishwakarma
- Department of Molecular Biosciences, University of Kansas Cancer Center, University of Kansas, Lawrence, Kansas, USA
| | - Ranjan Preet
- Department of Molecular Biosciences, University of Kansas Cancer Center, University of Kansas, Lawrence, Kansas, USA
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas Cancer Center, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
11
|
Zhao X, Wang Q, Zhu G, Ma J, Lin N. Size effect of cellulose nanocrystals in cellular internalization and exosome-packaging exocytosis. Carbohydr Polym 2022; 298:120131. [DOI: 10.1016/j.carbpol.2022.120131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/02/2022]
|
12
|
Qian K, Fu W, Li T, Zhao J, Lei C, Hu S. The roles of small extracellular vesicles in cancer and immune regulation and translational potential in cancer therapy. J Exp Clin Cancer Res 2022; 41:286. [PMID: 36167539 PMCID: PMC9513874 DOI: 10.1186/s13046-022-02492-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Extracellular vesicles (EVs) facilitate the extracellular transfer of proteins, lipids, and nucleic acids and mediate intercellular communication among multiple cells in the tumour environment. Small extracellular vesicles (sEVs) are defined as EVs range in diameter from approximately 50 to 150 nm. Tumour-derived sEVs (TDsEVs) and immune cell-derived sEVs have significant immunological activities and participate in cancer progression and immune responses. Cancer-specific molecules have been identified on TDsEVs and can function as biomarkers for cancer diagnosis and prognosis, as well as allergens for TDsEVs-based vaccination. Various monocytes, including but not limited to dendritic cells (DCs), B cells, T cells, natural killer (NK) cells, macrophages, and myeloid-derived suppressor cells (MDSCs), secrete sEVs that regulate immune responses in the complex immune network with either protumour or antitumour effects. After engineered modification, sEVs from immune cells and other donor cells can provide improved targeting and biological effects. Combined with their naïve characteristics, these engineered sEVs hold great potential as drug carriers. When used in a variety of cancer therapies, they can adjunctly enhance the safety and antitumor efficacy of multiple therapeutics. In summary, both naïve sEVs in the tumour environment and engineered sEVs with effector cargoes are regarded as showing promising potential for use in cancer diagnostics and therapeutics.
Collapse
|
13
|
Ye H, Hu X, Wen Y, Tu C, Hornicek F, Duan Z, Min L. Exosomes in the tumor microenvironment of sarcoma: from biological functions to clinical applications. J Nanobiotechnology 2022; 20:403. [PMID: 36064358 PMCID: PMC9446729 DOI: 10.1186/s12951-022-01609-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
The current diagnosis and treatment of sarcoma continue to show limited timeliness and efficacy. In order to enable the early detection and management of sarcoma, increasing attentions have been given to the tumor microenvironment (TME). TME is a dynamic network composed of multiple cells, extracellular matrix, vasculature, and exosomes. Exosomes are nano-sized extracellular vesicles derived from various cells in the TME. The major function of exosomes is to promote cancer progress and metastasis through mediating bidirectional cellular communications between sarcoma cells and TME cells. Due to the content specificity, cell tropism, and bioavailability, exosomes have been regarded as promising diagnostic and prognostic biomarkers, and therapeutic vehicles for sarcoma. This review summarizes recent studies on the roles of exosomes in TME of sarcoma, and explores the emerging clinical applications.
Collapse
Affiliation(s)
- Huali Ye
- West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Xin Hu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wen
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Chongqi Tu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Francis Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Li Min
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
14
|
Exosome mediated Tom40 delivery protects against hydrogen peroxide-induced oxidative stress by regulating mitochondrial function. PLoS One 2022; 17:e0272511. [PMID: 35951602 PMCID: PMC9371349 DOI: 10.1371/journal.pone.0272511] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/20/2022] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial dysfunction is a hallmark of neurodegeneration. The expression level of Tom40, a crucial mitochondrial membrane protein, is significantly reduced in neurodegenerative disease subjects. Tom40 overexpression studies have shown to protect the neurons against oxidative stress by improving mitochondrial function. Thus, successful delivery of Tom40 protein to the brain could lead to a novel therapy for neurodegenerative diseases. However, delivering protein to the cell may be difficult. Especially the blood-brain barrier (BBB) is a big hurdle to clear in order to deliver the protein to the brain. In the current study, we engineered exosomes, which are the extracellular vesicles of endosomal origin, and able to cross BBB as delivery vehicles packing human Tom40. We found Tom40 protein delivery by the exosome successfully protected the cells against hydrogen peroxide-induced oxidative stress. This result suggests that exosome-mediated delivery of Tom40 may potentially be useful in restoring mitochondrial functions and alleviating oxidative stress in neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases.
Collapse
|
15
|
Wang T, Fu Y, Sun S, Huang C, Yi Y, Wang J, Deng Y, Wu M. Exosome-based drug delivery systems in cancer therapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Zhao Y, Liu L, Sun R, Cui G, Guo S, Han S, Li Z, Bai T, Teng L. Exosomes in cancer immunoediting and immunotherapy. Asian J Pharm Sci 2022; 17:193-205. [PMID: 35582642 PMCID: PMC9091780 DOI: 10.1016/j.ajps.2021.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/14/2021] [Accepted: 12/26/2021] [Indexed: 12/18/2022] Open
Abstract
As an important means of communication among cells, exosomes are being studied more and more widely, especially in the context of cancer immunotherapy. In the phase of tumor immunoediting, exosomes derived from tumor cells and different immune cells have complex and changeable physiological functions, because they carry different proteins and nucleic acid from the source cells. Based on the role of exosomes in the communication between different cells, cancer treatment methods are also under continuous research. This review briefly introduces the molecular composition of exosomes, which is closely related to their secretion mechanism. Subsequently, the role of exosomes encapsulating different information molecules is summarized. The role of exosomes in the three phases of tumor immunoediting is introduced in detail, and the relevant literature of exosomes in the tumor immune microenvironment is summarized by using a novel framework for extracting relevant documents. Finally, it summarizes the various exosome-based immunotherapies currently proposed, as well as the challenges and future prospects of exosomes in tumor immunotherapy.
Collapse
Affiliation(s)
- Yarong Zhao
- School of Life Sciences & College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Luotong Liu
- School of Life Sciences & College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Rongze Sun
- School of Life Sciences & College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Guilin Cui
- School of Life Sciences & College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Shuyu Guo
- School of Life Sciences & College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Songren Han
- School of Life Sciences & College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Ziwei Li
- School of Life Sciences & College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Tian Bai
- School of Life Sciences & College of Computer Science and Technology, Jilin University, Changchun 130012, China
- Corresponding author.
| | - Lesheng Teng
- School of Life Sciences & College of Computer Science and Technology, Jilin University, Changchun 130012, China
- Corresponding author.
| |
Collapse
|
17
|
Demirbolat GM, Altintas L, Yilmaz S, Arsoy T, Sözmen M, Degim IT. Nanodesigning of multifunctional quantum dots and nanoparticles for the treatment of fibrosarcoma. J Microencapsul 2021; 39:210-225. [PMID: 34796787 DOI: 10.1080/02652048.2021.1990423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AIM An effective, dual drug(DD) loaded nanocarrier system (nano particle(NP), quantum dots(QDs)) having two active substances was aimed to develop for the treatment of fibrosarcoma. METHODS Zinc oxide(ZnO) QDs were produced using zinc acetate dehydrate as a precursor, were incorporated with chitosan(Ch), and finally decorated with PEG-linked folic acid and were found to be effective after imatinib mesylate(IM) and dexketoprofen trometamol(DT) were loaded. Characterizations, invitro drug releases, cell toxicities, penetrations through cell lines and in-vivo animal tests of the prepared nanosystems were performed. RESULTS The size of hybrid nanoparticles were 168.6 ± 48.8nm, surface charge was -35.8 ± 0.26mV. The encapsulation efficiency was 75% for IM and 99% for DT. DD-functionalized QDChNPs and lyophilized functionalized QDChNPs in capsules slowed down tumor growth by up to 76.5 % and 88.7 %. CONCLUSIONS Our results demonstrate that developed hybrid nanoparticles are highly effective. This hybrid system gathers many of the advantages of nanotechnology into one form.
Collapse
Affiliation(s)
- Gulen Melike Demirbolat
- Department of Pharmaceutical Technology, Biruni University Faculty of Pharmacy, 34010, Topkapi, Istanbul, Turkey.,Department of Pharmaceutical Technology, Gazi University Faculty of Pharmacy, 06330, Yenimahalle, Ankara, Turkey
| | - Levent Altintas
- Department of Pharmacology and Toxicology, Ankara University Faculty of Veterinary Medicine, 06110, Ankara, Turkey
| | - Sukran Yilmaz
- Food and Mouth Diseases Institute, 06520, Ankara, Turkey
| | - Taibe Arsoy
- Food and Mouth Diseases Institute, 06520, Ankara, Turkey
| | - Mahmut Sözmen
- Department of Preclinical Sciences, Ondokuz Mayıs University Faculty of Veterinary, Samsun, Turkey
| | - Ismail Tuncer Degim
- Department of Pharmaceutical Technology, Biruni University Faculty of Pharmacy, 34010, Topkapi, Istanbul, Turkey.,Department of Pharmaceutical Technology, Gazi University Faculty of Pharmacy, 06330, Yenimahalle, Ankara, Turkey
| |
Collapse
|
18
|
Zhao Y, Liu P, Tan H, Chen X, Wang Q, Chen T. Exosomes as Smart Nanoplatforms for Diagnosis and Therapy of Cancer. Front Oncol 2021; 11:743189. [PMID: 34513718 PMCID: PMC8427309 DOI: 10.3389/fonc.2021.743189] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Exosomes are composed of a lipid bilayer membrane, containing proteins, nucleic acids, DNA, RNA, etc., derived from donor cells. They have a size range of approximately 30-150 nm. The intrinsic characteristics of exosomes, including efficient cellular uptake, low immunogenicity, low toxicity, intrinsic ability to traverse biological barriers, and inherent targeting ability, facilitate their application to the drug delivery system. Here, we review the generation, uptake, separation, and purification methods of exosomes, focusing on their application as carriers in tumor diagnosis and treatment, especially in brain tumors, as well as the patent applications of exosomes in recent years.
Collapse
Affiliation(s)
- Yuying Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Piaoxue Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanxu Tan
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
19
|
Regimbeau M, Abrey J, Vautrot V, Causse S, Gobbo J, Garrido C. Heat shock proteins and exosomes in cancer theranostics. Semin Cancer Biol 2021; 86:46-57. [PMID: 34343652 DOI: 10.1016/j.semcancer.2021.07.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 01/19/2023]
Abstract
Heat shock proteins (HSPs) are a superfamily of molecular chaperones that were discovered through their ability to be induced by different stresses including heat shock. Other than their function as chaperones in proteins homeostasis, HSPs have been shown to inhibit different forms of cell death and to participate in cell proliferation and differentiation processes. Because cancer cells have to rewire their metabolism, they require a high amount of these stress-inducible chaperones for their survival. Therefore, HSPs are unusually abundant in cancer cells where they have oncogene-like functions. In cancer, HSPs have been involved in the regulation of apoptosis, immune responses, angiogenesis, metastasis and treatment resistance. Recently, HSPs have been shown to be secreted through exosomes by cancer cells. These tumor-derived exosomes can be used as circulating markers: HSP-exosomes have been reported as biomarkers of cancer dissemination, response to therapy and/or patient outcome. A new range of functions, mostly in modulation of anticancer immune responses, have been described for these extracellular HSPs. In this review, we will describe those recently reported functions of HSP-exosomes that makes them both targets for anticancer therapeutics and biomarkers for the monitoring of the disease. We will also discuss their emerging interest in cancer vaccines.
Collapse
Affiliation(s)
- Mathilde Regimbeau
- INSERM, UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC. 7 blvd Jeanne d'Arc, 21000, Dijon, France; Université. Bourgogne Franche-Comté, 21000, Dijon, France
| | - Jimena Abrey
- INSERM, UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC. 7 blvd Jeanne d'Arc, 21000, Dijon, France; Université. Bourgogne Franche-Comté, 21000, Dijon, France
| | - Valentin Vautrot
- INSERM, UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC. 7 blvd Jeanne d'Arc, 21000, Dijon, France; Université. Bourgogne Franche-Comté, 21000, Dijon, France; Anticancer Center Georges François Leclerc, Dijon, France
| | - Sebastien Causse
- INSERM, UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC. 7 blvd Jeanne d'Arc, 21000, Dijon, France; Université. Bourgogne Franche-Comté, 21000, Dijon, France
| | - Jessica Gobbo
- INSERM, UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC. 7 blvd Jeanne d'Arc, 21000, Dijon, France; Anticancer Center Georges François Leclerc, Dijon, France; Early Phase Unit INCa CLIP², Department of Oncology, Georges-François Leclerc Centre, Dijon, France; Centre d'investigation Clinique INSERM 1432, CHU Dijon-Bourgogne, Dijon, France
| | - Carmen Garrido
- INSERM, UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC. 7 blvd Jeanne d'Arc, 21000, Dijon, France; Université. Bourgogne Franche-Comté, 21000, Dijon, France; Anticancer Center Georges François Leclerc, Dijon, France.
| |
Collapse
|
20
|
Exosomal microRNA-503-3p derived from macrophages represses glycolysis and promotes mitochondrial oxidative phosphorylation in breast cancer cells by elevating DACT2. Cell Death Discov 2021; 7:119. [PMID: 34016964 PMCID: PMC8137952 DOI: 10.1038/s41420-021-00492-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/30/2021] [Accepted: 04/23/2021] [Indexed: 11/08/2022] Open
Abstract
MicroRNAs (miRNAs) are emerging drivers in tumor progression, while the role of miR-503-3p in breast cancer (BC) remains largely unknown. We aimed to explore the impact of macrophage-derived exosomal miR-503-3p in the development of BC by regulating disheveled-associated binding antagonist of beta-catenin 2 (DACT2). miR-503-3p and DACT2 expression in BC tissues and cells was assessed, and the expression of Wnt/β-catenin signaling pathway-related proteins in BC cells was also evaluated. Macrophages were induced and exosomes were extracted. The screened BC cell lines were, respectively, treated with exosomes, miR-503-3p inhibitor/mimic or upregulated/inhibited DACT2, and then the phenotypes, glucose intake, oxygen consumption rate, and adenosine-triphosphate (ATP) level of BC cells were determined. Cell growth in vivo was also observed. MiR-503-3p was elevated, DACT2 was reduced, and Wnt/β-catenin signaling pathway was activated in BC cells. Macrophage-derived exosomes, upregulated miR-503-3p or inhibited DACT2 promoted malignant behaviors of BC cells, glucose intake, and activity of the Wnt/β-catenin signaling pathway, while repressed oxygen consumption rate and ATP level in BC cells. Reversely, reduced miR-503-3p or upregulated DACT2 exerted opposite effects. This study revealed that reduction of macrophage-derived exosomal miR-503-3p repressed glycolysis and promoted mitochondrial oxidative phosphorylation in BC by elevating DACT2 and inactivating Wnt/β-catenin signaling pathway. Our research may provide novel targets for BC treatment.
Collapse
|
21
|
Jahromi LP, Shahbazi M, Maleki A, Azadi A, Santos HA. Chemically Engineered Immune Cell-Derived Microrobots and Biomimetic Nanoparticles: Emerging Biodiagnostic and Therapeutic Tools. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002499. [PMID: 33898169 PMCID: PMC8061401 DOI: 10.1002/advs.202002499] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/26/2020] [Indexed: 05/16/2023]
Abstract
Over the past decades, considerable attention has been dedicated to the exploitation of diverse immune cells as therapeutic and/or diagnostic cell-based microrobots for hard-to-treat disorders. To date, a plethora of therapeutics based on alive immune cells, surface-engineered immune cells, immunocytes' cell membranes, leukocyte-derived extracellular vesicles or exosomes, and artificial immune cells have been investigated and a few have been introduced into the market. These systems take advantage of the unique characteristics and functions of immune cells, including their presence in circulating blood and various tissues, complex crosstalk properties, high affinity to different self and foreign markers, unique potential of their on-demand navigation and activity, production of a variety of chemokines/cytokines, as well as being cytotoxic in particular conditions. Here, the latest progress in the development of engineered therapeutics and diagnostics inspired by immune cells to ameliorate cancer, inflammatory conditions, autoimmune diseases, neurodegenerative disorders, cardiovascular complications, and infectious diseases is reviewed, and finally, the perspective for their clinical application is delineated.
Collapse
Affiliation(s)
- Leila Pourtalebi Jahromi
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Pharmaceutical Sciences Research CenterShiraz University of Medical SciencesShiraz71468‐64685Iran
- Present address:
Helmholtz Institute for Pharmaceutical Research SaarlandHelmholtz Centre for Infection ResearchBiogenic Nanotherapeutics GroupCampus E8.1Saarbrücken66123Germany
| | - Mohammad‐Ali Shahbazi
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical SciencesZanjan45139‐56184Iran
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical SciencesZanjan45139‐56184Iran
| | - Amir Azadi
- Pharmaceutical Sciences Research CenterShiraz University of Medical SciencesShiraz71468‐64685Iran
- Department of PharmaceuticsSchool of PharmacyShiraz University of Medical SciencesShiraz71468‐64685Iran
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFI‐00014Finland
| |
Collapse
|
22
|
Ma Y, Dong S, Li X, Kim BYS, Yang Z, Jiang W. Extracellular Vesicles: An Emerging Nanoplatform for Cancer Therapy. Front Oncol 2021; 10:606906. [PMID: 33628730 PMCID: PMC7897670 DOI: 10.3389/fonc.2020.606906] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane particles that represent an endogenous mechanism for cell-to-cell communication. Since discovering that EVs have multiple advantages over currently available delivery platforms, such as their ability to overcome natural barriers, intrinsic cell targeting properties, and circulation stability, the potential use of EVs as therapeutic nanoplatforms for cancer studies has attracted considerable interest. To fully elucidate EVs' therapeutic function for treating cancer, all current knowledge about cellular uptake and trafficking of EVs will be initially reviewed. In order to further improve EVs as anticancer therapeutics, engineering strategies for cancer therapy have been widely explored in the last decade, along with other cancer therapies. However, therapeutic applications of EVs as drug delivery systems have been limited because of immunological concerns, lack of methods to scale EV production, and efficient drug loading. We will review and discuss recent progress and remaining challenges in developing EVs as a delivery nanoplatform for cancer therapy.
Collapse
Affiliation(s)
- Yifan Ma
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Shiyan Dong
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Xuefeng Li
- Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zhaogang Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Wen Jiang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
23
|
Exosomes in Immune Regulation. Noncoding RNA 2021; 7:ncrna7010004. [PMID: 33435564 PMCID: PMC7838779 DOI: 10.3390/ncrna7010004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023] Open
Abstract
Exosomes, small extracellular vesicles mediate intercellular communication by transferring their cargo including DNA, RNA, proteins and lipids from cell to cell. Notably, in the immune system, they have protective functions. However in cancer, exosomes acquire new, immunosuppressive properties that cause the dysregulation of immune cells and immune escape of tumor cells supporting cancer progression and metastasis. Therefore, current investigations focus on the regulation of exosome levels for immunotherapeutic interventions. In this review, we discuss the role of exosomes in immunomodulation of lymphoid and myeloid cells, and their use as immune stimulatory agents to elicit specific cytotoxic responses against the tumor.
Collapse
|
24
|
Macrophage-derived exosomes in cancers: Biogenesis, functions and therapeutic applications. Immunol Lett 2020; 227:102-108. [PMID: 32888974 DOI: 10.1016/j.imlet.2020.08.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023]
Abstract
Macrophages are fundamental to promote tumorigenesis, tumor development and metastasis, and chemotherapy resistance through modulating tumor microenvironment and cancer cells. Recently, increasing studies have shown that exosomes could play a crucial role in orchestrating the crosstalk between macrophages and cancer cells. Exosomes, as one of the extracellular vehicles, deliver a diverse cast of molecules including lipids, proteins, and nucleic acids, etc. to the targeted cells to exert pleiotropic effects. The macrophage-derived exosomes have heterogeneity in different cancers and play paradoxical roles in suppressing and promoting tumors mainly via post-transcriptional control and regulating the phosphorylation of proteins in the recipient cells. Meanwhile, exosomes secreted by different phenotypes of macrophages provide diverse therapeutic options. Thus, in this review, we summarized the latest progress in outlining the current understanding of macrophage-derived exosomal biogenesis and mechanisms in mediating cancer progression, as well as their potential clinical applications.
Collapse
|
25
|
Azambuja JH, Ludwig N, Yerneni SS, Braganhol E, Whiteside TL. Arginase-1+ Exosomes from Reprogrammed Macrophages Promote Glioblastoma Progression. Int J Mol Sci 2020; 21:E3990. [PMID: 32498400 PMCID: PMC7312363 DOI: 10.3390/ijms21113990] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/13/2022] Open
Abstract
Interactions between tumor cells and tumor-associated macrophages (TAMs) are critical for glioblastoma progression. The TAMs represent up to 30% of the glioblastoma mass. The role of TAMs in tumor progression and in the mechanisms underlying tumor growth remain unclear. Using an in vitro model resembling the crosstalk between macrophages and glioblastoma cells, we show that glioblastoma-derived exosomes (GBex) reprogram M1 (mediate pro-inflammatory function) and M2 (mediate anti-inflammatory function) macrophages, converting M1 into TAMs and augmenting pro-tumor functions of M2 macrophages. In turn, these GBex-reprogrammed TAMs, produce exosomes decorated by immunosuppressive and tumor-growth promoting proteins. TAM-derived exosomes disseminate these proteins in the tumor microenvironment (TME) promoting tumor cell migration and proliferation. Mechanisms underlying the promotion of glioblastoma growth involved Arginase-1+ exosomes produced by the reprogrammed TAMs. A selective Arginase-1 inhibitor, nor-NOHA reversed growth-promoting effects of Arginase-1 carried by TAM-derived exosomes. The data suggest that GBex-reprogrammed Arginase-1+ TAMs emerge as a major source of exosomes promoting tumor growth and as a potential therapeutic target in glioblastoma.
Collapse
Affiliation(s)
- Juliana H. Azambuja
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (J.H.A.); (N.L.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil;
| | - Nils Ludwig
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (J.H.A.); (N.L.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | | | - Elizandra Braganhol
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil;
| | - Theresa L. Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (J.H.A.); (N.L.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Departments of Immunology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
26
|
Zhao X, Wu D, Ma X, Wang J, Hou W, Zhang W. Exosomes as drug carriers for cancer therapy and challenges regarding exosome uptake. Biomed Pharmacother 2020; 128:110237. [PMID: 32470747 DOI: 10.1016/j.biopha.2020.110237] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/20/2022] Open
Abstract
With the development of biomedicine, exosomes are rapidly developing as a new therapy for tumors. As biological carriers, exosomes possess biological activity and can transport their contents between cells. The contents are natural or artificially loaded with biomolecules or chemical drugs. Exosomes deliver biomolecules or chemical drugs into the pathological sites of recipient, which can effectively inhibit the progression of tumors. However, the treatments of tumors through the delivery of exosomes are not sufficiently accurate or efficient, and various challenges need to be overcome. Exosomes from different cell sources possess different characteristics, as well as different specificity for various cells. In the future, for the promotion and application of exosomes, it is of great significance to understand how to select appropriate exosomes loaded with biomolecules or chemical drugs for different tumors types, and how to deliver exosomes to recipient cells accurately and efficiently. This review introduces the application and challenges of exosomes as delivery carriers in tumors.
Collapse
Affiliation(s)
- Xiaoyin Zhao
- Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China.
| | - Dongliang Wu
- Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Xudong Ma
- Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Jiale Wang
- Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Wenjun Hou
- Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China.
| |
Collapse
|
27
|
Abstract
Exosomes are bilayer vesicles with particle sizes between 50 and 150 nm. Owing to their bilayer membrane structure, cell-to-cell communication, and good absorbability, exosomes are increasingly used as carriers for drug delivery through phospholipid membrane structures to lesion sites with enhanced targeting. Exosome sources and drug-loading methods are important factors affecting their use as drug carriers. There are various ways to pack species in exosomes, and researchers are constantly seeking new and improved approaches. In both in vivo and in vitro evaluations, exosomal vectors have achieved good antitumor efficacies. Despite the importance of exosomes as drug delivery systems with accurate targeting ability and biocompatibility, improvements are needed to facilitate their widespread clinical use. This review focuses on the preparation of exosomes as carriers and their utilization in antitumor research.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhe Li
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kuan Zhou
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
28
|
Masaoutis C, Korkolopoulou P, Theocharis S. Exosomes in sarcomas: Tiny messengers with broad implications in diagnosis, surveillance, prognosis and treatment. Cancer Lett 2019; 449:172-177. [PMID: 30779943 DOI: 10.1016/j.canlet.2019.02.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/08/2019] [Accepted: 02/12/2019] [Indexed: 12/13/2022]
Abstract
Exosomes are cell-secreted extracellular vesicles, which contain an array of biomolecules, such as proteins, mRNAs, microRNAs, and lipids, take part in intercellular communication and mediate tumor-host interactions. They are increasingly considered as a source of biomarkers for liquid biopsies as well as potential drug vectors. Sarcomas are rare malignant mesenchymal tumours and due to their relative rarity exosomes have not been investigated in as extensively as in epithelial malignancies. Nonetheless, valuable information has been gathered over the last years on the roles of exosomes in sarcomas. In the present review we summarize all relevant data obtained so far from cell lines, animal models and patients with emphasis on their potential clinical utility.
Collapse
Affiliation(s)
- Christos Masaoutis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Penelope Korkolopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| |
Collapse
|
29
|
Çoban Ö, Değim Z, Yılmaz Ş, Altıntaş L, Arsoy T, Sözmen M. Efficacy of targeted liposomes and nanocochleates containing imatinib plus dexketoprofen against fibrosarcoma. Drug Dev Res 2019; 80:556-565. [PMID: 30901500 DOI: 10.1002/ddr.21530] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/27/2019] [Accepted: 03/03/2019] [Indexed: 11/06/2022]
Abstract
The main challenges in treating cancer using chemotherapeutics are insufficient dose at the target site and the development of drug resistance, while higher doses can induce side effects by damaging nontarget tissues. Combinatorial drug therapy may overcome these limitations by permitting lower doses and more specific targeting, thereby mitigating drug resistance and nontarget side effects. Recent reports indicate that nonsteroidal anti-inflammatory drugs (NSAIDs) have anticancer potential and can be used together with conventional chemotherapeutics to improve efficacy and safety. In the present study, imatinib mesylate and dexketoprofen trometamol were selected as model drugs to develop targeted surface-modified liposome and nanocochleate formulations for fibrosarcoma treatment. The physicochemical properties and in vitro efficacy of various formulations were evaluated by measurement of particle size distribution, polydispersity index, zeta potential, encapsulation efficiency, diffusion through Caco-2 cells, and toxicity in culture. Selected formulations were then evaluated in fibrosarcoma-bearing model mice by histopathological observations and tyrosine kinase receptor inhibition assays. The most effective formulation on the fibrosarcoma model was a PEGylated nanocochleate formulation. These findings provide a foundation for developing more effective formulations and chemotherapeutic strategies for the treatment of fibrosarcoma and other types of cancer.
Collapse
Affiliation(s)
- Özlem Çoban
- Department of Pharmaceutical Technology, Karadeniz Technical University Faculty of Pharmacy, Trabzon, Turkey
| | - Zelihagül Değim
- Department of Pharmaceutical Technology, Biruni University Faculty of Pharmacy, İstanbul, Turkey
| | - Şükran Yılmaz
- Department of Cell Bank, Food and Mouth Diseases Institute, Ankara, Turkey
| | - Levent Altıntaş
- Department of Pharmacology and Toxicology, Ankara University Faculty of Veterinary Medicine, Ankara, Turkey
| | - Taibe Arsoy
- Department of Cell Bank, Food and Mouth Diseases Institute, Ankara, Turkey
| | - Mahmut Sözmen
- Department of Preclinical Sciences, OndokuzMayıs University, Faculty of Veterinary Medicine, Samsun, Turkey
| |
Collapse
|
30
|
New insights into the biological impacts of immune cell-derived exosomes within the tumor environment. Cancer Lett 2018; 431:115-122. [PMID: 29857125 DOI: 10.1016/j.canlet.2018.05.040] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 01/15/2023]
Abstract
Exosomes are a group of nano-sized membrane vesicles that transfer proteins, nucleic acids, and lipids to nearby and faraway cells, playing an important role in the intercellular communication within the extracellular environment. Emerging evidences show that exosomes derived from immunocytes, including dendritic cells, T cells, B cells, macrophages, natural killer cells and myeloid-derived suppressor cells, can play an intimate role in the crosstalk among immunocytes in a tumor microenvironment. In this review, we highlight that under tumor conditions, immune cells and tumor cells can be influenced by immunocyte-derived exosomes, resulting in modifications of their phenotype and function. Thus, a better understanding of exosomes derived from different immunocytes would provide novel strategies in generating effective vaccines or improving treatment efficacy in anticancer therapies.
Collapse
|